WO2006121009A1 - 投影光学系、露光装置、および露光方法 - Google Patents
投影光学系、露光装置、および露光方法 Download PDFInfo
- Publication number
- WO2006121009A1 WO2006121009A1 PCT/JP2006/309254 JP2006309254W WO2006121009A1 WO 2006121009 A1 WO2006121009 A1 WO 2006121009A1 JP 2006309254 W JP2006309254 W JP 2006309254W WO 2006121009 A1 WO2006121009 A1 WO 2006121009A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical system
- optical element
- projection
- optical
- axis
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 508
- 238000000034 method Methods 0.000 title claims description 28
- 239000007788 liquid Substances 0.000 claims abstract description 150
- 238000007654 immersion Methods 0.000 claims abstract description 34
- 238000003384 imaging method Methods 0.000 claims description 43
- 239000000758 substrate Substances 0.000 claims description 33
- 238000005286 illumination Methods 0.000 claims description 15
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 230000000007 visual effect Effects 0.000 claims description 6
- 238000011161 development Methods 0.000 claims description 5
- 235000012431 wafers Nutrition 0.000 description 97
- 230000005499 meniscus Effects 0.000 description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 24
- 238000002347 injection Methods 0.000 description 19
- 239000007924 injection Substances 0.000 description 19
- 230000004048 modification Effects 0.000 description 18
- 238000012986 modification Methods 0.000 description 18
- 239000004973 liquid crystal related substance Substances 0.000 description 13
- 239000004065 semiconductor Substances 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 230000004075 alteration Effects 0.000 description 9
- 230000007246 mechanism Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 230000005484 gravity Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000010453 quartz Substances 0.000 description 7
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 239000010436 fluorite Substances 0.000 description 5
- 229920002120 photoresistant polymer Polymers 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 4
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical compound [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 210000002858 crystal cell Anatomy 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000010702 perfluoropolyether Substances 0.000 description 3
- RSPISYXLHRIGJD-UHFFFAOYSA-N OOOO Chemical compound OOOO RSPISYXLHRIGJD-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 description 2
- 229910001632 barium fluoride Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 230000004438 eyesight Effects 0.000 description 2
- 239000002223 garnet Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910020068 MgAl Inorganic materials 0.000 description 1
- GVOIQSXBMLNCLC-UHFFFAOYSA-N OOOS Chemical compound OOOS GVOIQSXBMLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 230000002421 anti-septic effect Effects 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- -1 for example Substances 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 238000000671 immersion lithography Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- KLUYKAPZRJJIKT-UHFFFAOYSA-N lutetium Chemical compound [Lu][Lu] KLUYKAPZRJJIKT-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000001393 microlithography Methods 0.000 description 1
- 238000010943 off-gassing Methods 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000004304 visual acuity Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/70716—Stages
- G03F7/70725—Stages control
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/06—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of fluids in transparent cells
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/702—Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/08—Catadioptric systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/08—Catadioptric systems
- G02B17/0892—Catadioptric systems specially adapted for the UV
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
- G03F7/2041—Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70225—Optical aspects of catadioptric systems, i.e. comprising reflective and refractive elements
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70275—Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70341—Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/0271—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
- H01L21/0273—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/0271—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
- H01L21/0273—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
- H01L21/0274—Photolithographic processes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/33—Immersion oils, or microscope systems or objectives for use with immersion fluids
Definitions
- the present invention relates to a projection optical system, an exposure apparatus, and an exposure method, and in particular, a projection apparatus suitable for use in manufacturing a microdevice such as a semiconductor element or a liquid crystal display element by photolithography. It relates to an optical system.
- a photosensitive substrate (a wafer coated with a photoresist, a pattern image of a mask (or a reticle), a projection optical system, and the like, as in a photolithographic process for producing a semiconductor element, etc.
- An exposure apparatus for projecting and exposing onto a glass plate or the like is used. In the exposure apparatus, as the degree of integration of semiconductor elements and the like is improved, the resolution (resolution) required for the projection optical system is further increased.
- the resolution of the projection optical system is represented by k ′ ZNA (k is a process coefficient). Also, assuming that the refractive index of the medium (usually a gas such as air) between the projection optical system and the photosensitive substrate is n and the maximum incident angle to the photosensitive substrate is n. It is represented by n-sin ⁇ .
- Patent Document 1 International Publication No. WO 2004 Z 019128 Pamphlet
- the image space is filled with a medium such as a liquid having a refractive index higher than that of a gas, and the image side is larger than 1
- a medium such as a liquid having a refractive index higher than that of a gas
- the image side is larger than 1
- Techniques for securing the numerical aperture are known.
- micropatterning that ignores the chip cost in microlithography has not been realized, and a mechanism that supplies and discharges liquid only to a limited portion of the image space of the projection optical system is currently the most powerful immersion lithography system.
- the so-called localized immersion system provided is the mainstream.
- the image side numerical aperture exceeds, for example, 1.2
- the effective visual field area and the effective projection area do not include the optical axis!
- the maximum image height is larger than that of a conventional dioptric projection optical system.
- the present invention has been made in view of the above problems, and is, for example, a catadioptric type and an off-axis visual field type, in which the range in which the liquid (immersion liquid) intervenes in the image space is reduced. It is an object of the present invention to provide a liquid immersion type projection optical system. In addition, the present invention uses a high-resolution immersion projection optical system that can suppress the range in which the liquid intervenes in the image space to a small size, without causing a decrease in the accuracy of the alignment stage optical system or the like. It is an object of the present invention to provide an exposure apparatus and an exposure method capable of projecting and exposing a fine pattern with high accuracy.
- the projection optical system in a projection optical system that projects an image of a first surface onto a second surface via a liquid, includes a dioptric optical element disposed closest to the second surface, and an emission surface of the dioptric optical element corresponds to the shape of the effective projection area on the second surface.
- the present invention provides a projection optical system characterized by having a rotationally asymmetric shape with respect to the optical axis of
- rotationally asymmetric shape refers to “a shape other than an infinitely rotational symmetric shape”.
- a projection optical system for projecting an image of a first surface onto a second surface through a liquid
- the projection optical system includes a dioptric optical element disposed closest to the second surface, and an exit surface of the dioptric optical element has a shape that is rotationally symmetric twice with respect to the optical axis of the projection optical system.
- a projection optical system for projecting an image of a first surface onto a second surface through a liquid
- the projection optical system includes a dioptric optical element disposed closest to the second surface side, and an emission surface of the dioptric optical element has a substantially symmetrical shape with respect to two axial directions orthogonal to each other on the second surface.
- the projection optical system is characterized in that the central axis of the emission surface and the central axis of a circle corresponding to the outer periphery of the incident surface of the refractive optical element substantially coincide with the optical axis. .
- a projection optical system for projecting an image of a first surface onto a second surface through a liquid
- the projection optical system includes a dioptric optical element disposed closest to the second surface, and an emission surface of the dioptric optical element has a shape that is rotationally symmetric once with respect to the optical axis of the projection optical system.
- a projection optical system for projecting an image of a first surface onto a second surface through a liquid
- the projection optical system includes a dioptric optical element disposed closest to the second surface side, and an emission surface of the dioptric optical element has a substantially symmetrical shape with respect to two axial directions orthogonal to each other on the second surface.
- the central axis of the exit surface substantially coincides with the central axis of a circle corresponding to the outer periphery of the entrance surface of the refractive optical element;
- a projection optical system for projecting an image of a first surface onto a second surface through a liquid
- the projection optical system includes a dioptric optical element disposed closest to the second surface side, and the emission surface of the dioptric optical element is one of two axial directions orthogonal to each other on the second surface. It is substantially symmetrical and has an asymmetrical shape with respect to the other axial direction, and the central axis of the circle corresponding to the outer periphery of the entrance surface of the refractive optical element substantially coincides with the optical axis, and the central axis of the exit surface is There is provided a projection optical system characterized in that it is decentered from the optical axis along the one axial direction.
- a seventh aspect of the present invention in a projection optical system that projects an image of a first surface onto a second surface via a liquid,
- the projection optical system includes a dioptric optical element disposed closest to the second surface side, and an emission surface of the dioptric optical element has a substantially symmetrical shape with respect to two axial directions orthogonal to each other on the second surface. And the central axis of the circle corresponding to the outer periphery of the entrance surface of the refractive optical element substantially coincides with the optical axis, and the central axis of the exit surface is in one of the two axial directions.
- the optical axial force is decentered along.
- a projection optical system for projecting an image of a first surface onto a second surface through a liquid
- the projection optical system includes a dioptric optical element disposed closest to the second surface side, and when setting two axial directions orthogonal to each other on the second surface, the projection optical system may be arranged in one axial direction.
- the projection optical system is characterized in that the length of the exit surface of the refractive optical element and the length of the exit surface in the other axial direction are different from each other.
- an image of the pattern is projected on the photosensitive substrate set on the second surface based on illumination light from the predetermined pattern set on the first surface.
- An exposure apparatus comprising the projection optical system of the first to eighth forms for providing an exposure apparatus.
- a projection optical system according to any one of the first to eighth aspects based on a setting step of setting a predetermined pattern on the first surface, and illumination light from the predetermined pattern. And exposing the image of the pattern onto the photosensitive substrate set on the second surface.
- an image of a pattern set on the first surface through the projection optical system of the first to eighth aspects is formed on the photosensitive substrate set on the second surface.
- a dioptric optical element that is used in an immersion objective optical system that forms an image of a first surface on a second surface, one optical surface is in contact with a liquid,
- the first optical surface of the refractive optical element is characterized by having a rotationally asymmetric shape with respect to the optical axis of the immersion objective optical system according to the shape of the effective projection area on the second surface.
- an optical element Provided is an optical element.
- a dioptric optical element used in an immersion objective optical system for forming an image of a first surface on a second surface one of the optical surfaces is in contact with a liquid
- the length of the one optical surface of the refractive optical element in one axial direction and the other axial direction is characterized in that the length of the one optical surface is different from each other.
- An immersion type projection optical system is, for example, a catadioptric type and an off-axis visual field type
- the exit surface of the refractive optical element disposed closest to the image plane is Depending on the shape of the effective projection area on the image plane, it has a rotationally asymmetric shape with respect to the optical axis.
- the exit surface of the refractive optical element has, for example, a substantially symmetrical shape with respect to two axial directions orthogonal to each other on the image plane, and the central axis of the exit surface and the outer periphery of the incident surface of the refractive optical element.
- the central axis of the corresponding circle substantially coincides with the central axis of the exit surface, and the optical axis of the central axis of the exit surface is decentered along the axial direction of one of the two axial directions.
- the exit surface of the dioptric optical element arranged closest to the image plane is formed into a rotationally asymmetric shape according to the shape of the effective projection area.
- the range in which the liquid (immersion liquid) intervenes can be kept small.
- the substrate stage becomes large. It is possible to project and expose a fine pattern with high precision without causing a decrease in precision of the alignment optical system, and thus to manufacture a good micro device with high precision.
- FIG. 1 schematically shows a configuration of an exposure apparatus according to an embodiment of the present invention.
- FIG. 2 is a view showing the positional relationship between a rectangular still exposure area formed on a wafer and a reference optical axis in the present embodiment.
- FIG. 3 is a view schematically showing a configuration between a boundary lens and a wafer in each example of the present embodiment.
- FIG. 4 is a diagram showing a lens configuration of a projection optical system which may be included in the first example of the present embodiment.
- FIG. 5 is a diagram showing lateral aberration in the projection optical system of the first embodiment.
- FIG. 6 is a view showing a lens configuration of a projection optical system according to a second example of the present embodiment.
- FIG. 7 shows transverse aberration in the projection optical system of the second embodiment.
- FIG. 8 is a view for specifically explaining the inconvenience when the exit surface of the refractive optical element disposed closest to the image side is formed into a rotationally symmetric shape according to the prior art.
- FIG. 9 is a view schematically showing a configuration of a parallel flat plate in liquid in each example of the present embodiment.
- FIG. 10 is a view schematically showing the configuration of a parallel flat plate in a liquid according to a first modification of the present embodiment.
- FIG. 11 is a view schematically showing the configuration of a parallel flat plate in a liquid according to a second modification of the embodiment.
- FIG. 12 is a view schematically showing the configuration of a parallel flat plate in a liquid according to a third modification of the present embodiment.
- Fig. 13 is a flowchart of the method for obtaining a semiconductor device as a microdevice.
- FIG. 14 It is a flowchart of the method at the time of obtaining the liquid crystal display element as a microdevice.
- FIG. 1 is a view schematically showing the configuration of an exposure apparatus according to an embodiment of the present invention.
- the X axis and the Y axis are set in a direction parallel to the wafer W, and the Z axis is set in a direction orthogonal to the wafer W. More specifically, the XY plane is set parallel to the horizontal plane, and the + Z axis is set upward along the vertical direction!
- the exposure apparatus of the present embodiment is, for example, an ArF exci-
- the illumination optical system 1 includes a laser light source, an optical 'integrator (homogenizer), a field stop, and a condenser lens and the like.
- An exposure light (exposure beam) IL consisting of ultraviolet pulse light with a wavelength of 193 nm from which the light source power is also emitted passes through the illumination optical system 1 and illuminates the reticle (mask) R.
- a pattern to be transferred is formed on reticle R, and a rectangular (slit-like) pattern area having a long side along the X direction and a short side along the Y direction out of the entire pattern area is illuminated. Be done.
- the light having passed through the reticle R is transferred to the exposure area on the wafer (photosensitive substrate) W coated with the photoresist through the immersion type projection optical system PL at a predetermined reduction projection magnification.
- a rectangular shape having a long side along the X direction and a short side along the Y direction on the wafer W so as to optically correspond to a rectangular illumination area on the reticle R.
- the pattern image is formed in the static exposure area (effective exposure area) of
- FIG. 2 is a view showing the positional relationship between a rectangular still exposure area (ie, effective exposure area) formed on a wafer in the present embodiment and a reference optical axis.
- a circular area (image circle) IF having a radius B centered on the reference optical axis AX (image circle) is placed in the IF, and an axis in the Y direction from the reference optical axis AX
- a rectangular effective exposure area ER having a desired size is set at a position separated by the removal amount A.
- the length in the X direction of the effective exposure region ER is LX
- the length in the Y direction is LY. Therefore, on the force reticle R (not shown), the effective exposure area ER is located at a distance from the reference optical axis AX in the Y direction by the distance corresponding to the off-axis amount A corresponding to the rectangular effective exposure area ER.
- a rectangular illumination area (that is, an effective illumination area) having a corresponding size and shape is formed.
- Reticle R is held on reticle stage RST in parallel to the XY plane, and reticle stage RST incorporates a mechanism for finely moving reticle R in the X direction, Y direction, and rotational direction.
- reticle stage RST incorporates a mechanism for finely moving reticle R in the X direction, Y direction, and rotational direction.
- the positions in the X direction, Y direction and rotational direction are measured and controlled in real time by a reticle laser interferometer (not shown).
- Wafer W is fixed parallel to the XY plane on Z stage 9 via a wafer holder (not shown).
- Z stage 9 is moved along an XY plane substantially parallel to the image plane of projection optical system PL. It is fixed on the moving XY stage 10 and controls the focus position (position in the ⁇ direction) and the tilt angle of the wafer W. The position of the X direction, the ⁇ direction and the rotational direction is measured and controlled in real time by a wafer laser interferometer 13 using a movable mirror 12 provided on the ⁇ stage 9 and the ⁇ ⁇ stage 9 is controlled.
- the crucible stage 10 is mounted on the base 11, and controls the X direction, the crucible direction, and the rotational direction of the wafer W.
- the main control system 14 provided in the exposure apparatus of this embodiment is based on the measurement values measured by the reticle laser interferometer! /, The position of the reticle R in the X direction, Make adjustments. That is, the main control system 14 transmits a control signal to a mechanism incorporated in the reticle stage RST and moves the reticle stage RST finely to adjust the position of the reticle R.
- the main control system 14 aligns the surface on the wafer W with the image plane of the projection optical system PL by the autofocus method and the auto leveling method, the focus position (position in the Z direction) of the wafer W and Adjust the tilt angle. That is, the main control system 14 transmits a control signal to the wafer stage drive system 15 and drives the Z stage 9 by the wafer stage drive system 15 to adjust the focus position and the inclination angle of the wafer W.
- the main control system 14 adjusts the position of the wafer W in the X direction, the Y direction, and the rotational direction based on the measurement values measured by the wafer laser interferometer 13. That is, the main control system 14 transmits a control signal to the wafer stage drive system 15 and drives the XY stage 10 by the wafer stage drive system 15 to adjust the position of the wafer W in the X direction, Y direction and rotation direction. Do.
- main control system 14 is incorporated in reticle stage RST, and sends a control signal to the mechanism, and sends a control signal to wafer stage drive system 15, thereby projecting the projection magnification of projection optical system PL.
- the pattern image of the reticle R is projected and exposed in a predetermined shot area on the wafer W while driving the reticle stage RST and the XY stage 10 at a speed ratio according to the above.
- the main control system 14 transmits a control signal to the wafer stage drive system 15 to drive the XY stage 10 by the wafer stage drive system 15 to step-move another shot area on the wafer W to the exposure position.
- the pattern image of the reticle R is transferred to the wafer W by the step 'and' scan method.
- the operation of scanning and exposing upward is repeated. That is, in the present embodiment, while controlling the position of reticle R and wafer W using wafer stage drive system 15 and wafer laser interferometer 13 etc., the short side direction of the rectangular static exposure area and static illumination area is detected.
- the reticle stage RST and the XY stage 10 along the Y direction are moved (scanned) synchronously with the reticle scale and the wafer W, so that the long side of the still exposure area on the wafer W
- a reticle pattern is scan-exposed to a region equal to LX and having a width and a length corresponding to the scanning amount (moving amount) of the wafer W.
- FIG. 3 is a view schematically showing a configuration between the boundary lens and the wafer in each example of the present embodiment.
- the surface on the reticle R side (object side) is in contact with the second liquid Lm2
- the surface on the wafer W side (image side) is the first.
- the in-liquid parallel flat plate Lp in contact with the liquid Lml is disposed closest to the wafer.
- a boundary lens Lb is disposed adjacent to the in-liquid parallel flat plate Lp, in which the surface on the reticle R side is in contact with gas and the surface on the wafer W side is in contact with the second liquid Lm2.
- the boundary lens Lb is a positive lens having a convex surface on the reticle R side and a flat surface on the wafer W side.
- the boundary lens Lb and the in-liquid flat plate Lp are both formed of quartz and quartz. This is because, when the boundary lens Lb and the liquid parallel flat plate Lp are formed of fluorite, the fluorite has the property of being soluble in water (soluble), so that the imaging performance of the projection optical system can be stably maintained. It becomes difficult.
- fluorite in fluorite, it is known that the internal refractive index distribution has a high frequency component, and variations in refractive index including this high frequency component may cause the occurrence of flare, and thus imaging of the projection optical system It is easy to reduce the performance. Furthermore, fluorite is known to have intrinsic birefringence, and in order to maintain good imaging performance of the projection optical system, it is necessary to correct the influence of the intrinsic birefringence. Therefore, it is preferable to form the boundary lens Lb and the in-liquid parallel flat plate Lp of quartz from the viewpoint of solubility of fluorite, high frequency component of refractive index distribution and intrinsic birefringence.
- the scanning exposure is performed while moving the wafer W relative to the projection optical system PL.
- the liquid (Lml, Lm2) filled in the optical path between the boundary lens Lb of the projection optical system PL and the wafer W from the start to the end of the scanning exposure in the exposure apparatus of the scan 'and' scan method.
- the technology disclosed in International Publication No. WO99Z49504 the technology disclosed in Japanese Patent Laid-Open No. 10-303114, and the like can be used.
- a liquid adjusted to a predetermined temperature from a liquid supply device through a supply pipe and a discharge nozzle is used as an optical path between the boundary lens Lb and the wafer W.
- Supply to fill, and the liquid supply device collects the liquid on the wafer W through the recovery pipe and the inflow nozzle.
- the wafer holder table is configured in a container shape so as to be able to store the liquid, and the center of the inner bottom portion ,) Wafer W is positioned and held by vacuum suction. Further, the end of the lens barrel of the projection optical system PL extends into the liquid, so that the optical surface on the wafer side of the boundary lens Lb extends into the liquid.
- the first water supply / drainage mechanism 21 is used to circulate pure water as the first liquid Lml in the optical path between the in-liquid parallel flat plate Lp and the wafer W. I am doing it.
- pure water as the second liquid Lm2 is circulated in the light path between the boundary lens Lb and the in-liquid parallel flat plate Lp using the second water supply / drainage mechanism 22.
- pure water as the immersion liquid at a small flow rate, it is possible to prevent the deterioration of the liquid by the effects such as antiseptic and antifungal.
- the aspheric surface has a height in the direction perpendicular to the optical axis as y, and the tangential force at the vertex of the aspheric surface is the optical axis up to the position on the aspheric surface at the height y.
- Letting z be the distance (sag amount) along r, r be the radius of curvature of the apex, K be the conical coefficient, and C be the aspheric coefficient of order ⁇ , it is expressed by the following equation (a).
- a lens surface formed in an aspheric surface shape is marked with an * mark on the right side of the surface number.
- the projection optical system PL is configured to form a first image for forming a first intermediate image of the pattern of the reticle R disposed on the object surface (first surface).
- Optical system G1 A second imaging optical system G2 for forming a second intermediate image (a first intermediate image and a secondary image of the reticle pattern) of the reticle pattern based on the light of the first intermediate image power;
- a third imaging optical system G3 for forming a final image (a reduced image of the reticle pattern) of the reticle pattern on the wafer W disposed on the image plane (the second surface) based on the light of the intermediate image power.
- the first imaging optical system G1 and the third imaging optical system G3 are both dioptric systems
- the second imaging optical system G2 is a catadioptric system including a concave reflecting mirror CM.
- a first plane reflecting mirror (first deflection mirror) Ml is disposed, and a second imaging optical system A second plane reflecting mirror (second deflecting mirror) M2 is disposed in the light path between G2 and the third imaging optical system G3.
- the light from the reticle R forms a first intermediate image of the reticle pattern in the vicinity of the first plane reflecting mirror Ml via the first imaging optical system G1.
- the light from the first intermediate image forms a second intermediate image of the reticle pattern in the vicinity of the second plane reflecting mirror M2 via the second imaging optical system G2.
- light from the second intermediate image forms a final image of the reticle pattern on the wafer W through the third imaging optical system G3.
- the first imaging optical system G1 and the third imaging optical system G3 have an optical axis AX1 and an optical axis AX3 which extend linearly along the vertical direction.
- the optical axis AX1 and the optical axis AX3 coincide with the reference optical axis AX.
- the second imaging optical system G2 has an optical axis AX2 (vertical to the reference optical axis AX) extending linearly along the horizontal direction.
- first plane reflector M1 and the second plane reflector M2 have reflecting surfaces set to form an angle of 45 degrees with the reticle plane, and the first plane reflector M1 and the second plane
- the reflecting mirror M2 is integrally configured as one optical member.
- the projection optical system PL is substantially telecentric on both the object side and the image side.
- FIG. 4 is a view showing a lens configuration of a projection optical system according to the first example of the present embodiment.
- a first imaging optical system G 1 denotes, in order from the reticle side, a plane-parallel plate P1, a biconvex lens L11, a positive mescus lens L12 with a convex surface facing the reticle side, a biconvex lens L13, and a concave surface with an aspheric wedge shape facing the reticle side.
- the second imaging optical system G2 has a negative meniscus lens L21 having a concave surface facing the reticle side and a concave surface facing the reticle side in this order from the reticle side (that is, the incident side) along the light traveling forward path.
- the negative meniscus lens L22 and a concave reflecting mirror CM having a concave surface facing the reticle are included.
- the third imaging optical system G3 has, in order from the reticle side (that is, the incident side), a positive mescus lens L31 having a concave surface facing the reticle side, a biconvex lens L32, and a positive surface having a convex surface facing the reticle side.
- a positive meniscus lens L310 with a spherical concave surface, a biconvex lens L311, an aperture stop AS, a planoconvex lens L312 with a flat surface facing the wafer, and a positive meniscus lens with a nonspherical concave surface facing the wafer It comprises a lens L313, a positive mesh lens L314 having an aspheric concave surface facing the wafer,
- all the light transmitting members including the boundary lens Lb and the plane parallel plate Lp are made of quartz (SiO 2) having a refractive index of 1.5603261 with respect to the central wavelength of the used light. Table 1 below shows values of specifications of the projection optical system PL that are the key to the first example.
- ⁇ is the central wavelength of the exposure light
- j8 is the size of the projection magnification (imaging magnification of the whole system)
- ⁇ A is the image side (wafer side) numerical aperture
- B is the wafer
- A is the off-axis amount of the effective exposure area ER
- LX is the dimension along the X direction of the effective exposure area ER (dimension of the long side)
- LY is the effective exposure area ER
- the dimensions along the Y direction (dimensions of the short side) of each are shown.
- the surface number indicates the order of the surface of the reticle side force along the traveling path of the light beam to the wafer surface which is the reticle surface force image surface (the second surface) which is the object surface (the first surface).
- r is the radius of curvature of each surface (apex radius of curvature in the case of an aspheric surface: mm)
- d is the axial spacing of each surface, ie, the surface spacing (mm)
- n is the refractive index for the central wavelength.
- the interplanar spacing d changes its sign each time it is reflected. Therefore, the sign of the surface separation d is negative in the optical path from the reflecting surface of the first plane reflecting mirror M1 to the concave reflecting mirror CM and in the optical path to the image plane, and the other optical paths Inside is positive.
- the curvature radius of the convex surface is positive toward the reticle side, and the curvature radius of the concave surface is negative toward the reticle side.
- the curvature radius of the concave surface is positive along the forward path of the light toward the incident side (reticle side), and the curvature radius of the convex surface is negative toward the incident side.
- a force is directed toward the reticle side to make the radius of curvature of the concave surface positive, and a force toward the reticle side is radius of curvature of the convex surface.
- Table (1) is the same as in the following Table (2).
- FIG. 5 shows transverse aberration in the projection optical system of the first embodiment.
- the aberration diagram Y is the image height
- the solid line is the center wavelength 193. 3060 nm
- the broken line is 193.
- 306 nm + 0.2 pm m 193.
- 3062 ⁇ the alternate long and short dash line is 193.
- 306 nm-0.2 pm 193.
- 3058 nm Each one is shown.
- the notation in FIG. 5 is the same as in FIG. 7 below.
- FIG. 6 is a view showing a lens configuration of a projection optical system according to a second example of the present embodiment.
- the first imaging optical system G1 has a convex surface facing the reticle side, the plane-parallel plate P1, the biconvex lens L11, and the reticle side sequentially from the reticle side.
- a positive meniscus lens L16 having a concave surface on the reticle side, a negative meniscus lens L17 having a concave surface on the reticle side, a positive meniscus lens L18 having an aspheric concave surface on the reticle side, and a reticle surface on the reticle side Consisting of a concave surface-facing positive mesh lens L19, a biconvex lens L110, and a positive mesh lens LI11 with an aspheric concave surface facing the lens side!
- the second imaging optical system G2 has a negative meniscus lens L21 having a concave surface facing the reticle side and a concave surface facing the reticle side sequentially from the reticle side (that is, the incident side) along the light traveling forward path.
- the negative meniscus lens L22 and a concave reflecting mirror CM having a concave surface facing the reticle are included.
- the third imaging optical system G3 has, in order from the reticle side (that is, the incident side), a positive mescus lens L31 having a concave surface facing the reticle side, a biconvex lens L32, and a positive surface having a convex surface facing the reticle side.
- FIG. 7 shows transverse aberration in the projection optical system of the second embodiment.
- a large actual size can be obtained.
- a relatively large effective imaging area can be secured while securing an effective image side numerical aperture.
- Ru That is, in each example, while securing a high image-side numerical aperture of about 1.3 for ArF excimer laser light with a center wavelength of 193.306 nm, a 26 mm ⁇ 5 mm rectangular effective exposure area Region) ER can be secured, and for example, a circuit pattern can be scanned and exposed at high resolution in a rectangular exposure region of 26 mm ⁇ 33 mm.
- the shape error of one lens surface of the reciprocating optical element (L21, L22) in the catadioptric optical system is twice as large as that of the normal lens surface with respect to the occurrence of the local flare. Focusing on the effect, double local flare occurs on one lens surface Reciprocation optical path force By removing the aspheric surface, that is, the optical surface where all the reciprocating optical elements are formed in aspheric shape By not including it, we are trying to reduce local flare.
- the crystal material is not disposed in the reciprocating optical path portion through which light passes twice, that is, all the reciprocating optical elements (L21, L22) in the second imaging optical system G2 are
- the local flare is further reduced by forming it from an amorphous material (quartz in this embodiment).
- the shape error of the reflecting surface of the concave reflecting mirror CM in the second imaging optical system G2 also has twice the effect of the lens surface in the one-way optical path on the occurrence of local flare.
- local flare is further reduced by forming the reflecting surface of the concave reflecting mirror CM into a spherical shape.
- the immersion projection optical system PL of the present embodiment employs a catadioptric optical system, the Petzval condition is substantially satisfied despite the large image side numerical aperture, and the flatness of the image is obtained.
- an off-axis type optical system in which the effective visual field area (effective illumination area) and the effective projection area (effective exposure area ER) do not include the optical axis, and the light shielding portion in the lens aperture (pupil) It is possible to secure the ability to cope with any pattern because it does not have
- the catadioptric and off-axis vision type liquid immersion optical system PL as in this embodiment the liquid parallel as a dioptric optical element disposed closest to the image side (wafer W side) is parallel. Forming the exit surface of the flat plate Lp into a rotationally symmetrical shape with respect to the optical axis AX3 (i.e., the reference optical axis AX) according to the prior art causes a disadvantage.
- FIG. 8 is a view for specifically explaining the inconvenience when the exit surface of the refractive optical element arranged closest to the image side is formed into a rotationally symmetric shape according to the prior art.
- the flexure located on the most image side (wafer W side)
- the incident surface of the in-liquid parallel flat plate Lp as a folding optical element has an outer periphery corresponding to a circle 30 centered on the optical axis AX.
- the incident surface of the in-liquid parallel flat plate Lp has substantially the same length in the two axial directions orthogonal to each other.
- a notch such as an orientation flat is provided in a part of the outer periphery of the plane of incidence Lp in liquid, or the outer periphery of the plane of incidence is formed in a polygonal shape.
- the central axis of the circle 30 corresponding to the outer periphery of the plane of incidence of the in-liquid parallel plate Lp coincides with the optical axis AX.
- an effective emission area 31 defined as an area through which an effective imaging light beam passes through the emission surface of the parallel flat plate Lp in liquid is a rectangular effective exposure on the wafer W which does not include the optical axis AX.
- the area (static exposure area) ER it has such a shape that it is decentered in one direction (Y direction) from the optical axis AX and the corner portion of the rectangle is rounded.
- the exit surface of the parallel flat plate Lp in liquid has a rotationally symmetric shape (infinitely rotationally symmetric shape) with respect to the optical axis AX regardless of the rotational asymmetry of the effective exit region 31; Since it is formed in a shape having substantially the same length in the axial direction, the exit surface of the in-liquid parallel flat plate Lp has an outer circumference corresponding to a large circle 32 that encloses the effective exit area 31 around the optical axis AX. It will have.
- the range in which the liquid Lml intervenes in the image space of the projection optical system PL becomes large, and in particular, the macroscopic optical system of the substrate stage (9 to L 1) (Not shown in the figure).
- FIG. 9 is a view schematically showing the configuration of a parallel flat plate in liquid in each example of the present embodiment.
- (a) is a bottom view of the in-liquid parallel flat plate Lp
- (b) and (c) are side views of the in-liquid parallel flat plate Lp.
- the incident surface Lpa of the in-liquid parallel flat plate Lp has an outer periphery corresponding to the circle 40
- the center 40a of the circle 40 corresponding to the outer periphery of the incident surface Lpa is
- the optical axis AX (AX3) force is also decentered in the Y direction.
- the reference circle indicated by the broken line 41 is a circle inscribed in the circle 40 with the optical axis AX at the center.
- the incident surface Lpa of the in-liquid parallel flat plate Lp is formed to have substantially the same length in the two axial directions (XY directions) orthogonal to each other.
- the effective injection area 42 of the injection surface Lpb of the parallel flat plate Lp in liquid has a shape that is substantially symmetrical with respect to the X direction and the Y direction and is rounded at a rectangular corner,
- the center 42a of the region 42 coincides with the center 40a of the circle 40 corresponding to the outer periphery of the entrance face Lpa! /.
- the injection surface Lpb of the parallel flat plate Lp in liquid has a substantially symmetrical shape with respect to the X direction and the Y direction so as to secure a slight margin area around the effective injection area 42 and enclose the effective injection area 42,
- the center Lpba of the exit surface Lpb coincides with the center 42a of the effective exit area 42 and the center 40a of the circle 40 corresponding to the outer periphery of the entrance surface Lpa.
- the exit surface Lpb of the in-liquid parallel flat plate Lp has a shape that is rotationally symmetric once with respect to the optical axis AX.
- a hatched portion Lpc which is a region surrounding the emission surface Lpb is an inclined surface extending from the outer periphery of the emission surface Lpb to the light incident side.
- the exit surface Lpb of the in-liquid parallel flat plate Lp has substantially symmetrical shapes with respect to two axial directions orthogonal to each other on the wafer W, that is, the X direction and the Y direction.
- the central axis Lpba of the exit surface Lpb coincides with the central axis 40a of the circle 40 corresponding to the outer periphery of the incident surface Lpa, and the central axis Lpba of the exit surface Lpb is decentered from the optical axis AX along the Y direction.
- the central axis (center of gravity axis) of the effective exposure area ER (that is, the effective projection area of the projection optical system PL) on the wafer W is substantially coincident with the central axis Lpba of the emission surface Lpb.
- the length of the exit surface Lpb in one axial direction (Y direction) and the length in the other axial direction (X direction) are different from each other.
- the exit surface of the in-liquid parallel flat plate Lp is formed into a rotationally symmetric shape with respect to the optical axis AX regardless of the rotational asymmetry of the effective exit region 42 with respect to the optical axis AX.
- the exit surface Lpb of the plane parallel plate Lp in liquid V on the wafer W does not include the optical axis AX.
- the shape of the effective exposure area ER ie the effective projection area of the projection optical system PL
- the projection optical system is formed in a rotationally asymmetric shape with respect to the optical axis AX according to (the projection surface Lpb is formed to have different lengths in two axial directions (XY directions orthogonal to each other)).
- FIG. 10 is a view schematically showing a configuration of a parallel flat plate in liquid according to a first modified example of the present embodiment.
- (a) is a bottom view of the in-liquid parallel flat plate Lp
- (b) and (c) are side views of the in-liquid parallel flat plate Lp.
- the incident surface Lpa of the in-liquid parallel flat plate Lp according to the first modification has an outer periphery corresponding to a circle 50 centered on the optical axis AX (AX3).
- the incident surface Lpa of the in-liquid parallel flat plate Lp is formed to have approximately the same length in the two axial directions (XY directions) orthogonal to each other.
- the effective injection area 51 of the plane Lpb of the plane-parallel plate Lp is substantially symmetrical with respect to the X and Y directions and has a rounded rectangular corner.
- the center 51a is off-centered in the Y direction from the optical axis AX! /.
- An injection surface Lpb of the parallel flat plate Lp in liquid has a relatively large area on the other long side while securing a slight margin area on one long side and both short sides of the effective injection area 51.
- a margin area is secured to enclose an effective injection area 51, and has a substantially symmetrical shape with respect to the X direction and the Y direction.
- a region Lpc surrounding the exit surface Lpb and having a hatching is an inclined surface extending from the outer periphery of the exit surface Lpb to the light incident side.
- the exit surface Lpb of the in-liquid parallel flat plate Lp which acts in the first modification, has a substantially symmetrical shape with respect to the X direction and the Y direction.
- the exit surface Lpb of the in-liquid parallel flat plate Lp according to the first modification has a shape that is rotationally symmetric twice with respect to the optical axis AX.
- the central axis Lpba (not shown in FIG. 10) of the exit surface Lpb and the central axis 50a (not shown in FIG. 10) of the circle 50 corresponding to the outer periphery of the incident surface Lpa coincide with the optical axis AX.
- the central axis (center of gravity axis) of the effective exposure area ER (that is, the effective projection area of the projection optical system PL) on the wafer W is decentered in the Y direction by the central axis Lpba (that is, the optical axis AX) of the exit surface Lpb.
- the length of the exit surface Lpb in one axial direction (Y direction) and the length in the other axial direction (X direction) are different from each other.
- the effective exposure area ER ie, the light exposure surface Lpb on the weaver W does not include the optical axis AX.
- the optical axis AX the length of the exit surface Lpb in the two axial directions (X and Y directions orthogonal to each other) Are formed in the image space of the projection optical system PL) Solution. The range in which Lml intervenes can be kept small.
- FIG. 11 is a view schematically showing the configuration of a parallel flat plate in liquid according to a second modified example of the present embodiment.
- (a) is a bottom view of the in-liquid parallel flat plate Lp
- (b) and (c) are side views of the in-liquid parallel flat plate Lp.
- the incident surface Lpa of the in-liquid parallel flat plate Lp according to the second modification has an outer periphery corresponding to a circle 60 centered on the optical axis AX (AX3).
- the effective injection area 61 at the injection surface Lpb of the plane-parallel plate Lp in liquid is substantially symmetrical with respect to the X direction and the Y direction, and has a shape in which a rectangular corner portion is rounded. Is decentered in the Y direction from the optical axis AX. In other words, the length of the exit surface Lpb in one axial direction (Y direction) is different from the length in the other axial direction (X direction).
- the injection surface Lpb of the parallel flat plate Lp in liquid is substantially symmetrical with respect to the Y direction and asymmetrical with respect to the X direction such that a slight margin area is secured around the effective injection area 61 and the effective injection area 61 is included. It has a shape, and the center (centroid of gravity) Lpba (not shown in FIG. 11) of the exit surface Lpb is located near the center 61a of the effective exit area 61 (near the Y direction).
- a hatched portion Lpc which is an area surrounding the exit surface Lpb in FIG. 11A, is an inclined surface extending from the outer periphery of the exit surface Lpb to the light incident side.
- the exit surface Lpb of the in-liquid parallel flat plate Lp which acts in the second modification, has a substantially symmetrical shape in the Y direction and an asymmetrical shape in the X direction.
- the emission surface Lp b is formed so that the length in one axial direction (Y direction) and the length in the other axial direction (X direction) are different from each other.
- the central axis 60a (not shown in FIG. 11) of the circle 60 corresponding to the outer periphery of the entrance surface Lpa coincides with the optical axis AX
- the central axis of the exit surface Lpb (centroid axis) Lpba is along the Y direction. It is decentered from the optical axis AX.
- the central axis (center of gravity axis) of the effective exposure area ER (that is, the effective projection area of the projection optical system PL) on the light W is substantially coincident with the central axis (center of gravity axis) Lpba of the exit surface Lpb.
- the exit surface Lpb of the in-liquid parallel flat plate Lp which works in the second modification, has a shape of one-fold rotational symmetry with respect to the optical axis AX.
- an effective exposure area ER ie, where the emission surface Lpb of the in-liquid parallel flat plate Lp does not include the optical axis AX on the weaver W
- the effective projection area of the shadow optical system PL it is formed in a rotationally asymmetric shape with respect to the optical axis AX (the length of the exit surface Lpb in the two axial directions (X and Y directions orthogonal to each other) Because they are formed differently, the range in which the liquid (immersion liquid) Lml intervenes in the image space of the projection optical system PL can be reduced.
- FIG. 12 is a view schematically showing a configuration of a parallel flat plate in liquid according to a third modified example of the present embodiment.
- (a) is a bottom view of the in-liquid parallel flat plate Lp
- (b) and (c) are side views of the in-liquid parallel flat plate Lp.
- the incident surface Lpa of the in-liquid parallel flat plate Lp according to the third modification has an outer periphery corresponding to a circle 70 centered on the optical axis AX (AX3).
- the incident surface Lpa of the in-liquid parallel flat plate Lp is formed to have approximately the same length in the two axial directions (XY directions) orthogonal to each other.
- the effective injection area 71 of the plane Lpb of the plane-parallel plate Lp is substantially symmetrical with respect to the X and Y directions and has a rounded rectangular corner.
- the center 71a is off-centered in the Y direction from the optical axis AX! /.
- the exit surface Lpb of the parallel flat plate Lp in liquid has a substantially symmetrical shape with respect to the X direction and the Y direction such that a slight margin area is secured around the effective injection area 71 and the effective injection area 71 is included.
- the center Lpba of the injection surface Lpb coincides with the center 71 a of the effective injection area 71.
- a hatched portion Lpc which is a region surrounding the emission surface Lpb in FIG. 12A, is an inclined surface extending from the outer periphery of the emission surface Lpb to the light incident side.
- the exit surface Lpb of the in-liquid parallel flat plate Lp which acts in the third modification, has a substantially symmetrical shape with respect to the X direction and the Y direction. Further, the emission surface Lpb has a shape in which the length in one axial direction (Y direction) and the length in the other axial direction (X direction) are different from each other.
- the central axis 70a (not shown in FIG. 12) of the circle 70 corresponding to the outer periphery of the incident surface Lpa coincides with the optical axis AX, and the central axis Lpba of the exit surface Lpb extends along the Y direction from the optical axis AX It is eccentric.
- the central axis (center of gravity axis) of the effective exposure area ER on the wafer W (that is, the effective projection area of the projection light system PL) substantially coincides with the central axis Lpba of the light emission surface Lpb.
- the exit surface Lpb of the in-liquid parallel flat plate Lp which is the third modification, has a shape that is rotationally symmetric once with respect to the optical axis AX.
- Outgoing surface Lpb is formed in a rotationally asymmetric shape with respect to the optical axis AX according to the shape of the effective exposure area ER (that is, the effective projection area of the projection optical system PL) not including the optical axis AX on the light W (The lengths of the exit surface Lpb in the two axial directions (X and Y directions orthogonal to each other are formed to be different from each other), so the range in which the liquid (immersion liquid) Lml intervenes in the image space of the projection optical system PL Can be kept small.
- the configurations shown in the first to third modifications are merely examples, and the configurations of the incident surface and the exit surface of the in-liquid parallel flat plate Lp are within the scope of the present invention. Various modifications are possible.
- a plane parallel plate (generally, an optical member with substantially no refractive power) Lp is disposed in the optical path between the boundary lens Lb and the wafer W. Even if pure water is contaminated by outgassing from the photoresist applied to the wafer W, the boundary lens by the pure water contaminated by the action of the plane parallel plate Lp interposed between the boundary lens Lb and the wafer W Contamination of the image side optical surface of Lb can be effectively prevented.
- the liquid can be It becomes possible to hold.
- a configuration in which the installation of the plane parallel plate Lp which is not limited to the configuration of the above-described embodiment is omitted is also possible.
- the present invention can be applied to the boundary lens Lb as a refractive optical element disposed closest to the image side (wafer W side). Specifically, the configuration of the first modification of FIG. 10, the second modification of FIG. 11, the third modification of FIG.
- the present invention is applied to an off-axis type catadioptric optical system in which the effective visual field does not include the optical axis
- the present invention is not limited to this.
- the present invention can be applied to other general immersion type projection optical systems.
- the present invention By applying the present invention to the off-axis type catadioptric optical system, the flatness of the image can be obtained, and the ability to cope with any pattern can be secured.
- the effective exposure area ER can be set closer to the optical axis AX, so The rotational asymmetry of the refractive optical element (plane-parallel plate Lp or boundary lens Lb) disposed on the W side can be alleviated, which is suitable for manufacturing an optical system and is convenient for simplifying the apparatus configuration. Good.
- pure water (Lml, Lm2) is used as the liquid to be filled in the optical path between the boundary lens Lb and the wafer W, but instead, the refractive index is higher than that A liquid (for example, a liquid having a refractive index of 1.6 or more) may be used.
- a high refractive index liquid for example, glycenol (CH 2 [OH] CH [OH] CH [OH]), heptane (C 2 H 5), etc.
- a high refractive index liquid in order to suppress the size of the projection optical system PL, in particular, the size in the diameter direction, a part of lenses of the projection optical system PL, in particular the image plane ( Near the wafer W), it is preferable to form the lens with a high refractive index material.
- a high refractive index material for example, calcium oxide or magnesium oxide, barium fluoride, strontium oxide, barium oxide, barium fluoride, sodium 'lithium' flowide (BaLiF), Le
- Crystal materials such as Tetium Aluminum Garnet ([Lutetium Aluminum Garnet] LuAG) and Spinenole ([crystalline magnesium aluminum spinel] MgAl 2 O 3)
- the reticle (mask) is illuminated by the illumination device (illumination step), and the transfer pattern formed on the mask is exposed onto the photosensitive substrate using the projection optical system.
- microdevices semiconductor elements, imaging elements, liquid crystal display elements, thin film magnetic heads, etc.
- FIG. 13 the flowchart of FIG. 13 is shown as an example of a method for obtaining a semiconductor device as a micro device by forming a predetermined circuit pattern on a wafer as a photosensitive substrate or the like using the exposure apparatus of the present embodiment. Refer to the description.
- a metal film is vapor-deposited on one lot of wafers.
- photoresist is applied on the metal film on the one lot wafer.
- the image of the pattern on the mask is sequentially exposed and transferred to each shot area on the wafer of one lot through the projection optical system.
- the pattern on the mask is etched in Step 305 by using the resist pattern as a mask on the wafer of one lot. Circuit pattern force corresponding to is formed in each shot area on each wafer.
- a device such as a semiconductor element is manufactured.
- a semiconductor device manufacturing method a semiconductor device having a very fine circuit pattern can be obtained with high throughput.
- metal is vapor-deposited on the wafer, a resist is applied on the metal film, and the force of performing each of the exposure, development, and etching steps is performed on the wafer prior to these steps. It is needless to say that after forming a silicon oxide film, a resist may be coated on the silicon oxide film, and then each process such as exposure, development and etching may be performed.
- a liquid crystal display device as a microdevice can also be obtained by forming a predetermined pattern (circuit pattern, electrode pattern, etc.) on a plate (glass substrate).
- a predetermined pattern circuit pattern, electrode pattern, etc.
- a photosensitive substrate such as a glass substrate coated with a resist
- Ru a photosensitive substrate
- a set of three dots corresponding to R (Red), G (Green), and B (Blue) are arrayed in a matrix, or R, G,
- a color filter is formed by arranging a plurality of B stripe filters in the direction of horizontal scanning lines.
- a cell assembly step 403 is performed.
- a liquid crystal panel liquid crystal cell
- liquid crystal is injected between the substrate having the predetermined pattern obtained in the pattern forming step 401 and the color filter obtained in the color filter forming step 402, Manufacture panels (liquid crystal cells). Thereafter, in a module assembling step 404, components such as an electric circuit for performing a display operation of the assembled liquid crystal panel (liquid crystal cell), a backlight and the like are attached to complete a liquid crystal display element. According to the above-described method of manufacturing a liquid crystal display device, a liquid crystal display device having a very fine circuit pattern can be obtained with high throughput.
- the force using an ArF excimer laser light source is not limited to this, and another appropriate light source such as, for example, an F laser light source can also be used.
- F laser light when F laser light is used as the exposure light, F laser light can be transmitted as the liquid.
- PFPE perfluoropolyether
- the present invention is applied to the immersion type projection optical system mounted on the exposure apparatus in the above-described embodiment, other general immersion type not limited to this.
- Type of projection light The present invention can also be applied to academic sciences.
- the present invention can also be applied to a dioptric optical element in which one optical surface is in contact with a liquid in the immersion objective optical system.
- the boundary lens Lb and the in-liquid parallel flat plate Lp are formed of quartz of an amorphous material, but it is assumed that the material forming the boundary lens Lb and the in-liquid parallel flat plate Lp is For example, crystalline materials such as magnesium oxide, calcium sulfate, strontium oxide, and barium oxide may be used without being limited to quartz.
- pure water is used as the first liquid and the second liquid, but the first and second liquids are not limited to pure water.
- Water containing 4 4, isopropanol, glycerol, hexane, heptane, decane, etc. can be used.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Analytical Chemistry (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Lenses (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
Claims
Priority Applications (19)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020137006353A KR101455551B1 (ko) | 2005-05-12 | 2006-05-08 | 투영 광학계, 노광 장치 및 노광 방법 |
KR1020147008141A KR101544336B1 (ko) | 2005-05-12 | 2006-05-08 | 투영 광학계, 노광 장치 및 노광 방법 |
KR1020147032549A KR20140140648A (ko) | 2005-05-12 | 2006-05-08 | 투영 광학계, 노광 장치 및 노광 방법 |
US11/920,332 US20090046268A1 (en) | 2005-05-12 | 2006-05-08 | Projection optical system, exposure apparatus, and exposure method |
KR1020137021609A KR101524964B1 (ko) | 2005-05-12 | 2006-05-08 | 투영 광학계, 노광 장치 및 노광 방법 |
KR1020167006129A KR101762083B1 (ko) | 2005-05-12 | 2006-05-08 | 투영 광학계, 노광 장치 및 노광 방법 |
KR1020137006357A KR101452145B1 (ko) | 2005-05-12 | 2006-05-08 | 투영 광학계, 노광 장치 및 노광 방법 |
EP06746085.7A EP1881521B1 (en) | 2005-05-12 | 2006-05-08 | Projection optical system, exposure apparatus and exposure method |
KR1020177020344A KR20170089028A (ko) | 2005-05-12 | 2006-05-08 | 투영 광학계, 노광 장치 및 디바이스 제조 방법 |
JP2007528269A JP5449672B2 (ja) | 2005-05-12 | 2006-05-08 | 投影光学系、露光装置、および露光方法 |
KR1020077027046A KR101504765B1 (ko) | 2005-05-12 | 2006-05-08 | 투영 광학계, 노광 장치 및 노광 방법 |
KR1020187034233A KR20180128526A (ko) | 2005-05-12 | 2006-05-08 | 투영 광학계, 노광 장치 및 디바이스 제조 방법 |
HK08104150.0A HK1109964A1 (en) | 2005-05-12 | 2008-04-14 | Projection optical system, exposure apparatus and exposure method |
US13/229,589 US8854601B2 (en) | 2005-05-12 | 2011-09-09 | Projection optical system, exposure apparatus, and exposure method |
US13/734,683 US9429851B2 (en) | 2005-05-12 | 2013-01-04 | Projection optical system, exposure apparatus, and exposure method |
US14/486,216 US9310696B2 (en) | 2005-05-12 | 2014-09-15 | Projection optical system, exposure apparatus, and exposure method |
US14/486,305 US9360763B2 (en) | 2005-05-12 | 2014-09-15 | Projection optical system, exposure apparatus, and exposure method |
US15/151,123 US9891539B2 (en) | 2005-05-12 | 2016-05-10 | Projection optical system, exposure apparatus, and exposure method |
US15/800,807 US20180052398A1 (en) | 2005-05-12 | 2017-11-01 | Projection optical system, exposure apparatus, and exposure method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-139344 | 2005-05-12 | ||
JP2005139344 | 2005-05-12 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/920,332 A-371-Of-International US20090046268A1 (en) | 2005-05-12 | 2006-05-08 | Projection optical system, exposure apparatus, and exposure method |
US13/229,589 Continuation US8854601B2 (en) | 2005-05-12 | 2011-09-09 | Projection optical system, exposure apparatus, and exposure method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006121009A1 true WO2006121009A1 (ja) | 2006-11-16 |
Family
ID=37396518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/309254 WO2006121009A1 (ja) | 2005-05-12 | 2006-05-08 | 投影光学系、露光装置、および露光方法 |
Country Status (6)
Country | Link |
---|---|
US (7) | US20090046268A1 (ja) |
EP (5) | EP2660852B1 (ja) |
JP (9) | JP5449672B2 (ja) |
KR (9) | KR101504765B1 (ja) |
HK (1) | HK1247994A1 (ja) |
WO (1) | WO2006121009A1 (ja) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007005777A (ja) * | 2005-05-25 | 2007-01-11 | Tokuyama Corp | 液浸式露光装置のラストレンズ |
WO2008003442A1 (en) | 2006-07-03 | 2008-01-10 | Carl Zeiss Smt Ag | Method for revising/repairing a lithographic projection objective |
WO2008062898A1 (en) * | 2006-11-21 | 2008-05-29 | Canon Kabushiki Kaisha | Glass composition for ultraviolet light and optical device using the same |
JP2009026977A (ja) * | 2007-07-20 | 2009-02-05 | Canon Inc | 投影光学系及びそれを有する露光装置 |
JP2009120405A (ja) * | 2007-11-09 | 2009-06-04 | Canon Inc | 紫外光用ガラス組成物及びそれを用いた光学装置 |
JP2012060138A (ja) * | 2006-08-30 | 2012-03-22 | Asml Netherlands Bv | 露光装置及びデバイス製造方法 |
JP2012155330A (ja) * | 2005-05-12 | 2012-08-16 | Nikon Corp | 投影光学系、露光装置、および露光方法 |
US8542346B2 (en) | 2006-12-01 | 2013-09-24 | Carl Zeiss Smt Gmbh | Optical system with an exchangeable, manipulable correction arrangement for reducing image aberrations |
US8908269B2 (en) | 2004-01-14 | 2014-12-09 | Carl Zeiss Smt Gmbh | Immersion catadioptric projection objective having two intermediate images |
US8913316B2 (en) | 2004-05-17 | 2014-12-16 | Carl Zeiss Smt Gmbh | Catadioptric projection objective with intermediate images |
US9477159B2 (en) | 2005-03-04 | 2016-10-25 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US9477153B2 (en) | 2005-05-03 | 2016-10-25 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US9772478B2 (en) | 2004-01-14 | 2017-09-26 | Carl Zeiss Smt Gmbh | Catadioptric projection objective with parallel, offset optical axes |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009037077B3 (de) * | 2009-08-13 | 2011-02-17 | Carl Zeiss Smt Ag | Katadioptrisches Projektionsobjektiv |
DE102013204391B3 (de) | 2013-03-13 | 2014-05-28 | Carl Zeiss Smt Gmbh | Projektionsobjektiv mit Wellenfrontmanipulator |
US9651872B2 (en) | 2013-03-13 | 2017-05-16 | Carl Zeiss Smt Gmbh | Projection lens with wavefront manipulator |
US9298102B2 (en) | 2013-03-13 | 2016-03-29 | Carl Zeiss Smt Gmbh | Projection lens with wavefront manipulator |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004019128A2 (en) | 2002-08-23 | 2004-03-04 | Nikon Corporation | Projection optical system and method for photolithography and exposure apparatus and method using same |
WO2006043457A1 (ja) | 2004-10-18 | 2006-04-27 | Nikon Corporation | 投影光学系、露光装置、および露光方法 |
JP2006140494A (ja) * | 2004-11-12 | 2006-06-01 | Asml Netherlands Bv | リソグラフィ装置及びデバイス製造方法 |
Family Cites Families (808)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE206607C (ja) | ||||
JP3293882B2 (ja) | 1992-03-27 | 2002-06-17 | 株式会社東芝 | 投影露光装置 |
JPS444993Y1 (ja) | 1964-05-28 | 1969-02-24 | ||
JPS5857066B2 (ja) | 1979-06-29 | 1983-12-17 | 古河電気工業株式会社 | リニアモ−タ |
DE2963537D1 (en) | 1979-07-27 | 1982-10-07 | Tabarelli Werner W | Optical lithographic method and apparatus for copying a pattern onto a semiconductor wafer |
FR2474708B1 (fr) | 1980-01-24 | 1987-02-20 | Dme | Procede de microphotolithographie a haute resolution de traits |
US4346164A (en) | 1980-10-06 | 1982-08-24 | Werner Tabarelli | Photolithographic method for the manufacture of integrated circuits |
JPS57117238A (en) | 1981-01-14 | 1982-07-21 | Nippon Kogaku Kk <Nikon> | Exposing and baking device for manufacturing integrated circuit with illuminometer |
JPS57152129A (en) | 1981-03-13 | 1982-09-20 | Sanyo Electric Co Ltd | Developing method of resist |
JPS57153433A (en) | 1981-03-18 | 1982-09-22 | Hitachi Ltd | Manufacturing device for semiconductor |
JPS5845502A (ja) | 1981-09-12 | 1983-03-16 | Kobe Steel Ltd | 熱間鍛造過程材の寸法形状の測定方法 |
JPS5849932A (ja) | 1981-09-21 | 1983-03-24 | Ushio Inc | 照度分布パタ−ンの調整器 |
JPS5845502U (ja) | 1981-09-21 | 1983-03-26 | 株式会社津山金属製作所 | 広角反射器 |
JPS58115945A (ja) | 1981-12-29 | 1983-07-09 | Toyoda Gosei Co Ltd | ハンドル部への電力伝送と信号送受方法 |
JPS58202448A (ja) | 1982-05-21 | 1983-11-25 | Hitachi Ltd | 露光装置 |
DD206607A1 (de) | 1982-06-16 | 1984-02-01 | Mikroelektronik Zt Forsch Tech | Verfahren und vorrichtung zur beseitigung von interferenzeffekten |
JPS5919912A (ja) | 1982-07-26 | 1984-02-01 | Hitachi Ltd | 液浸距離保持装置 |
DD242880A1 (de) | 1983-01-31 | 1987-02-11 | Kuch Karl Heinz | Einrichtung zur fotolithografischen strukturuebertragung |
JPS59226317A (ja) | 1983-06-06 | 1984-12-19 | Nippon Kogaku Kk <Nikon> | 照明装置 |
DD221563A1 (de) | 1983-09-14 | 1985-04-24 | Mikroelektronik Zt Forsch Tech | Immersionsobjektiv fuer die schrittweise projektionsabbildung einer maskenstruktur |
JPS59155843A (ja) | 1984-01-27 | 1984-09-05 | Hitachi Ltd | 露光装置 |
DD224448A1 (de) | 1984-03-01 | 1985-07-03 | Zeiss Jena Veb Carl | Einrichtung zur fotolithografischen strukturuebertragung |
JPS6144429A (ja) | 1984-08-09 | 1986-03-04 | Nippon Kogaku Kk <Nikon> | 位置合わせ方法、及び位置合せ装置 |
JPS6145923A (ja) | 1984-08-10 | 1986-03-06 | Aronshiya:Kk | 反射式ロ−タリ−エンコ−ダ−用回転デイスクの製作方法 |
JPS6187125A (ja) * | 1984-09-20 | 1986-05-02 | Canon Inc | スリツト露光投影装置 |
JPH0682598B2 (ja) | 1984-10-11 | 1994-10-19 | 日本電信電話株式会社 | 投影露光装置 |
JPS61217434A (ja) | 1985-03-20 | 1986-09-27 | Mitsubishi Chem Ind Ltd | 搬送用装置 |
JPS6194342A (ja) | 1984-10-16 | 1986-05-13 | Oki Electric Ind Co Ltd | 半導体素子の製造方法 |
JPS6194342U (ja) | 1984-11-27 | 1986-06-18 | ||
JPS61156736A (ja) | 1984-12-27 | 1986-07-16 | Canon Inc | 露光装置 |
JPS61196532A (ja) | 1985-02-26 | 1986-08-30 | Canon Inc | 露光装置 |
JPS61251025A (ja) | 1985-04-30 | 1986-11-08 | Canon Inc | 投影露光装置 |
JPS61270049A (ja) | 1985-05-24 | 1986-11-29 | Toshiba Corp | テ−ブル装置 |
JPS622540A (ja) | 1985-06-28 | 1987-01-08 | Canon Inc | ライトインテグレ−タとそれを含むケ−ラ−照明系 |
JPS622539A (ja) | 1985-06-28 | 1987-01-08 | Canon Inc | 照明光学系 |
US4683420A (en) | 1985-07-10 | 1987-07-28 | Westinghouse Electric Corp. | Acousto-optic system for testing high speed circuits |
JPS6217705A (ja) | 1985-07-16 | 1987-01-26 | Nippon Kogaku Kk <Nikon> | テレセントリツク光学系用照明装置 |
JPS6265326A (ja) | 1985-09-18 | 1987-03-24 | Hitachi Ltd | 露光装置 |
JPS62100161A (ja) | 1985-10-23 | 1987-05-09 | Shin Etsu Chem Co Ltd | 平面モ−タ |
JPS62120026A (ja) | 1985-11-20 | 1987-06-01 | Fujitsu Ltd | X線露光装置 |
JPH07105323B2 (ja) | 1985-11-22 | 1995-11-13 | 株式会社日立製作所 | 露光方法 |
JPS62121417A (ja) | 1985-11-22 | 1987-06-02 | Hitachi Ltd | 液浸対物レンズ装置 |
JPS62153710A (ja) | 1985-12-27 | 1987-07-08 | Furukawa Alum Co Ltd | ロ−タリエンコ−ダ用反射基板の製造方法 |
JPH0782981B2 (ja) | 1986-02-07 | 1995-09-06 | 株式会社ニコン | 投影露光方法及び装置 |
JPS62188316A (ja) | 1986-02-14 | 1987-08-17 | Canon Inc | 投影露光装置 |
JPS62203526A (ja) | 1986-02-28 | 1987-09-08 | トヨタ自動車株式会社 | 無線電力伝送装置 |
JP2506616B2 (ja) | 1986-07-02 | 1996-06-12 | キヤノン株式会社 | 露光装置及びそれを用いた回路の製造方法 |
JPS6336526A (ja) | 1986-07-30 | 1988-02-17 | Oki Electric Ind Co Ltd | ウエハ露光装置 |
JPH0695511B2 (ja) | 1986-09-17 | 1994-11-24 | 大日本スクリ−ン製造株式会社 | 洗浄乾燥処理方法 |
JPS63128713A (ja) | 1986-11-19 | 1988-06-01 | Matsushita Electric Ind Co Ltd | 走査型露光装置のデイスト−シヨン補正方法 |
JPS63131008A (ja) | 1986-11-20 | 1988-06-03 | Fujitsu Ltd | 光学的アライメント方法 |
JPS63141313A (ja) | 1986-12-03 | 1988-06-13 | Hitachi Ltd | 薄板変形装置 |
JPS63157419A (ja) | 1986-12-22 | 1988-06-30 | Toshiba Corp | 微細パタ−ン転写装置 |
JPS63160192A (ja) | 1986-12-23 | 1988-07-02 | 株式会社明電舎 | 高周波加熱装置の接続導体 |
JPS63231217A (ja) | 1987-03-19 | 1988-09-27 | Omron Tateisi Electronics Co | 移動量測定装置 |
JPH0718699B2 (ja) | 1987-05-08 | 1995-03-06 | 株式会社ニコン | 表面変位検出装置 |
JPS6426704A (en) | 1987-05-11 | 1989-01-30 | Jiei Shirinian Jiyon | Pocket structure of garment |
JPS63292005A (ja) | 1987-05-25 | 1988-11-29 | Nikon Corp | 走り誤差補正をなした移動量検出装置 |
JPH07117371B2 (ja) | 1987-07-14 | 1995-12-18 | 株式会社ニコン | 測定装置 |
JPS6468926A (en) | 1987-09-09 | 1989-03-15 | Nikon Corp | Measurement of image distortion in projection optical system |
JPH0191419A (ja) | 1987-10-01 | 1989-04-11 | Canon Inc | 露光装置 |
JPH01115033A (ja) | 1987-10-28 | 1989-05-08 | Hitachi Ltd | ガス放電表示装置 |
JPH01147516A (ja) | 1987-12-04 | 1989-06-09 | Canon Inc | ビーム位置制御装置 |
JP2728133B2 (ja) | 1987-12-09 | 1998-03-18 | 株式会社リコー | デジタル画像形成装置 |
JPH01202833A (ja) | 1988-02-09 | 1989-08-15 | Toshiba Corp | 高精度xyステージ装置 |
JPH0831513B2 (ja) | 1988-02-22 | 1996-03-27 | 株式会社ニコン | 基板の吸着装置 |
JPH0545102Y2 (ja) | 1988-02-24 | 1993-11-17 | ||
JPH01255404A (ja) | 1988-04-05 | 1989-10-12 | Toshiba Corp | 浮上用電磁石装置 |
JPH01278240A (ja) | 1988-04-28 | 1989-11-08 | Tokyo Electron Ltd | 半導体製造装置用無停電電源 |
JPH01276043A (ja) | 1988-04-28 | 1989-11-06 | Mitsubishi Cable Ind Ltd | 導波路型液体検知器 |
JPH01286478A (ja) | 1988-05-13 | 1989-11-17 | Hitachi Ltd | ビーム均一化光学系おゆび製造法 |
JPH01292343A (ja) | 1988-05-19 | 1989-11-24 | Fujitsu Ltd | ペリクル |
JPH01314247A (ja) | 1988-06-13 | 1989-12-19 | Fuji Plant Kogyo Kk | プリント基板の自動露光装置 |
JPH0831514B2 (ja) | 1988-06-21 | 1996-03-27 | 株式会社ニコン | 基板の吸着装置 |
JPH0242382A (ja) | 1988-08-02 | 1990-02-13 | Canon Inc | 移動ステージ構造 |
JPH0265149A (ja) | 1988-08-30 | 1990-03-05 | Mitsubishi Electric Corp | 半導体装置 |
JP2729058B2 (ja) | 1988-08-31 | 1998-03-18 | 山形日本電気株式会社 | 半導体装置の露光装置 |
JPH0297239A (ja) | 1988-09-30 | 1990-04-09 | Canon Inc | 露光装置用電源装置 |
JP2682067B2 (ja) | 1988-10-17 | 1997-11-26 | 株式会社ニコン | 露光装置及び露光方法 |
JP2697014B2 (ja) | 1988-10-26 | 1998-01-14 | 株式会社ニコン | 露光装置及び露光方法 |
JPH02139146A (ja) | 1988-11-15 | 1990-05-29 | Matsushita Electric Ind Co Ltd | 一段6自由度位置決めテーブル |
JP2940553B2 (ja) | 1988-12-21 | 1999-08-25 | 株式会社ニコン | 露光方法 |
JPH07104442B2 (ja) | 1989-04-06 | 1995-11-13 | 旭硝子株式会社 | フッ化マグネシウム膜及び低反射膜の製造方法 |
DE3907136A1 (de) | 1989-03-06 | 1990-09-13 | Jagenberg Ag | Vorrichtung zum verbinden von materialbahnen |
JPH02261073A (ja) | 1989-03-29 | 1990-10-23 | Sony Corp | 超音波モータ |
JPH02287308A (ja) | 1989-04-03 | 1990-11-27 | Mikhailovich Khodosovich Vladimir | 光学ユニットのマウント内のレンズの中心合わせの方法 |
JPH02285320A (ja) | 1989-04-27 | 1990-11-22 | Olympus Optical Co Ltd | 内視鏡の絞装置 |
JPH02298431A (ja) | 1989-05-12 | 1990-12-10 | Mitsubishi Electric Corp | 放電加工装置 |
JPH02311237A (ja) | 1989-05-25 | 1990-12-26 | Fuji Electric Co Ltd | 搬送装置 |
JPH0341399A (ja) | 1989-07-10 | 1991-02-21 | Nikon Corp | 多層膜反射鏡の製造方法 |
JPH0364811A (ja) | 1989-07-31 | 1991-03-20 | Okazaki Seisakusho:Kk | 中空心線miケーブルと中空心線miケーブルの製造方法 |
JPH0372298A (ja) | 1989-08-14 | 1991-03-27 | Nikon Corp | 多層膜反射鏡の製造方法 |
JPH0394445A (ja) | 1989-09-06 | 1991-04-19 | Mitsubishi Electric Corp | 半導体ウエハ搬送システム |
JPH03132663A (ja) | 1989-10-18 | 1991-06-06 | Fujitsu Ltd | ペリクル |
JPH03134341A (ja) | 1989-10-20 | 1991-06-07 | Fuji Photo Film Co Ltd | ダンパ機構、防振機構およびこのダンパ機構等を組み込む光ビーム走査装置 |
JP3067142B2 (ja) | 1989-11-28 | 2000-07-17 | 富士通株式会社 | ホトマスクの検査装置及びホトマスクの検査方法 |
JP2784225B2 (ja) | 1989-11-28 | 1998-08-06 | 双葉電子工業株式会社 | 相対移動量測定装置 |
JPH03211812A (ja) | 1990-01-17 | 1991-09-17 | Canon Inc | 露光装置 |
JP2515098Y2 (ja) | 1990-02-08 | 1996-10-23 | 光洋精工株式会社 | 四輪駆動車用駆動力伝達装置 |
JPH03263810A (ja) | 1990-03-14 | 1991-11-25 | Sumitomo Heavy Ind Ltd | 半導体露光装置の振動制御方法 |
JP2624560B2 (ja) | 1990-04-20 | 1997-06-25 | 日鐵溶接工業株式会社 | ガスシールドアーク溶接用フラックス入りワイヤ |
JPH0710897B2 (ja) | 1990-04-27 | 1995-02-08 | 日本油脂株式会社 | プラスチックレンズ |
JPH0432154A (ja) | 1990-05-25 | 1992-02-04 | Iwasaki Electric Co Ltd | メタルハライドランプ装置 |
JP2897355B2 (ja) | 1990-07-05 | 1999-05-31 | 株式会社ニコン | アライメント方法,露光装置,並びに位置検出方法及び装置 |
JP3077176B2 (ja) | 1990-08-13 | 2000-08-14 | 株式会社ニコン | 露光方法、装置、及び素子製造方法 |
JP3049774B2 (ja) | 1990-12-27 | 2000-06-05 | 株式会社ニコン | 投影露光装置及び方法、並びに素子製造方法 |
JP2995820B2 (ja) | 1990-08-21 | 1999-12-27 | 株式会社ニコン | 露光方法及び方法,並びにデバイス製造方法 |
JPH04130710A (ja) | 1990-09-21 | 1992-05-01 | Hitachi Ltd | 露光装置 |
JP2548834B2 (ja) | 1990-09-25 | 1996-10-30 | 三菱電機株式会社 | 電子ビーム寸法測定装置 |
JPH04133414A (ja) | 1990-09-26 | 1992-05-07 | Nec Yamaguchi Ltd | 縮小投影露光装置 |
JPH04152512A (ja) | 1990-10-16 | 1992-05-26 | Fujitsu Ltd | ウエハチャック |
DE4033556A1 (de) | 1990-10-22 | 1992-04-23 | Suess Kg Karl | Messanordnung fuer x,y,(phi)-koordinatentische |
JPH04179115A (ja) | 1990-11-08 | 1992-06-25 | Nec Kyushu Ltd | 縮小投影露光装置 |
JP3094439B2 (ja) | 1990-11-21 | 2000-10-03 | 株式会社ニコン | 露光方法 |
JPH0480052U (ja) | 1990-11-27 | 1992-07-13 | ||
JPH04235558A (ja) | 1991-01-11 | 1992-08-24 | Toshiba Corp | 露光装置 |
JP3084761B2 (ja) | 1991-02-28 | 2000-09-04 | 株式会社ニコン | 露光方法及びマスク |
JP3255168B2 (ja) | 1991-02-28 | 2002-02-12 | 株式会社ニコン | 露光方法及びその露光方法を用いたデバイス製造方法、及び露光装置 |
JP3084760B2 (ja) | 1991-02-28 | 2000-09-04 | 株式会社ニコン | 露光方法及び露光装置 |
JP2860174B2 (ja) | 1991-03-05 | 1999-02-24 | 三菱電機株式会社 | 化学気相成長装置 |
JP3200894B2 (ja) | 1991-03-05 | 2001-08-20 | 株式会社日立製作所 | 露光方法及びその装置 |
JPH04280619A (ja) | 1991-03-08 | 1992-10-06 | Canon Inc | ウエハ保持方法およびその保持装置 |
JPH04282539A (ja) | 1991-03-11 | 1992-10-07 | Hitachi Ltd | 反射・帯電防止膜の形成方法 |
JPH05259069A (ja) | 1991-03-13 | 1993-10-08 | Tokyo Electron Ltd | ウエハ周辺露光方法 |
JPH04211110A (ja) | 1991-03-20 | 1992-08-03 | Hitachi Ltd | 投影式露光方法 |
JPH04296092A (ja) | 1991-03-26 | 1992-10-20 | Matsushita Electric Ind Co Ltd | リフロー装置 |
JP2602345Y2 (ja) | 1991-03-29 | 2000-01-11 | 京セラ株式会社 | 静圧軸受装置 |
JPH04305917A (ja) | 1991-04-02 | 1992-10-28 | Nikon Corp | 密着型露光装置 |
JPH04305915A (ja) | 1991-04-02 | 1992-10-28 | Nikon Corp | 密着型露光装置 |
JP3200874B2 (ja) | 1991-07-10 | 2001-08-20 | 株式会社ニコン | 投影露光装置 |
JPH04330961A (ja) | 1991-05-01 | 1992-11-18 | Matsushita Electron Corp | 現像処理装置 |
FR2676288B1 (fr) | 1991-05-07 | 1994-06-17 | Thomson Csf | Collecteur d'eclairage pour projecteur. |
JPH04343307A (ja) | 1991-05-20 | 1992-11-30 | Ricoh Co Ltd | レーザー調整装置 |
JP2884830B2 (ja) | 1991-05-28 | 1999-04-19 | キヤノン株式会社 | 自動焦点合せ装置 |
JPH0590128A (ja) | 1991-06-13 | 1993-04-09 | Nikon Corp | 露光装置 |
JPH0545886A (ja) | 1991-08-12 | 1993-02-26 | Nikon Corp | 角形基板の露光装置 |
JPH0562877A (ja) | 1991-09-02 | 1993-03-12 | Yasuko Shinohara | 光によるlsi製造縮小投影露光装置の光学系 |
JPH05109601A (ja) | 1991-10-15 | 1993-04-30 | Nikon Corp | 露光装置及び露光方法 |
JPH05127086A (ja) | 1991-11-01 | 1993-05-25 | Matsushita Electric Ind Co Ltd | 光強度の均一化方法およびそれを用いた露光装置 |
JP3203719B2 (ja) | 1991-12-26 | 2001-08-27 | 株式会社ニコン | 露光装置、その露光装置により製造されるデバイス、露光方法、およびその露光方法を用いたデバイス製造方法 |
JPH05199680A (ja) | 1992-01-17 | 1993-08-06 | Honda Motor Co Ltd | 電源装置 |
JPH0794969B2 (ja) | 1992-01-29 | 1995-10-11 | 株式会社ソルテック | 位置合せ方法及びその装置 |
JP3194155B2 (ja) | 1992-01-31 | 2001-07-30 | キヤノン株式会社 | 半導体デバイスの製造方法及びそれを用いた投影露光装置 |
JPH05217837A (ja) | 1992-02-04 | 1993-08-27 | Toshiba Corp | Xy移動テーブル |
JP3153372B2 (ja) | 1992-02-26 | 2001-04-09 | 東京エレクトロン株式会社 | 基板処理装置 |
JPH05241324A (ja) | 1992-02-26 | 1993-09-21 | Nikon Corp | フォトマスク及び露光方法 |
JPH05243364A (ja) | 1992-03-02 | 1993-09-21 | Hitachi Ltd | 半導体ウェハの除電方法およびそれを用いた半導体集積回路製造装置 |
JP3278896B2 (ja) | 1992-03-31 | 2002-04-30 | キヤノン株式会社 | 照明装置及びそれを用いた投影露光装置 |
JPH05304072A (ja) | 1992-04-08 | 1993-11-16 | Nec Corp | 半導体装置の製造方法 |
DE4213332C1 (en) | 1992-04-23 | 1993-06-17 | Wolfgang Dipl.-Ing. 2000 Hamburg De Miegel | Drive for underground prodn. of conduits - comprises outer appts. area in which a striker and floor compressor are integrated |
JP3242693B2 (ja) | 1992-05-15 | 2001-12-25 | 富士通株式会社 | ペリクル貼り付け装置 |
JP2673130B2 (ja) | 1992-05-20 | 1997-11-05 | 株式会社キトー | 走行用レールの吊下支持装置 |
JPH0629204A (ja) | 1992-07-08 | 1994-02-04 | Fujitsu Ltd | レジスト現像方法及び装置 |
JPH0636054A (ja) | 1992-07-20 | 1994-02-10 | Mitsubishi Electric Corp | ワンチップマイクロコンピュータ |
JP3246615B2 (ja) | 1992-07-27 | 2002-01-15 | 株式会社ニコン | 照明光学装置、露光装置、及び露光方法 |
JPH06188169A (ja) | 1992-08-24 | 1994-07-08 | Canon Inc | 結像方法及び該方法を用いる露光装置及び該方法を用いるデバイス製造方法 |
JPH07318847A (ja) | 1994-05-26 | 1995-12-08 | Nikon Corp | 照明光学装置 |
JPH06104167A (ja) | 1992-09-18 | 1994-04-15 | Hitachi Ltd | 露光装置及び半導体装置の製造方法 |
JP2884947B2 (ja) | 1992-10-01 | 1999-04-19 | 株式会社ニコン | 投影露光装置、露光方法および半導体集積回路の製造方法 |
JP2724787B2 (ja) | 1992-10-09 | 1998-03-09 | キヤノン株式会社 | 位置決め装置 |
JPH06124873A (ja) | 1992-10-09 | 1994-05-06 | Canon Inc | 液浸式投影露光装置 |
JPH06124872A (ja) | 1992-10-14 | 1994-05-06 | Canon Inc | 像形成方法及び該方法を用いて半導体装置を製造する方法 |
JP3322274B2 (ja) | 1992-10-29 | 2002-09-09 | 株式会社ニコン | 投影露光方法及び投影露光装置 |
JPH06148399A (ja) | 1992-11-05 | 1994-05-27 | Nikon Corp | X線用多層膜ミラーおよびx線顕微鏡 |
JPH06163350A (ja) | 1992-11-19 | 1994-06-10 | Matsushita Electron Corp | 投影露光方法および装置 |
JP2753930B2 (ja) | 1992-11-27 | 1998-05-20 | キヤノン株式会社 | 液浸式投影露光装置 |
JPH06177007A (ja) | 1992-12-01 | 1994-06-24 | Nippon Telegr & Teleph Corp <Ntt> | 投影露光装置 |
JPH06181157A (ja) | 1992-12-15 | 1994-06-28 | Nikon Corp | 低発塵性の装置 |
JPH06186025A (ja) | 1992-12-16 | 1994-07-08 | Yunisun:Kk | 三次元測定装置 |
JP2520833B2 (ja) | 1992-12-21 | 1996-07-31 | 東京エレクトロン株式会社 | 浸漬式の液処理装置 |
JP3201027B2 (ja) | 1992-12-22 | 2001-08-20 | 株式会社ニコン | 投影露光装置及び方法 |
JP3316833B2 (ja) | 1993-03-26 | 2002-08-19 | 株式会社ニコン | 走査露光方法、面位置設定装置、走査型露光装置、及び前記方法を使用するデバイス製造方法 |
JPH06204121A (ja) | 1992-12-28 | 1994-07-22 | Canon Inc | 照明装置及びそれを用いた投影露光装置 |
JP2765422B2 (ja) | 1992-12-28 | 1998-06-18 | キヤノン株式会社 | 露光装置及びそれを用いた半導体素子の製造方法 |
JP2786070B2 (ja) | 1993-01-29 | 1998-08-13 | セントラル硝子株式会社 | 透明板状体の検査方法およびその装置 |
JPH07245258A (ja) | 1994-03-08 | 1995-09-19 | Nikon Corp | 露光方法及び露光装置 |
JPH06241720A (ja) | 1993-02-18 | 1994-09-02 | Sony Corp | 変位量の測定方法及び変位計 |
JPH06244082A (ja) | 1993-02-19 | 1994-09-02 | Nikon Corp | 投影露光装置 |
JP3412704B2 (ja) | 1993-02-26 | 2003-06-03 | 株式会社ニコン | 投影露光方法及び装置、並びに露光装置 |
JP3747958B2 (ja) | 1995-04-07 | 2006-02-22 | 株式会社ニコン | 反射屈折光学系 |
JP3291818B2 (ja) | 1993-03-16 | 2002-06-17 | 株式会社ニコン | 投影露光装置、及び該装置を用いる半導体集積回路製造方法 |
JP3537843B2 (ja) | 1993-03-19 | 2004-06-14 | 株式会社テクノ菱和 | クリーンルーム用イオナイザー |
JPH0777191B2 (ja) | 1993-04-06 | 1995-08-16 | 日本電気株式会社 | 露光光投射装置 |
JP3309871B2 (ja) | 1993-04-27 | 2002-07-29 | 株式会社ニコン | 投影露光方法及び装置、並びに素子製造方法 |
JPH06326174A (ja) | 1993-05-12 | 1994-11-25 | Hitachi Ltd | ウェハ真空吸着装置 |
JP3265503B2 (ja) | 1993-06-11 | 2002-03-11 | 株式会社ニコン | 露光方法及び装置 |
JP3844787B2 (ja) | 1993-09-02 | 2006-11-15 | 日産化学工業株式会社 | フッ化マグネシウム水和物ゾルとその製造法 |
JP3359123B2 (ja) | 1993-09-20 | 2002-12-24 | キヤノン株式会社 | 収差補正光学系 |
JP3099933B2 (ja) | 1993-12-28 | 2000-10-16 | 株式会社東芝 | 露光方法及び露光装置 |
JPH07122469A (ja) | 1993-10-20 | 1995-05-12 | Nikon Corp | 投影露光装置 |
JP3376045B2 (ja) | 1993-11-09 | 2003-02-10 | キヤノン株式会社 | 走査型露光装置及び該走査型露光装置を用いるデバイス製造方法 |
JPH07134955A (ja) | 1993-11-11 | 1995-05-23 | Hitachi Ltd | 表示装置およびその反射率調整方法 |
JP3339144B2 (ja) | 1993-11-11 | 2002-10-28 | 株式会社ニコン | 走査型露光装置及び露光方法 |
JP3278303B2 (ja) | 1993-11-12 | 2002-04-30 | キヤノン株式会社 | 走査型露光装置及び該走査型露光装置を用いるデバイス製造方法 |
JPH07147223A (ja) | 1993-11-26 | 1995-06-06 | Hitachi Ltd | パターン形成方法 |
EP1209508B1 (en) | 1993-12-01 | 2004-10-27 | Sharp Kabushiki Kaisha | Display for 3D images |
JPH07167998A (ja) | 1993-12-15 | 1995-07-04 | Nikon Corp | レーザープラズマx線源用標的 |
JP3487517B2 (ja) | 1993-12-16 | 2004-01-19 | 株式会社リコー | 往復移動装置 |
JPH07183201A (ja) | 1993-12-21 | 1995-07-21 | Nec Corp | 露光装置および露光方法 |
JP3508190B2 (ja) | 1993-12-21 | 2004-03-22 | セイコーエプソン株式会社 | 照明装置及び投写型表示装置 |
JPH07190741A (ja) | 1993-12-27 | 1995-07-28 | Nippon Telegr & Teleph Corp <Ntt> | 測定誤差補正法 |
JPH07220989A (ja) | 1994-01-27 | 1995-08-18 | Canon Inc | 露光装置及びこれを用いたデバイス製造方法 |
JPH07220990A (ja) | 1994-01-28 | 1995-08-18 | Hitachi Ltd | パターン形成方法及びその露光装置 |
JP2715895B2 (ja) | 1994-01-31 | 1998-02-18 | 日本電気株式会社 | 光強度分布シミュレーション方法 |
JP3372633B2 (ja) | 1994-02-04 | 2003-02-04 | キヤノン株式会社 | 位置合わせ方法及びそれを用いた位置合わせ装置 |
JP2836483B2 (ja) | 1994-05-13 | 1998-12-14 | 日本電気株式会社 | 照明光学装置 |
JPH07239212A (ja) | 1994-02-28 | 1995-09-12 | Nikon Corp | 位置検出装置 |
JPH07243814A (ja) | 1994-03-03 | 1995-09-19 | Fujitsu Ltd | 線幅測定方法 |
JPH07263315A (ja) | 1994-03-25 | 1995-10-13 | Toshiba Corp | 投影露光装置 |
US5528118A (en) | 1994-04-01 | 1996-06-18 | Nikon Precision, Inc. | Guideless stage with isolated reaction stage |
US5874820A (en) | 1995-04-04 | 1999-02-23 | Nikon Corporation | Window frame-guided stage mechanism |
JPH07283119A (ja) | 1994-04-14 | 1995-10-27 | Hitachi Ltd | 露光装置および露光方法 |
JP3193567B2 (ja) | 1994-04-27 | 2001-07-30 | キヤノン株式会社 | 基板収容容器 |
JP3555230B2 (ja) | 1994-05-18 | 2004-08-18 | 株式会社ニコン | 投影露光装置 |
JPH07335748A (ja) | 1994-06-07 | 1995-12-22 | Miyazaki Oki Electric Co Ltd | 半導体素子の製造方法 |
JP3800616B2 (ja) | 1994-06-27 | 2006-07-26 | 株式会社ニコン | 目標物移動装置、位置決め装置及び可動ステージ装置 |
JP3205663B2 (ja) | 1994-06-29 | 2001-09-04 | 日本電子株式会社 | 荷電粒子ビーム装置 |
JP3090577B2 (ja) | 1994-06-29 | 2000-09-25 | 浜松ホトニクス株式会社 | 導電体層除去方法およびシステム |
JPH0822948A (ja) | 1994-07-08 | 1996-01-23 | Nikon Corp | 走査型露光装置 |
JP3205468B2 (ja) | 1994-07-25 | 2001-09-04 | 株式会社日立製作所 | ウエハチャックを備えた処理装置および露光装置 |
JPH0846751A (ja) | 1994-07-29 | 1996-02-16 | Sanyo Electric Co Ltd | 照明光学系 |
JP3613288B2 (ja) | 1994-10-18 | 2005-01-26 | 株式会社ニコン | 露光装置用のクリーニング装置 |
JPH08136475A (ja) | 1994-11-14 | 1996-05-31 | Kawasaki Steel Corp | 板状材の表面観察装置 |
JPH08151220A (ja) | 1994-11-28 | 1996-06-11 | Nippon Sekiei Glass Kk | 石英ガラスの成形方法 |
JPH08162397A (ja) | 1994-11-30 | 1996-06-21 | Canon Inc | 投影露光装置及びそれを用いた半導体デバイスの製造方法 |
JPH08171054A (ja) | 1994-12-16 | 1996-07-02 | Nikon Corp | 反射屈折光学系 |
JPH08195375A (ja) | 1995-01-17 | 1996-07-30 | Sony Corp | 回転乾燥方法および回転乾燥装置 |
JPH08203803A (ja) | 1995-01-24 | 1996-08-09 | Nikon Corp | 露光装置 |
JP3521544B2 (ja) | 1995-05-24 | 2004-04-19 | 株式会社ニコン | 露光装置 |
JP3312164B2 (ja) | 1995-04-07 | 2002-08-05 | 日本電信電話株式会社 | 真空吸着装置 |
JPH08297699A (ja) | 1995-04-26 | 1996-11-12 | Hitachi Ltd | 製造不良解析支援システム、製造システム、および製造不良解析支援方法 |
JPH08316125A (ja) | 1995-05-19 | 1996-11-29 | Hitachi Ltd | 投影露光方法及び露光装置 |
US5680588A (en) | 1995-06-06 | 1997-10-21 | International Business Machines Corporation | Method and system for optimizing illumination in an optical photolithography projection imaging system |
JP3531297B2 (ja) | 1995-06-19 | 2004-05-24 | 株式会社ニコン | 投影露光装置及び投影露光方法 |
JP3561556B2 (ja) | 1995-06-29 | 2004-09-02 | 株式会社ルネサステクノロジ | マスクの製造方法 |
JP3637639B2 (ja) | 1995-07-10 | 2005-04-13 | 株式会社ニコン | 露光装置 |
JPH09108551A (ja) | 1995-08-11 | 1997-04-28 | Mitsubishi Rayon Co Ltd | 浄水器 |
JPH0961686A (ja) | 1995-08-23 | 1997-03-07 | Nikon Corp | プラスチックレンズ |
JPH0982626A (ja) | 1995-09-12 | 1997-03-28 | Nikon Corp | 投影露光装置 |
JP3487527B2 (ja) | 1995-09-14 | 2004-01-19 | 株式会社東芝 | 光屈折装置 |
US5815247A (en) | 1995-09-21 | 1998-09-29 | Siemens Aktiengesellschaft | Avoidance of pattern shortening by using off axis illumination with dipole and polarizing apertures |
JPH0992593A (ja) | 1995-09-21 | 1997-04-04 | Nikon Corp | 投影露光装置 |
DE19535392A1 (de) | 1995-09-23 | 1997-03-27 | Zeiss Carl Fa | Radial polarisationsdrehende optische Anordnung und Mikrolithographie-Projektionsbelichtungsanlage damit |
JP3433403B2 (ja) | 1995-10-16 | 2003-08-04 | 三星電子株式会社 | ステッパのインタフェース装置 |
FR2740554A1 (fr) | 1995-10-31 | 1997-04-30 | Philips Electronique Lab | Systeme de controle de la phase de decharge des cycles de charge-decharge d'une batterie rechargeable, et dispositif hote muni d'une batterie intelligente |
JPH09134870A (ja) | 1995-11-10 | 1997-05-20 | Hitachi Ltd | パターン形成方法および形成装置 |
JPH09148406A (ja) | 1995-11-24 | 1997-06-06 | Dainippon Screen Mfg Co Ltd | 基板搬送装置 |
JPH09151658A (ja) | 1995-11-30 | 1997-06-10 | Nichibei Co Ltd | 移動間仕切壁のランナ連結装置 |
JPH09160004A (ja) | 1995-12-01 | 1997-06-20 | Denso Corp | 液晶セル及びその空セル |
JP3406957B2 (ja) | 1995-12-06 | 2003-05-19 | キヤノン株式会社 | 光学素子及びそれを用いた露光装置 |
JPH09162106A (ja) | 1995-12-11 | 1997-06-20 | Nikon Corp | 走査型露光装置 |
JPH09178415A (ja) | 1995-12-25 | 1997-07-11 | Nikon Corp | 光波干渉測定装置 |
JPH09184787A (ja) | 1995-12-28 | 1997-07-15 | Olympus Optical Co Ltd | 光学レンズ用解析評価装置 |
JP3232473B2 (ja) | 1996-01-10 | 2001-11-26 | キヤノン株式会社 | 投影露光装置及びそれを用いたデバイスの製造方法 |
JP3189661B2 (ja) | 1996-02-05 | 2001-07-16 | ウシオ電機株式会社 | 光源装置 |
JP3576685B2 (ja) | 1996-02-07 | 2004-10-13 | キヤノン株式会社 | 露光装置及びそれを用いたデバイスの製造方法 |
JPH09232213A (ja) | 1996-02-26 | 1997-09-05 | Nikon Corp | 投影露光装置 |
JPH09227294A (ja) | 1996-02-26 | 1997-09-02 | Toyo Commun Equip Co Ltd | 人工水晶の製造方法 |
JP3782151B2 (ja) | 1996-03-06 | 2006-06-07 | キヤノン株式会社 | エキシマレーザー発振装置のガス供給装置 |
JPH09243892A (ja) | 1996-03-06 | 1997-09-19 | Matsushita Electric Ind Co Ltd | 光学素子 |
JPH09281077A (ja) | 1996-04-16 | 1997-10-31 | Hitachi Ltd | キャピラリ−電気泳動装置 |
JP2691341B2 (ja) | 1996-05-27 | 1997-12-17 | 株式会社ニコン | 投影露光装置 |
JPH09326338A (ja) | 1996-06-04 | 1997-12-16 | Nikon Corp | 製造管理装置 |
JPH09325255A (ja) | 1996-06-06 | 1997-12-16 | Olympus Optical Co Ltd | 電子カメラ |
JPH103039A (ja) | 1996-06-14 | 1998-01-06 | Nikon Corp | 反射屈折光学系 |
JPH102865A (ja) | 1996-06-18 | 1998-01-06 | Nikon Corp | レチクルの検査装置およびその検査方法 |
JPH1020195A (ja) | 1996-06-28 | 1998-01-23 | Nikon Corp | 反射屈折光学系 |
JPH1032160A (ja) | 1996-07-17 | 1998-02-03 | Toshiba Corp | パターン露光方法及び露光装置 |
JP3646415B2 (ja) | 1996-07-18 | 2005-05-11 | ソニー株式会社 | マスク欠陥の検出方法 |
JPH1038517A (ja) | 1996-07-23 | 1998-02-13 | Canon Inc | 光学式変位測定装置 |
JP3646757B2 (ja) | 1996-08-22 | 2005-05-11 | 株式会社ニコン | 投影露光方法及び装置 |
JPH1079337A (ja) | 1996-09-04 | 1998-03-24 | Nikon Corp | 投影露光装置 |
JPH1055713A (ja) | 1996-08-08 | 1998-02-24 | Ushio Inc | 紫外線照射装置 |
JPH1062305A (ja) | 1996-08-19 | 1998-03-06 | Advantest Corp | Ccdカメラの感度補正方法およびccdカメラ感度補正機能付lcdパネル表示試験システム |
JPH1082611A (ja) | 1996-09-10 | 1998-03-31 | Nikon Corp | 面位置検出装置 |
JPH1092735A (ja) | 1996-09-13 | 1998-04-10 | Nikon Corp | 露光装置 |
JP2914315B2 (ja) | 1996-09-20 | 1999-06-28 | 日本電気株式会社 | 走査型縮小投影露光装置及びディストーション測定方法 |
JPH10104427A (ja) | 1996-10-03 | 1998-04-24 | Sankyo Seiki Mfg Co Ltd | 波長板およびそれを備えた光ピックアップ装置 |
JPH10116760A (ja) | 1996-10-08 | 1998-05-06 | Nikon Corp | 露光装置及び基板保持装置 |
JPH10116778A (ja) | 1996-10-09 | 1998-05-06 | Canon Inc | スキャン露光装置 |
JPH10116779A (ja) | 1996-10-11 | 1998-05-06 | Nikon Corp | ステージ装置 |
JP3955985B2 (ja) | 1996-10-16 | 2007-08-08 | 株式会社ニコン | マーク位置検出装置及び方法 |
KR100191329B1 (ko) | 1996-10-23 | 1999-06-15 | 윤종용 | 인터넷상에서의 원격교육방법 및 그 장치. |
JPH10135099A (ja) | 1996-10-25 | 1998-05-22 | Sony Corp | 露光装置及び露光方法 |
JP3991166B2 (ja) | 1996-10-25 | 2007-10-17 | 株式会社ニコン | 照明光学装置および該照明光学装置を備えた露光装置 |
JP4029182B2 (ja) | 1996-11-28 | 2008-01-09 | 株式会社ニコン | 露光方法 |
JP4029183B2 (ja) | 1996-11-28 | 2008-01-09 | 株式会社ニコン | 投影露光装置及び投影露光方法 |
CN1244021C (zh) | 1996-11-28 | 2006-03-01 | 株式会社尼康 | 光刻装置和曝光方法 |
JP3624065B2 (ja) | 1996-11-29 | 2005-02-23 | キヤノン株式会社 | 基板搬送装置、半導体製造装置および露光装置 |
JPH10169249A (ja) | 1996-12-12 | 1998-06-23 | Ohbayashi Corp | 免震構造 |
JPH10189700A (ja) | 1996-12-20 | 1998-07-21 | Sony Corp | ウェーハ保持機構 |
JP2910716B2 (ja) | 1997-01-16 | 1999-06-23 | 日本電気株式会社 | 光強度計算のパラメトリック解析方法 |
JPH10206714A (ja) | 1997-01-20 | 1998-08-07 | Canon Inc | レンズ移動装置 |
JP2926325B2 (ja) | 1997-01-23 | 1999-07-28 | 株式会社ニコン | 走査露光方法 |
JPH10209018A (ja) | 1997-01-24 | 1998-08-07 | Nippon Telegr & Teleph Corp <Ntt> | X線マスクフレームおよびx線マスクの保持方法 |
JP3612920B2 (ja) | 1997-02-14 | 2005-01-26 | ソニー株式会社 | 光学記録媒体の原盤作製用露光装置 |
JPH10255319A (ja) | 1997-03-12 | 1998-09-25 | Hitachi Maxell Ltd | 原盤露光装置及び方法 |
JPH10294268A (ja) | 1997-04-16 | 1998-11-04 | Nikon Corp | 投影露光装置及び位置合わせ方法 |
JP3747566B2 (ja) | 1997-04-23 | 2006-02-22 | 株式会社ニコン | 液浸型露光装置 |
JPH118194A (ja) | 1997-04-25 | 1999-01-12 | Nikon Corp | 露光条件測定方法、投影光学系の評価方法及びリソグラフィシステム |
JP3817836B2 (ja) | 1997-06-10 | 2006-09-06 | 株式会社ニコン | 露光装置及びその製造方法並びに露光方法及びデバイス製造方法 |
JPH113856A (ja) | 1997-06-11 | 1999-01-06 | Canon Inc | 投影露光方法及び投影露光装置 |
JP3233341B2 (ja) | 1997-06-12 | 2001-11-26 | 船井電機株式会社 | 製パン機およびこれに用いられる記録媒体 |
JPH113849A (ja) | 1997-06-12 | 1999-01-06 | Sony Corp | 可変変形照明フィルタ及び半導体露光装置 |
JPH1114876A (ja) | 1997-06-19 | 1999-01-22 | Nikon Corp | 光学構造体、その光学構造体を組み込んだ投影露光用光学系及び投影露光装置 |
JPH1116816A (ja) | 1997-06-25 | 1999-01-22 | Nikon Corp | 投影露光装置、該装置を用いた露光方法、及び該装置を用いた回路デバイスの製造方法 |
JPH1140657A (ja) | 1997-07-23 | 1999-02-12 | Nikon Corp | 試料保持装置および走査型露光装置 |
JP3264224B2 (ja) | 1997-08-04 | 2002-03-11 | キヤノン株式会社 | 照明装置及びそれを用いた投影露光装置 |
JP3413074B2 (ja) | 1997-08-29 | 2003-06-03 | キヤノン株式会社 | 露光装置およびデバイス製造方法 |
JPH1187237A (ja) | 1997-09-10 | 1999-03-30 | Nikon Corp | アライメント装置 |
JP4164905B2 (ja) | 1997-09-25 | 2008-10-15 | 株式会社ニコン | 電磁力モータ、ステージ装置および露光装置 |
JP2000106340A (ja) | 1997-09-26 | 2000-04-11 | Nikon Corp | 露光装置及び走査露光方法、並びにステージ装置 |
JPH11111819A (ja) | 1997-09-30 | 1999-04-23 | Asahi Kasei Micro Syst Co Ltd | ウェハーの固定方法及び露光装置 |
JPH11111818A (ja) | 1997-10-03 | 1999-04-23 | Oki Electric Ind Co Ltd | ウェハ保持装置及びウェハ保持具 |
JPH11111601A (ja) | 1997-10-06 | 1999-04-23 | Nikon Corp | 露光方法及び装置 |
JPH11195602A (ja) | 1997-10-07 | 1999-07-21 | Nikon Corp | 投影露光方法及び装置 |
JP3097620B2 (ja) | 1997-10-09 | 2000-10-10 | 日本電気株式会社 | 走査型縮小投影露光装置 |
JP4210871B2 (ja) | 1997-10-31 | 2009-01-21 | 株式会社ニコン | 露光装置 |
JPH11142556A (ja) | 1997-11-13 | 1999-05-28 | Nikon Corp | ステージ制御方法、ステージ装置、及び該装置を備えた露光装置 |
JPH11150062A (ja) | 1997-11-14 | 1999-06-02 | Nikon Corp | 除振装置及び露光装置並びに除振台の除振方法 |
AU1175799A (en) | 1997-11-21 | 1999-06-15 | Nikon Corporation | Projection aligner and projection exposure method |
JPH11162831A (ja) | 1997-11-21 | 1999-06-18 | Nikon Corp | 投影露光装置及び投影露光方法 |
JPH11283903A (ja) | 1998-03-30 | 1999-10-15 | Nikon Corp | 投影光学系検査装置及び同装置を備えた投影露光装置 |
JPH11163103A (ja) | 1997-11-25 | 1999-06-18 | Hitachi Ltd | 半導体装置の製造方法および製造装置 |
JPH11159571A (ja) | 1997-11-28 | 1999-06-15 | Nikon Corp | 機械装置、露光装置及び露光装置の運転方法 |
JPH11166990A (ja) | 1997-12-04 | 1999-06-22 | Nikon Corp | ステージ装置及び露光装置並びに走査型露光装置 |
JPH11176727A (ja) | 1997-12-11 | 1999-07-02 | Nikon Corp | 投影露光装置 |
WO1999031716A1 (fr) | 1997-12-16 | 1999-06-24 | Nikon Corporation | Aligneur, methode d'exposition et procede de fabrication de ce dispositif |
JP3673633B2 (ja) | 1997-12-16 | 2005-07-20 | キヤノン株式会社 | 投影光学系の組立調整方法 |
TW449672B (en) | 1997-12-25 | 2001-08-11 | Nippon Kogaku Kk | Process and apparatus for manufacturing photomask and method of manufacturing the same |
JPH11204390A (ja) | 1998-01-14 | 1999-07-30 | Canon Inc | 半導体製造装置およびデバイス製造方法 |
JPH11219882A (ja) | 1998-02-02 | 1999-08-10 | Nikon Corp | ステージ及び露光装置 |
JPH11288879A (ja) | 1998-02-04 | 1999-10-19 | Hitachi Ltd | 露光条件決定方法とその装置ならびに半導体装置の製造方法 |
JP3820728B2 (ja) | 1998-02-04 | 2006-09-13 | 東レ株式会社 | 基板の測定装置 |
JPH11233434A (ja) | 1998-02-17 | 1999-08-27 | Nikon Corp | 露光条件決定方法、露光方法、露光装置、及びデバイスの製造方法 |
JP4207240B2 (ja) | 1998-02-20 | 2009-01-14 | 株式会社ニコン | 露光装置用照度計、リソグラフィ・システム、照度計の較正方法およびマイクロデバイスの製造方法 |
JPH11239758A (ja) | 1998-02-26 | 1999-09-07 | Dainippon Screen Mfg Co Ltd | 基板処理装置 |
JPH11260791A (ja) | 1998-03-10 | 1999-09-24 | Toshiba Mach Co Ltd | 半導体ウエハの乾燥方法および乾燥装置 |
JPH11260686A (ja) | 1998-03-11 | 1999-09-24 | Toshiba Corp | 露光方法 |
JPH11264756A (ja) | 1998-03-18 | 1999-09-28 | Tokyo Electron Ltd | 液面検出器および液面検出方法、ならびに基板処理装置 |
AU2747899A (en) | 1998-03-20 | 1999-10-18 | Nikon Corporation | Photomask and projection exposure system |
EP1083462A4 (en) | 1998-03-26 | 2003-12-03 | Nikon Corp | EXPOSURE METHOD AND SYSTEM, PHOTOMASK, METHOD FOR THE PRODUCTION THEREOF, MICROELEMENT, METHOD FOR THE PRODUCTION THEREOF |
AU2747999A (en) | 1998-03-26 | 1999-10-18 | Nikon Corporation | Projection exposure method and system |
JPH11307610A (ja) | 1998-04-22 | 1999-11-05 | Nikon Corp | 基板搬送装置及び露光装置 |
JPH11312631A (ja) | 1998-04-27 | 1999-11-09 | Nikon Corp | 照明光学装置および露光装置 |
JP4090115B2 (ja) | 1998-06-09 | 2008-05-28 | 信越ポリマー株式会社 | 基板収納容器 |
WO1999066370A1 (fr) | 1998-06-17 | 1999-12-23 | Nikon Corporation | Procede relatif a l'elaboration d'un masque |
JP2000012453A (ja) | 1998-06-18 | 2000-01-14 | Nikon Corp | 露光装置及びその使用方法、露光方法、並びにマスクの製造方法 |
JP2000021748A (ja) | 1998-06-30 | 2000-01-21 | Canon Inc | 露光方法および露光装置 |
JP2000021742A (ja) | 1998-06-30 | 2000-01-21 | Canon Inc | 露光方法および露光装置 |
DE19829612A1 (de) | 1998-07-02 | 2000-01-05 | Zeiss Carl Fa | Beleuchtungssystem der Mikrolithographie mit Depolarisator |
JP2000032403A (ja) | 1998-07-14 | 2000-01-28 | Sony Corp | データ伝送方法、データ送信装置及び受信装置 |
JP2000029202A (ja) | 1998-07-15 | 2000-01-28 | Nikon Corp | マスクの製造方法 |
JP2000036449A (ja) | 1998-07-17 | 2000-02-02 | Nikon Corp | 露光装置 |
JP2000058436A (ja) | 1998-08-11 | 2000-02-25 | Nikon Corp | 投影露光装置及び露光方法 |
AU4930099A (en) | 1998-08-18 | 2000-03-14 | Nikon Corporation | Illuminator and projection exposure apparatus |
JP2000081320A (ja) | 1998-09-03 | 2000-03-21 | Canon Inc | 面位置検出装置及びそれを用いたデバイスの製造方法 |
JP2000092815A (ja) | 1998-09-10 | 2000-03-31 | Canon Inc | ステージ装置および該ステージ装置を用いた露光装置 |
JP4132397B2 (ja) | 1998-09-16 | 2008-08-13 | 積水化学工業株式会社 | 光硬化性樹脂組成物、液晶注入口封止剤及び液晶表示セル |
JP2000097616A (ja) | 1998-09-22 | 2000-04-07 | Nikon Corp | 干渉計 |
JP4065923B2 (ja) | 1998-09-29 | 2008-03-26 | 株式会社ニコン | 照明装置及び該照明装置を備えた投影露光装置、該照明装置による投影露光方法、及び該投影露光装置の調整方法 |
JP2000121491A (ja) | 1998-10-20 | 2000-04-28 | Nikon Corp | 光学系の評価方法 |
JP2001176766A (ja) | 1998-10-29 | 2001-06-29 | Nikon Corp | 照明装置及び投影露光装置 |
JP2000147346A (ja) | 1998-11-09 | 2000-05-26 | Toshiba Corp | モールドレンズの取付機構 |
JP2000180371A (ja) | 1998-12-11 | 2000-06-30 | Sharp Corp | 異物検査装置および半導体工程装置 |
JP4146952B2 (ja) | 1999-01-11 | 2008-09-10 | キヤノン株式会社 | 露光装置およびデバイス製造方法 |
JP2000208407A (ja) | 1999-01-19 | 2000-07-28 | Nikon Corp | 露光装置 |
JP2000243684A (ja) | 1999-02-18 | 2000-09-08 | Canon Inc | 露光装置およびデバイス製造方法 |
JP2000240717A (ja) | 1999-02-19 | 2000-09-05 | Canon Inc | 能動的除振装置 |
JP2000252201A (ja) | 1999-03-02 | 2000-09-14 | Nikon Corp | 面位置検出方法および装置、これらを用いた投影露光方法および装置、半導体デバイス製造方法 |
JP2000286176A (ja) | 1999-03-31 | 2000-10-13 | Hitachi Ltd | 半導体基板処理装置における処理状況の表示方法及び半導体基板処理装置 |
JP2000283889A (ja) | 1999-03-31 | 2000-10-13 | Nikon Corp | 投影光学系の検査装置及び検査方法、露光装置、並びに、マイクロデバイスの製造方法 |
WO2000067303A1 (fr) | 1999-04-28 | 2000-11-09 | Nikon Corporation | Procede et appareil d'exposition |
US6671246B1 (en) * | 1999-04-28 | 2003-12-30 | Olympus Optical Co., Ltd. | Optical pickup |
DE19921795A1 (de) | 1999-05-11 | 2000-11-23 | Zeiss Carl Fa | Projektions-Belichtungsanlage und Belichtungsverfahren der Mikrolithographie |
JP2000003874A (ja) | 1999-06-15 | 2000-01-07 | Nikon Corp | 露光方法及び露光装置 |
JP2001007015A (ja) | 1999-06-25 | 2001-01-12 | Canon Inc | ステージ装置 |
WO2001003170A1 (fr) | 1999-06-30 | 2001-01-11 | Nikon Corporation | Procede et dispositif d'exposition |
JP2001020951A (ja) | 1999-07-07 | 2001-01-23 | Toto Ltd | 静圧気体軸受 |
JP2001023996A (ja) | 1999-07-08 | 2001-01-26 | Sony Corp | 半導体製造方法 |
DE10029938A1 (de) | 1999-07-09 | 2001-07-05 | Zeiss Carl | Optisches System für das Vakuum-Ultraviolett |
JP2001037201A (ja) | 1999-07-21 | 2001-02-09 | Nikon Corp | モータ装置、ステージ装置及び露光装置 |
JP2001044097A (ja) | 1999-07-26 | 2001-02-16 | Matsushita Electric Ind Co Ltd | 露光装置 |
US6280034B1 (en) | 1999-07-30 | 2001-08-28 | Philips Electronics North America Corporation | Efficient two-panel projection system employing complementary illumination |
JP3110023B1 (ja) | 1999-09-02 | 2000-11-20 | 岩堀 雅行 | 燃料放出装置 |
JP4362857B2 (ja) | 1999-09-10 | 2009-11-11 | 株式会社ニコン | 光源装置及び露光装置 |
JP2001083472A (ja) | 1999-09-10 | 2001-03-30 | Nikon Corp | 光変調装置、光源装置、及び露光装置 |
WO2001022480A1 (fr) | 1999-09-20 | 2001-03-29 | Nikon Corporation | Mecanisme a attelages paralleles, systeme d'exposition et procede de fabrication, et procede de fabrication de dispositifs |
JP2001097734A (ja) | 1999-09-30 | 2001-04-10 | Toshiba Ceramics Co Ltd | 石英ガラス製容器およびその製造方法 |
KR100625625B1 (ko) | 1999-10-07 | 2006-09-20 | 가부시키가이샤 니콘 | 기판, 스테이지 장치, 스테이지 구동 방법, 노광 장치 및노광 방법 |
JP2001110707A (ja) | 1999-10-08 | 2001-04-20 | Orc Mfg Co Ltd | 周辺露光装置の光学系 |
JP2001118773A (ja) | 1999-10-18 | 2001-04-27 | Nikon Corp | ステージ装置及び露光装置 |
JP2001135560A (ja) | 1999-11-04 | 2001-05-18 | Nikon Corp | 照明光学装置、該照明光学装置を備えた露光装置、および該露光装置を用いたマイクロデバイス製造方法 |
JP2001144004A (ja) | 1999-11-16 | 2001-05-25 | Nikon Corp | 露光方法、露光装置、及びデバイス製造方法 |
JP2001167996A (ja) | 1999-12-10 | 2001-06-22 | Tokyo Electron Ltd | 基板処理装置 |
JP2002118058A (ja) | 2000-01-13 | 2002-04-19 | Nikon Corp | 投影露光装置及び方法 |
JP2001203140A (ja) | 2000-01-20 | 2001-07-27 | Nikon Corp | ステージ装置、露光装置及びデバイス製造方法 |
JP3413485B2 (ja) | 2000-01-31 | 2003-06-03 | 住友重機械工業株式会社 | リニアモータにおける推力リップル測定方法 |
JP2005233979A (ja) | 2000-02-09 | 2005-09-02 | Nikon Corp | 反射屈折光学系 |
JP2001228404A (ja) | 2000-02-14 | 2001-08-24 | Nikon Engineering Co Ltd | 落射型顕微鏡、プローブカードの検査装置、および、プローブカードの製造方法 |
JP4018309B2 (ja) | 2000-02-14 | 2007-12-05 | 松下電器産業株式会社 | 回路パラメータ抽出方法、半導体集積回路の設計方法および装置 |
JP2001228401A (ja) | 2000-02-16 | 2001-08-24 | Canon Inc | 投影光学系、および該投影光学系による投影露光装置、デバイス製造方法 |
JP2002100561A (ja) | 2000-07-19 | 2002-04-05 | Nikon Corp | 露光方法及び装置、並びにデバイス製造方法 |
JP2001313250A (ja) | 2000-02-25 | 2001-11-09 | Nikon Corp | 露光装置、その調整方法、及び前記露光装置を用いるデバイス製造方法 |
JP2001242269A (ja) | 2000-03-01 | 2001-09-07 | Nikon Corp | ステージ装置及びステージ駆動方法並びに露光装置及び露光方法 |
DE10010131A1 (de) | 2000-03-03 | 2001-09-06 | Zeiss Carl | Mikrolithographie - Projektionsbelichtung mit tangentialer Polarisartion |
US7301605B2 (en) | 2000-03-03 | 2007-11-27 | Nikon Corporation | Projection exposure apparatus and method, catadioptric optical system and manufacturing method of devices |
JP2001265581A (ja) | 2000-03-21 | 2001-09-28 | Canon Inc | ソフトウエアの不正使用防止システムおよび不正使用防止方法 |
JP2001267227A (ja) | 2000-03-21 | 2001-09-28 | Canon Inc | 除振システム、露光装置およびデバイス製造方法 |
JP2001338868A (ja) | 2000-03-24 | 2001-12-07 | Nikon Corp | 照度計測装置及び露光装置 |
JP2001272764A (ja) | 2000-03-24 | 2001-10-05 | Canon Inc | 投影露光用フォトマスク、およびそれを用いた投影露光方法 |
JP4689064B2 (ja) | 2000-03-30 | 2011-05-25 | キヤノン株式会社 | 露光装置およびデバイス製造方法 |
JP2001282526A (ja) | 2000-03-31 | 2001-10-12 | Canon Inc | ソフトウェア管理装置、方法、及びコンピュータ読み取り可能な記憶媒体 |
JP2001296105A (ja) | 2000-04-12 | 2001-10-26 | Nikon Corp | 面位置検出装置、並びに該検出装置を用いた露光装置および露光方法 |
JP2001297976A (ja) | 2000-04-17 | 2001-10-26 | Canon Inc | 露光方法及び露光装置 |
JP2001307983A (ja) | 2000-04-20 | 2001-11-02 | Nikon Corp | ステージ装置及び露光装置 |
JP3514439B2 (ja) | 2000-04-20 | 2004-03-31 | キヤノン株式会社 | 光学要素の支持構造、および該支持構造を用いて構成された露光装置と、該装置によるデバイス等の製造方法 |
JP2001304332A (ja) | 2000-04-24 | 2001-10-31 | Canon Inc | 能動制振装置 |
KR100894303B1 (ko) | 2000-04-25 | 2009-04-24 | 에이에스엠엘 유에스, 인크. | 조사 편광 제어부를 구비한 광학 축소 시스템 |
JP2002014005A (ja) | 2000-04-25 | 2002-01-18 | Nikon Corp | 空間像計測方法、結像特性計測方法、空間像計測装置及び露光装置 |
AU2001257191A1 (en) | 2000-04-25 | 2001-11-07 | Silicon Valley Group Inc | Optical reduction system with elimination of reticle diffraction induced bias |
JP2002057097A (ja) | 2000-05-31 | 2002-02-22 | Nikon Corp | 露光装置、及びマイクロデバイス並びにその製造方法 |
JP2001356263A (ja) * | 2000-06-12 | 2001-12-26 | Pioneer Electronic Corp | 組み合わせ対物レンズ、光ピックアップ装置、光学式記録再生装置及び組み合わせ対物レンズ製造方法 |
JP2002016124A (ja) | 2000-06-28 | 2002-01-18 | Sony Corp | ウェーハ搬送アーム機構 |
JP2002015978A (ja) | 2000-06-29 | 2002-01-18 | Canon Inc | 露光装置 |
JP2002043213A (ja) | 2000-07-25 | 2002-02-08 | Nikon Corp | ステージ装置および露光装置 |
ATE352052T1 (de) | 2000-08-18 | 2007-02-15 | Nikon Corp | Haltevorrichtung für optisches element |
JP3645801B2 (ja) | 2000-08-24 | 2005-05-11 | ペンタックス株式会社 | ビーム列検出方法および検出用位相フィルター |
JP2002071513A (ja) | 2000-08-28 | 2002-03-08 | Nikon Corp | 液浸系顕微鏡対物レンズ用干渉計および液浸系顕微鏡対物レンズの評価方法 |
JP4504537B2 (ja) | 2000-08-29 | 2010-07-14 | 芝浦メカトロニクス株式会社 | スピン処理装置 |
JP2002093686A (ja) | 2000-09-19 | 2002-03-29 | Nikon Corp | ステージ装置及び露光装置 |
JP2002093690A (ja) | 2000-09-19 | 2002-03-29 | Hitachi Ltd | 半導体装置の製造方法 |
JP2002091922A (ja) | 2000-09-20 | 2002-03-29 | Fujitsu General Ltd | アプリケーションソフトとコンテンツの配信管理方法と配信管理システム |
JP4245286B2 (ja) | 2000-10-23 | 2009-03-25 | 株式会社ニコン | 反射屈折光学系および該光学系を備えた露光装置 |
JP2002141270A (ja) | 2000-11-01 | 2002-05-17 | Nikon Corp | 露光装置 |
US20020075467A1 (en) | 2000-12-20 | 2002-06-20 | Nikon Corporation | Exposure apparatus and method |
JP2002158157A (ja) | 2000-11-17 | 2002-05-31 | Nikon Corp | 照明光学装置および露光装置並びにマイクロデバイスの製造方法 |
JP2002170495A (ja) | 2000-11-28 | 2002-06-14 | Akira Sekino | 隔壁一体型合成樹脂背面基板 |
JP2002231619A (ja) | 2000-11-29 | 2002-08-16 | Nikon Corp | 照明光学装置および該照明光学装置を備えた露光装置 |
JP2002190438A (ja) | 2000-12-21 | 2002-07-05 | Nikon Corp | 露光装置 |
JP2002198284A (ja) | 2000-12-25 | 2002-07-12 | Nikon Corp | ステージ装置および露光装置 |
JP2002203763A (ja) | 2000-12-27 | 2002-07-19 | Nikon Corp | 光学特性計測方法及び装置、信号感度設定方法、露光装置、並びにデバイス製造方法 |
JP2002195912A (ja) | 2000-12-27 | 2002-07-10 | Nikon Corp | 光学特性計測方法及び装置、露光装置、並びにデバイス製造方法 |
JP2002202221A (ja) | 2000-12-28 | 2002-07-19 | Nikon Corp | 位置検出方法、位置検出装置、光学特性測定方法、光学特性測定装置、露光装置、及びデバイス製造方法 |
JP3495992B2 (ja) | 2001-01-26 | 2004-02-09 | キヤノン株式会社 | 補正装置、露光装置、デバイス製造方法及びデバイス |
US6563566B2 (en) | 2001-01-29 | 2003-05-13 | International Business Machines Corporation | System and method for printing semiconductor patterns using an optimized illumination and reticle |
JP2002227924A (ja) | 2001-01-31 | 2002-08-14 | Canon Inc | 制震ダンパ及び制震ダンパを備えた露光装置 |
CN1491427A (zh) | 2001-02-06 | 2004-04-21 | ������������ʽ���� | 曝光装置、曝光法和器件制造法 |
DE10113612A1 (de) | 2001-02-23 | 2002-09-05 | Zeiss Carl | Teilobjektiv in einem Beleuchtungssystem |
TWI285295B (en) | 2001-02-23 | 2007-08-11 | Asml Netherlands Bv | Illumination optimization in lithography |
US6611316B2 (en) | 2001-02-27 | 2003-08-26 | Asml Holding N.V. | Method and system for dual reticle image exposure |
JP2002258487A (ja) | 2001-02-28 | 2002-09-11 | Nikon Corp | 露光方法及び露光装置 |
JP4501292B2 (ja) | 2001-03-05 | 2010-07-14 | コニカミノルタホールディングス株式会社 | 被塗布基材及び塗布材の塗布方法並びに素子の製造方法 |
JPWO2002080185A1 (ja) | 2001-03-28 | 2004-07-22 | 株式会社ニコン | ステージ装置及び露光装置、並びにデバイス製造方法 |
JP2002289505A (ja) | 2001-03-28 | 2002-10-04 | Nikon Corp | 露光装置,露光装置の調整方法,マイクロデバイスの製造方法 |
JP2002365783A (ja) | 2001-04-05 | 2002-12-18 | Sony Corp | マスクパターンの作成装置、高解像度マスクの作製装置及び作製方法、並びにレジストパターン形成方法 |
JP2002305140A (ja) | 2001-04-06 | 2002-10-18 | Nikon Corp | 露光装置及び基板処理システム |
WO2002084850A1 (fr) | 2001-04-09 | 2002-10-24 | Kabushiki Kaisha Yaskawa Denki | Induit de moteur lineaire protege et moteur lineaire protege |
JP2002324743A (ja) | 2001-04-24 | 2002-11-08 | Canon Inc | 露光方法及び装置 |
JP2002329651A (ja) | 2001-04-27 | 2002-11-15 | Nikon Corp | 露光装置、露光装置の製造方法、及びマイクロデバイスの製造方法 |
DE10124566A1 (de) | 2001-05-15 | 2002-11-21 | Zeiss Carl | Optisches Abbildungssystem mit Polarisationsmitteln und Quarzkristallplatte hierfür |
DE10124803A1 (de) | 2001-05-22 | 2002-11-28 | Zeiss Carl | Polarisator und Mikrolithographie-Projektionsanlage mit Polarisator |
JP2002353105A (ja) | 2001-05-24 | 2002-12-06 | Nikon Corp | 照明光学装置,該照明光学装置を備えた露光装置,およびマイクロデバイスの製造方法 |
JP2002359174A (ja) | 2001-05-31 | 2002-12-13 | Mitsubishi Electric Corp | 露光工程管理システム、露光工程管理方法、および露光工程を管理するためのプログラム |
JP4622160B2 (ja) | 2001-05-31 | 2011-02-02 | 旭硝子株式会社 | 回折格子一体型旋光子および光ヘッド装置 |
JP4689081B2 (ja) | 2001-06-06 | 2011-05-25 | キヤノン株式会社 | 露光装置、調整方法、およびデバイス製造方法 |
JP3734432B2 (ja) | 2001-06-07 | 2006-01-11 | 三星電子株式会社 | マスク搬送装置、マスク搬送システム及びマスク搬送方法 |
WO2002101804A1 (fr) | 2001-06-11 | 2002-12-19 | Nikon Corporation | Dispositif d'exposition, procede de fabrication et element de passage de flux de stabilisation de temperature |
JP2002367523A (ja) | 2001-06-12 | 2002-12-20 | Matsushita Electric Ind Co Ltd | プラズマディスプレイパネルとプラズマディスプレイパネルの製造方法 |
JP2002373849A (ja) | 2001-06-15 | 2002-12-26 | Canon Inc | 露光装置 |
US6788385B2 (en) | 2001-06-21 | 2004-09-07 | Nikon Corporation | Stage device, exposure apparatus and method |
JP2003017003A (ja) | 2001-07-04 | 2003-01-17 | Canon Inc | ランプおよび光源装置 |
JP2003015040A (ja) | 2001-07-04 | 2003-01-15 | Nikon Corp | 投影光学系および該投影光学系を備えた露光装置 |
JP2003028673A (ja) | 2001-07-10 | 2003-01-29 | Canon Inc | 光学式エンコーダ、半導体製造装置、デバイス製造方法、半導体製造工場および半導体製造装置の保守方法 |
EP1280007B1 (en) | 2001-07-24 | 2008-06-18 | ASML Netherlands B.V. | Imaging apparatus |
JP2003045712A (ja) | 2001-07-26 | 2003-02-14 | Japan Aviation Electronics Industry Ltd | 防水コイル及びその製造方法 |
JP4522024B2 (ja) | 2001-07-27 | 2010-08-11 | キヤノン株式会社 | 水銀ランプ、照明装置及び露光装置 |
JP2003043223A (ja) | 2001-07-30 | 2003-02-13 | Nikon Corp | 結晶材料で形成されたビームスプリッターおよび波長板、並びにこれらの結晶光学部品を備えた光学装置、露光装置並びに検査装置 |
JP2003059803A (ja) | 2001-08-14 | 2003-02-28 | Canon Inc | 露光装置 |
JP2003068600A (ja) | 2001-08-22 | 2003-03-07 | Canon Inc | 露光装置、および基板チャックの冷却方法 |
JP2003075703A (ja) | 2001-08-31 | 2003-03-12 | Konica Corp | 光学ユニット及び光学装置 |
JP4183166B2 (ja) | 2001-08-31 | 2008-11-19 | 京セラ株式会社 | 位置決め装置用部材 |
JP2003081654A (ja) | 2001-09-06 | 2003-03-19 | Toshiba Ceramics Co Ltd | 合成石英ガラスおよびその製造方法 |
JPWO2003023832A1 (ja) | 2001-09-07 | 2004-12-24 | 株式会社ニコン | 露光方法及び装置、並びにデバイス製造方法 |
JP2003084445A (ja) | 2001-09-13 | 2003-03-19 | Canon Inc | 走査型露光装置および露光方法 |
JP4160286B2 (ja) | 2001-09-21 | 2008-10-01 | 東芝マイクロエレクトロニクス株式会社 | Lsiパターンの寸法測定箇所選定方法 |
JP3910032B2 (ja) | 2001-09-25 | 2007-04-25 | 大日本スクリーン製造株式会社 | 基板現像装置 |
JP2003114387A (ja) * | 2001-10-04 | 2003-04-18 | Nikon Corp | 反射屈折光学系および該光学系を備える投影露光装置 |
JP4412450B2 (ja) | 2001-10-05 | 2010-02-10 | 信越化学工業株式会社 | 反射防止フィルター |
JP2003124095A (ja) | 2001-10-11 | 2003-04-25 | Nikon Corp | 投影露光方法及び装置、並びにデバイス製造方法 |
JP2003130132A (ja) | 2001-10-22 | 2003-05-08 | Nec Ameniplantex Ltd | 除振機構 |
JP4362999B2 (ja) | 2001-11-12 | 2009-11-11 | 株式会社ニコン | 露光装置及び露光方法、並びにデバイス製造方法 |
JP2003161882A (ja) | 2001-11-29 | 2003-06-06 | Nikon Corp | 投影光学系、露光装置および露光方法 |
JP2003166856A (ja) | 2001-11-29 | 2003-06-13 | Fuji Electric Co Ltd | 光学式エンコーダ |
JP3809095B2 (ja) | 2001-11-29 | 2006-08-16 | ペンタックス株式会社 | 露光装置用光源システムおよび露光装置 |
JP3945569B2 (ja) | 2001-12-06 | 2007-07-18 | 東京応化工業株式会社 | 現像装置 |
JP2003188087A (ja) | 2001-12-21 | 2003-07-04 | Sony Corp | 露光方法および露光装置並びに半導体装置の製造方法 |
JP2003249443A (ja) | 2001-12-21 | 2003-09-05 | Nikon Corp | ステージ装置、ステージ位置管理方法、露光方法及び露光装置、並びにデバイス製造方法 |
TW200302507A (en) | 2002-01-21 | 2003-08-01 | Nikon Corp | Stage device and exposure device |
JP3809381B2 (ja) | 2002-01-28 | 2006-08-16 | キヤノン株式会社 | リニアモータ、ステージ装置、露光装置及びデバイス製造方法 |
JP2003229347A (ja) | 2002-01-31 | 2003-08-15 | Canon Inc | 半導体製造装置 |
JP2003233001A (ja) | 2002-02-07 | 2003-08-22 | Canon Inc | 反射型投影光学系、露光装置及びデバイス製造方法 |
JP2003240906A (ja) | 2002-02-20 | 2003-08-27 | Dainippon Printing Co Ltd | 反射防止体およびその製造方法 |
JP2003258071A (ja) | 2002-02-28 | 2003-09-12 | Nikon Corp | 基板保持装置及び露光装置 |
JP2003263119A (ja) | 2002-03-07 | 2003-09-19 | Fuji Xerox Co Ltd | リブ付き電極およびその製造方法 |
JP3984841B2 (ja) | 2002-03-07 | 2007-10-03 | キヤノン株式会社 | 歪み計測装置、歪み抑制装置、及び露光装置、並びにデバイス製造方法 |
DE10210899A1 (de) | 2002-03-08 | 2003-09-18 | Zeiss Carl Smt Ag | Refraktives Projektionsobjektiv für Immersions-Lithographie |
JP3975787B2 (ja) | 2002-03-12 | 2007-09-12 | ソニー株式会社 | 固体撮像素子 |
JP4100011B2 (ja) | 2002-03-13 | 2008-06-11 | セイコーエプソン株式会社 | 表面処理装置、有機el装置の製造装置及び製造方法 |
JP4335495B2 (ja) | 2002-03-27 | 2009-09-30 | 株式会社日立ハイテクノロジーズ | 定圧チャンバ、それを用いた照射装置及び回路パターンの検査装置 |
JP2003297727A (ja) | 2002-04-03 | 2003-10-17 | Nikon Corp | 照明光学装置、露光装置および露光方法 |
CN1650401B (zh) | 2002-04-09 | 2010-04-21 | 株式会社尼康 | 曝光方法与曝光装置、以及器件的制造方法 |
DE10310690A1 (de) | 2002-04-12 | 2003-10-30 | Heidelberger Druckmasch Ag | Bogenführungseinrichtung in einer bogenverarbeitenden Maschine |
JP4292497B2 (ja) | 2002-04-17 | 2009-07-08 | 株式会社ニコン | 投影光学系、露光装置および露光方法 |
JP4037179B2 (ja) | 2002-06-04 | 2008-01-23 | 東京エレクトロン株式会社 | 洗浄方法、洗浄装置 |
JP2004015187A (ja) | 2002-06-04 | 2004-01-15 | Fuji Photo Film Co Ltd | 撮影補助システム、デジタルカメラ、及びサーバ |
JP2004014876A (ja) | 2002-06-07 | 2004-01-15 | Nikon Corp | 調整方法、空間像計測方法及び像面計測方法、並びに露光装置 |
JP3448812B2 (ja) | 2002-06-14 | 2003-09-22 | 株式会社ニコン | マーク検知装置、及びそれを有する露光装置、及びその露光装置を用いた半導体素子又は液晶表示素子の製造方法 |
JP2004022708A (ja) | 2002-06-14 | 2004-01-22 | Nikon Corp | 結像光学系、照明光学系、露光装置及び露光方法 |
JP2004179172A (ja) | 2002-06-26 | 2004-06-24 | Nikon Corp | 露光装置及び露光方法並びにデバイス製造方法 |
JP4012771B2 (ja) | 2002-06-28 | 2007-11-21 | 富士通エフ・アイ・ピー株式会社 | ライセンス管理方法、ライセンス管理システム、ライセンス管理プログラム |
JP2004039952A (ja) | 2002-07-05 | 2004-02-05 | Tokyo Electron Ltd | プラズマ処理装置の監視方法およびプラズマ処理装置 |
JP2004040039A (ja) | 2002-07-08 | 2004-02-05 | Sony Corp | 露光方法の選択方法 |
JP2004045063A (ja) | 2002-07-09 | 2004-02-12 | Topcon Corp | 光学式ロータリーエンコーダ板の製造方法および光学式ロータリーエンコーダ板 |
JP2004063847A (ja) | 2002-07-30 | 2004-02-26 | Nikon Corp | 露光装置、露光方法、及びステージ装置 |
JP2004071851A (ja) | 2002-08-07 | 2004-03-04 | Canon Inc | 半導体露光方法及び露光装置 |
JP2004085612A (ja) | 2002-08-22 | 2004-03-18 | Matsushita Electric Ind Co Ltd | ハーフトーン位相シフトマスク、その製造方法およびそれを用いたパターン形成方法 |
JP4095376B2 (ja) | 2002-08-28 | 2008-06-04 | キヤノン株式会社 | 露光装置及び方法、並びに、デバイス製造方法 |
JP2004095653A (ja) | 2002-08-29 | 2004-03-25 | Nikon Corp | 露光装置 |
JP2004145269A (ja) | 2002-08-30 | 2004-05-20 | Nikon Corp | 投影光学系、反射屈折型投影光学系、走査型露光装置及び露光方法 |
JP2004103674A (ja) | 2002-09-06 | 2004-04-02 | Renesas Technology Corp | 半導体集積回路装置の製造方法 |
JP2004101362A (ja) | 2002-09-10 | 2004-04-02 | Canon Inc | ステージ位置計測および位置決め装置 |
JP2004098012A (ja) | 2002-09-12 | 2004-04-02 | Seiko Epson Corp | 薄膜形成方法、薄膜形成装置、光学素子、有機エレクトロルミネッセンス素子、半導体素子および電子機器 |
JP4269610B2 (ja) | 2002-09-17 | 2009-05-27 | 株式会社ニコン | 露光装置及び露光装置の製造方法 |
JP2004119497A (ja) | 2002-09-24 | 2004-04-15 | Huabang Electronic Co Ltd | 半導体製造設備と方法 |
JP4333866B2 (ja) | 2002-09-26 | 2009-09-16 | 大日本スクリーン製造株式会社 | 基板処理方法および基板処理装置 |
JP2004128307A (ja) | 2002-10-04 | 2004-04-22 | Nikon Corp | 露光装置及びその調整方法 |
JP2004134682A (ja) | 2002-10-15 | 2004-04-30 | Nikon Corp | 気体シリンダ、ステージ装置及び露光装置 |
JP2004140145A (ja) | 2002-10-17 | 2004-05-13 | Nikon Corp | 露光装置 |
JP2004146702A (ja) | 2002-10-25 | 2004-05-20 | Nikon Corp | 光学特性計測方法、露光方法及びデバイス製造方法 |
JP2004153096A (ja) | 2002-10-31 | 2004-05-27 | Nikon Corp | 露光装置 |
JP2004153064A (ja) | 2002-10-31 | 2004-05-27 | Nikon Corp | 露光装置 |
JP2004152705A (ja) | 2002-11-01 | 2004-05-27 | Matsushita Electric Ind Co Ltd | 有機エレクトロルミネッセンス素子の製造方法 |
JP2004165249A (ja) | 2002-11-11 | 2004-06-10 | Sony Corp | 露光装置及び露光方法 |
SG121819A1 (en) | 2002-11-12 | 2006-05-26 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
JP2004163555A (ja) | 2002-11-12 | 2004-06-10 | Olympus Corp | 落射顕微鏡及び落射顕微鏡用対物レンズ |
JP2004165416A (ja) | 2002-11-13 | 2004-06-10 | Nikon Corp | 露光装置及び建屋 |
JP2004172471A (ja) | 2002-11-21 | 2004-06-17 | Nikon Corp | 露光方法及び露光装置 |
JP4378938B2 (ja) | 2002-11-25 | 2009-12-09 | 株式会社ニコン | 露光装置、及びデバイス製造方法 |
JP4314555B2 (ja) | 2002-12-03 | 2009-08-19 | 株式会社ニコン | リニアモータ装置、ステージ装置、及び露光装置 |
TW200412617A (en) | 2002-12-03 | 2004-07-16 | Nikon Corp | Optical illumination device, method for adjusting optical illumination device, exposure device and exposure method |
DE10257766A1 (de) | 2002-12-10 | 2004-07-15 | Carl Zeiss Smt Ag | Verfahren zur Einstellung einer gewünschten optischen Eigenschaft eines Projektionsobjektivs sowie mikrolithografische Projektionsbelichtungsanlage |
WO2004053951A1 (ja) | 2002-12-10 | 2004-06-24 | Nikon Corporation | 露光方法及び露光装置並びにデバイス製造方法 |
TW200421444A (en) | 2002-12-10 | 2004-10-16 | Nippon Kogaku Kk | Optical device and projecting exposure apparatus using such optical device |
SG157962A1 (en) | 2002-12-10 | 2010-01-29 | Nikon Corp | Exposure apparatus and method for producing device |
CN101872135B (zh) | 2002-12-10 | 2013-07-31 | 株式会社尼康 | 曝光设备和器件制造法 |
SG165169A1 (en) | 2002-12-10 | 2010-10-28 | Nikon Corp | Liquid immersion exposure apparatus |
SG152063A1 (en) | 2002-12-10 | 2009-05-29 | Nikon Corp | Exposure apparatus and method for producing device |
JP2004301825A (ja) | 2002-12-10 | 2004-10-28 | Nikon Corp | 面位置検出装置、露光方法、及びデバイス製造方法 |
JP4352874B2 (ja) | 2002-12-10 | 2009-10-28 | 株式会社ニコン | 露光装置及びデバイス製造方法 |
JP4595320B2 (ja) | 2002-12-10 | 2010-12-08 | 株式会社ニコン | 露光装置、及びデバイス製造方法 |
KR101085372B1 (ko) | 2002-12-10 | 2011-11-21 | 가부시키가이샤 니콘 | 노광 장치 및 디바이스 제조 방법 |
EP1571698A4 (en) | 2002-12-10 | 2006-06-21 | Nikon Corp | EXPOSURE APPARATUS, EXPOSURE METHOD, AND DEVICE MANUFACTURING METHOD |
WO2004053957A1 (ja) | 2002-12-10 | 2004-06-24 | Nikon Corporation | 面位置検出装置、露光方法、及びデバイス製造方法 |
US20040108973A1 (en) | 2002-12-10 | 2004-06-10 | Kiser David K. | Apparatus for generating a number of color light components |
JP4232449B2 (ja) | 2002-12-10 | 2009-03-04 | 株式会社ニコン | 露光方法、露光装置、及びデバイス製造方法 |
JP2004193425A (ja) | 2002-12-12 | 2004-07-08 | Nikon Corp | 移動制御方法及び装置、露光装置、並びにデバイス製造方法 |
JP2004198748A (ja) | 2002-12-19 | 2004-07-15 | Nikon Corp | オプティカルインテグレータ、照明光学装置、露光装置および露光方法 |
JP2004205698A (ja) * | 2002-12-24 | 2004-07-22 | Nikon Corp | 投影光学系、露光装置および露光方法 |
JP2004221253A (ja) | 2003-01-14 | 2004-08-05 | Nikon Corp | 露光装置 |
JP2004228497A (ja) | 2003-01-27 | 2004-08-12 | Nikon Corp | 露光装置及び電子デバイスの製造方法 |
JP2004224421A (ja) | 2003-01-27 | 2004-08-12 | Tokyo Autom Mach Works Ltd | 製品供給装置 |
JP2004241666A (ja) | 2003-02-07 | 2004-08-26 | Nikon Corp | 計測方法及び露光方法 |
JP2004007417A (ja) | 2003-02-10 | 2004-01-08 | Fujitsu Ltd | 情報提供システム |
JP4366948B2 (ja) | 2003-02-14 | 2009-11-18 | 株式会社ニコン | 照明光学装置、露光装置および露光方法 |
JP2004259828A (ja) | 2003-02-25 | 2004-09-16 | Nikon Corp | 半導体露光装置 |
JP4604452B2 (ja) | 2003-02-26 | 2011-01-05 | 株式会社ニコン | 露光装置、露光方法、及びデバイス製造方法 |
EP1598855B1 (en) | 2003-02-26 | 2015-04-22 | Nikon Corporation | Exposure apparatus and method, and method of producing apparatus |
JP2004259985A (ja) | 2003-02-26 | 2004-09-16 | Sony Corp | レジストパターン形成装置およびその形成方法、および、当該方法を用いた半導体装置の製造方法 |
JP2004260081A (ja) | 2003-02-27 | 2004-09-16 | Nikon Corp | 紫外域用反射ミラー装置及びそれを用いた投影露光装置 |
JP2004260115A (ja) | 2003-02-27 | 2004-09-16 | Nikon Corp | ステージ装置、露光装置、及びデバイス製造方法 |
JP4305003B2 (ja) | 2003-02-27 | 2009-07-29 | 株式会社ニコン | Euv光学系及びeuv露光装置 |
KR101345474B1 (ko) | 2003-03-25 | 2013-12-27 | 가부시키가이샤 니콘 | 노광 장치 및 디바이스 제조 방법 |
JP2004294202A (ja) | 2003-03-26 | 2004-10-21 | Seiko Epson Corp | 画面の欠陥検出方法及び装置 |
JP4265257B2 (ja) | 2003-03-28 | 2009-05-20 | 株式会社ニコン | 露光装置及び露光方法、フィルム構造体 |
JP4496711B2 (ja) | 2003-03-31 | 2010-07-07 | 株式会社ニコン | 露光装置及び露光方法 |
JP4288413B2 (ja) | 2003-04-07 | 2009-07-01 | 株式会社ニコン | 石英ガラスの成形方法及び成形装置 |
EP1612850B1 (en) | 2003-04-07 | 2009-03-25 | Nikon Corporation | Exposure apparatus and method for manufacturing a device |
JP4465974B2 (ja) | 2003-04-07 | 2010-05-26 | 株式会社ニコン | 石英ガラスの成形装置 |
WO2004091079A1 (ja) | 2003-04-07 | 2004-10-21 | Kabushiki Kaisha Yaskawa Denki | キャンド・リニアモータ電機子およびキャンド・リニアモータ |
JP4374964B2 (ja) | 2003-09-26 | 2009-12-02 | 株式会社ニコン | 石英ガラスの成形方法及び成形装置 |
JP4281397B2 (ja) | 2003-04-07 | 2009-06-17 | 株式会社ニコン | 石英ガラスの成形装置 |
JP4341277B2 (ja) | 2003-04-07 | 2009-10-07 | 株式会社ニコン | 石英ガラスの成形方法 |
JP4582089B2 (ja) * | 2003-04-11 | 2010-11-17 | 株式会社ニコン | 液浸リソグラフィ用の液体噴射回収システム |
JP4428115B2 (ja) | 2003-04-11 | 2010-03-10 | 株式会社ニコン | 液浸リソグラフィシステム |
JP2004319724A (ja) | 2003-04-16 | 2004-11-11 | Ses Co Ltd | 半導体洗浄装置に於ける洗浄槽の構造 |
WO2004094940A1 (ja) | 2003-04-23 | 2004-11-04 | Nikon Corporation | 干渉計システム、干渉計システムにおける信号処理方法、該信号処理方法を用いるステージ |
JP2004327660A (ja) | 2003-04-24 | 2004-11-18 | Nikon Corp | 走査型投影露光装置、露光方法及びデバイス製造方法 |
JP2005115127A (ja) * | 2003-10-09 | 2005-04-28 | Nikon Corp | 反射屈折投影光学系、露光装置及び露光方法 |
KR101273713B1 (ko) * | 2003-05-06 | 2013-06-12 | 가부시키가이샤 니콘 | 투영 광학계, 노광 장치, 노광 방법 및 디바이스 제조 방법 |
JP2004335808A (ja) | 2003-05-08 | 2004-11-25 | Sony Corp | パターン転写装置、パターン転写方法およびプログラム |
JP4487168B2 (ja) | 2003-05-09 | 2010-06-23 | 株式会社ニコン | ステージ装置及びその駆動方法、並びに露光装置 |
JP2004335864A (ja) | 2003-05-09 | 2004-11-25 | Nikon Corp | 露光装置及び露光方法 |
JP2004342987A (ja) | 2003-05-19 | 2004-12-02 | Canon Inc | ステージ装置 |
TW200507055A (en) | 2003-05-21 | 2005-02-16 | Nikon Corp | Polarized cancellation element, illumination device, exposure device, and exposure method |
TWI511181B (zh) | 2003-05-23 | 2015-12-01 | 尼康股份有限公司 | Exposure method and exposure apparatus, and device manufacturing method |
TWI503865B (zh) | 2003-05-23 | 2015-10-11 | 尼康股份有限公司 | A method of manufacturing an exposure apparatus and an element |
JP2004349645A (ja) | 2003-05-26 | 2004-12-09 | Sony Corp | 液浸差動排液静圧浮上パッド、原盤露光装置および液侵差動排液による露光方法 |
JP2004356205A (ja) | 2003-05-27 | 2004-12-16 | Tadahiro Omi | スキャン型露光装置および露光方法 |
EP2453465A3 (en) | 2003-05-28 | 2018-01-03 | Nikon Corporation | Exposure method, exposure apparatus, and method for producing a device |
JP2004356410A (ja) | 2003-05-29 | 2004-12-16 | Nikon Corp | 露光装置及び露光方法 |
DE10324477A1 (de) | 2003-05-30 | 2004-12-30 | Carl Zeiss Smt Ag | Mikrolithographische Projektionsbelichtungsanlage |
WO2004109780A1 (ja) | 2003-06-04 | 2004-12-16 | Nikon Corporation | ステージ装置、固定方法、露光装置、露光方法、及びデバイスの製造方法 |
JP2005005295A (ja) | 2003-06-09 | 2005-01-06 | Nikon Corp | ステージ装置及び露光装置 |
JP2005005395A (ja) | 2003-06-10 | 2005-01-06 | Nikon Corp | ガス給排気方法及び装置、鏡筒、露光装置及び方法 |
JP2005005521A (ja) | 2003-06-12 | 2005-01-06 | Nikon Corp | 露光装置、露光方法、および偏光状態測定装置 |
JP2005003982A (ja) * | 2003-06-12 | 2005-01-06 | Nikon Corp | 投影光学系、露光装置および露光方法 |
TWI515769B (zh) | 2003-06-19 | 2016-01-01 | 尼康股份有限公司 | An exposure apparatus, an exposure method, and an element manufacturing method |
JP2005011990A (ja) | 2003-06-19 | 2005-01-13 | Nikon Corp | 走査型投影露光装置、走査型投影露光装置の照度キャリブレーション方法及び露光方法 |
US6867844B2 (en) | 2003-06-19 | 2005-03-15 | Asml Holding N.V. | Immersion photolithography system and method using microchannel nozzles |
JP2005019628A (ja) | 2003-06-25 | 2005-01-20 | Nikon Corp | 光学装置、露光装置、並びにデバイス製造方法 |
JP3862678B2 (ja) | 2003-06-27 | 2006-12-27 | キヤノン株式会社 | 露光装置及びデバイス製造方法 |
JP2005026634A (ja) | 2003-07-04 | 2005-01-27 | Sony Corp | 露光装置および半導体装置の製造方法 |
WO2005006418A1 (ja) | 2003-07-09 | 2005-01-20 | Nikon Corporation | 露光装置及びデバイス製造方法 |
EP2264532B1 (en) | 2003-07-09 | 2012-10-31 | Nikon Corporation | Exposure apparatus and device manufacturing method |
KR101211451B1 (ko) | 2003-07-09 | 2012-12-12 | 가부시키가이샤 니콘 | 노광 장치 및 디바이스 제조 방법 |
JPWO2005008754A1 (ja) | 2003-07-18 | 2007-09-20 | 株式会社ニコン | フレア計測方法、露光方法、及びフレア計測用のマスク |
JP4492239B2 (ja) | 2003-07-28 | 2010-06-30 | 株式会社ニコン | 露光装置及びデバイス製造方法、並びに露光装置の制御方法 |
JP4492600B2 (ja) | 2003-07-28 | 2010-06-30 | 株式会社ニコン | 露光装置及び露光方法、並びにデバイス製造方法 |
JP2005051147A (ja) | 2003-07-31 | 2005-02-24 | Nikon Corp | 露光方法及び露光装置 |
JP2005055811A (ja) | 2003-08-07 | 2005-03-03 | Olympus Corp | 光学部材、この光学部材を組み込む光学機器、及びその光学機器の組み立て方法 |
JP2005064210A (ja) | 2003-08-12 | 2005-03-10 | Nikon Corp | 露光方法、該露光方法を利用した電子デバイスの製造方法及び露光装置 |
JP4262031B2 (ja) | 2003-08-19 | 2009-05-13 | キヤノン株式会社 | 露光装置及びデバイスの製造方法 |
TW200513805A (en) | 2003-08-26 | 2005-04-16 | Nippon Kogaku Kk | Optical device and exposure apparatus |
US8149381B2 (en) | 2003-08-26 | 2012-04-03 | Nikon Corporation | Optical element and exposure apparatus |
EP3163375B1 (en) | 2003-08-29 | 2019-01-09 | Nikon Corporation | Exposure apparatus and exposure method |
EP2261740B1 (en) | 2003-08-29 | 2014-07-09 | ASML Netherlands BV | Lithographic apparatus |
TWI245163B (en) | 2003-08-29 | 2005-12-11 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
TWI263859B (en) | 2003-08-29 | 2006-10-11 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
JP4305095B2 (ja) | 2003-08-29 | 2009-07-29 | 株式会社ニコン | 光学部品の洗浄機構を搭載した液浸投影露光装置及び液浸光学部品洗浄方法 |
JP4218475B2 (ja) | 2003-09-11 | 2009-02-04 | 株式会社ニコン | 極端紫外線光学系及び露光装置 |
DE10343333A1 (de) | 2003-09-12 | 2005-04-14 | Carl Zeiss Smt Ag | Beleuchtungssystem für eine Mikrolithographie-Projektionsbelichtungsanlage |
JP4717813B2 (ja) | 2003-09-12 | 2011-07-06 | カール・ツァイス・エスエムティー・ゲーエムベーハー | マイクロリソグラフィ投影露光設備のための照明系 |
JP2005091023A (ja) | 2003-09-12 | 2005-04-07 | Minolta Co Ltd | 光学式エンコーダおよびそれを備えた撮像装置 |
JP2005093324A (ja) | 2003-09-19 | 2005-04-07 | Toshiba Corp | 画像表示装置に用いるガラス基板、ガラス基板の製造方法、およびガラス基板の製造装置 |
WO2005029559A1 (ja) | 2003-09-19 | 2005-03-31 | Nikon Corporation | 露光装置及びデバイス製造方法 |
JP2005093948A (ja) | 2003-09-19 | 2005-04-07 | Nikon Corp | 露光装置及びその調整方法、露光方法、並びにデバイス製造方法 |
JP2005123586A (ja) | 2003-09-25 | 2005-05-12 | Matsushita Electric Ind Co Ltd | 投影装置および投影方法 |
JP4385702B2 (ja) | 2003-09-29 | 2009-12-16 | 株式会社ニコン | 露光装置及び露光方法 |
JP4513299B2 (ja) | 2003-10-02 | 2010-07-28 | 株式会社ニコン | 露光装置、露光方法、及びデバイス製造方法 |
JP4470433B2 (ja) | 2003-10-02 | 2010-06-02 | 株式会社ニコン | 露光装置、露光方法、及びデバイス製造方法 |
US7369217B2 (en) * | 2003-10-03 | 2008-05-06 | Micronic Laser Systems Ab | Method and device for immersion lithography |
JP2005114882A (ja) | 2003-10-06 | 2005-04-28 | Hitachi High-Tech Electronics Engineering Co Ltd | 処理ステージの基板載置方法、基板露光ステージおよび基板露光装置 |
JP2005136364A (ja) | 2003-10-08 | 2005-05-26 | Zao Nikon Co Ltd | 基板搬送装置、露光装置、並びにデバイス製造方法 |
JP4335213B2 (ja) | 2003-10-08 | 2009-09-30 | 株式会社蔵王ニコン | 基板搬送装置、露光装置、デバイス製造方法 |
JP2005116831A (ja) | 2003-10-08 | 2005-04-28 | Nikon Corp | 投影露光装置、露光方法、及びデバイス製造方法 |
JPWO2005036619A1 (ja) | 2003-10-09 | 2007-11-22 | 株式会社ニコン | 照明光学装置、露光装置および露光方法 |
WO2005036620A1 (ja) | 2003-10-10 | 2005-04-21 | Nikon Corporation | 露光方法及び露光装置、並びにデバイス製造方法 |
EP1524558A1 (en) | 2003-10-15 | 2005-04-20 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
JP2005127460A (ja) | 2003-10-27 | 2005-05-19 | Mitsubishi Heavy Ind Ltd | 免震除振床システム |
EP1679738A4 (en) | 2003-10-28 | 2008-08-06 | Nikon Corp | EXPOSURE DEVICE, EXPOSURE METHOD AND COMPONENT MANUFACTURING METHOD |
JP2005140999A (ja) | 2003-11-06 | 2005-06-02 | Nikon Corp | 光学系、光学系の調整方法、露光装置、および露光方法 |
WO2005048326A1 (ja) | 2003-11-13 | 2005-05-26 | Nikon Corporation | 可変スリット装置、照明装置、露光装置、露光方法及びデバイスの製造方法 |
KR20060109430A (ko) | 2003-11-17 | 2006-10-20 | 가부시키가이샤 니콘 | 스테이지 구동 방법, 스테이지 장치, 및 노광장치 |
JP4470095B2 (ja) | 2003-11-20 | 2010-06-02 | 株式会社ニコン | 照明光学装置、露光装置および露光方法 |
JP4552428B2 (ja) | 2003-12-02 | 2010-09-29 | 株式会社ニコン | 照明光学装置、投影露光装置、露光方法及びデバイス製造方法 |
JP2005175176A (ja) | 2003-12-11 | 2005-06-30 | Nikon Corp | 露光方法及びデバイス製造方法 |
JP2005175177A (ja) | 2003-12-11 | 2005-06-30 | Nikon Corp | 光学装置及び露光装置 |
JP4720506B2 (ja) | 2003-12-15 | 2011-07-13 | 株式会社ニコン | ステージ装置、露光装置、及び露光方法 |
JP4954444B2 (ja) | 2003-12-26 | 2012-06-13 | 株式会社ニコン | 流路形成部材、露光装置及びデバイス製造方法 |
KR101324810B1 (ko) | 2004-01-05 | 2013-11-01 | 가부시키가이샤 니콘 | 노광 장치, 노광 방법 및 디바이스 제조 방법 |
JP4586367B2 (ja) | 2004-01-14 | 2010-11-24 | 株式会社ニコン | ステージ装置及び露光装置 |
JP4474927B2 (ja) | 2004-01-20 | 2010-06-09 | 株式会社ニコン | 露光方法及び露光装置、デバイス製造方法 |
JP2005209705A (ja) | 2004-01-20 | 2005-08-04 | Nikon Corp | 露光装置及びデバイス製造方法 |
JP2005209769A (ja) * | 2004-01-21 | 2005-08-04 | Canon Inc | 露光装置 |
JP4319189B2 (ja) | 2004-01-26 | 2009-08-26 | 株式会社ニコン | 露光装置及びデバイス製造方法 |
WO2005076321A1 (ja) | 2004-02-03 | 2005-08-18 | Nikon Corporation | 露光装置及びデバイス製造方法 |
US7557900B2 (en) | 2004-02-10 | 2009-07-07 | Nikon Corporation | Exposure apparatus, device manufacturing method, maintenance method, and exposure method |
CN100592210C (zh) * | 2004-02-13 | 2010-02-24 | 卡尔蔡司Smt股份公司 | 微平版印刷投影曝光装置的投影物镜 |
JP4370992B2 (ja) | 2004-02-18 | 2009-11-25 | 株式会社ニコン | 光学素子及び露光装置 |
JP4572896B2 (ja) | 2004-02-19 | 2010-11-04 | 株式会社ニコン | 露光装置及びデバイスの製造方法 |
JP2005234359A (ja) | 2004-02-20 | 2005-09-02 | Ricoh Co Ltd | 走査光学系光学特性測定装置、走査光学系光学特性測定装置校正方法、走査光学系及び画像形成装置 |
JP4693088B2 (ja) | 2004-02-20 | 2011-06-01 | 株式会社ニコン | 照明光学装置、露光装置、および露光方法 |
US8023100B2 (en) | 2004-02-20 | 2011-09-20 | Nikon Corporation | Exposure apparatus, supply method and recovery method, exposure method, and device producing method |
JP4333404B2 (ja) | 2004-02-25 | 2009-09-16 | 株式会社ニコン | 搬送装置、搬送方法、露光装置、露光方法、及びデバイス製造方法 |
JP2005243904A (ja) | 2004-02-26 | 2005-09-08 | Nikon Corp | 照明光学装置、露光装置及び露光方法 |
JP2005251549A (ja) | 2004-03-04 | 2005-09-15 | Nikon Corp | マイクロスイッチ及びマイクロスイッチの駆動方法 |
JP2005257740A (ja) | 2004-03-09 | 2005-09-22 | Nikon Corp | 投影光学系、露光装置、および露光方法 |
JP2005259789A (ja) | 2004-03-09 | 2005-09-22 | Nikon Corp | 検知システム及び露光装置、デバイス製造方法 |
JP4778685B2 (ja) | 2004-03-10 | 2011-09-21 | 株式会社日立ハイテクノロジーズ | 半導体デバイスのパターン形状評価方法及びその装置 |
JP4577023B2 (ja) * | 2004-03-15 | 2010-11-10 | ソニー株式会社 | ソリッドイマージョンレンズ、集光レンズ、光学ピックアップ装置、光記録再生装置及びソリッドイマージョンレンズの形成方法 |
JP2005268700A (ja) | 2004-03-22 | 2005-09-29 | Nikon Corp | ステージ装置及び露光装置 |
JP2005276932A (ja) | 2004-03-23 | 2005-10-06 | Nikon Corp | 露光装置及びデバイス製造方法 |
JP4510494B2 (ja) * | 2004-03-29 | 2010-07-21 | キヤノン株式会社 | 露光装置 |
JP4474979B2 (ja) | 2004-04-15 | 2010-06-09 | 株式会社ニコン | ステージ装置及び露光装置 |
US8488099B2 (en) | 2004-04-19 | 2013-07-16 | Nikon Corporation | Exposure apparatus and device manufacturing method |
JP2005311020A (ja) | 2004-04-21 | 2005-11-04 | Nikon Corp | 露光方法及びデバイス製造方法 |
JP4569157B2 (ja) | 2004-04-27 | 2010-10-27 | 株式会社ニコン | 反射型投影光学系および該反射型投影光学系を備えた露光装置 |
JP2005340605A (ja) | 2004-05-28 | 2005-12-08 | Nikon Corp | 露光装置およびその調整方法 |
JP5159027B2 (ja) | 2004-06-04 | 2013-03-06 | キヤノン株式会社 | 照明光学系及び露光装置 |
JP2006005197A (ja) | 2004-06-18 | 2006-01-05 | Canon Inc | 露光装置 |
JP4419701B2 (ja) | 2004-06-21 | 2010-02-24 | 株式会社ニコン | 石英ガラスの成形装置 |
JP2006017895A (ja) | 2004-06-30 | 2006-01-19 | Integrated Solutions:Kk | 露光装置 |
JP4444743B2 (ja) | 2004-07-07 | 2010-03-31 | キヤノン株式会社 | 露光装置及びデバイス製造方法 |
JP2006024819A (ja) | 2004-07-09 | 2006-01-26 | Renesas Technology Corp | 液浸露光装置、及び電子デバイスの製造方法 |
WO2006006730A1 (ja) | 2004-07-15 | 2006-01-19 | Nikon Corporation | 平面モータ装置、ステージ装置、露光装置及びデバイスの製造方法 |
JP2006032750A (ja) | 2004-07-20 | 2006-02-02 | Canon Inc | 液浸型投影露光装置、及びデバイス製造方法 |
JP4411158B2 (ja) | 2004-07-29 | 2010-02-10 | キヤノン株式会社 | 露光装置 |
JP2006049758A (ja) | 2004-08-09 | 2006-02-16 | Nikon Corp | 露光装置の制御方法、並びに、これを用いた露光方法及び装置 |
JP2006054364A (ja) | 2004-08-13 | 2006-02-23 | Nikon Corp | 基板吸着装置、露光装置 |
JP4599936B2 (ja) | 2004-08-17 | 2010-12-15 | 株式会社ニコン | 照明光学装置、照明光学装置の調整方法、露光装置、および露光方法 |
EP1801853A4 (en) | 2004-08-18 | 2008-06-04 | Nikon Corp | EXPOSURE DEVICE AND COMPONENT MANUFACTURING METHOD |
JP2006073584A (ja) | 2004-08-31 | 2006-03-16 | Nikon Corp | 露光装置及び方法並びにデバイス製造方法 |
US20070252970A1 (en) | 2004-09-01 | 2007-11-01 | Nikon Corporation | Substrate Holder, Stage Apparatus, and Exposure Apparatus |
JP4772306B2 (ja) | 2004-09-06 | 2011-09-14 | 株式会社東芝 | 液浸光学装置及び洗浄方法 |
JP2006080281A (ja) | 2004-09-09 | 2006-03-23 | Nikon Corp | ステージ装置、ガスベアリング装置、露光装置、並びにデバイス製造方法 |
WO2006028188A1 (ja) | 2004-09-10 | 2006-03-16 | Nikon Corporation | ステージ装置及び露光装置 |
CN100456423C (zh) | 2004-09-14 | 2009-01-28 | 尼康股份有限公司 | 校正方法及曝光装置 |
JP2006114196A (ja) * | 2004-09-14 | 2006-04-27 | Sony Corp | ソリッドイマージョンレンズとこれを用いた集光レンズ、光学ピックアップ装置、光記録再生装置及びソリッドイマージョンレンズの形成方法 |
JP2006114195A (ja) * | 2004-09-14 | 2006-04-27 | Sony Corp | レンズ保持体とこれを用いた集光レンズ、光学ピックアップ装置及び光記録再生装置 |
JP2006086141A (ja) | 2004-09-14 | 2006-03-30 | Nikon Corp | 投影光学系、露光装置、および露光方法 |
JP2006086442A (ja) | 2004-09-17 | 2006-03-30 | Nikon Corp | ステージ装置及び露光装置 |
EP1804279A4 (en) | 2004-09-17 | 2008-04-09 | Nikon Corp | SUBSTRATE FOR EXPOSURE, EXPOSURE METHOD AND COMPONENT MANUFACTURING METHOD |
JP2004359966A (ja) | 2004-09-24 | 2004-12-24 | Jsr Corp | 熱可塑性樹脂組成物 |
JP4804358B2 (ja) | 2004-09-27 | 2011-11-02 | 浜松ホトニクス株式会社 | 空間光変調装置、光学処理装置、及びカップリングプリズムの使用方法 |
JP2006100363A (ja) | 2004-09-28 | 2006-04-13 | Canon Inc | 露光装置、露光方法、及びデバイス製造方法。 |
JP4747545B2 (ja) | 2004-09-30 | 2011-08-17 | 株式会社ニコン | ステージ装置及び露光装置並びにデバイス製造方法 |
JP2006120985A (ja) | 2004-10-25 | 2006-05-11 | Nikon Corp | 照明光学装置、露光装置、および露光方法 |
JP2006121009A (ja) | 2004-10-25 | 2006-05-11 | Renesas Technology Corp | 半導体記憶装置およびその製造方法 |
JP2006128192A (ja) | 2004-10-26 | 2006-05-18 | Nikon Corp | 保持装置、鏡筒、及び露光装置、並びにデバイス製造方法 |
KR101318037B1 (ko) | 2004-11-01 | 2013-10-14 | 가부시키가이샤 니콘 | 노광 장치 및 디바이스 제조 방법 |
JP4517354B2 (ja) | 2004-11-08 | 2010-08-04 | 株式会社ニコン | 露光装置及びデバイス製造方法 |
JP4565270B2 (ja) | 2004-11-11 | 2010-10-20 | 株式会社ニコン | 露光方法、デバイス製造方法 |
JP2006140366A (ja) | 2004-11-15 | 2006-06-01 | Nikon Corp | 投影光学系及び露光装置 |
JP2005150759A (ja) | 2004-12-15 | 2005-06-09 | Nikon Corp | 走査型露光装置 |
KR101585310B1 (ko) | 2004-12-15 | 2016-01-14 | 가부시키가이샤 니콘 | 기판 유지 장치, 노광 장치 및 디바이스 제조방법 |
JP2006170811A (ja) | 2004-12-16 | 2006-06-29 | Nikon Corp | 多層膜反射鏡、euv露光装置、及び軟x線光学機器 |
JP2006170899A (ja) | 2004-12-17 | 2006-06-29 | Sendai Nikon:Kk | 光電式エンコーダ |
JP2006177865A (ja) | 2004-12-24 | 2006-07-06 | Ntn Corp | 磁気エンコーダおよびそれを備えた車輪用軸受装置 |
WO2006068233A1 (ja) | 2004-12-24 | 2006-06-29 | Nikon Corporation | 磁気案内装置、ステージ装置、露光装置、及びデバイスの製造方法 |
US20060138349A1 (en) | 2004-12-27 | 2006-06-29 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
JP4402582B2 (ja) | 2004-12-27 | 2010-01-20 | 大日本印刷株式会社 | 大型フォトマスク用ケース及びケース交換装置 |
JP4632793B2 (ja) | 2005-01-12 | 2011-02-16 | 京セラ株式会社 | ナビゲーション機能付き携帯型端末機 |
WO2006077958A1 (ja) | 2005-01-21 | 2006-07-27 | Nikon Corporation | リニアモータ、ステージ装置、及び露光装置 |
JP2006222222A (ja) * | 2005-02-09 | 2006-08-24 | Canon Inc | 投影光学系及びそれを有する露光装置 |
WO2006085524A1 (ja) | 2005-02-14 | 2006-08-17 | Nikon Corporation | 露光装置 |
US7324185B2 (en) | 2005-03-04 | 2008-01-29 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
JP4650619B2 (ja) | 2005-03-09 | 2011-03-16 | 株式会社ニコン | 駆動ユニット、光学ユニット、光学装置、並びに露光装置 |
JP2006253572A (ja) | 2005-03-14 | 2006-09-21 | Nikon Corp | ステージ装置、露光装置、及びデバイス製造方法 |
WO2006100889A1 (ja) | 2005-03-23 | 2006-09-28 | Konica Minolta Holdings, Inc. | 有機el層の形成方法 |
JP4858744B2 (ja) | 2005-03-24 | 2012-01-18 | 株式会社ニコン | 露光装置 |
JP2006278820A (ja) | 2005-03-30 | 2006-10-12 | Nikon Corp | 露光方法及び装置 |
JP4546315B2 (ja) | 2005-04-07 | 2010-09-15 | 株式会社神戸製鋼所 | 微細加工用型の製造方法 |
US20080246937A1 (en) | 2005-04-27 | 2008-10-09 | Nikon Corporation | Exposing Method, Exposure Apparatus, Device Fabricating Method, and Film Evaluating Method |
US8248577B2 (en) * | 2005-05-03 | 2012-08-21 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
EP2660852B1 (en) * | 2005-05-12 | 2015-09-02 | Nikon Corporation | Projection optical system, exposure apparatus and exposure method |
JP2006343023A (ja) | 2005-06-08 | 2006-12-21 | Mitsubishi Heavy Ind Ltd | 冷却器 |
JP2006351586A (ja) | 2005-06-13 | 2006-12-28 | Nikon Corp | 照明装置、投影露光装置、及びマイクロデバイスの製造方法 |
JP4710427B2 (ja) | 2005-06-15 | 2011-06-29 | 株式会社ニコン | 光学素子保持装置、鏡筒及び露光装置並びにデバイスの製造方法 |
DE102005030839A1 (de) | 2005-07-01 | 2007-01-11 | Carl Zeiss Smt Ag | Projektionsbelichtungsanlage mit einer Mehrzahl von Projektionsobjektiven |
JP5069232B2 (ja) * | 2005-07-25 | 2012-11-07 | カール・ツァイス・エスエムティー・ゲーエムベーハー | マイクロリソグラフィ投影露光装置の投影対物レンズ |
KR20080028839A (ko) | 2005-08-05 | 2008-04-01 | 가부시키가이샤 니콘 | 스테이지 장치 및 노광 장치 |
JP2007048819A (ja) | 2005-08-08 | 2007-02-22 | Nikon Corp | 面位置検出装置、露光装置及びマイクロデバイスの製造方法 |
JP2007043980A (ja) | 2005-08-11 | 2007-02-22 | Sanei Gen Ffi Inc | 焼成和洋菓子用品質改良剤 |
JP2007087306A (ja) | 2005-09-26 | 2007-04-05 | Yokohama National Univ | 目標画像指定作成方式 |
JP2007093546A (ja) | 2005-09-30 | 2007-04-12 | Nikon Corp | エンコーダシステム、ステージ装置及び露光装置 |
JP4640090B2 (ja) | 2005-10-04 | 2011-03-02 | ウシオ電機株式会社 | 放電ランプ用ホルダー、および放電ランプ保持機構 |
JP2007113939A (ja) | 2005-10-18 | 2007-05-10 | Nikon Corp | 計測装置及び計測方法、ステージ装置、並びに露光装置及び露光方法 |
JP2007120334A (ja) | 2005-10-25 | 2007-05-17 | Denso Corp | 車両駆動システムの異常診断装置 |
JP2007120333A (ja) | 2005-10-25 | 2007-05-17 | Mitsubishi Heavy Ind Ltd | ロケット用燃焼器の噴射管およびロケット用燃焼器 |
JP4809037B2 (ja) | 2005-10-27 | 2011-11-02 | 日本カニゼン株式会社 | 黒色めっき膜およびその形成方法、めっき膜を有する物品 |
KR20080066836A (ko) | 2005-11-09 | 2008-07-16 | 가부시키가이샤 니콘 | 노광 장치, 노광 방법 및 디바이스 제조 방법 |
JPWO2007055373A1 (ja) | 2005-11-14 | 2009-04-30 | 株式会社ニコン | 液体回収部材、露光装置、露光方法、及びデバイス製造方法 |
JP2007142313A (ja) | 2005-11-22 | 2007-06-07 | Nikon Corp | 計測工具及び調整方法 |
JP2007144864A (ja) | 2005-11-29 | 2007-06-14 | Sanyo Electric Co Ltd | 積層構造体およびそれを用いた冷凍装置 |
WO2007066692A1 (ja) | 2005-12-06 | 2007-06-14 | Nikon Corporation | 露光方法、露光装置、及びデバイス製造方法 |
EP2768016B1 (en) | 2005-12-08 | 2017-10-25 | Nikon Corporation | Exposure apparatus and method |
JP4800901B2 (ja) | 2005-12-12 | 2011-10-26 | 矢崎総業株式会社 | 電圧検出装置及び絶縁インタフェース |
US20070166134A1 (en) | 2005-12-20 | 2007-07-19 | Motoko Suzuki | Substrate transfer method, substrate transfer apparatus and exposure apparatus |
JP2007170938A (ja) | 2005-12-21 | 2007-07-05 | Sendai Nikon:Kk | エンコーダ |
JP2007207821A (ja) | 2006-01-31 | 2007-08-16 | Nikon Corp | 可変スリット装置、照明装置、露光装置、露光方法及びデバイスの製造方法 |
JP2007227637A (ja) | 2006-02-23 | 2007-09-06 | Canon Inc | 液浸露光装置 |
WO2007097198A1 (ja) | 2006-02-27 | 2007-08-30 | Nikon Corporation | ダイクロイックフィルタ |
JP4929762B2 (ja) | 2006-03-03 | 2012-05-09 | 株式会社ニコン | 露光装置、露光方法、及びデバイス製造方法 |
JP2007280623A (ja) | 2006-04-03 | 2007-10-25 | Seiko Epson Corp | 熱処理装置、薄膜形成装置及び熱処理方法 |
JP2007295702A (ja) | 2006-04-24 | 2007-11-08 | Toshiba Mach Co Ltd | リニアモータ、および、ステージ駆動装置 |
JPWO2007132862A1 (ja) | 2006-05-16 | 2009-09-24 | 株式会社ニコン | 投影光学系、露光方法、露光装置、及びデバイス製造方法 |
JP4893112B2 (ja) | 2006-06-03 | 2012-03-07 | 株式会社ニコン | 高周波回路コンポーネント |
JP4873138B2 (ja) | 2006-06-21 | 2012-02-08 | 富士ゼロックス株式会社 | 情報処理装置及びプログラム |
JP2008058580A (ja) | 2006-08-31 | 2008-03-13 | Canon Inc | 画像形成装置、監視装置、制御方法、及びプログラム |
JP2008064924A (ja) | 2006-09-06 | 2008-03-21 | Seiko Epson Corp | 定着装置及び画像形成装置 |
WO2008041575A1 (fr) | 2006-09-29 | 2008-04-10 | Nikon Corporation | Dispositif formant platine et dispositif d'exposition |
JP2007051300A (ja) | 2006-10-10 | 2007-03-01 | Teijin Chem Ltd | 難燃性樹脂組成物 |
JP4924879B2 (ja) | 2006-11-14 | 2012-04-25 | 株式会社ニコン | エンコーダ |
WO2008061681A2 (de) | 2006-11-21 | 2008-05-29 | Carl Zeiss Smt Ag | Beleuchtungsoptik für die projektions-mikrolithografie sowie mess- und überwachungsverfahren für eine derartige beleuchtungsoptik |
WO2008065977A1 (fr) | 2006-11-27 | 2008-06-05 | Nikon Corporation | Procédé d'exposition, procédé de formation de motif, dispositif d'exposition, et procédé de fabrication du dispositif |
JP2007274881A (ja) | 2006-12-01 | 2007-10-18 | Nikon Corp | 移動体装置、微動体及び露光装置 |
JP4910679B2 (ja) | 2006-12-21 | 2012-04-04 | 株式会社ニコン | 可変キャパシタ、可変キャパシタ装置、高周波回路用フィルタ及び高周波回路 |
WO2008078668A1 (ja) | 2006-12-26 | 2008-07-03 | Miura Co., Ltd. | ボイラ給水用補給水の供給方法 |
JP5146323B2 (ja) | 2006-12-27 | 2013-02-20 | 株式会社ニコン | ステージ装置、露光装置、及びデバイスの製造方法 |
TW200846838A (en) | 2007-01-26 | 2008-12-01 | Nikon Corp | Support structure and exposure apparatus |
EP2146244B1 (en) | 2007-05-09 | 2016-03-16 | Nikon Corporation | Fabricatiion method of a photomask substrate |
US8264584B2 (en) | 2007-05-31 | 2012-09-11 | Panasonic Corporation | Image capturing apparatus, additional information providing server, and additional information filtering system |
JP5194650B2 (ja) | 2007-08-31 | 2013-05-08 | 株式会社ニコン | 電子カメラ |
JP4499774B2 (ja) | 2007-10-24 | 2010-07-07 | 株式会社半導体エネルギー研究所 | 絶縁ゲイト型半導体装置 |
JPWO2009153925A1 (ja) | 2008-06-17 | 2011-11-24 | 株式会社ニコン | ナノインプリント方法及び装置 |
JP5467531B2 (ja) | 2008-06-26 | 2014-04-09 | 株式会社ニコン | 表示素子の製造方法及び製造装置 |
WO2010001537A1 (ja) | 2008-06-30 | 2010-01-07 | 株式会社ニコン | 表示素子の製造方法及び製造装置、薄膜トランジスタの製造方法及び製造装置、及び回路形成装置 |
-
2006
- 2006-05-08 EP EP13174484.9A patent/EP2660852B1/en not_active Ceased
- 2006-05-08 KR KR1020077027046A patent/KR101504765B1/ko active IP Right Grant
- 2006-05-08 WO PCT/JP2006/309254 patent/WO2006121009A1/ja active Application Filing
- 2006-05-08 EP EP13174486.4A patent/EP2660853B1/en not_active Not-in-force
- 2006-05-08 EP EP17156239.0A patent/EP3232270A3/en not_active Withdrawn
- 2006-05-08 KR KR1020137006353A patent/KR101455551B1/ko active IP Right Grant
- 2006-05-08 EP EP06746085.7A patent/EP1881521B1/en active Active
- 2006-05-08 KR KR1020137021609A patent/KR101524964B1/ko active IP Right Grant
- 2006-05-08 KR KR1020187034233A patent/KR20180128526A/ko not_active Application Discontinuation
- 2006-05-08 KR KR1020167006129A patent/KR101762083B1/ko active IP Right Grant
- 2006-05-08 JP JP2007528269A patent/JP5449672B2/ja not_active Expired - Fee Related
- 2006-05-08 EP EP13174487.2A patent/EP2660854B1/en not_active Not-in-force
- 2006-05-08 KR KR1020177020344A patent/KR20170089028A/ko active IP Right Grant
- 2006-05-08 KR KR1020137006357A patent/KR101452145B1/ko active IP Right Grant
- 2006-05-08 US US11/920,332 patent/US20090046268A1/en not_active Abandoned
- 2006-05-08 KR KR1020147032549A patent/KR20140140648A/ko active Application Filing
- 2006-05-08 KR KR1020147008141A patent/KR101544336B1/ko active IP Right Grant
-
2011
- 2011-07-04 JP JP2011148301A patent/JP5723702B2/ja active Active
- 2011-09-09 US US13/229,589 patent/US8854601B2/en not_active Expired - Fee Related
-
2012
- 2012-03-29 JP JP2012076984A patent/JP5621806B2/ja not_active Expired - Fee Related
- 2012-03-29 JP JP2012077000A patent/JP5621807B2/ja not_active Expired - Fee Related
-
2013
- 2013-01-04 US US13/734,683 patent/US9429851B2/en not_active Expired - Fee Related
- 2013-11-28 JP JP2013246388A patent/JP5754783B2/ja not_active Expired - Fee Related
-
2014
- 2014-09-15 US US14/486,305 patent/US9360763B2/en not_active Expired - Fee Related
- 2014-09-15 US US14/486,216 patent/US9310696B2/en not_active Expired - Fee Related
- 2014-12-12 JP JP2014252508A patent/JP5949886B2/ja not_active Expired - Fee Related
-
2015
- 2015-12-28 JP JP2015257125A patent/JP6330799B2/ja not_active Expired - Fee Related
-
2016
- 2016-05-10 US US15/151,123 patent/US9891539B2/en active Active
-
2017
- 2017-02-17 JP JP2017028445A patent/JP6399121B2/ja not_active Expired - Fee Related
- 2017-11-01 US US15/800,807 patent/US20180052398A1/en not_active Abandoned
-
2018
- 2018-03-06 HK HK18103170.6A patent/HK1247994A1/zh unknown
- 2018-06-13 JP JP2018113039A patent/JP2018163366A/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004019128A2 (en) | 2002-08-23 | 2004-03-04 | Nikon Corporation | Projection optical system and method for photolithography and exposure apparatus and method using same |
WO2006043457A1 (ja) | 2004-10-18 | 2006-04-27 | Nikon Corporation | 投影光学系、露光装置、および露光方法 |
JP2006140494A (ja) * | 2004-11-12 | 2006-06-01 | Asml Netherlands Bv | リソグラフィ装置及びデバイス製造方法 |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9772478B2 (en) | 2004-01-14 | 2017-09-26 | Carl Zeiss Smt Gmbh | Catadioptric projection objective with parallel, offset optical axes |
US8908269B2 (en) | 2004-01-14 | 2014-12-09 | Carl Zeiss Smt Gmbh | Immersion catadioptric projection objective having two intermediate images |
US9134618B2 (en) | 2004-05-17 | 2015-09-15 | Carl Zeiss Smt Gmbh | Catadioptric projection objective with intermediate images |
US9019596B2 (en) | 2004-05-17 | 2015-04-28 | Carl Zeiss Smt Gmbh | Catadioptric projection objective with intermediate images |
US9726979B2 (en) | 2004-05-17 | 2017-08-08 | Carl Zeiss Smt Gmbh | Catadioptric projection objective with intermediate images |
US8913316B2 (en) | 2004-05-17 | 2014-12-16 | Carl Zeiss Smt Gmbh | Catadioptric projection objective with intermediate images |
US9477159B2 (en) | 2005-03-04 | 2016-10-25 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US10495980B2 (en) | 2005-03-04 | 2019-12-03 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US10495981B2 (en) | 2005-03-04 | 2019-12-03 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US10488759B2 (en) | 2005-05-03 | 2019-11-26 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US9477153B2 (en) | 2005-05-03 | 2016-10-25 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US10451973B2 (en) | 2005-05-03 | 2019-10-22 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
JP2012168543A (ja) * | 2005-05-12 | 2012-09-06 | Nikon Corp | 投影光学系、露光装置、および露光方法 |
JP2012155330A (ja) * | 2005-05-12 | 2012-08-16 | Nikon Corp | 投影光学系、露光装置、および露光方法 |
JP2007005777A (ja) * | 2005-05-25 | 2007-01-11 | Tokuyama Corp | 液浸式露光装置のラストレンズ |
US9494868B2 (en) | 2006-07-03 | 2016-11-15 | Carl Zeiss Smt Gmbh | Lithographic projection objective |
US8605253B2 (en) | 2006-07-03 | 2013-12-10 | Carl Zeiss Smt Gmbh | Lithographic projection objective |
US10042265B2 (en) | 2006-07-03 | 2018-08-07 | Carl Zeiss Smt Gmbh | Lithographic projection objective |
WO2008003442A1 (en) | 2006-07-03 | 2008-01-10 | Carl Zeiss Smt Ag | Method for revising/repairing a lithographic projection objective |
JP2012060138A (ja) * | 2006-08-30 | 2012-03-22 | Asml Netherlands Bv | 露光装置及びデバイス製造方法 |
JP2008150276A (ja) * | 2006-11-21 | 2008-07-03 | Canon Inc | 紫外光用ガラス組成物及びそれを用いた光学装置 |
WO2008062898A1 (en) * | 2006-11-21 | 2008-05-29 | Canon Kabushiki Kaisha | Glass composition for ultraviolet light and optical device using the same |
US8659745B2 (en) | 2006-12-01 | 2014-02-25 | Carl Zeiss Smt Gmbh | Optical system with an exchangeable, manipulable correction arrangement for reducing image aberrations |
US8542346B2 (en) | 2006-12-01 | 2013-09-24 | Carl Zeiss Smt Gmbh | Optical system with an exchangeable, manipulable correction arrangement for reducing image aberrations |
JP2009026977A (ja) * | 2007-07-20 | 2009-02-05 | Canon Inc | 投影光学系及びそれを有する露光装置 |
JP2009120405A (ja) * | 2007-11-09 | 2009-06-04 | Canon Inc | 紫外光用ガラス組成物及びそれを用いた光学装置 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006121009A1 (ja) | 投影光学系、露光装置、および露光方法 | |
WO2006121008A1 (ja) | 投影光学系、露光装置、および露光方法 | |
WO2007132619A1 (ja) | 結像光学系、露光装置、およびデバイス製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007528269 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11920332 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006746085 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020077027046 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
WWP | Wipo information: published in national office |
Ref document number: 2006746085 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020137006353 Country of ref document: KR Ref document number: 1020137006357 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020137021609 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020147032549 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020167006129 Country of ref document: KR |