You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert
Webアプリケーションにおける機械学習活用の基礎──HTML5 Conference 2016セッションレポート 中井悦司(グーグル株式会社) みなさん、こんにちは。Google Cloud Solutions Architectの中井です。 HTML5 Conference 2016では、「Webアプリケーションにおける機械学習活用の基礎」と題して、機械学習の基礎となる仕組み、そして、機械学習を利用したクライアントアプリケーションの例を紹介させていただきました。今回は、この発表の内容を振り返りたいと思います。 機械学習とディープラーニング、そして、AIの関係 機械学習そのものは古くから利用されている技術であり、過去のデータを元にして、「(まだ見たことのない)未来のデータにもあてはまる一般的なルール」を発見することがその役割となります。つまり、はじめて見るデータに対して、何らかの予測を立て
(編注:2016/11/17、記事を修正いたしました。) ディープラーニングの分野でテクノロジの進化が続いているということが話題になる場合、十中八九畳み込みニューラルネットワークが関係しています。畳み込みニューラルネットワークはCNN(Convolutional Neural Network)またはConvNetとも呼ばれ、ディープニューラルネットワークの分野の主力となっています。CNNは画像を複数のカテゴリに分類するよう学習しており、その分類能力は人間を上回ることもあります。大言壮語のうたい文句を実現している方法が本当にあるとすれば、それはCNNでしょう。 CNNの非常に大きな長所として、理解しやすいことが挙げられます。少なくとも幾つかの基本的な部分にブレークダウンして学べば、それを実感できるでしょう。というわけで、これから一通り説明します。また、画像処理についてこの記事よりも詳細に説明
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く