[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013081088A1 - 有機発光素子ならびにそれに用いる遅延蛍光材料および化合物 - Google Patents

有機発光素子ならびにそれに用いる遅延蛍光材料および化合物 Download PDF

Info

Publication number
WO2013081088A1
WO2013081088A1 PCT/JP2012/081027 JP2012081027W WO2013081088A1 WO 2013081088 A1 WO2013081088 A1 WO 2013081088A1 JP 2012081027 W JP2012081027 W JP 2012081027W WO 2013081088 A1 WO2013081088 A1 WO 2013081088A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
general formula
substituent
Prior art date
Application number
PCT/JP2012/081027
Other languages
English (en)
French (fr)
Inventor
安達 千波矢
琢麿 安田
セヨン イ
洸子 野村
哲也 中川
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Priority to CN201280059390.9A priority Critical patent/CN103959502B/zh
Priority to US14/362,153 priority patent/US9153788B2/en
Priority to KR1020147017966A priority patent/KR20140106631A/ko
Priority to EP12853294.2A priority patent/EP2787549A4/en
Priority to JP2013547225A priority patent/JP5679496B2/ja
Publication of WO2013081088A1 publication Critical patent/WO2013081088A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to an organic light emitting device having high luminous efficiency.
  • the present invention also relates to a delayed fluorescent material and a compound used for the organic light emitting device.
  • organic light emitting devices such as organic electroluminescence devices (organic EL devices)
  • organic electroluminescence devices organic electroluminescence devices
  • various efforts have been made to increase the light emission efficiency by newly developing and combining electron transport materials, hole transport materials, light emitting materials, and the like constituting the organic electroluminescence element.
  • studies on organic electroluminescence devices using compounds containing a carbazole structure have been found, and several proposals have been made so far.
  • Patent Document 1 discloses the following triazine compound substituted with a 3,6-bis (dimethylamino) -9-carbazolyl group or a 3,6-bis (diphenylamino) -9-carbazolyl group as an organic electroluminescence. It is described that it is used as a host material for a light emitting layer of an element.
  • Patent Document 2 describes that the following triazine compound substituted with a 3,6-bis (9-carbazolyl) -9-carbazolyl group is used as a host material of a light emitting layer of an organic electroluminescence device. Yes.
  • the present inventors have clarified that specific triazine compounds and pyrimidine compounds containing a carbazole structure are extremely useful as a light emitting material of an organic electroluminescence device. .
  • triazine compounds and pyrimidine compounds containing a carbazole structure there are compounds useful as delayed fluorescent materials, and it has been clarified that an organic light-emitting device with high emission efficiency can be provided at low cost.
  • the present inventors have provided the following present invention as means for solving the above problems.
  • An organic light-emitting device having a light-emitting layer containing a compound represented by the following general formula (1) as a light-emitting material on a substrate.
  • any one of Y 1 , Y 2 and Y 3 represents a nitrogen atom and the remaining one represents a methine group, or all of Y 1 , Y 2 and Y 3 are nitrogen atoms.
  • Z 1 and Z 2 each independently represent a hydrogen atom or a substituent.
  • R 1 to R 8 each independently represents a hydrogen atom or a substituent, and at least one of R 1 to R 8 represents a substituted or unsubstituted diarylamino group or a substituted or unsubstituted carbazolyl group.
  • the compound represented by the general formula (1) includes at least two carbazole structures in the molecule.
  • any one of Y 1 , Y 2 and Y 3 represents a nitrogen atom and the remaining one represents a methine group, or all of Y 1 , Y 2 and Y 3 are nitrogen atoms.
  • Z 1 represents a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, or a substituted or unsubstituted 9-carbazolyl group.
  • Z 2 represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
  • R 3 represents a substituted or unsubstituted diarylamino group or a carbazolyl group.
  • R 6 represents a hydrogen atom or a substituent.
  • the compound represented by the general formula (1) includes at least two carbazole structures in the molecule. ]
  • any one of Y 1 , Y 2 and Y 3 represents a nitrogen atom and the remaining one represents a methine group, or all of Y 1 , Y 2 and Y 3 are nitrogen atoms.
  • Z 2 represents a hydrogen atom or a substituent.
  • R 1 to R 8 and R 11 to R 18 each independently represent a hydrogen atom or a substituent, and at least one of R 1 to R 8 is a substituted or unsubstituted diarylamino group, or a substituted or unsubstituted group Represents a carbazolyl group.
  • any one of Y 1 , Y 2 and Y 3 represents a nitrogen atom and the remaining one represents a methine group, or all of Y 1 , Y 2 and Y 3 are nitrogen atoms.
  • Z 2 represents a hydrogen atom or a substituent.
  • R 3 , R 6 , R 13 and R 16 each independently represent a hydrogen atom or a substituent, and at least one of R 3 and R 6 is a substituted or unsubstituted diarylamino group, or a substituted or unsubstituted Represents a carbazolyl group.
  • any one of Y 1 , Y 2 and Y 3 represents a nitrogen atom and the remaining one represents a methine group, or all of Y 1 , Y 2 and Y 3 are nitrogen atoms.
  • Z 1 and Z 2 each independently represent a hydrogen atom or a substituent.
  • R 1 , R 2 and R 4 to R 8 each independently represents a hydrogen atom or a substituent.
  • X represents a substituted or unsubstituted diarylamino group, or a substituted or unsubstituted carbazolyl group.
  • any one of Y 1 , Y 2 and Y 3 represents a nitrogen atom and the remaining one represents a methine group, or all of Y 1 , Y 2 and Y 3 are nitrogen atoms.
  • Z 1 and Z 2 each independently represent a hydrogen atom or a substituent.
  • R 1 , R 2 , R 4 to R 8 and R 21 to R 28 each independently represent a hydrogen atom or a substituent.
  • a delayed fluorescent material comprising the compound represented by the general formula (1).
  • the delayed fluorescent material according to [9] which is used for an organic electroluminescence device.
  • the delayed fluorescent material according to [9] or [10] comprising the compound represented by the general formula (2).
  • the delayed fluorescent material according to [9] or [10] comprising the compound represented by the general formula (3).
  • the delayed fluorescent material according to [9] or [10], comprising the compound represented by the general formula (4).
  • the delayed fluorescent material according to [9] or [10] comprising the compound represented by the general formula (5).
  • the delayed fluorescent material according to [9] or [10] comprising the compound represented by the general formula (6).
  • any one of Y 1 , Y 2 and Y 3 represents a nitrogen atom and the remaining one represents a methine group, or all of Y 1 , Y 2 and Y 3 represent a nitrogen atom.
  • Z 2 ′ represents a substituent bonded with a hydrogen atom or a carbon atom (however, the substituent does not include a boron atom).
  • R 1 to R 8 and R 11 to R 18 each independently represents a hydrogen atom or a substituent, and at least one represents a substituted or unsubstituted diarylamino group, or a substituted or unsubstituted carbazolyl group.
  • Z 2 ′ represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group (limited to groups bonded with carbon atoms)
  • R 3 , R 6 , R 13 and R 16 each independently represent a hydrogen atom or a substituent, and at least one represents a substituted or unsubstituted diarylamino group, or a substituted or unsubstituted carbazolyl group.
  • the organic light emitting device of the present invention is characterized by high luminous efficiency.
  • the delayed fluorescent material of the present invention is characterized in that when used as a light emitting layer of an organic light emitting device, the organic light emitting device can emit delayed fluorescence and the luminous efficiency can be dramatically increased.
  • the compound of the present invention is extremely useful as a light emitting material for these organic light emitting devices.
  • FIG. 4 is a graph showing the light emission lifetime depending on the temperature of the organic photoluminescence device of Example 1.
  • 3 is a graph showing the light emission quantum yield-temperature characteristics of the organic photoluminescence device of Example 1. It is a graph which shows the UV absorption of the solution of Example 3, and a photo-luminescence light emission characteristic. It is a graph which shows the UV absorption of the solution of Example 4, and a photo-luminescence light emission characteristic.
  • 6 is an electroluminescence (EL) spectrum of the organic electroluminescence element of Example 5.
  • 6 is a graph showing current density-voltage characteristics of the organic electroluminescence element of Example 5.
  • 6 is a graph showing the external quantum efficiency-current density characteristics of the organic electroluminescence device of Example 5.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the organic light emitting device of the present invention includes a compound represented by the following general formula (1) as a light emitting material of a light emitting layer. Therefore, first, the compound represented by the general formula (1) will be described.
  • any one of Y 1 , Y 2 and Y 3 represents a nitrogen atom and the remaining one represents a methine group, or all of Y 1 , Y 2 and Y 3 represent a nitrogen atom.
  • the ring containing Y 1 , Y 2 and Y 3 is a pyrimidine ring.
  • the methine group may be any of Y 1 , Y 2 and Y 3 , but is preferably Y 1 or Y 3 .
  • the ring containing Y 1 , Y 2 and Y 3 is a triazine ring.
  • Z 1 and Z 2 each independently represent a hydrogen atom or a substituent.
  • Preferred substituents that Z 1 and Z 2 can take are an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkylthio group having 1 to 20 carbon atoms, and an alkyl-substituted amino group having 1 to 20 carbon atoms.
  • Z 1 and Z 2 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, or 3 to 40 carbon atoms.
  • Z 1 and Z 2 are more preferably each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 15 carbon atoms, or 3 to 12 carbon atoms.
  • Z 1 is still more preferably a substituted or unsubstituted aryl group having 6 to 15 carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms, a substituted or unsubstituted 9 group having 12 to 24 carbon atoms.
  • Z 2 is still more preferably a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 15 carbon atoms, a substituted or unsubstituted group having 3 to 12 carbon atoms.
  • the heteroaryl group is still more preferably a substituted or unsubstituted aryl group having 6 to 15 carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms.
  • the alkyl group may be linear, branched or cyclic, and more preferably has 1 to 6 carbon atoms. Specific examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, and t-butyl. Group, pentyl group, hexyl group and isopropyl group.
  • the aryl group may be a single ring or a fused ring, and specific examples thereof include a phenyl group and a naphthyl group.
  • the heteroaryl group may be a monocyclic ring or a fused ring, and specific examples include a pyridyl group, a pyridazyl group, a pyrimidyl group, a triazyl group, a triazolyl group, and a benzotriazolyl group.
  • These heteroaryl groups may be a group bonded through a hetero atom, but a group bonded through a carbon atom constituting a heteroaryl ring is preferable.
  • the 9-carbazolyl group is substituted, it is preferably substituted with the above alkyl group, aryl group, heteroaryl group, cyano group, diarylamino group or carbazolyl group.
  • R 1 to R 8 each independently represents a hydrogen atom or a substituent.
  • Preferred substituents that R 1 to R 8 can take include alkyl groups having 1 to 20 carbon atoms, aralkyl groups having 7 to 20 carbon atoms, alkenyl groups having 2 to 20 carbon atoms, alkynyl groups having 2 to 20 carbon atoms, carbon An aryl group having 6 to 30 carbon atoms, a heteroaryl group having 3 to 30 carbon atoms, a cyano group, a dialkylamino group having 2 to 20 carbon atoms, a diarylamino group having 12 to 30 carbon atoms, a carbazolyl group having 12 to 30 carbon atoms, Diaralkylamino group having 12 to 30 carbon atoms, amino group, nitro group, acyl group having 2 to 20 carbon atoms, alkoxycarbonyl group having 2 to 20 carbon atoms, alkoxy group having 1 to 20 carbon atoms, 1 to 20 carbon atoms Al
  • R 1 to R 8 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, or 3 to 30 carbon atoms.
  • R 1 to R 8 are more preferably each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 15 carbon atoms, or 3 to 12 carbon atoms.
  • at least one of R 1 to R 8 represents a substituted or unsubstituted diarylamino group, or a substituted or unsubstituted carbazolyl group.
  • the carbazolyl group examples include a 9-carbazolyl group, 1-carbazolyl group, 2-carbazolyl group, 3-carbazolyl group and 4-carbazolyl group, preferably a 9-carbazolyl group and a 3-carbazolyl group. More preferably, it is a 9-carbazolyl group.
  • the type of the substituent is not particularly limited, and preferred substituents that can be taken by the above R 1 to R 8 can be given as preferred examples.
  • any of R 1 to R 8 may be a substituted or unsubstituted diarylamino group or a substituted or unsubstituted carbazolyl group, but at least one of R 3 and R 6 is substituted. Or it is preferably an unsubstituted diarylamino group or a substituted or unsubstituted carbazolyl group.
  • the compound represented by the general formula (1) includes at least two carbazole structures in the molecule. Since one carbazole structure is already described in the general formula (1), it is required that at least one of R 1 to R 8 , Z 1 and Z 2 is a group including a carbazole structure. Preferred is when at least one of R 1 to R 4 , R 5 to R 8 and Z 1 is a group containing a carbazole structure. More preferably, at least one of R 3 , R 6 and Z 1 is a group containing a carbazole structure. It is also preferred that any two of R 3 , R 6 and Z 1 are groups containing a carbazole structure, and it is also preferred that all of these are groups containing a carbazole structure.
  • the compound represented by the general formula (1) preferably has at least three carbazole structures in the molecule, and more preferably has at least four carbazole structures in the molecule.
  • the upper limit of the number of carbazole structures in the molecule is not particularly limited, but can be, for example, 8 or less, and can be 6 or less.
  • the compound represented by the general formula (1) preferably has a structure represented by the following general formula (2).
  • any one of Y 1 , Y 2 and Y 3 represents a nitrogen atom and the remaining one represents a methine group, or all of Y 1 , Y 2 and Y 3 represent a nitrogen atom.
  • Z 1 represents a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, or a substituted or unsubstituted 9-carbazolyl group.
  • Z 2 represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
  • R 3 represents a substituted or unsubstituted diarylamino group or a carbazolyl group.
  • R 6 represents a hydrogen atom or a substituent.
  • the compound represented by the general formula (1) includes at least two carbazole structures in the molecule.
  • Z 1 in the general formula (2) is more preferably a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 40 carbon atoms, or a substituted group having 12 to 40 carbon atoms.
  • an unsubstituted 9-carbazolyl group more preferably a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, or a substituted or unsubstituted 9-carbazolyl group having 12 to 40 carbon atoms, and even more preferably.
  • Z 1 is preferably a substituted or unsubstituted 9-carbazolyl group.
  • Z 2 in the general formula (2) is more preferably a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, or 3 to 40 carbon atoms.
  • a substituted or unsubstituted heteroaryl group more preferably a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 15 carbon atoms, and 3 to 3 carbon atoms; 12 substituted or unsubstituted heteroaryl groups.
  • R 3 in the general formula (2) is more preferably a substituted or unsubstituted diarylamino group having 12 to 30 carbon atoms, a substituted or unsubstituted 9-carbazolyl group having 12 to 30 carbon atoms, or 12 to 30 carbon atoms.
  • R 6 in the general formula (2) is more preferably a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, or 3 to 30 carbon atoms.
  • a hydrogen atom a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 15 carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms, A substituted or unsubstituted diphenylamino group having 12 to 24 carbon atoms and a substituted or unsubstituted carbazolyl group having 12 to 24 carbon atoms.
  • Y 1 , Y 2 and Y 3 in the general formula (2) and the preferred range of the substituent the corresponding description in the general formula (1) can be referred to.
  • the compound represented by the general formula (1) has a structure represented by the following general formula (3).
  • any one of Y 1 , Y 2 and Y 3 represents a nitrogen atom and the remaining one represents a methine group, or all of Y 1 , Y 2 and Y 3 represent a nitrogen atom.
  • Z 2 represents a hydrogen atom or a substituent.
  • R 1 to R 8 and R 11 to R 18 each independently represent a hydrogen atom or a substituent, and at least one of R 1 to R 8 is a substituted or unsubstituted diarylamino group, or a substituted or unsubstituted group Represents a carbazolyl group.
  • the compound represented by the general formula (3) has a structure represented by the following general formula (4).
  • any one of Y 1 , Y 2 and Y 3 represents a nitrogen atom and the remaining one represents a methine group, or all of Y 1 , Y 2 and Y 3 represent a nitrogen atom.
  • Z 2 represents a hydrogen atom or a substituent.
  • R 3 , R 6 , R 13 and R 16 each independently represent a hydrogen atom or a substituent, and at least one of R 3 and R 6 is a substituted or unsubstituted diarylamino group, or a substituted or unsubstituted Represents a carbazolyl group.
  • Y 1 , Y 2 , Y 3 , Z 2 , R 3 and R 6 in the general formula (4) the corresponding description in the general formula (1) can be referred to.
  • the methine group is most preferably Y 1 .
  • the preferable range of Z 2 can also refer to the corresponding description in the general formula (2).
  • the preferred ranges of R 3 and R 6, can also refer to the corresponding description in the general formula (3).
  • R 13 and R 16 the description and preferred range of R 3 and R 6 in the general formula (1) can be referred to, but at least one of R 13 and R 16 is substituted or unsubstituted. It need not be a substituted diarylamino group or a substituted or unsubstituted carbazolyl group.
  • the compound represented by the general formula (1) has a structure represented by the following general formula (5).
  • any one of Y 1 , Y 2 and Y 3 represents a nitrogen atom and the remaining one represents a methine group, or all of Y 1 , Y 2 and Y 3 represent a nitrogen atom.
  • Z 1 and Z 2 each independently represent a hydrogen atom or a substituent.
  • R 1 , R 2 and R 4 to R 8 each independently represents a hydrogen atom or a substituent.
  • X represents a substituted or unsubstituted diarylamino group, or a substituted or unsubstituted carbazolyl group.
  • X in the general formula (5) is more preferably a diarylamino group having 12 to 30 carbon atoms, or a substituted or unsubstituted carbazolyl group having 12 to 30 carbon atoms.
  • the substituted or unsubstituted carbazolyl group includes a substituted or unsubstituted 9-carbazolyl group, a substituted or unsubstituted 1-carbazolyl group, a substituted or unsubstituted 2-carbazolyl group, A carbazolyl group, a substituted or unsubstituted 3-carbazolyl group, and a substituted or unsubstituted 4-carbazolyl group are included.
  • substituted or unsubstituted carbazolyl groups that X can take, for example, substituted or unsubstituted 9-carbazolyl group, substituted or unsubstituted 1-carbazolyl group, substituted or unsubstituted 2-carbazolyl group, A group consisting of a substituted or unsubstituted 4-carbazolyl group can be exemplified.
  • the general formula (5) includes a compound having a structure represented by the following general formula (6).
  • any one of Y 1 , Y 2 and Y 3 represents a nitrogen atom and the remaining one represents a methine group, or all of Y 1 , Y 2 and Y 3 represent a nitrogen atom.
  • Z 1 and Z 2 each independently represent a hydrogen atom or a substituent.
  • R 1 , R 2 , R 4 to R 8 and R 21 to R 28 each independently represent a hydrogen atom or a substituent.
  • a compound having a plurality of skeletons represented by the general formula (1) in the molecule for the light emitting layer of the organic light emitting device.
  • a polymer obtained by polymerizing a polymerizable monomer having a skeleton represented by the general formula (1) is used for a light emitting layer of an organic light emitting element.
  • a polymer having a repeating unit is obtained by polymerizing a monomer having a polymerizable functional group in any of R 1 to R 8 , Z 1 and Z 2 of the general formula (1), It is conceivable to use the polymer for the light emitting layer of the organic light emitting device.
  • dimers and trimers are obtained by coupling compounds having a skeleton represented by the general formula (1) and used in the light emitting layer of the organic light emitting device.
  • any one of Y 1 , Y 2 and Y 3 represents a nitrogen atom and the remaining one represents a methine group, or all of Y 1 , Y 2 and Y 3 represent a nitrogen atom.
  • Z 2 ′ represents a substituent bonded with a hydrogen atom or a carbon atom (however, the substituent does not include a boron atom).
  • R 1 to R 8 and R 11 to R 18 each independently represents a hydrogen atom or a substituent, and at least one represents a substituted or unsubstituted diarylamino group, or a substituted or unsubstituted carbazolyl group.
  • R 1 to R 8 is a substituted or unsubstituted diarylamino group or a substituted or unsubstituted carbazolyl group, and at least one of R 11 to R 18 is substituted or unsubstituted. It need not be a substituted diarylamino group or a substituted or unsubstituted carbazolyl group.
  • the “substituent bonded by a carbon atom” that Z 2 ′ can take means a substituent bonded to the triazine ring or pyrimidine ring of the general formula (11) via a carbon atom.
  • a substituted or unsubstituted alkyl group a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group (limited to groups bonded by carbon atoms), substituted or unsubstituted Alkenyl group, substituted or unsubstituted alkynyl group, substituted or unsubstituted haloalkyl group, substituted or unsubstituted trialkylsilylalkyl group, substituted or unsubstituted trialkylsilylalkenyl group, substituted or unsubstituted trialkylsilylalkynyl Group, cyano group and the like.
  • it is a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, or a substituted or unsubstituted heteroaryl group having 3 to 40 carbon atoms (in carbon atoms). Limited to the group to be bonded).
  • the compound represented by the general formula (11) preferably has a structure represented by the following general formula (12).
  • any one of Y 1 , Y 2 and Y 3 represents a nitrogen atom and the remaining one represents a methine group, or all of Y 1 , Y 2 and Y 3 represent a nitrogen atom.
  • Z 2 ′ represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group (limited to groups bonded with carbon atoms)
  • R 3 , R 6 , R 13 and R 16 each independently represent a hydrogen atom or a substituent, and at least one represents a substituted or unsubstituted diarylamino group, or a substituted or unsubstituted carbazolyl group.
  • the corresponding description in general formula (11) can be referred to.
  • a method for synthesizing the compound represented by the general formula (11) is not particularly limited.
  • the synthesis of the compound represented by the general formula (11) can be performed by appropriately combining known synthesis methods and conditions.
  • a compound represented by the following general formula (21) is reacted with a compound represented by the following general formula (22) and a compound represented by the following general formula (23), and the following general formula Examples thereof include a method of synthesizing the compound represented by (24) and further reacting with the compound represented by the following general formula (25).
  • any one of Y 1 , Y 2 and Y 3 represents a nitrogen atom and the remaining one represents a methine group, or all of Y 1 , Y 2 and Y 3 represent a nitrogen atom.
  • X 1 , X 2 and X 3 each independently represent a halogen atom. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • X 1 , X 2 and X 3 may be the same or different, and may be appropriately determined in consideration of the reactivity with the compounds of the general formulas (22), (23) and (25). it can.
  • Y 1 , Y 2 , Y 3 , Z 2 ′ , R 1 to R 8 and R 11 to R 18 in the following general formulas (22) to (25) correspond to those in the general formula (11).
  • the definitions are the same, and the definitions of X 1 , X 2 and X 3 in the general formulas (22) to (25) are the same as the corresponding definitions in the general formula (21).
  • the reaction between the compound represented by the general formula (21) and the compound represented by the general formula (22) can be performed using known coupling reaction conditions.
  • n-butyllithium can be added and reacted in a tetrahydrofuran solution of the compound represented by the general formula (22), and then dropped into the tetrahydrofuran solution of the general formula (21) for coupling.
  • Coupling of the produced compound and the compound represented by the general formula (23) can be performed in the same manner.
  • a mixed tetrahydrofuran solution of a compound represented by the general formula (22) and a compound represented by the general formula (23) is first prepared, and n-butyllithium is added to the mixed solution. Then, the reaction may be carried out by adding dropwise into the tetrahydrofuran solution of the general formula (21). From the mixture after the coupling reaction, a compound represented by the following general formula (24) can be obtained by a known purification method.
  • the compound represented by the general formula (24) can be further reacted with the compound represented by the following general formula (25) to synthesize the compound represented by the general formula (11).
  • This reaction is a known reaction, and known reaction conditions can be appropriately selected and used.
  • Organic light emitting device The compound represented by the general formula (1) of the present invention is useful as a light emitting material used for a light emitting layer of an organic light emitting device.
  • the compound represented by the general formula (1) can also show utility as a delayed fluorescent material that emits delayed fluorescence.
  • the organic light-emitting device using the compound represented by the general formula (1) as a light-emitting material has characteristics that it emits delayed fluorescence and has high luminous efficiency. The principle will be described below by taking an organic electroluminescence element as an example.
  • the organic electroluminescence element carriers are injected into the light emitting material from both positive and negative electrodes to generate an excited light emitting material and emit light.
  • 25% of the generated excitons are excited to the excited singlet state, and the remaining 75% are excited to the excited triplet state. Therefore, the use efficiency of energy is higher when phosphorescence, which is light emission from an excited triplet state, is used.
  • the excited triplet state has a long lifetime, energy saturation occurs due to saturation of the excited state and interaction with excitons in the excited triplet state, and in general, the quantum yield of phosphorescence is often not high.
  • a delayed fluorescent material after energy transition to an excited triplet state due to intersystem crossing or the like, crosses back into an excited singlet state due to triplet-triplet annihilation or absorption of thermal energy, and emits fluorescence.
  • a thermally activated delayed fluorescent material by absorption of thermal energy is particularly useful.
  • excitons in the excited singlet state emit fluorescence as usual.
  • excitons in the excited triplet state absorb heat generated by the device, cross the system into excited singlets, and emit fluorescence.
  • the light is emitted from the excited singlet, it is emitted at the same wavelength as the fluorescence, but the lifetime of light generated (emission lifetime) due to the cross-system crossing from the excited triplet state to the excited singlet state is normal. Since the fluorescence becomes longer than the fluorescence and phosphorescence, it is observed as fluorescence delayed from these. This can be defined as delayed fluorescence. If such a heat-activated exciton transfer mechanism is used, the ratio of the compound in an excited singlet state, which normally generated only 25%, is increased to 25% or more by absorbing thermal energy after carrier injection. It can be raised.
  • the device crosses from the excited triplet state to the excited singlet state sufficiently by the heat of the device and emits delayed fluorescence. Efficiency can be improved dramatically.
  • organic light-emitting devices such as an organic photoluminescence device (organic PL device) and an organic electroluminescence device (organic EL device) can be provided.
  • the organic photoluminescence element has a structure in which at least a light emitting layer is formed on a substrate.
  • the organic electroluminescence element has a structure in which an organic layer is formed at least between an anode, a cathode, and an anode and a cathode.
  • the organic layer includes at least a light emitting layer, and may consist of only the light emitting layer, or may have one or more organic layers in addition to the light emitting layer.
  • Examples of such other organic layers include a hole transport layer, a hole injection layer, an electron blocking layer, a hole blocking layer, an electron injection layer, an electron transport layer, and an exciton blocking layer.
  • the hole transport layer may be a hole injection / transport layer having a hole injection function
  • the electron transport layer may be an electron injection / transport layer having an electron injection function.
  • FIG. 1 A specific example of the structure of an organic electroluminescence element is shown in FIG. In FIG. 1, 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is a hole transport layer, 5 is a light emitting layer, 6 is an electron transport layer, and 7 is a cathode. Below, each member and each layer of an organic electroluminescent element are demonstrated. In addition, description of a board
  • the organic electroluminescence device of the present invention is preferably supported on a substrate.
  • the substrate is not particularly limited and may be any substrate conventionally used for organic electroluminescence elements.
  • a substrate made of glass, transparent plastic, quartz, silicon, or the like can be used.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • a thin film may be formed by vapor deposition or sputtering of these electrode materials, and a pattern of a desired shape may be formed by photolithography, or when pattern accuracy is not so high (about 100 ⁇ m or more) ), A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • wet film-forming methods such as a printing system and a coating system, can also be used.
  • the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
  • cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the emission luminance is advantageously improved.
  • a transparent or semi-transparent cathode can be produced. By applying this, an element in which both the anode and the cathode are transparent is used. Can be produced.
  • the light emitting layer is a layer that emits light after excitons are generated by recombination of holes and electrons injected from each of the anode and the cathode, and the light emitting material may be used alone for the light emitting layer. , Preferably including a luminescent material and a host material.
  • a luminescent material the 1 type (s) or 2 or more types chosen from the compound group of this invention represented by General formula (1) can be used.
  • a host material in addition to the light emitting material in the light emitting layer.
  • the host material an organic compound having at least one of excited singlet energy and excited triplet energy higher than that of the light emitting material of the present invention can be used.
  • singlet excitons and triplet excitons generated in the light emitting material of the present invention can be confined in the molecules of the light emitting material of the present invention, and the light emission efficiency can be sufficiently extracted.
  • light emission is generated from the light emitting material of the present invention contained in the light emitting layer. This emission includes both fluorescence and delayed fluorescence. However, light emission from the host material may be partly or partly emitted.
  • the amount of the compound of the present invention which is a light emitting material, is preferably 0.1% by weight or more, more preferably 1% by weight or more, and 50% or more. It is preferably no greater than wt%, more preferably no greater than 20 wt%, and even more preferably no greater than 10 wt%.
  • the host material in the light-emitting layer is preferably an organic compound that has a hole transporting ability and an electron transporting ability, prevents the emission of longer wavelengths, and has a high glass transition temperature.
  • the injection layer is a layer provided between the electrode and the organic layer for lowering the driving voltage and improving the luminance of light emission.
  • the injection layer can be provided as necessary.
  • the blocking layer is a layer that can prevent diffusion of charges (electrons or holes) and / or excitons existing in the light emitting layer to the outside of the light emitting layer.
  • the electron blocking layer can be disposed between the light emitting layer and the hole transport layer and blocks electrons from passing through the light emitting layer toward the hole transport layer.
  • a hole blocking layer can be disposed between the light emitting layer and the electron transporting layer to prevent holes from passing through the light emitting layer toward the electron transporting layer.
  • the blocking layer can also be used to block excitons from diffusing outside the light emitting layer. That is, each of the electron blocking layer and the hole blocking layer can also function as an exciton blocking layer.
  • the term “electron blocking layer” or “exciton blocking layer” as used herein is used in the sense of including a layer having the functions of an electron blocking layer and an exciton blocking layer in one layer.
  • the hole blocking layer has a function of an electron transport layer in a broad sense.
  • the hole blocking layer has a role of blocking holes from reaching the electron transport layer while transporting electrons, thereby improving the recombination probability of electrons and holes in the light emitting layer.
  • the material for the hole blocking layer the material for the electron transport layer described later can be used as necessary.
  • the electron blocking layer has a function of transporting holes in a broad sense.
  • the electron blocking layer has a role to block electrons from reaching the hole transport layer while transporting holes, thereby improving the probability of recombination of electrons and holes in the light emitting layer. .
  • the exciton blocking layer is a layer for preventing excitons generated by recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer. It becomes possible to efficiently confine in the light emitting layer, and the light emission efficiency of the device can be improved.
  • the exciton blocking layer can be inserted on either the anode side or the cathode side adjacent to the light emitting layer, or both can be inserted simultaneously.
  • the layer when the exciton blocking layer is provided on the anode side, the layer can be inserted adjacent to the light emitting layer between the hole transport layer and the light emitting layer, and when inserted on the cathode side, the light emitting layer and the cathode Between the luminescent layer and the light-emitting layer.
  • a hole injection layer, an electron blocking layer, or the like can be provided between the anode and the exciton blocking layer adjacent to the anode side of the light emitting layer, and the excitation adjacent to the cathode and the cathode side of the light emitting layer can be provided.
  • an electron injection layer, an electron transport layer, a hole blocking layer, and the like can be provided.
  • the blocking layer is disposed, at least one of the excited singlet energy and the excited triplet energy of the material used as the blocking layer is preferably higher than the excited singlet energy and the excited triplet energy of the light emitting material.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • hole transport materials that can be used include, for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, Examples include amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • An aromatic tertiary amine compound and an styrylamine compound are preferably used, and an aromatic tertiary amine compound is more preferably used.
  • the electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer can be provided as a single layer or a plurality of layers.
  • the electron transport material (which may also serve as a hole blocking material) may have a function of transmitting electrons injected from the cathode to the light emitting layer.
  • Examples of the electron transport layer that can be used include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide oxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • the compound represented by the general formula (1) may be used not only for the light emitting layer but also for layers other than the light emitting layer.
  • the compound represented by General formula (1) used for a light emitting layer and the compound represented by General formula (1) used for layers other than a light emitting layer may be same or different.
  • the compound represented by the general formula (1) may be used for the injection layer, blocking layer, hole blocking layer, electron blocking layer, exciton blocking layer, hole transporting layer, electron transporting layer, and the like. .
  • the method for forming these layers is not particularly limited, and the layer may be formed by either a dry process or a wet process.
  • the preferable material which can be used for an organic electroluminescent element is illustrated concretely.
  • the material that can be used in the present invention is not limited to the following exemplary compounds.
  • R, R ′, and R 1 to R 10 in the structural formulas of the following exemplary compounds each independently represent a hydrogen atom or a substituent.
  • X represents a carbon atom or a hetero atom forming a ring skeleton
  • n represents an integer of 3 to 5
  • Y represents a substituent
  • m represents an integer of 0 or more.
  • the organic electroluminescence device produced by the above-described method emits light by applying an electric field between the anode and the cathode of the obtained device. At this time, if the light is emitted by excited singlet energy, light having a wavelength corresponding to the energy level is confirmed as fluorescence emission and delayed fluorescence emission. In addition, in the case of light emission by excited triplet energy, a wavelength corresponding to the energy level is confirmed as phosphorescence. Since normal fluorescence has a shorter fluorescence lifetime than delayed fluorescence, the emission lifetime can be distinguished from fluorescence and delayed fluorescence.
  • the excited triplet energy is unstable and is converted into heat and the like, and the lifetime is short and it is immediately deactivated.
  • the excited triplet energy of a normal organic compound it can be measured by observing light emission under extremely low temperature conditions.
  • the organic electroluminescence element of the present invention can be applied to any of a single element, an element having a structure arranged in an array, and a structure in which an anode and a cathode are arranged in an XY matrix. According to the present invention, an organic light emitting device with greatly improved light emission efficiency can be obtained by containing the compound represented by the general formula (1) in the light emitting layer.
  • the organic light emitting device such as the organic electroluminescence device of the present invention can be further applied to various uses. For example, it is possible to produce an organic electroluminescence display device using the organic electroluminescence element of the present invention.
  • organic electroluminescence device of the present invention can be applied to organic electroluminescence illumination and backlights that are in great demand.
  • 3,9'-Bi-9H-carbazole (2.71 g, 8.15 mmol) was placed in a three-necked flask, the inside of the flask was purged with nitrogen, 50 mL of tetrahydrofuran was added, and the mixture was stirred for 10 minutes. After stirring, the solution was cooled to ⁇ 78 ° C. and stirred for 20 minutes. After stirring, a 1.60 M n-butyllithium hexane solution (5.00 mL, 8.00 mmol) was added by syringe, and the mixture was stirred at ⁇ 78 ° C. for 2 hours.
  • 9,9 ′-(6-chloro-1,3,5-triazine-2,4-diyl) bis-9H-carbazole (1.50 g, 1.93 mmol) and phenylboronic acid (0. 390 g, 3.20 mmol) was dissolved in 40 mL of tetrahydrofuran, and tetrakis (triphenylphosphine) palladium (0) (0.110 g, 0.0952 mmol) and an aqueous potassium carbonate solution (2.10 g, 7.00 mL) were added. Refluxed for 48 hours. Chloroform was added to this mixture and extracted.
  • the obtained filtrate was concentrated and purified by silica gel column chromatography. After purification, the product was further purified using GPC to obtain a solid. When the obtained solid was recrystallized with a mixed solvent of chloroform and methanol, 0.651 g (yield 19.4%) of Compound 4 as a white powdery solid was obtained.
  • the compound was identified by 1 H-NMR, 13 C-NMR, and elemental analysis.
  • the product was further purified using a GPC preparative column to obtain a solid.
  • the obtained solid was added to a mixed solvent of toluene and methanol and heated at 60 ° C. After heating, this mixture was suction filtered to collect a solid, whereby 1.20 g (yield 29.7%) of Compound 40 as a white powdery solid was obtained.
  • the compound was identified by 1 H-NMR, 13 C-NMR, and elemental analysis.
  • Example 1 an organic photoluminescence device having a light emitting layer made of only Compound 1 was prepared, and the characteristics were evaluated by changing the temperature.
  • Compound 1 was deposited from a deposition source on a silicon substrate by a vacuum deposition method under a vacuum degree of 5.0 ⁇ 10 ⁇ 4 Pa, and a thin film of Compound 1 was formed at a thickness of 100 nm at 0.3 nm / second. This was formed into an organic photoluminescence element.
  • a C9920-02 type absolute quantum yield measuring device manufactured by Hamamatsu Photonics Co., Ltd.
  • the emission spectrum from the thin film when irradiated with 337 nm light with an N 2 laser was characterized at 300 K, and 467 nm emission was confirmed.
  • the emission quantum yield was 43.1%.
  • evaluation of the time-resolved spectrum when the element was irradiated with light of 337 nm by an N 2 laser was performed by a C4334 type streak camera manufactured by Hamamatsu Photonics.
  • a component having a short emission lifetime was determined to be fluorescence, and a component having a long emission lifetime was determined to be delayed fluorescence.
  • the fluorescent component was about 96% and the delayed fluorescent component was about 4%.
  • the same measurement as described above was performed by changing the evaluation temperature of the organic photoluminescence device to 28K, 50K, 150K, 200K, 250K, and 325K.
  • the graph which shows the light emission lifetime by temperature is shown in FIG.
  • the emission quantum yield at each temperature and the ratio of the fluorescent component and the delayed fluorescent component are as shown in FIG.
  • Example 2 an organic photoluminescence device having a light-emitting layer composed of Compound 1 and various host materials was prepared, and the characteristics were evaluated.
  • a thin film having a concentration of Compound 1 of 6.0% by weight on a silicon substrate by vapor deposition of Compound 1 and mCP from different vapor deposition conditions under a vacuum degree of 5.0 ⁇ 10 ⁇ 4 Pa. was formed at a thickness of 100 nm at 0.3 nm / second to obtain an organic photoluminescence device.
  • An organic photoluminescence device was produced in the same manner as described above, except that BSB, PYD2, DPEPO, and UGH2 were used instead of mCP as the host material, and the same measurement as described above was performed. Even when any host material was used, delayed fluorescence was observed, but a host material (DPEPO and DPEPO) having a T1 (minimum excited triplet energy level) of 3.0 eV or more, more preferably 3.1 eV or more. It was confirmed that the ratio of the delayed fluorescence component was particularly high when UGH2) was used.
  • T1 minimum excited triplet energy level
  • Comparative Example 1 an element having a thin film was formed by the same method as in Example 1 using a comparative compound having the following structure instead of Compound 1.
  • the light emission quantum yield was measured and found to be 24.8%.
  • the time-resolved spectrum when this element was irradiated with light of 337 nm by an N 2 laser was evaluated with a C4334 type streak camera manufactured by Hamamatsu Photonics. Only components with a short emission lifetime were observed, and no delayed fluorescence was observed.
  • Example 3 In this example, a solution was prepared and its characteristics were examined. A toluene solution of Compound 4 (concentration: 10 ⁇ 5 mol / L) was prepared, and UV absorption characteristics were measured using an ultraviolet / visible spectrophotometer (manufactured by Shimadzu Corporation: UV-2550). Further, the photoluminescence (PL) characteristics when irradiated with light of 343 nm were measured with a fluorescence spectrophotometer (manufactured by JASCO Corporation: FP6500-A-ST). The result was as shown in FIG.
  • PL photoluminescence
  • Example 4 a solution was prepared and its characteristics were examined.
  • a toluene solution of Compound 40 (concentration: 10 ⁇ 5 mol / L) was prepared, and UV absorption characteristics were measured using an ultraviolet / visible spectrophotometer (manufactured by Shimadzu Corporation: UV-2550).
  • UV absorption characteristics were measured using an ultraviolet / visible spectrophotometer (manufactured by Shimadzu Corporation: UV-2550).
  • UV absorption characteristics were measured using an ultraviolet / visible spectrophotometer (manufactured by Shimadzu Corporation: UV-2550).
  • the photoluminescence (PL) characteristics when irradiated with light of 342 nm were measured with a fluorescence spectrophotometer (manufactured by JASCO Corporation: FP6500-A-ST). The result was as shown in FIG.
  • Example 5 an organic electroluminescence device having a light-emitting layer composed of Compound 1 and DPEPO was evaluated. Each thin film was laminated at a vacuum degree of 5.0 ⁇ 10 ⁇ 4 Pa by a vacuum deposition method on a glass substrate on which an anode made of indium tin oxide (ITO) having a thickness of 100 nm was formed. First, ⁇ -NPD was formed to a thickness of 40 nm on ITO. Next, Compound 1 and mCP were co-evaporated from different evaporation sources to form a 10 nm thick layer. At this time, the concentration of Compound 1 was 6.0% by weight.
  • ITO indium tin oxide
  • Compound 1 and DPEPO were co-deposited from different deposition sources and formed to a thickness of 20 nm to form a light emitting layer. At this time, the concentration of Compound 1 was 6.0% by weight.
  • DPEPO was formed to a thickness of 10 nm, and TPBi was formed to a thickness of 30 nm.
  • lithium fluoride (LiF) was vacuum-deposited at 0.8 nm, and then aluminum (Al) was evaporated at a thickness of 80 nm to form a cathode, whereby an organic electroluminescence element was obtained.
  • FIG. 6 shows an electroluminescence (EL) spectrum
  • FIG. 7 shows a current density-voltage (JV) characteristic
  • FIG. 8 shows a current density-external quantum efficiency characteristic.
  • the organic electroluminescent device of Example 5 achieved a high external quantum efficiency of 9.56%.
  • Example 6 an organic electroluminescence device having a light emitting layer composed of only Compound 1 was prepared and evaluated for characteristics.
  • Each thin film was laminated at a vacuum degree of 5.0 ⁇ 10 ⁇ 4 Pa by a vacuum deposition method on a glass substrate on which an anode made of indium tin oxide (ITO) having a thickness of 100 nm was formed.
  • ITO indium tin oxide
  • ⁇ -NPD was formed to a thickness of 40 nm on ITO.
  • mCP was formed to a thickness of 10 nm.
  • Compound 1 was deposited from a deposition source and formed to a thickness of 30 nm to form a light emitting layer.
  • Bphen was formed to a thickness of 20 nm.
  • lithium fluoride LiF
  • Al aluminum
  • Example 7 another organic electroluminescence device having a light-emitting layer composed of only Compound 1 was produced and evaluated for characteristics.
  • Each thin film was laminated at a vacuum degree of 5.0 ⁇ 10 ⁇ 4 Pa by a vacuum deposition method on a glass substrate on which an anode made of indium tin oxide (ITO) having a thickness of 100 nm was formed.
  • ITO indium tin oxide
  • ⁇ -NPD was formed to a thickness of 30 nm on ITO.
  • mCP was formed to a thickness of 10 nm.
  • Compound 1 was deposited from a deposition source and formed to a thickness of 30 nm to form a light emitting layer.
  • TPBi was formed to a thickness of 20 nm.
  • lithium fluoride LiF
  • Al aluminum
  • the organic light emitting device of the present invention can realize high luminous efficiency.
  • the compound of the present invention is useful as a light emitting material for such an organic light emitting device. For this reason, this invention has high industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 下記一般式で表される化合物を発光層に有する有機発光素子は発光効率が高い[Y~Yを含む環はトリアジン環またはピリミジン環を表し、Z、ZおよびR~Rは水素原子または置換基を表し、R~Rの少なくとも1つはジアリールアミノ基またはカルバゾリル基を表す。一般式(1)で表される化合物は分子中にカルバゾール構造を少なくとも2つ含む。]。

Description

有機発光素子ならびにそれに用いる遅延蛍光材料および化合物
 本発明は、発光効率が高い有機発光素子に関する。また、その有機発光素子に用いる遅延蛍光材料と化合物にも関する。
 有機エレクトロルミネッセンス素子(有機EL素子)などの有機発光素子の発光効率を高める研究が盛んに行われている。特に、有機エレクトロルミネッセンス素子を構成する電子輸送材料、正孔輸送材料、発光材料などを新たに開発して組み合わせることにより、発光効率を高める工夫が種々なされてきている。その中には、カルバゾール構造を含む化合物を利用した有機エレクトロルミネッセンス素子に関する研究も見受けられ、これまでにも幾つかの提案がなされてきている。
 例えば、特許文献1には、3,6-ビス(ジメチルアミノ)-9-カルバゾリル基や3,6-ビス(ジフェニルアミノ)-9-カルバゾリル基で置換された下記のトリアジン化合物を、有機エレクトロルミネッセンス素子の発光層のホスト材料として用いることが記載されている。
Figure JPOXMLDOC01-appb-C000010
 また、特許文献2には、3,6-ビス(9-カルバゾリル)-9-カルバゾリル基で置換された下記のトリアジン化合物を、有機エレクトロルミネッセンス素子の発光層のホスト材料として用いることが記載されている。
Figure JPOXMLDOC01-appb-C000011
特開2007-77033号公報 特開2004-171808号公報
 このようにカルバゾール構造を含む化合物については、これまで種々の検討がなされており、有機エレクトロルミネッセンス素子への応用に関する幾つかの提案もなされている。しかしながら、従来提案されている有機エレクトロルミネッセンス素子では、そのほとんどがカルバゾール構造を含む化合物を発光層のホスト材料として使用することを提案するものである。また、その発光効率は必ずしも高くない。さらに、カルバゾール構造を含む化合物のすべてについて網羅的な研究がされ尽くされているとは言えない。特に、カルバゾール構造を含むトリアジン化合物やカルバゾール構造を含むピリミジン化合物の発光材料としての用途については、一部の化合物について有用性が確認されているに過ぎない。また、カルバゾール構造を含む化合物の化学構造とその化合物の発光材料としての有用性の間には、明確な関係が見出されるに至っておらず、化学構造に基づいて発光材料としての有用性を予測することは困難な状況にある。本発明者らはこれらの課題を考慮して、これまでに検討されるに至っていないカルバゾール構造を含む化合物について、その有機発光素子の発光材料としての有用性を評価することを目的として検討を進めた。また、発光材料として有用な化合物の一般式を導きだし、発光効率が高い有機発光素子の構成を一般化することも目的として鋭意検討を進めた。
 上記の目的を達成するために鋭意検討を進めた結果、本発明者らは、カルバゾール構造を含む特定のトリアジン化合物やピリミジン化合物が有機エレクトロルミネッセンス素子の発光材料として極めて有用であることを明らかにした。特に、カルバゾール構造を含むトリアジン化合物やピリミジン化合物の中に、遅延蛍光材料として有用な化合物があることを見出し、発光効率が高い有機発光素子を安価に提供しうることを明らかにした。本発明者らは、これらの知見に基づいて、上記の課題を解決する手段として、以下の本発明を提供するに至った。
[1] 下記一般式(1)で表される化合物を発光材料として含む発光層を基板上に有することを特徴とする有機発光素子。
Figure JPOXMLDOC01-appb-C000012
[一般式(1)において、Y、YおよびYは、いずれか2つが窒素原子で残りの1つがメチン基を表すか、または、Y、YおよびYのすべてが窒素原子を表す。ZおよびZは、各々独立に水素原子または置換基を表す。R~Rは、各々独立に水素原子または置換基を表し、R~Rの少なくとも1つは、置換もしくは無置換のジアリールアミノ基、または置換もしくは無置換のカルバゾリル基を表す。また、一般式(1)で表される化合物は分子中にカルバゾール構造を少なくとも2つ含む。]
[2] 遅延蛍光を放射することを特徴とする[1]に記載の有機発光素子。
[3] 有機エレクトロルミネッセンス素子であることを特徴とする[1]または[2]に記載の有機発光素子。
[4] 下記一般式(2)で表される化合物を発光材料として含む発光層を基板上に有することを特徴とする[1]~[3]のいずれか1項に記載の有機発光素子。
Figure JPOXMLDOC01-appb-C000013
[一般式(2)において、Y、YおよびYは、いずれか2つが窒素原子で残りの1つがメチン基を表すか、または、Y、YおよびYのすべてが窒素原子を表す。Zは、置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基、または置換もしくは無置換の9-カルバゾリル基を表す。Zは、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基を表す。Rは、置換もしくは無置換のジアリールアミノ基、またはカルバゾリル基を表す。Rは、水素原子または置換基を表す。また、一般式(1)で表される化合物は分子中にカルバゾール構造を少なくとも2つ含む。]
[5] 下記一般式(3)で表される化合物を発光材料として含む発光層を基板上に有することを特徴とする[1]~[3]のいずれか1項に記載の有機発光素子。
Figure JPOXMLDOC01-appb-C000014
[一般式(3)において、Y、YおよびYは、いずれか2つが窒素原子で残りの1つがメチン基を表すか、または、Y、YおよびYのすべてが窒素原子を表す。Zは、水素原子または置換基を表す。R~RおよびR11~R18は、各々独立に水素原子または置換基を表し、R~Rの少なくとも1つは、置換もしくは無置換のジアリールアミノ基、または置換もしくは無置換のカルバゾリル基を表す。]
[6] 下記一般式(4)で表される化合物を発光材料として含む発光層を基板上に有することを特徴とする[1]~[3]のいずれか1項に記載の有機発光素子。
Figure JPOXMLDOC01-appb-C000015
[一般式(4)において、Y、YおよびYは、いずれか2つが窒素原子で残りの1つがメチン基を表すか、または、Y、YおよびYのすべてが窒素原子を表す。Zは、水素原子または置換基を表す。R、R、R13およびR16は、各々独立に水素原子または置換基を表し、RおよびRの少なくとも1つは、置換もしくは無置換のジアリールアミノ基、または置換もしくは無置換のカルバゾリル基を表す。]
[7] 下記一般式(5)で表される化合物を発光材料として含む発光層を基板上に有することを特徴とする[1]~[3]のいずれか1項に記載の有機発光素子。
Figure JPOXMLDOC01-appb-C000016
[一般式(5)において、Y、YおよびYは、いずれか2つが窒素原子で残りの1つがメチン基を表すか、または、Y、YおよびYのすべてが窒素原子を表す。ZおよびZは、各々独立に水素原子または置換基を表す。R、RおよびR~Rは、各々独立に水素原子または置換基を表す。Xは、置換もしくは無置換のジアリールアミノ基、または置換もしくは無置換のカルバゾリル基を表す。]
[8] 下記一般式(6)で表される化合物を発光材料として含む発光層を基板上に有することを特徴とする[1]~[3]のいずれか1項に記載の有機発光素子。
Figure JPOXMLDOC01-appb-C000017
[一般式(6)において、Y、YおよびYは、いずれか2つが窒素原子で残りの1つがメチン基を表すか、または、Y、YおよびYのすべてが窒素原子を表す。ZおよびZは、各々独立に水素原子または置換基を表す。R、R、R~RおよびR21~R28は、各々独立に水素原子または置換基を表す。]
[9] 上記一般式(1)で表される化合物からなる遅延蛍光材料。
[10] 有機エレクトロルミネッセンス素子用である[9]に記載の遅延蛍光材料。
[11] 上記一般式(2)で表される化合物からなる[9]または[10]に記載の遅延蛍光材料。
[12] 上記一般式(3)で表される化合物からなる[9]または[10]に記載の遅延蛍光材料。
[13] 上記一般式(4)で表される化合物からなる[9]または[10]に記載の遅延蛍光材料。
[14] 上記一般式(5)で表される化合物からなる[9]または[10]に記載の遅延蛍光材料。
[15] 上記一般式(6)で表される化合物からなる[9]または[10]に記載の遅延蛍光材料。
[16] 下記一般式(11)で表される化合物。
Figure JPOXMLDOC01-appb-C000018
[一般式(11)において、Y、YおよびYは、いずれか2つが窒素原子で残りの1つがメチン基を表すか、または、Y、YおよびYのすべてが窒素原子を表す。Z2’は、水素原子または炭素原子で結合する置換基(ただし該置換基はホウ素原子を含まない)を表す。R~RおよびR11~R18は、各々独立に水素原子または置換基を表し、少なくとも1つは置換もしくは無置換のジアリールアミノ基、または置換もしくは無置換のカルバゾリル基を表す。]
[17] 下記一般式(12)で表されることを特徴とする[16]に記載の化合物。
Figure JPOXMLDOC01-appb-C000019
[一般式(12)において、Y、YおよびYは、いずれか2つが窒素原子で残りの1つがメチン基を表すか、または、Y、YおよびYのすべてが窒素原子を表す。Z2’は、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基(炭素原子で結合する基に限る)、置換もしくは無置換のアルケニル基、置換もしくは無置換のアルキニル基、置換もしくは無置換のハロアルキル基、置換もしくは無置換のトリアルキルシリルアルキル基、置換もしくは無置換のトリアルキルシリルアルケニル基、置換もしくは無置換のトリアルキルシリルアルキニル基、またはシアノ基を表す。R、R、R13およびR16は、各々独立に水素原子または置換基を表し、少なくとも1つは置換もしくは無置換のジアリールアミノ基、または置換もしくは無置換のカルバゾリル基を表す。]
 本発明の有機発光素子は、発光効率が高いという特徴を有する。また、本発明の遅延蛍光材料は、有機発光素子の発光層として利用したときに有機発光素子に遅延蛍光を放射させ、発光効率を飛躍的に高めることができるという特徴を有する。さらに、本発明の化合物は、これらの有機発光素子の発光材料として極めて有用である。
有機エレクトロルミネッセンス素子の層構成例を示す概略断面図である。 実施例1の有機フォトルミネッセンス素子の温度による発光寿命を示すグラフである。 実施例1の有機フォトルミネッセンス素子の発光量子収率-温度特性を示すグラフである。 実施例3の溶液のUV吸収およびフォトルミネッセンス発光特性を示すグラフである。 実施例4の溶液のUV吸収およびフォトルミネッセンス発光特性を示すグラフである。 実施例5の有機エレクトロルミネッセンス素子のエレクトロルミネッセンス(EL)スペクトルである。 実施例5の有機エレクトロルミネッセンス素子の電流密度-電圧特性を示すグラフである。 実施例5の有機エレクトロルミネッセンス素子の外部量子効率-電流密度特性を示すグラフである。
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
[一般式(1)で表される化合物]
 本発明の有機発光素子は、下記一般式(1)で表される化合物を発光層の発光材料として含むことを特徴とする。そこで、一般式(1)で表される化合物について、まず説明する。
Figure JPOXMLDOC01-appb-C000020
 一般式(1)において、Y、YおよびYは、いずれか2つが窒素原子で残りの1つがメチン基を表すか、または、Y、YおよびYのすべてが窒素原子を表す。いずれか2つが窒素原子で残りの1つがメチン基を表すとき、Y、YおよびYを含む環はピリミジン環となる。このとき、メチン基はY、YおよびYのいずれであってもよいが、YまたはYであることが好ましい。また、Y、YおよびYのすべてが窒素原子を表すとき、Y、YおよびYを含む環はトリアジン環となる。
 一般式(1)において、ZおよびZは、各々独立に水素原子または置換基を表す。ZおよびZがとりうる好ましい置換基として、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアルキルチオ基、炭素数1~20のアルキル置換アミノ基、炭素数2~20のアシル基、炭素数6~40のアリール基、炭素数3~40のヘテロアリール基、炭素数12~40のジアリールアミノ基、炭素数12~40の置換もしくは無置換のカルバゾリル基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数2~10のアルコキシカルボニル基、炭素数1~10のアルキルスルホニル基、炭素数1~10のハロアルキル基、アミド基、炭素数2~10のアルキルアミド基、炭素数3~20のトリアルキルシリル基、炭素数4~20のトリアルキルシリルアルキル基、炭素数5~20のトリアルキルシリルアルケニル基、炭素数5~20のトリアルキルシリルアルキニル基、シアノ基、ニトロ基、および水酸基等が挙げられ、これらはさらに置換基により置換されていてもよい。ZおよびZは、より好ましくは、各々独立に水素原子、炭素数1~20の置換もしくは無置換のアルキル基、炭素数6~40の置換もしくは無置換のアリール基、炭素数3~40の置換もしくは無置換のヘテロアリール基、炭素数12~40の置換もしくは無置換のジアリールアミノ基、炭素数12~40の置換もしくは無置換のカルバゾリル基である。ZおよびZは、さらに好ましくは、各々独立に水素原子、炭素数1~10の置換もしくは無置換のアルキル基、炭素数6~15の置換もしくは無置換のアリール基、炭素数3~12の置換もしくは無置換のヘテロアリール基、炭素数12~24の置換もしくは無置換の9-カルバゾリル基である。Zは、さらにより好ましくは、炭素数6~15の置換もしくは無置換のアリール基、炭素数3~12の置換もしくは無置換のヘテロアリール基、炭素数12~24の置換もしくは無置換の9-カルバゾリル基である。Zは、さらにより好ましくは、水素原子、炭素数1~10の置換もしくは無置換のアルキル基、炭素数6~15の置換もしくは無置換のアリール基、炭素数3~12の置換もしくは無置換のヘテロアリール基である。
 アルキル基は、直鎖状、分枝状、環状のいずれであってもよく、より好ましくは炭素数1~6であり、具体例としてメチル基、エチル基、プロピル基、ブチル基、t-ブチル基、ペンチル基、ヘキシル基、イソプロピル基を挙げることができる。アリール基は、単環でも融合環でもよく、具体例としてフェニル基、ナフチル基を挙げることができる。ヘテロアリール基も、単環でも融合環でもよく、具体例としてピリジル基、ピリダジル基、ピリミジル基、トリアジル基、トリアゾリル基、ベンゾトリアゾリル基を挙げることができる。これらのヘテロアリール基は、ヘテロ原子を介して結合する基であってもよいが、好ましいのはヘテロアリール環を構成する炭素原子を介して結合する基である。9-カルバゾリル基が置換されている場合は、上記のアルキル基、アリール基、ヘテロアリール基や、シアノ基、ジアリールアミノ基、カルバゾリル基で置換されていることが好ましい。
 一般式(1)において、R~Rは、各々独立に水素原子または置換基を表す。R~Rがとりうる好ましい置換基として、炭素数1~20のアルキル基、炭素数7~20のアラルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~30のアリール基、炭素数3~30のヘテロアリール基、シアノ基、炭素数2~20のジアルキルアミノ基、炭素数12~30のジアリールアミノ基、炭素数12~30のカルバゾリル基、炭素数12~30のジアラルキルアミノ基、アミノ基、ニトロ基、炭素数2~20のアシル基、炭素数2~20のアルコキシカルボニル基、炭素数1~20のアルコキシ基、炭素数1~20のアルキルスルホニル基、水酸基、アミド基、炭素数1~10のハロアルキル基、炭素数2~10のアルキルアミド基、炭素数3~20のトリアルキルシリル基、炭素数4~20のトリアルキルシリルアルキル基、炭素数5~20のトリアルキルシリルアルケニル基、炭素数5~20のトリアルキルシリルアルキニル基が挙げられ、これらはさらに置換基により置換されていてもよい。R~Rは、より好ましくは、各々独立に水素原子、炭素数1~20の置換もしくは無置換のアルキル基、炭素数6~30の置換もしくは無置換のアリール基、炭素数3~30の置換もしくは無置換のヘテロアリール基、炭素数12~30の置換もしくは無置換のジアリールアミノ基、炭素数12~30のカルバゾリル基である。R~Rは、さらに好ましくは、各々独立に水素原子、炭素数1~10の置換もしくは無置換のアルキル基、炭素数6~15の置換もしくは無置換のアリール基、炭素数3~12の置換もしくは無置換のヘテロアリール基、炭素数12~24の置換もしくは無置換のジフェニルアミノ基、炭素数12~24のカルバゾリル基である。
 一般式(1)において、R~Rの少なくとも1つは、置換もしくは無置換のジアリールアミノ基、または置換もしくは無置換のカルバゾリル基を表す。カルバゾリル基の具体例として、9-カルバゾリル基、1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基を挙げることができ、好ましくは9-カルバゾリル基、3-カルバゾリル基であり、より好ましくは9-カルバゾリル基である。ジアリールアミノ基やカルバゾリル基が置換基を有するとき、置換基の種類は特に制限されないが、上記のR~Rがとりうる好ましい置換基を好ましい例として挙げることができる。一般式(1)においては、R~Rのいずれが置換もしくは無置換のジアリールアミノ基、または置換もしくは無置換のカルバゾリル基であってもよいが、RおよびRの少なくとも1つが置換もしくは無置換のジアリールアミノ基、または置換もしくは無置換のカルバゾリル基であることが好ましい。
 また、一般式(1)で表される化合物は分子中にカルバゾール構造を少なくとも2つ含む。一般式(1)にはすでにカルバゾール構造が1つ記載されているため、R~R、ZおよびZの少なくとも1つがカルバゾール構造を含む基であることが必要とされる。好ましいのは、R~R、R~RおよびZの少なくとも1つがカルバゾール構造を含む基である場合である。より好ましいのは、R、RおよびZの少なくとも1つがカルバゾール構造を含む基である場合である。R、RおよびZのうちのいずれか2つがカルバゾール構造を含む基であることも好ましく、これらの全てがカルバゾール構造を含む基であることも好ましい。
 一般式(1)で表される化合物は、分子中にカルバゾール構造を少なくとも3つ含むものがより好ましく、分子中にカルバゾール構造を少なくとも4つ含むものがさらに好ましい。分子中のカルバゾール構造の数の上限値は特に制限されないが、例えば8つ以下にすることができ、6つ以下にすることができる。
 一般式(1)で表される化合物は、下記の一般式(2)で表される構造を有するものであることが好ましい。
Figure JPOXMLDOC01-appb-C000021
 一般式(2)において、Y、YおよびYは、いずれか2つが窒素原子で残りの1つがメチン基を表すか、または、Y、YおよびYのすべてが窒素原子を表す。Zは、置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基、または置換もしくは無置換の9-カルバゾリル基を表す。Zは、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基を表す。Rは、置換もしくは無置換のジアリールアミノ基、またはカルバゾリル基を表す。Rは、水素原子または置換基を表す。また、一般式(1)で表される化合物は分子中にカルバゾール構造を少なくとも2つ含む。
 一般式(2)におけるZは、より好ましくは、炭素数6~40の置換もしくは無置換のアリール基、炭素数3~40の置換もしくは無置換のヘテロアリール基、炭素数12~40の置換もしくは無置換の9-カルバゾリル基であり、さらに好ましくは、炭素数6~40の置換もしくは無置換のアリール基、炭素数12~40の置換もしくは無置換の9-カルバゾリル基であり、さらにより好ましくは、炭素数6~15の置換もしくは無置換のアリール基、炭素数12~24の置換もしくは無置換の9-カルバゾリル基である。RおよびRがいずれもカルバゾリル基ではないとき、Zは置換もしくは無置換の9-カルバゾリル基であることが好ましい。
 一般式(2)におけるZは、より好ましくは水素原子、炭素数1~20の置換もしくは無置換のアルキル基、炭素数6~40の置換もしくは無置換のアリール基、炭素数3~40の置換もしくは無置換のヘテロアリール基であり、さらに好ましくは、水素原子、炭素数1~10の置換もしくは無置換のアルキル基、炭素数6~15の置換もしくは無置換のアリール基、炭素数3~12の置換もしくは無置換のヘテロアリール基である。
 一般式(2)におけるRは、より好ましくは炭素数12~30の置換もしくは無置換のジアリールアミノ基、炭素数12~30の置換もしくは無置換の9-カルバゾリル基、炭素数12~30の置換もしくは無置換の1-カルバゾリル基、炭素数12~30の置換もしくは無置換の2-カルバゾリル基、炭素数12~30の置換もしくは無置換の3-カルバゾリル基、炭素数12~30の置換もしくは無置換の4-カルバゾリル基であり、さらに好ましくは、炭素数12~30の置換もしくは無置換のジアリールアミノ基、炭素数12~30の置換もしくは無置換の9-カルバゾリル基、炭素数12~30の置換もしくは無置換の3-カルバゾリル基である。
 一般式(2)におけるRは、より好ましくは、水素原子、炭素数1~20の置換もしくは無置換のアルキル基、炭素数6~30の置換もしくは無置換のアリール基、炭素数3~30の置換もしくは無置換のヘテロアリール基、炭素数12~30の置換もしくは無置換のジアリールアミノ基、炭素数12~30の置換もしくは無置換のカルバゾリル基である。さらに好ましくは、水素原子、炭素数1~10の置換もしくは無置換のアルキル基、炭素数6~15の置換もしくは無置換のアリール基、炭素数3~12の置換もしくは無置換のヘテロアリール基、炭素数12~24の置換もしくは無置換のジフェニルアミノ基、炭素数12~24の置換もしくは無置換のカルバゾリル基である。
 一般式(2)におけるY、YおよびYの説明と好ましい範囲や、置換基の好ましい範囲については一般式(1)における対応する記載を参照することができる。
 一般式(1)で表される化合物は、下記の一般式(3)で表される構造を有するものであることも好ましい。
Figure JPOXMLDOC01-appb-C000022
 一般式(3)において、Y、YおよびYは、いずれか2つが窒素原子で残りの1つがメチン基を表すか、または、Y、YおよびYのすべてが窒素原子を表す。Zは、水素原子または置換基を表す。R~RおよびR11~R18は、各々独立に水素原子または置換基を表し、R~Rの少なくとも1つは、置換もしくは無置換のジアリールアミノ基、または置換もしくは無置換のカルバゾリル基を表す。
 一般式(3)におけるY、Y、Y、Z、R~Rの説明と好ましい範囲については、一般式(1)における対応する記載を参照することができる。ただし、Y、YおよびYのいずれか2つが窒素原子で残りの1つがメチン基を表すとき、メチン基はYであることが最も好ましい。また、Zの好ましい範囲については、一般式(2)における対応する記載も参照することができる。R11~R18の説明と好ましい範囲については、一般式(1)におけるR~Rの説明と好ましい範囲を参照することができるが、R11~R18の少なくとも1つが、置換もしくは無置換のジアリールアミノ基、または置換もしくは無置換のカルバゾリル基である必要はない。
 一般式(3)で表される化合物は、下記の一般式(4)で表される構造を有するものであることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000023
 一般式(4)において、Y、YおよびYは、いずれか2つが窒素原子で残りの1つがメチン基を表すか、または、Y、YおよびYのすべてが窒素原子を表す。Zは、水素原子または置換基を表す。R、R、R13およびR16は、各々独立に水素原子または置換基を表し、RおよびRの少なくとも1つは、置換もしくは無置換のジアリールアミノ基、または置換もしくは無置換のカルバゾリル基を表す。
 一般式(4)におけるY、Y、Y、Z、RおよびRの説明と好ましい範囲については、一般式(1)における対応する記載を参照することができる。ただし、Y、YおよびYのいずれか2つが窒素原子で残りの1つがメチン基を表すとき、メチン基はYであることが最も好ましい。また、Zの好ましい範囲については、一般式(2)における対応する記載も参照することができる。さらに、RおよびRの好ましい範囲については、一般式(3)における対応する記載も参照することができる。R13およびR16の説明と好ましい範囲については、一般式(1)におけるRおよびRの説明と好ましい範囲を参照することができるが、R13およびR16の少なくとも1つが、置換もしくは無置換のジアリールアミノ基、または置換もしくは無置換のカルバゾリル基である必要はない。
 一般式(1)で表される化合物は、下記の一般式(5)で表される構造を有するものであることも好ましい。
Figure JPOXMLDOC01-appb-C000024
 一般式(5)において、Y、YおよびYは、いずれか2つが窒素原子で残りの1つがメチン基を表すか、または、Y、YおよびYのすべてが窒素原子を表す。ZおよびZは、各々独立に水素原子または置換基を表す。R、RおよびR~Rは、各々独立に水素原子または置換基を表す。Xは、置換もしくは無置換のジアリールアミノ基、または置換もしくは無置換のカルバゾリル基を表す。
 一般式(5)におけるY、Y、Y、Z、Z、R、RおよびR~Rの説明と好ましい範囲については、一般式(1)における対応する記載を参照することができる。
 一般式(5)におけるXは、より好ましくは、炭素数12~30のジアリールアミノ基、または炭素数12~30の置換もしくは無置換のカルバゾリル基である。Xが置換もしくは無置換のカルバゾリル基を表すとき、置換もしくは無置換のカルバゾリル基には、置換もしくは無置換の9-カルバゾリル基、置換もしくは無置換の1-カルバゾリル基、置換もしくは無置換の2-カルバゾリル基、置換もしくは無置換の3-カルバゾリル基、置換もしくは無置換の4-カルバゾリル基が含まれる。このうち、Xがとりうる置換もしくは無置換のカルバゾリル基の群として、例えば、置換もしくは無置換の9-カルバゾリル基、置換もしくは無置換の1-カルバゾリル基、置換もしくは無置換の2-カルバゾリル基、置換もしくは無置換の4-カルバゾリル基からなる群を例示することができる。
 一般式(5)には、下記の一般式(6)で表される構造を有する化合物が含まれる。
Figure JPOXMLDOC01-appb-C000025
 一般式(6)において、Y、YおよびYは、いずれか2つが窒素原子で残りの1つがメチン基を表すか、または、Y、YおよびYのすべてが窒素原子を表す。ZおよびZは、各々独立に水素原子または置換基を表す。R、R、R~RおよびR21~R28は、各々独立に水素原子または置換基を表す。
 一般式(6)におけるY、Y、Y、Z、Z、R、RおよびR~Rの説明と好ましい範囲については、一般式(1)における対応する記載を参照することができる。また、R21~R28の説明と好ましい範囲については、一般式(1)におけるR~Rの説明と好ましい範囲を参照することができるが、R21~R28の少なくとも1つが、置換もしくは無置換のジアリールアミノ基、または置換もしくは無置換のカルバゾリル基である必要はない。
 以下において、一般式(1)で表される化合物の具体例を例示するが、本発明において用いることができる一般式(1)で表される化合物はこれらの具体例によって限定的に解釈されるべきものではない。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
 
 本発明を応用して、分子内に一般式(1)で表される骨格を複数個有する化合物を、有機発光素子の発光層に用いることも考えられる。
 例えば、一般式(1)で表される骨格を有する重合性モノマーを重合させた重合体を、有機発光素子の発光層に用いることが考えられる。具体的には、一般式(1)のR~R、ZおよびZのいずれかに重合性官能基を有するモノマーを重合させることにより、繰り返し単位を有する重合体を得て、その重合体を有機発光素子の発光層に用いることが考えられる。あるいは、一般式(1)で表される骨格を有する化合物どうしをカップリングさせることにより、二量体や三量体を得て、それらを有機発光素子の発光層に用いることも考えられる。これらの応用や改変は、当業者により適宜なされうるものである。
[一般式(11)で表される化合物]
 一般式(1)で表される化合物のうち、特に下記の一般式(11)で表される化合物は新規化合物である。
Figure JPOXMLDOC01-appb-C000042
 一般式(11)において、Y、YおよびYは、いずれか2つが窒素原子で残りの1つがメチン基を表すか、または、Y、YおよびYのすべてが窒素原子を表す。Z2’は、水素原子または炭素原子で結合する置換基(ただし該置換基はホウ素原子を含まない)を表す。R~RおよびR11~R18は、各々独立に水素原子または置換基を表し、少なくとも1つは置換もしくは無置換のジアリールアミノ基、または置換もしくは無置換のカルバゾリル基を表す。
 一般式(11)におけるY、Y、Y、R~Rの説明と好ましい範囲については、一般式(1)における対応する記載を参照することができる。ただし、Y、YおよびYのいずれか2つが窒素原子で残りの1つがメチン基を表すとき、メチン基はYであることが最も好ましい。また、一般式(11)におけるR11~R18の説明と好ましい範囲については、一般式(1)におけるR~Rの説明と好ましい範囲を参照することができる。ただし、R~Rの少なくとも1つが、置換もしくは無置換のジアリールアミノ基、または置換もしくは無置換のカルバゾリル基である必要はなく、また、R11~R18の少なくとも1つが、置換もしくは無置換のジアリールアミノ基、または置換もしくは無置換のカルバゾリル基である必要はない。Z2’がとりうる「炭素原子で結合する置換基」は、炭素原子を介して一般式(11)のトリアジン環またはピリミジン環に結合する置換基を意味する。例えば、置換もしくは無置換のアルキル基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基(炭素原子で結合する基に限る)、置換もしくは無置換のアルケニル基、置換もしくは無置換のアルキニル基、置換もしくは無置換のハロアルキル基、置換もしくは無置換のトリアルキルシリルアルキル基、置換もしくは無置換のトリアルキルシリルアルケニル基、置換もしくは無置換のトリアルキルシリルアルキニル基、シアノ基などを挙げることができる。より好ましくは、炭素数1~20の置換もしくは無置換のアルキル基、炭素数1~20の置換もしくは無置換のアルコキシ基、炭素数6~40の置換もしくは無置換のアリール基、炭素数3~40の置換もしくは無置換のヘテロアリール基(炭素原子で結合する基に限る)、炭素数2~10の置換もしくは無置換のアルケニル基、炭素数2~10の置換もしくは無置換のアルキニル基、炭素数1~10の置換もしくは無置換のハロアルキル基、炭素数4~20の置換もしくは無置換のトリアルキルシリルアルキル基、炭素数5~20の置換もしくは無置換のトリアルキルシリルアルケニル基、炭素数5~20の置換もしくは無置換のトリアルキルシリルアルキニル基、シアノ基である。さらにより好ましくは炭素数1~20の置換もしくは無置換のアルキル基、炭素数6~40の置換もしくは無置換のアリール基、炭素数3~40の置換もしくは無置換のヘテロアリール基(炭素原子で結合する基に限る)である。
 一般式(11)で表される化合物は、下記の一般式(12)で表される構造を有するものであることが好ましい。
Figure JPOXMLDOC01-appb-C000043
 一般式(12)において、Y、YおよびYは、いずれか2つが窒素原子で残りの1つがメチン基を表すか、または、Y、YおよびYのすべてが窒素原子を表す。Z2’は、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基(炭素原子で結合する基に限る)、置換もしくは無置換のアルケニル基、置換もしくは無置換のアルキニル基、置換もしくは無置換のハロアルキル基、置換もしくは無置換のトリアルキルシリルアルキル基、置換もしくは無置換のトリアルキルシリルアルケニル基、置換もしくは無置換のトリアルキルシリルアルキニル基、またはシアノ基を表す。R、R、R13およびR16は、各々独立に水素原子または置換基を表し、少なくとも1つは置換もしくは無置換のジアリールアミノ基、または置換もしくは無置換のカルバゾリル基を表す。Z2’、R、R、R13およびR16の好ましい範囲については、一般式(11)の対応する記載を参照することができる。
[一般式(11)で表される化合物の合成法]
 一般式(11)で表される化合物の合成法は特に制限されない。一般式(11)で表される化合物の合成は、既知の合成法や条件を適宜組み合わせることにより行うことができる。
 例えば、好ましい合成法として、下記一般式(21)で表される化合物を、下記一般式(22)で表される化合物および下記一般式(23)で表される化合物と反応させて下記一般式(24)で表される化合物を合成し、さらに下記一般式(25)で表される化合物と反応させることにより合成する方法を挙げることができる。
Figure JPOXMLDOC01-appb-C000044
 一般式(21)において、Y、YおよびYは、いずれか2つが窒素原子で残りの1つがメチン基を表すか、または、Y、YおよびYのすべてが窒素原子を表す。X、XおよびXは、各々独立にハロゲン原子を表す。ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子を挙げることができる。X、XおよびXは、同一であっても異なっていてもよく、一般式(22)(23)および(25)の各化合物との反応性などを考慮して適宜決定することができる。
 なお、以下の一般式(22)~(25)におけるY、Y、Y、Z2’、R~RおよびR11~R18の定義は、一般式(11)における対応する定義を同じであり、一般式(22)~(25)におけるX、XおよびXは定義は、一般式(21)における対応する定義を同じである。
Figure JPOXMLDOC01-appb-C000045
 一般式(21)で表される化合物と一般式(22)で表される化合物との反応は、既知のカップリング反応条件を用いて行うことができる。例えば、一般式(22)で表される化合物のテトラヒドロフラン溶液中にn-ブチルリチウムを添加して反応させた後に、一般式(21)のテトラヒドロフラン溶液中に滴下してカップリングさせることができる。生成した化合物と一般式(23)で表される化合物とのカップリングも同様にして行うことができる。これらの反応では、最初に一般式(22)で表される化合物と一般式(23)で表される化合物との混合テトラヒドロフラン溶液を用意しておき、該混合溶液中にn-ブチルリチウムを添加して反応させた後に、一般式(21)のテトラヒドロフラン溶液中に滴下してカップリングさせてもよい。カップリング反応後の混合物からは、既知の精製法により下記一般式(24)で表される化合物を得ることができる。
Figure JPOXMLDOC01-appb-C000046
 一般式(24)で表される化合物は、さらに下記一般式(25)で表される化合物と反応させることにより、一般式(11)で表される化合物を合成することができる。この反応は既知の反応であり、既知の反応条件を適宜選択して用いることができる。
Figure JPOXMLDOC01-appb-C000047
 上記の反応の詳細については、後述の合成例を参考にすることができる。また、一般式(11)で表される化合物は、その他の公知の合成反応を組み合わせることによっても合成することもできる。
[有機発光素子]
 本発明の一般式(1)で表される化合物は、有機発光素子の発光層に用いる発光材料として有用である。一般式(1)で表される化合物は、遅延蛍光を放射する遅延蛍光材料としての有用性も示しうる。このため、一般式(1)で表される化合物を発光材料として用いた有機発光素子は、遅延蛍光を放射し、発光効率が高いという特徴を有する。その原理を、有機エレクトロルミネッセンス素子を例にとって説明すると以下のようになる。
 有機エレクトロルミネッセンス素子においては、正負の両電極より発光材料にキャリアを注入し、励起状態の発光材料を生成し、発光させる。通常、キャリア注入型の有機エレクトロルミネッセンス素子の場合、生成した励起子のうち、励起一重項状態に励起されるのは25%であり、残り75%は励起三重項状態に励起される。従って、励起三重項状態からの発光であるリン光を利用するほうが、エネルギーの利用効率が高い。しかしながら、励起三重項状態は寿命が長いため、励起状態の飽和や励起三重項状態の励起子との相互作用によるエネルギーの失活が起こり、一般にリン光の量子収率が高くないことが多い。一方、遅延蛍光材料は、系間交差等により励起三重項状態へとエネルギーが遷移した後、三重項-三重項消滅あるいは熱エネルギーの吸収により、励起一重項状態に逆系間交差され蛍光を放射する。有機エレクトロルミネッセンス素子においては、なかでも熱エネルギーの吸収による熱活性化型の遅延蛍光材料が特に有用であると考えられる。有機エレクトロルミネッセンス素子に遅延蛍光材料を利用した場合、励起一重項状態の励起子は通常通り蛍光を放射する。一方、励起三重項状態の励起子は、デバイスが発する熱を吸収して励起一重項へ系間交差され蛍光を放射する。このとき、励起一重項からの発光であるため蛍光と同波長での発光でありながら、励起三重項状態から励起一重項状態への逆系間交差により、生じる光の寿命(発光寿命)は通常の蛍光やりん光よりも長くなるため、これらよりも遅延した蛍光として観察される。これを遅延蛍光として定義できる。このような熱活性化型の励起子移動機構を用いれば、キャリア注入後に熱エネルギーの吸収を経ることにより、通常は25%しか生成しなかった励起一重項状態の化合物の比率を25%以上に引き上げることが可能となる。100℃未満の低い温度でも強い蛍光および遅延蛍光を発する化合物を用いれば、デバイスの熱で充分に励起三重項状態から励起一重項状態への系間交差が生じて遅延蛍光を放射するため、発光効率を飛躍的に向上させることができる。
 本発明の一般式(1)で表される化合物を発光層の発光材料として用いることにより、有機フォトルミネッセンス素子(有機PL素子)や有機エレクトロルミネッセンス素子(有機EL素子)などの優れた有機発光素子を提供することができる。有機フォトルミネッセンス素子は、基板上に少なくとも発光層を形成した構造を有する。また、有機エレクトロルミネッセンス素子は、少なくとも陽極、陰極、および陽極と陰極の間に有機層を形成した構造を有する。有機層は、少なくとも発光層を含むものであり、発光層のみからなるものであってもよいし、発光層の他に1層以上の有機層を有するものであってもよい。そのような他の有機層として、正孔輸送層、正孔注入層、電子阻止層、正孔阻止層、電子注入層、電子輸送層、励起子阻止層などを挙げることができる。正孔輸送層は正孔注入機能を有した正孔注入輸送層でもよく、電子輸送層は電子注入機能を有した電子注入輸送層でもよい。具体的な有機エレクトロルミネッセンス素子の構造例を図1に示す。図1において、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は電子輸送層、7は陰極を表わす。
 以下において、有機エレクトロルミネッセンス素子の各部材および各層について説明する。なお、基板と発光層の説明は有機フォトルミネッセンス素子の基板と発光層にも該当する。
(基板)
 本発明の有機エレクトロルミネッセンス素子は、基板に支持されていることが好ましい。この基板については、特に制限はなく、従来から有機エレクトロルミネッセンス素子に慣用されているものであればよく、例えば、ガラス、透明プラスチック、石英、シリコンなどからなるものを用いることができる。
(陽極)
 有機エレクトロルミネッセンス素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが好ましく用いられる。このような電極材料の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極材料を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極材料の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な材料を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
(陰極)
 一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが用いられる。このような電極材料の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性および酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機エレクトロルミネッセンス素子の陽極または陰極のいずれか一方が、透明または半透明であれば発光輝度が向上し好都合である。
 また、陽極の説明で挙げた導電性透明材料を陰極に用いることで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
(発光層)
 発光層は、陽極および陰極のそれぞれから注入された正孔および電子が再結合することにより励起子が生成した後、発光する層であり、発光材料を単独で発光層に使用しても良いが、好ましくは発光材料とホスト材料を含む。発光材料としては、一般式(1)で表される本発明の化合物群から選ばれる1種または2種以上を用いることができる。本発明の有機エレクトロルミネッセンス素子および有機フォトルミネッセンス素子が高い発光効率を発現するためには、発光材料に生成した一重項励起子および三重項励起子を、発光材料中に閉じ込めることが重要である。従って、発光層中に発光材料に加えてホスト材料を用いることが好ましい。ホスト材料としては、励起一重項エネルギー、励起三重項エネルギーの少なくとも何れか一方が本発明の発光材料よりも高い値を有する有機化合物を用いることができる。その結果、本発明の発光材料に生成した一重項励起子および三重項励起子を、本発明の発光材料の分子中に閉じ込めることが可能となり、その発光効率を十分に引き出すことが可能となる。本発明の有機発光素子または有機エレクトロルミネッセンス素子において、発光は発光層に含まれる本発明の発光材料から生じる。この発光は蛍光発光および遅延蛍光発光の両方を含む。但し、発光の一部或いは部分的にホスト材料からの発光があってもかまわない。
 ホスト材料を用いる場合、発光材料である本発明の化合物が発光層中に含有される量は0.1重量%以上であることが好ましく、1重量%以上であることがより好ましく、また、50重量%以下であることが好ましく、20重量%以下であることがより好ましく、10重量%以下であることがさらに好ましい。
 発光層におけるホスト材料としては、正孔輸送能、電子輸送能を有し、かつ発光の長波長化を防ぎ、なおかつ高いガラス転移温度を有する有機化合物であることが好ましい。
(注入層)
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、正孔注入層と電子注入層があり、陽極と発光層または正孔輸送層の間、および陰極と発光層または電子輸送層との間に存在させてもよい。注入層は必要に応じて設けることができる。
(阻止層)
 阻止層は、発光層中に存在する電荷(電子もしくは正孔)および/または励起子の発光層外への拡散を阻止することができる層である。電子阻止層は、発光層および正孔輸送層の間に配置されることができ、電子が正孔輸送層の方に向かって発光層を通過することを阻止する。同様に、正孔阻止層は発光層および電子輸送層の間に配置されることができ、正孔が電子輸送層の方に向かって発光層を通過することを阻止する。阻止層はまた、励起子が発光層の外側に拡散することを阻止するために用いることができる。すなわち電子阻止層、正孔阻止層はそれぞれ励起子阻止層としての機能も兼ね備えることができる。本明細書でいう電子阻止層または励起子阻止層は、一つの層で電子阻止層および励起子阻止層の機能を有する層を含む意味で使用される。
(正孔阻止層)
 正孔阻止層とは広い意味では電子輸送層の機能を有する。正孔阻止層は電子を輸送しつつ、正孔が電子輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔の再結合確率を向上させることができる。正孔阻止層の材料としては、後述する電子輸送層の材料を必要に応じて用いることができる。
(電子阻止層)
 電子阻止層とは、広い意味では正孔を輸送する機能を有する。電子阻止層は正孔を輸送しつつ、電子が正孔輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔が再結合する確率を向上させることができる。
(励起子阻止層)
 励起子阻止層とは、発光層内で正孔と電子が再結合することにより生じた励起子が電荷輸送層に拡散することを阻止するための層であり、本層の挿入により励起子を効率的に発光層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。励起子阻止層は発光層に隣接して陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。すなわち、励起子阻止層を陽極側に有する場合、正孔輸送層と発光層の間に、発光層に隣接して該層を挿入することができ、陰極側に挿入する場合、発光層と陰極との間に、発光層に隣接して該層を挿入することができる。また、陽極と、発光層の陽極側に隣接する励起子阻止層との間には、正孔注入層や電子阻止層などを有することができ、陰極と、発光層の陰極側に隣接する励起子阻止層との間には、電子注入層、電子輸送層、正孔阻止層などを有することができる。阻止層を配置する場合、阻止層として用いる材料の励起一重項エネルギーおよび励起三重項エネルギーの少なくともいずれか一方は、発光材料の励起一重項エネルギーおよび励起三重項エネルギーよりも高いことが好ましい。
(正孔輸送層)
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、正孔輸送層は単層または複数層設けることができる。
 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。使用できる公知の正孔輸送材料としては例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体およびピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられるが、ポルフィリン化合物、芳香族第3級アミン化合物およびスチリルアミン化合物を用いることが好ましく、芳香族第3級アミン化合物を用いることがより好ましい。
(電子輸送層)
 電子輸送層とは電子を輸送する機能を有する材料からなり、電子輸送層は単層または複数層設けることができる。
 電子輸送材料(正孔阻止材料を兼ねる場合もある)としては、陰極より注入された電子を発光層に伝達する機能を有していればよい。使用できる電子輸送層としては例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタンおよびアントロン誘導体、オキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 有機エレクトロルミネッセンス素子を作製する際には、一般式(1)で表される化合物を発光層に用いるだけでなく、発光層以外の層にも用いてもよい。その際、発光層に用いる一般式(1)で表される化合物と、発光層以外の層に用いる一般式(1)で表される化合物は、同一であっても異なっていてもよい。例えば、上記の注入層、阻止層、正孔阻止層、電子阻止層、励起子阻止層、正孔輸送層、電子輸送層などにも一般式(1)で表される化合物を用いてもよい。これらの層の製膜方法は特に限定されず、ドライプロセス、ウェットプロセスのどちらで作製してもよい。
 以下に、有機エレクトロルミネッセンス素子に用いることができる好ましい材料を具体的に例示する。ただし、本発明において用いることができる材料は、以下の例示化合物によって限定的に解釈されることはない。また、特定の機能を有する材料として例示した化合物であっても、その他の機能を有する材料として転用することも可能である。なお、以下の例示化合物の構造式におけるR、R’、R~R10は、各々独立に水素原子または置換基を表す。Xは環骨格を形成する炭素原子または複素原子を表し、nは3~5の整数を表し、Yは置換基を表し、mは0以上の整数を表す。
 まず、発光層のホスト材料としても用いることができる好ましい化合物を挙げる。
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
 次に、正孔注入材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000053
 次に、正孔輸送材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
 次に、電子阻止材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000060
 次に、正孔阻止材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000061
 次に、電子輸送材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
 次に、電子注入材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000065
 さらに添加可能な材料として好ましい化合物例を挙げる。例えば、安定化材料として添加すること等が考えられる。
Figure JPOXMLDOC01-appb-C000066
 上述の方法により作製された有機エレクトロルミネッセンス素子は、得られた素子の陽極と陰極の間に電界を印加することにより発光する。このとき、励起一重項エネルギーによる発光であれば、そのエネルギーレベルに応じた波長の光が、蛍光発光および遅延蛍光発光として確認される。また、励起三重項エネルギーによる発光であれば、そのエネルギーレベルに応じた波長が、りん光として確認される。通常の蛍光は、遅延蛍光発光よりも蛍光寿命が短いため、発光寿命は蛍光と遅延蛍光で区別できる。
 一方、りん光については、本発明の化合物のような通常の有機化合物では、励起三重項エネルギーは不安定で熱等に変換され、寿命が短く直ちに失活するため、室温では殆ど観測できない。通常の有機化合物の励起三重項エネルギーを測定するためには、極低温の条件での発光を観測することにより測定可能である。
 本発明の有機エレクトロルミネッセンス素子は、単一の素子、アレイ状に配置された構造からなる素子、陽極と陰極がX-Yマトリックス状に配置された構造のいずれにおいても適用することができる。本発明によれば、発光層に一般式(1)で表される化合物を含有させることにより、発光効率が大きく改善された有機発光素子が得られる。本発明の有機エレクトロルミネッセンス素子などの有機発光素子は、さらに様々な用途へ応用することが可能である。例えば、本発明の有機エレクトロルミネッセンス素子を用いて、有機エレクトロルミネッセンス表示装置を製造することが可能であり、詳細については、時任静士、安達千波矢、村田英幸共著「有機ELディスプレイ」(オーム社)を参照することができる。また、特に本発明の有機エレクトロルミネッセンス素子は、需要が大きい有機エレクトロルミネッセンス照明やバックライトに応用することもできる。
 以下に合成例および実施例を挙げて本発明の特徴をさらに具体的に説明する。以下に示す材料、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
(合成例1)
 本合成例において、以下のスキームにしたがって化合物1を合成した。
Figure JPOXMLDOC01-appb-C000067
 3,9’-ビ-9H-カルバゾール(2.71g,8.15mmol)を三つ口フラスコに入れ、フラスコ内を窒素置換し、テトラヒドロフラン50mLを加えて10分間攪拌した。攪拌後、この溶液を-78℃に冷却して20分攪拌した。攪拌後、1.60M n-ブチルリチウムヘキサン溶液(5.00mL,8.00mmol)をシリンジにより加え、-78℃で2時間攪拌した。次にこの溶液を、2,4,6-トリクロロ-1,3,5-トリアジン(0.740g, 4.01mmol)とテトラヒドロフラン20mLの混合物へ滴下ロートを用いて加えた。この混合物を70℃で8時間攪拌した後、水を加えてさらに30分攪拌した。その後、この混合物にクロロホルムを加えて抽出した。有機層と水層を分離し、有機層に硫酸ナトリウムを加えて乾燥し、吸引ろ過してろ液を得た。得られたろ液をカラムクロマトグラフィーにより精製し、9,9’-(6-クロロ-1,3,5-トリアジン-2,4-ジイル)ビス-9H-カルバゾールを収量2.67g(収率85.8%)得た。
 窒素雰囲気下で、9,9’-(6-クロロ-1,3,5-トリアジン-2,4-ジイル)ビス-9H-カルバゾール(1.50g,1.93mmol)とフェニルボロン酸(0.390g,3.20mmol)をテトラヒドロフラン40mLに溶解した後、テトラキス(トリフェニルホスフィン)パラジウム(0)(0.110g,0.0952mmol)と炭酸カリウム水溶液(2.10g,7.00mL)を添加して48時間還流した。この混合物にクロロホルムを加えて抽出した。有機層と水層を分離し、有機層に硫酸ナトリウムを加えて乾燥し、吸引ろ過してろ液を得た。得られたろ液をカラムクロマトグラフィーにより精製し、化合物1(収量1.38g)を得た(収率87.4%)。化合物の同定はH-NMRおよび元素分析により行った。
H-NMR(500 MHz, CDCl, TMS,δ):9.32(d,J=8.6Hz,2H),9.15(d,J=8.7Hz,2H),8.82(d,J=7.6Hz,2H),8.29(s,2H),8.20(d,J=7.8Hz,4H),8.10(d,J=7.7Hz,2H),7.76-7.72(m,5H),7.63(t,J=7.8Hz,2H),7.51-7.43(m,10H),7.33(t,J=7.3Hz,4H).
元素分析:Anal. Calcd for C5735:C 83.70%,H 4.31%,N 11.99%; found:C 83.90%,H 4.20%,N 12.04%.
(合成例2)
 本合成例において、以下のスキームにしたがって化合物4を合成した。
Figure JPOXMLDOC01-appb-C000068
 3,9’-ビ-9H-カルバゾール3.00g(9.03mmol)を300mL三つ口フラスコに入れ、当該フラスコ内を窒素置換し、テトラヒドロフラン50mLを加えた。この溶液を-78℃で20分攪拌した。この溶液へ、1.60mol/L n-ブチルリチウムヘキサン溶液6.77mL(10.8mmol)をシリンジにより滴下した。この溶液を窒素雰囲気下、-78℃で2時間攪拌した。
 攪拌後、この溶液へ、4,6-ジクロロ-2-フェニルピリミジン0.924g(4.11mmol)とテトラヒドロフラン20mLの混合溶液を加えて攪拌した。この溶液を-78℃から徐々に室温に戻した後、この溶液を80℃で10時間攪拌した。
 攪拌後、この溶液に水100mLを加えて攪拌した。攪拌後、この混合物へトルエンを加えて抽出した。抽出後、有機層と水層を分離し、有機層に硫酸マグネシウムを加えて乾燥した。乾燥後、この混合物をろ過してろ液を得た。
 得られたろ液を濃縮し、シリカゲルカラムクロマトグラフィーにより精製した。精製後、GPCを用いてさらに精製し、固体を得た。得られた固体をクロロホルムとメタノールの混合溶媒で再結晶したところ、白色粉末状固体の化合物4を収量0.651g(収率19.4%)得た。化合物の同定はH-NMR、13C-NMR、および元素分析により行った。
H-NMR(500MHz,CDCl,TMS,δ):8.78-8.76(m,2H),8.54(d,J=9.0Hz,2H),8.31(d,J=2.0Hz,2H),8.26(d,J=8.5Hz,2H),8.19(d,J=8.0Hz,4H),8.13(d,J=7.5Hz,2H),7.98(s,1H),7.72(dd,J=9.0Hz,2.0Hz,2H),7.66-7.59(m,5H),7.46-7.41(m,10H),7.33-7.31(m,4H).
13C-NMR(125MHz,CDCl,δ):165.95,160.41,141.61,139.43,138.00,136.89,132.29,131.91,129.05,128.67,127.53,126.69,126.20,126.00,125.06,123.31,122.77,120.87,120.38,119.89,119.37,114.05,112.60,109.74,103.48.
元素分析 Anal.Calcd for C5836:C 85.27%,H 4.44%,N 10.29%; found:C 84.97%,H 4.36%,N 10.40%.
(合成例3)
 本合成例において、以下のスキームにしたがって化合物40を合成した。
Figure JPOXMLDOC01-appb-C000069
 3,9’-ビ-9H-カルバゾール4.00g(12.0mmol)を300mL三つ口フラスコに入れ、当該フラスコ内を窒素置換した後、テトラヒドロフラン100mLを加えて、-78℃で20分攪拌した。この溶液へ、1.60mol/L n-ブチルリチウムヘキサン溶液9.03mL(14.4mmol)をシリンジにより滴下した。
 この溶液を窒素雰囲気下、-78℃で2時間攪拌した。攪拌後、この溶液へ、4,6-ジクロロピリミジン0.813g(5.45mmol)とテトラヒドロフラン20mLの混合溶液を加えて攪拌した。この溶液を-78℃から徐々に室温に戻した後、この溶液を80℃で5時間攪拌した。
 攪拌後、この溶液に水100mLを加えて攪拌した。攪拌後、この混合物へトルエンを加えて抽出した。抽出後、有機層と水層を分離し、有機層に硫酸マグネシウムを加えて乾燥した。乾燥後、この混合物をろ過してろ液を得た。
 得られたろ液を濃縮し、シリカゲルカラムクロマトグラフィーにより精製した。精製後、GPC分取カラムを用いてさらに精製し、固体を得た。得られた固体をトルエンとメタノールの混合溶媒へ加え、60℃で加熱した。加熱後、この混合物を吸引ろ過して固体を回収したところ、白色粉末状固体の化合物40を収量1.20g(収率29.7%)得た。化合物の同定はH-NMR、13C-NMR、および元素分析により行った。
H-NMR(500MHz,CDCl,TMS,δ):9.45(s,1H),8.50(d,J=8.5Hz,2H),8.29(d,J=1.5Hz,2H),8.21-8.18(m,6H),8.13-8.11(m,3H),7.70(dd,J=8.5Hz,2.0Hz,2H),7.59(t,J=7.7Hz,2H),7.46-7.41(m,10H),7.34-7.30(m,4H).
13C-NMR(125MHz,CDCl,δ):160.12,159.96,141.55,139.24,137.84,132.49,127.58,126.79,126.24,126.00,125.16,123.31,122.98,120.91,120.39,119.91,119.33,114.17,112.46,109.70,105.57.
元素分析 Anal.Calcd for C5232:C 84.30%,H 4.35%,N 11.34%; found:C 84.17%,H 4.27%,N 11.33%.
(実施例1)
 本実施例において、化合物1のみからなる発光層を有する有機フォトルミネッセンス素子を作製して、温度を変えて特性を評価した。
 シリコン基板上に真空蒸着法にて、真空度5.0×10-4Paの条件にて化合物1を蒸着源から蒸着し、化合物1の薄膜を0.3nm/秒にて100nmの厚さで形成して有機フォトルミネッセンス素子とした。浜松ホトニクス(株)製C9920-02型絶対量子収率測定装置を用いて、Nレーザーにより337nmの光を照射した際の薄膜からの発光スペクトルを300Kで特性評価したところ、467nmの発光が確認され、その際の発光量子収率は43.1%であった。次に、この素子にNレーザーにより337nmの光を照射した際の時間分解スペクトルの評価を、浜松ホトニクス(株)製C4334型ストリークカメラにより行った。発光寿命の短い成分を蛍光、発光寿命が長い成分を遅延蛍光と判断した。その結果、素子発光のうち、蛍光成分が約96%、遅延蛍光成分が約4%であった。
 有機フォトルミネッセンス素子の評価温度を28K、50K、150K、200K、250Kおよび325Kに変更して上記と同じ測定を行った。温度による発光寿命を示すグラフを図2に示す。各温度における発光量子収率と、蛍光成分と遅延蛍光成分の割合は図3に示す通りであった。
(実施例2)
 本実施例において、化合物1と種々のホスト材料からなる発光層を有する有機フォトルミネッセンス素子を作製して、特性を評価した。
 シリコン基板上に真空蒸着法にて、真空度5.0×10-4Paの条件にて化合物1とmCPとを異なる蒸着源から蒸着し、化合物1の濃度が6.0重量%である薄膜を0.3nm/秒にて100nmの厚さで形成して有機フォトルミネッセンス素子とした。浜松ホトニクス(株)製C9920-02型絶対量子収率測定装置を用いて、Nレーザーにより337nmの光を照射した際の薄膜からの発光スペクトルを300Kで特性評価したところ、454nmの発光が確認され、その際の発光量子収率は38.9%であった。次に、この素子にNレーザーにより337nmの光を照射した際の時間分解スペクトルの評価を、浜松ホトニクス(株)製C4334型ストリークカメラにより行ったところ、実施例1と同様に蛍光成分と遅延蛍光成分が観測された。
 ホスト材料として、mCPの代わりにBSB、PYD2、DPEPOおよびUGH2を用いた点を変更して、上記と同様にして有機フォトルミネッセンス素子を作製し、上記と同じ測定を行った。いずれのホスト材料を用いた場合であっても遅延蛍光が認められたが、T1(最低励起三重項エネルギー準位)が3.0eV以上、より好ましくは3.1eV以上であるホスト材料(DPEPOおよびUGH2)を用いた場合に遅延蛍光成分の割合が特に高くなることが確認された。
(比較例1)
 本比較例において、化合物1の代わりに下記の構造を有する比較化合物を用いて実施例1と同じ方法により薄膜を有する素子を形成した。発光量子収率を測定したところ24.8%であった。また、この素子にNレーザーにより337nmの光を照射した際の時間分解スペクトルの評価を、浜松ホトニクス(株)製C4334型ストリークカメラにより行った。発光寿命の短い成分のみ、観測され、遅延蛍光は観測されなかった。
Figure JPOXMLDOC01-appb-C000070
(実施例3)
 本実施例において、溶液を調製してその特性を調べた。
 化合物4のトルエン溶液(濃度10-5mol/L)を調製し、紫外・可視分光光度計(島津製作所製:UV-2550)を用いてUV吸収特性を測定した。また、343nmの光を照射したときのフォトルミネッセンス(PL)特性を蛍光光度分光計(日本分光社製:FP6500-A-ST)により測定した。結果は図4に示す通りであった。
(実施例4)
 本実施例において、溶液を調製してその特性を調べた。
 化合物40のトルエン溶液(濃度10-5mol/L)を調製し、紫外・可視分光光度計(島津製作所製:UV-2550)を用いてUV吸収特性を測定した。また、342nmの光を照射したときのフォトルミネッセンス(PL)特性を蛍光光度分光計(日本分光社製:FP6500-A-ST)により測定した。結果は図5に示す通りであった。
(実施例5)
 本実施例において、化合物1とDPEPOからなる発光層を有し、有機エレクトロルミネッセンス素子を作製して、特性を評価した。
 膜厚100nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度5.0×10-4Paで積層した。まず、ITO上にα-NPDを40nmの厚さに形成した。次に、化合物1とmCPを異なる蒸着源から共蒸着し、10nmの厚さの層を形成した。この時、化合物1の濃度は6.0重量%であった。次に、化合物1とDPEPOを異なる蒸着源から共蒸着し、20nmの厚さに形成して発光層を形成した。この時、化合物1の濃度は6.0重量%であった。次に、DPEPOを10nmの厚さに形成し、さらにTPBiを30nmの厚さに形成した。次いで、フッ化リチウム(LiF)を0.8nm真空蒸着し、次いでアルミニウム(Al)を80nmの厚さに蒸着することにより陰極を形成し、有機エレクトロルミネッセンス素子とした。
 製造した有機エレクトロルミネッセンス素子を、半導体パラメータ・アナライザ(アジレント・テクノロジー社製:E5273A)、光パワーメータ測定装置(ニューポート社製:1930C)、および光学分光器(オーシャンオプティクス社製:USB2000)を用いて測定した。エレクトロルミネッセンス(EL)スペクトルを図6に示し、電流密度-電圧(J-V)特性を図7に示し、電流密度-外部量子効率特性を図8に示す。実施例5の有機エレクトロルミネッセンス素子は9.56%の高い外部量子効率を達成した。
(実施例6)
 本実施例において、化合物1のみからなる発光層を有する有機エレクトロルミネッセンス素子を作製して、特性を評価した。
 膜厚100nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度5.0×10-4Paで積層した。まず、ITO上にα-NPDを40nmの厚さに形成した。次に、mCPを10nmの厚さに形成した。次に、化合物1を蒸着源から蒸着し、30nmの厚さに形成して発光層を形成した。次に、Bphenを20nmの厚さに形成した。次いで、フッ化リチウム(LiF)を0.8nm真空蒸着し、次いでアルミニウム(Al)を80nmの厚さに蒸着することにより陰極を形成し、有機エレクトロルミネッセンス素子とした。496nmの発光が確認され、外部量子効率は2.3%であった。
(実施例7)
 本実施例において、化合物1のみからなる発光層を有する別の有機エレクトロルミネッセンス素子を作製して、特性を評価した。
 膜厚100nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度5.0×10-4Paで積層した。まず、ITO上にα-NPDを30nmの厚さに形成した。次に、mCPを10nmの厚さに形成した。次に、化合物1を蒸着源から蒸着し、30nmの厚さに形成して発光層を形成した。次に、TPBiを20nmの厚さに形成した。次いで、フッ化リチウム(LiF)を0.8nm真空蒸着し、次いでアルミニウム(Al)を80nmの厚さに蒸着することにより陰極を形成し、有機エレクトロルミネッセンス素子とした。491nmの発光が確認された。
Figure JPOXMLDOC01-appb-C000071
 本発明の有機発光素子は、高い発光効率を実現しうるものである。また、本発明の化合物は、そのような有機発光素子用の発光材料として有用である。このため、本発明は産業上の利用可能性が高い。
 1 基板
 2 陽極
 3 正孔注入層
 4 正孔輸送層
 5 発光層
 6 電子輸送層
 7 陰極

Claims (11)

  1.  下記一般式(1)で表される化合物を発光材料として含む発光層を基板上に有することを特徴とする有機発光素子。
    Figure JPOXMLDOC01-appb-C000001
    [一般式(1)において、Y、YおよびYは、いずれか2つが窒素原子で残りの1つがメチン基を表すか、または、Y、YおよびYのすべてが窒素原子を表す。ZおよびZは、各々独立に水素原子または置換基を表す。R~Rは、各々独立に水素原子または置換基を表し、R~Rの少なくとも1つは、置換もしくは無置換のジアリールアミノ基、または置換もしくは無置換のカルバゾリル基を表す。また、一般式(1)で表される化合物は分子中にカルバゾール構造を少なくとも2つ含む。]
  2.  遅延蛍光を放射することを特徴とする請求項1に記載の有機発光素子。
  3.  有機エレクトロルミネッセンス素子であることを特徴とする請求項1または2に記載の有機発光素子。
  4.  下記一般式(2)で表される化合物を発光材料として含む発光層を基板上に有することを特徴とする請求項1~3のいずれか1項に記載の有機発光素子。
    Figure JPOXMLDOC01-appb-C000002
    [一般式(2)において、Y、YおよびYは、いずれか2つが窒素原子で残りの1つがメチン基を表すか、または、Y、YおよびYのすべてが窒素原子を表す。Zは、置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基、または置換もしくは無置換の9-カルバゾリル基を表す。Zは、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基を表す。Rは、置換もしくは無置換のジアリールアミノ基、またはカルバゾリル基を表す。Rは、水素原子または置換基を表す。また、一般式(1)で表される化合物は分子中にカルバゾール構造を少なくとも2つ含む。]
  5.  下記一般式(3)で表される化合物を発光材料として含む発光層を基板上に有することを特徴とする請求項1~3のいずれか1項に記載の有機発光素子。
    Figure JPOXMLDOC01-appb-C000003
    [一般式(3)において、Y、YおよびYは、いずれか2つが窒素原子で残りの1つがメチン基を表すか、または、Y、YおよびYのすべてが窒素原子を表す。Zは、水素原子または置換基を表す。R~RおよびR11~R18は、各々独立に水素原子または置換基を表し、R~Rの少なくとも1つは、置換もしくは無置換のジアリールアミノ基、または置換もしくは無置換のカルバゾリル基を表す。]
  6.  下記一般式(4)で表される化合物を発光材料として含む発光層を基板上に有することを特徴とする請求項1~3のいずれか1項に記載の有機発光素子。
    Figure JPOXMLDOC01-appb-C000004
    [一般式(4)において、Y、YおよびYは、いずれか2つが窒素原子で残りの1つがメチン基を表すか、または、Y、YおよびYのすべてが窒素原子を表す。Zは、水素原子または置換基を表す。R、R、R13およびR16は、各々独立に水素原子または置換基を表し、RおよびRの少なくとも1つは、置換もしくは無置換のジアリールアミノ基、または置換もしくは無置換のカルバゾリル基を表す。]
  7.  下記一般式(5)で表される化合物を発光材料として含む発光層を基板上に有することを特徴とする請求項1~3のいずれか1項に記載の有機発光素子。
    Figure JPOXMLDOC01-appb-C000005
    [一般式(5)において、Y、YおよびYは、いずれか2つが窒素原子で残りの1つがメチン基を表すか、または、Y、YおよびYのすべてが窒素原子を表す。ZおよびZは、各々独立に水素原子または置換基を表す。R、RおよびR~Rは、各々独立に水素原子または置換基を表す。Xは、置換もしくは無置換のジアリールアミノ基、または置換もしくは無置換のカルバゾリル基を表す。]
  8.  下記一般式(6)で表される化合物を発光材料として含む発光層を基板上に有することを特徴とする請求項1~3のいずれか1項に記載の有機発光素子。
    Figure JPOXMLDOC01-appb-C000006
    [一般式(6)において、Y、YおよびYは、いずれか2つが窒素原子で残りの1つがメチン基を表すか、または、Y、YおよびYのすべてが窒素原子を表す。ZおよびZは、各々独立に水素原子または置換基を表す。R、R、R~RおよびR21~R28は、各々独立に水素原子または置換基を表す。]
  9.  下記一般式(1)で表される化合物からなる遅延蛍光材料。
    Figure JPOXMLDOC01-appb-C000007
    [一般式(1)において、Y、YおよびYは、いずれか2つが窒素原子で残りの1つがメチン基を表すか、または、Y、YおよびYのすべてが窒素原子を表す。ZおよびZは、各々独立に水素原子または置換基を表す。R~Rは、各々独立に水素原子または置換基を表し、R~Rの少なくとも1つは、置換もしくは無置換のジアリールアミノ基、または置換もしくは無置換のカルバゾリル基を表す。また、一般式(1)で表される化合物は分子中にカルバゾール構造を少なくとも2つ含む。]
  10.  下記一般式(11)で表される化合物。
    Figure JPOXMLDOC01-appb-C000008
    [一般式(11)において、Y、YおよびYは、いずれか2つが窒素原子で残りの1つがメチン基を表すか、または、Y、YおよびYのすべてが窒素原子を表す。Z2’は、水素原子または炭素原子で結合する置換基(ただし該置換基はホウ素原子を含まない)を表す。R~RおよびR11~R18は、各々独立に水素原子または置換基を表し、少なくとも1つは置換もしくは無置換のジアリールアミノ基、または置換もしくは無置換のカルバゾリル基を表す。]
  11.  下記一般式(12)で表されることを特徴とする請求項10に記載の化合物。
    Figure JPOXMLDOC01-appb-C000009
    [一般式(12)において、Y、YおよびYは、いずれか2つが窒素原子で残りの1つがメチン基を表すか、または、Y、YおよびYのすべてが窒素原子を表す。Z2’は、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基(炭素原子で結合する基に限る)、置換もしくは無置換のアルケニル基、置換もしくは無置換のアルキニル基、置換もしくは無置換のハロアルキル基、置換もしくは無置換のトリアルキルシリルアルキル基、置換もしくは無置換のトリアルキルシリルアルケニル基、置換もしくは無置換のトリアルキルシリルアルキニル基、またはシアノ基を表す。R、R、R13およびR16は、各々独立に水素原子または置換基を表し、少なくとも1つは置換もしくは無置換のジアリールアミノ基、または置換もしくは無置換のカルバゾリル基を表す。]
PCT/JP2012/081027 2011-12-02 2012-11-30 有機発光素子ならびにそれに用いる遅延蛍光材料および化合物 WO2013081088A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280059390.9A CN103959502B (zh) 2011-12-02 2012-11-30 有机发光元件及使用其的迟滞荧光材料以及化合物
US14/362,153 US9153788B2 (en) 2011-12-02 2012-11-30 Organic light-emitting device, and delayed fluorescent material and compound used therefor
KR1020147017966A KR20140106631A (ko) 2011-12-02 2012-11-30 유기 발광 소자 그리고 그것에 사용하는 지연 형광 재료 및 화합물
EP12853294.2A EP2787549A4 (en) 2011-12-02 2012-11-30 ORGANIC DEVICE EMITTING LIGHT AND DELAYED FLUORESCENCE MATERIAL AND COMPONENT USED THEREIN
JP2013547225A JP5679496B2 (ja) 2011-12-02 2012-11-30 有機発光素子ならびにそれに用いる遅延蛍光材料および化合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011265215 2011-12-02
JP2011-265215 2011-12-02

Publications (1)

Publication Number Publication Date
WO2013081088A1 true WO2013081088A1 (ja) 2013-06-06

Family

ID=48535536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081027 WO2013081088A1 (ja) 2011-12-02 2012-11-30 有機発光素子ならびにそれに用いる遅延蛍光材料および化合物

Country Status (6)

Country Link
US (1) US9153788B2 (ja)
EP (1) EP2787549A4 (ja)
JP (1) JP5679496B2 (ja)
KR (1) KR20140106631A (ja)
CN (1) CN103959502B (ja)
WO (1) WO2013081088A1 (ja)

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013165192A1 (en) * 2012-05-02 2013-11-07 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescence compounds and organic electroluminescence device containing the same
JP2014045179A (ja) * 2012-08-03 2014-03-13 Semiconductor Energy Lab Co Ltd 発光素子
WO2014038677A1 (ja) * 2012-09-07 2014-03-13 出光興産株式会社 新規芳香族複素環誘導体、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子用材料溶液及び有機エレクトロルミネッセンス素子
WO2014136860A1 (ja) * 2013-03-08 2014-09-12 国立大学法人九州大学 化合物、発光材料および有機発光素子
WO2014157619A1 (ja) 2013-03-29 2014-10-02 国立大学法人九州大学 有機エレクトロルミネッセンス素子
WO2015022835A1 (ja) * 2013-08-14 2015-02-19 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、照明装置、表示装置及び蛍光発光性化合物
WO2015022974A1 (ja) 2013-08-14 2015-02-19 国立大学法人九州大学 有機エレクトロルミネッセンス素子
JP2015037138A (ja) * 2013-08-14 2015-02-23 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子用金属錯体、並びに表示装置及び照明装置
JP2015038941A (ja) * 2013-08-19 2015-02-26 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、それに用いる蛍光発光性化合物、当該有機エレクトロルミネッセンス素子を具備する照明装置及び表示装置
WO2015029964A1 (ja) * 2013-08-30 2015-03-05 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、発光材料、発光性薄膜、表示装置及び照明装置
WO2015072470A1 (ja) * 2013-11-12 2015-05-21 国立大学法人九州大学 発光材料、並びに、これを用いた遅延蛍光体および有機発光素子
WO2015135625A1 (de) 2014-03-13 2015-09-17 Merck Patent Gmbh Formulierungen lumineszierender verbindungen
WO2015139808A1 (de) 2014-03-18 2015-09-24 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
WO2015180524A1 (zh) * 2014-05-30 2015-12-03 广州华睿光电材料有限公司 有机混合物、包含其的组合物、有机电子器件及应用
CN105209434A (zh) * 2013-06-26 2015-12-30 出光兴产株式会社 化合物、有机电致发光元件用材料、有机电致发光元件、和电子设备
CN105431505A (zh) * 2013-12-18 2016-03-23 出光兴产株式会社 化合物、有机电致发光元件用材料、油墨组合物、有机电致发光元件、及电子设备
KR20160092983A (ko) 2013-12-18 2016-08-05 이데미쓰 고산 가부시키가이샤 화합물, 유기 전기발광 소자용 재료, 잉크 조성물, 유기 전기발광 소자, 전자 기기, 및 화합물의 제조 방법
CN106062127A (zh) * 2014-03-07 2016-10-26 九州有机光材股份有限公司 发光材料、有机发光元件及化合物
CN106103428A (zh) * 2014-03-12 2016-11-09 出光兴产株式会社 组合物、化合物、有机电致发光元件用材料、油墨组合物、有机电致发光元件、及电子设备
JPWO2015033894A1 (ja) * 2013-09-04 2017-03-02 出光興産株式会社 カルバゾール誘導体、これを用いた有機エレクトロルミネッセンス素子用材料、並びにこれを用いた有機エレクトロルミネッセンス素子及び電子機器
JP2017523196A (ja) * 2014-07-28 2017-08-17 ユニヴェルシテ ドゥ トゥール フランソワ ラブレーUniversite De Tours Francois Rabelais 有機半導体の開発のための新規なシントン
US20170244049A1 (en) * 2014-05-14 2017-08-24 President And Fellows Of Harvard College Organic light-emitting diode materials
WO2017194435A1 (de) 2016-05-11 2017-11-16 Merck Patent Gmbh Zusammensetzungen für elektrochemische zellen
KR20170134841A (ko) 2016-05-26 2017-12-07 삼성디스플레이 주식회사 함질소 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20170137262A (ko) 2016-06-02 2017-12-13 삼성디스플레이 주식회사 다환 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2018047948A1 (ja) * 2016-09-09 2018-03-15 東洋紡株式会社 有機発光素子ならびにそれに用いる発光材料および化合物
US9954177B2 (en) 2015-03-09 2018-04-24 Semiconductor Enery Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US10043982B2 (en) 2013-04-26 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
WO2018180830A1 (ja) * 2017-03-29 2018-10-04 出光興産株式会社 有機エレクトロルミネッセンス素子、電子機器、及び化合物
JP2019501986A (ja) * 2015-12-18 2019-01-24 昆山国顕光電有限公司Kunshan Go−Visionox Opto−Electronics Co., Ltd. 熱活性化遅延蛍光材料及び有機電界発光素子におけるその応用
CN110003182A (zh) * 2013-06-28 2019-07-12 环球展览公司 用于pholed的新颖主体化合物以及包含其的调配物和装置
US10388888B2 (en) 2014-12-29 2019-08-20 University Court Of The University Of St Andrews Light emitting electrochemical cells and compounds
JP2019145808A (ja) * 2014-06-03 2019-08-29 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料及びデバイス
WO2019176971A1 (ja) * 2018-03-13 2019-09-19 国立大学法人九州大学 電荷輸送材料、化合物および有機発光素子
US10497883B2 (en) 2014-03-11 2019-12-03 Kyulux, Inc. Organic light-emitting device, host material, light-emitting material, and compound
US10559757B2 (en) 2014-09-03 2020-02-11 Kyulux, Inc. Host material for delayed fluorescent materials, organic light-emitting device and compound
WO2020076796A1 (en) 2018-10-09 2020-04-16 Kyulux, Inc. Novel composition of matter for use in organic light-emitting diodes
WO2020178230A1 (en) 2019-03-04 2020-09-10 Merck Patent Gmbh Ligands for nano-sized materials
WO2020208051A1 (en) 2019-04-11 2020-10-15 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021089450A1 (en) 2019-11-04 2021-05-14 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021094269A1 (en) 2019-11-12 2021-05-20 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021110741A1 (en) 2019-12-04 2021-06-10 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021157642A1 (ja) 2020-02-04 2021-08-12 株式会社Kyulux ホスト材料、組成物および有機発光素子
US11101440B2 (en) 2015-07-01 2021-08-24 Kyushu University, National University Corporation Organic electroluminescent device
WO2021191058A1 (en) 2020-03-23 2021-09-30 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021235549A1 (ja) 2020-05-22 2021-11-25 株式会社Kyulux 化合物、発光材料および発光素子
WO2022025248A1 (ja) 2020-07-31 2022-02-03 株式会社Kyulux 化合物、発光材料および発光素子
JP2022027942A (ja) * 2016-05-20 2022-02-14 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器及び照明装置
US11335872B2 (en) 2016-09-06 2022-05-17 Kyulux, Inc. Organic light-emitting device
WO2022168956A1 (ja) 2021-02-04 2022-08-11 株式会社Kyulux 化合物、発光材料および有機発光素子
US11476435B2 (en) 2017-08-24 2022-10-18 Kyushu University, National University Corporation Film and organic light-emitting device containing perovskite-type compound and organic light-emitting material
US11482679B2 (en) 2017-05-23 2022-10-25 Kyushu University, National University Corporation Compound, light-emitting lifetime lengthening agent, use of n-type compound, film and light-emitting device
WO2022244503A1 (ja) 2021-05-20 2022-11-24 株式会社Kyulux 有機発光素子
WO2022270113A1 (ja) 2021-06-23 2022-12-29 株式会社Kyulux 有機エレクトロルミネッセンス素子
WO2022270354A1 (ja) 2021-06-23 2022-12-29 株式会社Kyulux 化合物、発光材料および有機発光素子
WO2022270602A1 (ja) 2021-06-23 2022-12-29 株式会社Kyulux 有機発光素子および膜
WO2023282224A1 (ja) 2021-07-06 2023-01-12 株式会社Kyulux 有機発光素子およびその設計方法
WO2023036976A1 (en) 2021-09-13 2023-03-16 Merck Patent Gmbh Materials for organic electroluminescent devices
US11611046B2 (en) 2014-03-13 2023-03-21 Merck Patent Gmbh Organic electroluminescent device
WO2023053835A1 (ja) 2021-09-28 2023-04-06 株式会社Kyulux 化合物、組成物、ホスト材料、電子障壁材料および有機発光素子
WO2023090288A1 (ja) 2021-11-19 2023-05-25 株式会社Kyulux 化合物、発光材料および発光素子
WO2023140130A1 (ja) 2022-01-19 2023-07-27 株式会社Kyulux 化合物、発光材料および有機発光素子
WO2024033282A1 (en) 2022-08-09 2024-02-15 Merck Patent Gmbh Materials for organic electroluminescent devices
US11930654B2 (en) 2017-07-06 2024-03-12 Kyulux, Inc. Organic light-emitting element
US12048175B2 (en) 2015-12-28 2024-07-23 Kyushu University, National University Corporation Organic electroluminescent device
WO2024181493A1 (ja) * 2023-02-28 2024-09-06 保土谷化学工業株式会社 正孔輸送層用材料、それを用いた光電変換素子および化合物

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6378106B2 (ja) * 2014-04-16 2018-08-22 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子および電子機器
US20160104855A1 (en) 2014-10-10 2016-04-14 Semiconductor Energy Laboratory Co., Ltd. Light-Emitting Element, Display Device, Electronic Device, and Lighting Device
EP3038181A1 (en) 2014-12-22 2016-06-29 Solvay SA Organic electronic devices comprising acridine derivatives in an emissive layer free of heavy atom compounds
CN113889586A (zh) * 2015-07-08 2022-01-04 株式会社半导体能源研究所 发光元件、显示装置、电子设备以及照明装置
US10651392B2 (en) 2015-09-30 2020-05-12 Samsung Electronics Co., Ltd. Organic light-emitting device
JP6808329B2 (ja) * 2016-02-25 2021-01-06 株式会社ジャパンディスプレイ 有機エレクトロルミネッセンス表示装置用材料及び有機エレクトロルミネッセンス表示装置
KR102636244B1 (ko) 2016-03-30 2024-02-15 삼성디스플레이 주식회사 유기 전계 발광 소자
KR102654859B1 (ko) * 2016-06-16 2024-04-05 삼성전자주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
CN117447452A (zh) * 2016-08-19 2024-01-26 九州有机光材股份有限公司 电荷传输材料、化合物、延迟荧光材料及有机发光元件
CN107778294B (zh) 2016-08-24 2021-07-09 西诺拉股份有限公司 有机分子,特别应用于有机光电装置中
CN106397415A (zh) * 2016-08-31 2017-02-15 江苏三月光电科技有限公司 一种基于氮杂苯的五元环取代化合物及其应用
US10783823B2 (en) * 2017-01-04 2020-09-22 Universal Display Corporation OLED device with controllable brightness
KR102487503B1 (ko) * 2017-07-04 2023-01-12 솔루스첨단소재 주식회사 유기 화합물 및 이를 이용한 유기 전계 발광 소자
KR102121433B1 (ko) 2017-09-01 2020-06-10 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
WO2019045528A1 (ko) * 2017-09-01 2019-03-07 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
KR20190035503A (ko) * 2017-09-25 2019-04-03 롬엔드하스전자재료코리아유한회사 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR102120560B1 (ko) * 2017-10-20 2020-06-09 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
WO2019171197A1 (ja) 2018-03-07 2019-09-12 株式会社半導体エネルギー研究所 発光素子、表示装置、電子機器、有機化合物及び照明装置
US11440901B2 (en) 2018-09-12 2022-09-13 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
CN109651339A (zh) * 2018-12-31 2019-04-19 瑞声科技(南京)有限公司 一种咔唑吡啶化合物及其应用
JP7341172B2 (ja) 2019-02-06 2023-09-08 株式会社半導体エネルギー研究所 発光デバイス、電子機器及び照明装置
KR102390662B1 (ko) * 2019-05-21 2022-04-26 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
KR102430048B1 (ko) 2019-06-13 2022-08-04 삼성에스디아이 주식회사 유기 광전자 소자용 화합물, 유기 광전자 소자 및 표시 장치
CN110862817A (zh) * 2019-09-30 2020-03-06 常州强力昱镭光电材料有限公司 热激活延迟荧光材料、热激活延迟荧光组合物及有机电致发光器件
KR20210130301A (ko) * 2020-04-21 2021-11-01 엘티소재주식회사 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 이의 제조 방법 및 유기물층용 조성물
KR20210136224A (ko) 2020-05-06 2021-11-17 삼성디스플레이 주식회사 발광 소자 및 이를 포함하는 전자 장치
EP4214776A1 (en) 2020-09-18 2023-07-26 Samsung Display Co., Ltd. Organic electroluminescent device
KR20220041305A (ko) 2020-09-24 2022-04-01 엘티소재주식회사 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자, 이의 제조방법 및 유기물층용 조성물
WO2024105066A1 (en) 2022-11-17 2024-05-23 Merck Patent Gmbh Materials for organic electroluminescent devices

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198176A (ja) * 2000-12-26 2002-07-12 Toray Ind Inc 発光素子
JP2004171808A (ja) 2002-11-18 2004-06-17 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子及び表示装置
JP2006278494A (ja) * 2005-03-28 2006-10-12 Fuji Photo Film Co Ltd 光出射装置及び光出射方法
JP2007077033A (ja) 2005-09-12 2007-03-29 Jsr Corp 電荷輸送性化合物およびその製造方法、有機エレクトロルミネッセンス素子用組成物並びに有機エレクトロルミネッセンス素子
JP2010121041A (ja) * 2008-11-19 2010-06-03 Toshiba Corp 発光層化合物および有機電界発光素子
WO2011057706A2 (de) * 2009-11-14 2011-05-19 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2011148909A1 (ja) * 2010-05-24 2011-12-01 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2012077520A1 (ja) * 2010-12-09 2012-06-14 新日鐵化学株式会社 有機電界発光素子
WO2012086170A1 (ja) * 2010-12-20 2012-06-28 出光興産株式会社 芳香族複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114070A (ja) * 2008-10-10 2010-05-20 Canon Inc 白色有機el素子
JP5584702B2 (ja) * 2009-12-28 2014-09-03 新日鉄住金化学株式会社 有機電界発光素子
KR20110122051A (ko) * 2010-05-03 2011-11-09 제일모직주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
WO2011162162A1 (ja) * 2010-06-24 2011-12-29 東レ株式会社 発光素子材料および発光素子
JP2013116975A (ja) * 2011-12-02 2013-06-13 Kyushu Univ 遅延蛍光材料、有機発光素子および化合物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198176A (ja) * 2000-12-26 2002-07-12 Toray Ind Inc 発光素子
JP2004171808A (ja) 2002-11-18 2004-06-17 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子及び表示装置
JP2006278494A (ja) * 2005-03-28 2006-10-12 Fuji Photo Film Co Ltd 光出射装置及び光出射方法
JP2007077033A (ja) 2005-09-12 2007-03-29 Jsr Corp 電荷輸送性化合物およびその製造方法、有機エレクトロルミネッセンス素子用組成物並びに有機エレクトロルミネッセンス素子
JP2010121041A (ja) * 2008-11-19 2010-06-03 Toshiba Corp 発光層化合物および有機電界発光素子
WO2011057706A2 (de) * 2009-11-14 2011-05-19 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2011148909A1 (ja) * 2010-05-24 2011-12-01 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2012077520A1 (ja) * 2010-12-09 2012-06-14 新日鐵化学株式会社 有機電界発光素子
WO2012086170A1 (ja) * 2010-12-20 2012-06-28 出光興産株式会社 芳香族複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2787549A4

Cited By (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013165192A1 (en) * 2012-05-02 2013-11-07 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescence compounds and organic electroluminescence device containing the same
JP2019054257A (ja) * 2012-08-03 2019-04-04 株式会社半導体エネルギー研究所 発光装置および発光方法
US11730007B2 (en) 2012-08-03 2023-08-15 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US10505132B2 (en) 2012-08-03 2019-12-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US9276228B2 (en) 2012-08-03 2016-03-01 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US9559313B2 (en) 2012-08-03 2017-01-31 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
KR102208540B1 (ko) * 2012-08-03 2021-01-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자
US10734594B2 (en) 2012-08-03 2020-08-04 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US11355722B2 (en) 2012-08-03 2022-06-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US10644254B2 (en) 2012-08-03 2020-05-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
JP2014045179A (ja) * 2012-08-03 2014-03-13 Semiconductor Energy Lab Co Ltd 発光素子
US9947885B2 (en) 2012-08-03 2018-04-17 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
KR20180133352A (ko) * 2012-08-03 2018-12-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자
JP2019041114A (ja) * 2012-08-03 2019-03-14 株式会社半導体エネルギー研究所 発光装置
JP2017195389A (ja) * 2012-08-03 2017-10-26 株式会社半導体エネルギー研究所 発光素子、照明装置、発光装置、電子機器
WO2014038677A1 (ja) * 2012-09-07 2014-03-13 出光興産株式会社 新規芳香族複素環誘導体、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子用材料溶液及び有機エレクトロルミネッセンス素子
WO2014136860A1 (ja) * 2013-03-08 2014-09-12 国立大学法人九州大学 化合物、発光材料および有機発光素子
WO2014157619A1 (ja) 2013-03-29 2014-10-02 国立大学法人九州大学 有機エレクトロルミネッセンス素子
US10600983B2 (en) 2013-03-29 2020-03-24 Kyulux, Inc. Organic electroluminescent device comprising delayed fluorescent materials
US10833279B2 (en) 2013-04-26 2020-11-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
US10043982B2 (en) 2013-04-26 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
US12077500B2 (en) 2013-06-26 2024-09-03 Idemitsu Kosan Co., Ltd Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
US10590080B2 (en) 2013-06-26 2020-03-17 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
US11059781B2 (en) 2013-06-26 2021-07-13 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
US10851055B2 (en) 2013-06-26 2020-12-01 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
US11739061B2 (en) 2013-06-26 2023-08-29 Idemitsu Kosan Co., Ltd Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
CN105209434A (zh) * 2013-06-26 2015-12-30 出光兴产株式会社 化合物、有机电致发光元件用材料、有机电致发光元件、和电子设备
CN110003182A (zh) * 2013-06-28 2019-07-12 环球展览公司 用于pholed的新颖主体化合物以及包含其的调配物和装置
CN110003182B (zh) * 2013-06-28 2022-05-31 环球展览公司 用于pholed的新颖主体化合物以及包含其的调配物和装置
JP2015037138A (ja) * 2013-08-14 2015-02-23 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子用金属錯体、並びに表示装置及び照明装置
US11944010B2 (en) 2013-08-14 2024-03-26 Kyulux, Inc. Organic electroluminescent device
US11450817B2 (en) 2013-08-14 2022-09-20 Kyulux, Inc. Organic electroluminescent device
US10862047B2 (en) 2013-08-14 2020-12-08 Kyushu University, National University Corporation Organic electroluminescent device
WO2015022835A1 (ja) * 2013-08-14 2015-02-19 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、照明装置、表示装置及び蛍光発光性化合物
EP4152910A1 (en) 2013-08-14 2023-03-22 Kyulux, Inc. Organic electroluminescent device
JPWO2015022835A1 (ja) * 2013-08-14 2017-03-02 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、照明装置、表示装置及び蛍光発光性化合物
EP3706182A1 (en) 2013-08-14 2020-09-09 Kyushu University National University Corporation Organic electroluminescent device
WO2015022974A1 (ja) 2013-08-14 2015-02-19 国立大学法人九州大学 有機エレクトロルミネッセンス素子
JP2015038941A (ja) * 2013-08-19 2015-02-26 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、それに用いる蛍光発光性化合物、当該有機エレクトロルミネッセンス素子を具備する照明装置及び表示装置
WO2015029964A1 (ja) * 2013-08-30 2015-03-05 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、発光材料、発光性薄膜、表示装置及び照明装置
JPWO2015033894A1 (ja) * 2013-09-04 2017-03-02 出光興産株式会社 カルバゾール誘導体、これを用いた有機エレクトロルミネッセンス素子用材料、並びにこれを用いた有機エレクトロルミネッセンス素子及び電子機器
CN105980517A (zh) * 2013-11-12 2016-09-28 九州有机光材股份有限公司 发光材料与使用其的延迟荧光体及有机发光元件
CN105980517B (zh) * 2013-11-12 2019-05-14 九州有机光材股份有限公司 发光材料与使用其的延迟荧光体及有机发光元件
WO2015072470A1 (ja) * 2013-11-12 2015-05-21 国立大学法人九州大学 発光材料、並びに、これを用いた遅延蛍光体および有機発光素子
US11101433B2 (en) 2013-11-12 2021-08-24 Kyulux, Inc. Light-emitting material, and delayed fluorescent emitter and organic light-emitting device using same
US10032991B2 (en) 2013-12-18 2018-07-24 Idemitsu Kosan Co., Ltd. Compound, organic electroluminescence element material, ink composition, organic electroluminescence element, electronic device, and method for producing compound
KR20160092983A (ko) 2013-12-18 2016-08-05 이데미쓰 고산 가부시키가이샤 화합물, 유기 전기발광 소자용 재료, 잉크 조성물, 유기 전기발광 소자, 전자 기기, 및 화합물의 제조 방법
KR20160092984A (ko) 2013-12-18 2016-08-05 이데미쓰 고산 가부시키가이샤 화합물, 유기 전기발광 소자용 재료, 잉크 조성물, 유기 전기발광 소자, 및 전자 기기
CN105431505A (zh) * 2013-12-18 2016-03-23 出光兴产株式会社 化合物、有机电致发光元件用材料、油墨组合物、有机电致发光元件、及电子设备
US20160329505A1 (en) * 2013-12-18 2016-11-10 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescent elements, ink composition, organic electroluminescent element and electronic device
US10043981B2 (en) 2014-03-07 2018-08-07 Kyulux, Inc. Light-emitting material, organic light-emitting device, and compound
US9773982B2 (en) 2014-03-07 2017-09-26 Kyulux, Inc. Light-emitting material, organic light-emitting device, and compound
CN106062127A (zh) * 2014-03-07 2016-10-26 九州有机光材股份有限公司 发光材料、有机发光元件及化合物
US10497883B2 (en) 2014-03-11 2019-12-03 Kyulux, Inc. Organic light-emitting device, host material, light-emitting material, and compound
US10290815B2 (en) 2014-03-12 2019-05-14 Idemitsu Kosan Co., Ltd. Composition, compound, material for organic electroluminescence element, ink composition, organic electroluminescence element, and electronic device
CN106103428A (zh) * 2014-03-12 2016-11-09 出光兴产株式会社 组合物、化合物、有机电致发光元件用材料、油墨组合物、有机电致发光元件、及电子设备
WO2015135625A1 (de) 2014-03-13 2015-09-17 Merck Patent Gmbh Formulierungen lumineszierender verbindungen
US10734587B2 (en) 2014-03-13 2020-08-04 Merck Patent Gmbh Formulations of luminescent compounds
US11611046B2 (en) 2014-03-13 2023-03-21 Merck Patent Gmbh Organic electroluminescent device
CN106103648A (zh) * 2014-03-13 2016-11-09 默克专利有限公司 发光化合物的配制物
WO2015139808A1 (de) 2014-03-18 2015-09-24 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
US20170244049A1 (en) * 2014-05-14 2017-08-24 President And Fellows Of Harvard College Organic light-emitting diode materials
WO2015180524A1 (zh) * 2014-05-30 2015-12-03 广州华睿光电材料有限公司 有机混合物、包含其的组合物、有机电子器件及应用
JP2019145808A (ja) * 2014-06-03 2019-08-29 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料及びデバイス
JP2017523196A (ja) * 2014-07-28 2017-08-17 ユニヴェルシテ ドゥ トゥール フランソワ ラブレーUniversite De Tours Francois Rabelais 有機半導体の開発のための新規なシントン
US10559757B2 (en) 2014-09-03 2020-02-11 Kyulux, Inc. Host material for delayed fluorescent materials, organic light-emitting device and compound
US10388888B2 (en) 2014-12-29 2019-08-20 University Court Of The University Of St Andrews Light emitting electrochemical cells and compounds
US11322689B2 (en) 2015-03-09 2022-05-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US11895908B2 (en) 2015-03-09 2024-02-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US9954177B2 (en) 2015-03-09 2018-04-24 Semiconductor Enery Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US10811611B2 (en) 2015-03-09 2020-10-20 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US11101440B2 (en) 2015-07-01 2021-08-24 Kyushu University, National University Corporation Organic electroluminescent device
US10770661B2 (en) 2015-12-18 2020-09-08 Kunshan Gp-Visionox Opto-Electronics Co., Ltd. Thermally activated delayed fluorescence material and application thereof in organic electroluminescence device
JP2019501986A (ja) * 2015-12-18 2019-01-24 昆山国顕光電有限公司Kunshan Go−Visionox Opto−Electronics Co., Ltd. 熱活性化遅延蛍光材料及び有機電界発光素子におけるその応用
US12048175B2 (en) 2015-12-28 2024-07-23 Kyushu University, National University Corporation Organic electroluminescent device
WO2017194435A1 (de) 2016-05-11 2017-11-16 Merck Patent Gmbh Zusammensetzungen für elektrochemische zellen
JP7266664B2 (ja) 2016-05-20 2023-04-28 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器及び照明装置
JP2022027942A (ja) * 2016-05-20 2022-02-14 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器及び照明装置
KR20170134841A (ko) 2016-05-26 2017-12-07 삼성디스플레이 주식회사 함질소 화합물 및 이를 포함하는 유기 전계 발광 소자
US10686139B2 (en) 2016-05-26 2020-06-16 Samsung Display Co., Ltd. Nitrogen-containing compound and organic electroluminescence device including the same
KR20170137262A (ko) 2016-06-02 2017-12-13 삼성디스플레이 주식회사 다환 화합물 및 이를 포함하는 유기 전계 발광 소자
US10714693B2 (en) 2016-06-02 2020-07-14 Samsung Display Co., Ltd. Polycyclic compound and organic electroluminescence device including the same
US11335872B2 (en) 2016-09-06 2022-05-17 Kyulux, Inc. Organic light-emitting device
US11618730B2 (en) 2016-09-09 2023-04-04 Toyobo Co., Ltd. Organic light-emitting element, and light-emitting material and compound for use therein
JP7028176B2 (ja) 2016-09-09 2022-03-02 東洋紡株式会社 有機発光素子ならびにそれに用いる発光材料および化合物
WO2018047948A1 (ja) * 2016-09-09 2018-03-15 東洋紡株式会社 有機発光素子ならびにそれに用いる発光材料および化合物
JPWO2018047948A1 (ja) * 2016-09-09 2019-07-18 東洋紡株式会社 有機発光素子ならびにそれに用いる発光材料および化合物
WO2018180830A1 (ja) * 2017-03-29 2018-10-04 出光興産株式会社 有機エレクトロルミネッセンス素子、電子機器、及び化合物
US11424414B2 (en) 2017-03-29 2022-08-23 Idemitsu Kosan Co., Ltd. Organic electroluminescent element, electronic device, and compound
US11482679B2 (en) 2017-05-23 2022-10-25 Kyushu University, National University Corporation Compound, light-emitting lifetime lengthening agent, use of n-type compound, film and light-emitting device
US11930654B2 (en) 2017-07-06 2024-03-12 Kyulux, Inc. Organic light-emitting element
US11476435B2 (en) 2017-08-24 2022-10-18 Kyushu University, National University Corporation Film and organic light-emitting device containing perovskite-type compound and organic light-emitting material
JP7184301B2 (ja) 2018-03-13 2022-12-06 国立大学法人九州大学 電荷輸送材料
WO2019176971A1 (ja) * 2018-03-13 2019-09-19 国立大学法人九州大学 電荷輸送材料、化合物および有機発光素子
JPWO2019176971A1 (ja) * 2018-03-13 2021-03-25 国立大学法人九州大学 電荷輸送材料、化合物および有機発光素子
WO2020076796A1 (en) 2018-10-09 2020-04-16 Kyulux, Inc. Novel composition of matter for use in organic light-emitting diodes
WO2020178230A1 (en) 2019-03-04 2020-09-10 Merck Patent Gmbh Ligands for nano-sized materials
WO2020208051A1 (en) 2019-04-11 2020-10-15 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021089450A1 (en) 2019-11-04 2021-05-14 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021094269A1 (en) 2019-11-12 2021-05-20 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021110741A1 (en) 2019-12-04 2021-06-10 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021157593A1 (ja) 2020-02-04 2021-08-12 株式会社Kyulux 組成物、膜、有機発光素子、発光組成物を提供する方法およびプログラム
WO2021157642A1 (ja) 2020-02-04 2021-08-12 株式会社Kyulux ホスト材料、組成物および有機発光素子
WO2021191058A1 (en) 2020-03-23 2021-09-30 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021235549A1 (ja) 2020-05-22 2021-11-25 株式会社Kyulux 化合物、発光材料および発光素子
WO2022025248A1 (ja) 2020-07-31 2022-02-03 株式会社Kyulux 化合物、発光材料および発光素子
WO2022168956A1 (ja) 2021-02-04 2022-08-11 株式会社Kyulux 化合物、発光材料および有機発光素子
WO2022244503A1 (ja) 2021-05-20 2022-11-24 株式会社Kyulux 有機発光素子
WO2022270113A1 (ja) 2021-06-23 2022-12-29 株式会社Kyulux 有機エレクトロルミネッセンス素子
WO2022270354A1 (ja) 2021-06-23 2022-12-29 株式会社Kyulux 化合物、発光材料および有機発光素子
WO2022270602A1 (ja) 2021-06-23 2022-12-29 株式会社Kyulux 有機発光素子および膜
WO2023282224A1 (ja) 2021-07-06 2023-01-12 株式会社Kyulux 有機発光素子およびその設計方法
WO2023036976A1 (en) 2021-09-13 2023-03-16 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2023053835A1 (ja) 2021-09-28 2023-04-06 株式会社Kyulux 化合物、組成物、ホスト材料、電子障壁材料および有機発光素子
WO2023090288A1 (ja) 2021-11-19 2023-05-25 株式会社Kyulux 化合物、発光材料および発光素子
WO2023140130A1 (ja) 2022-01-19 2023-07-27 株式会社Kyulux 化合物、発光材料および有機発光素子
WO2024033282A1 (en) 2022-08-09 2024-02-15 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2024181493A1 (ja) * 2023-02-28 2024-09-06 保土谷化学工業株式会社 正孔輸送層用材料、それを用いた光電変換素子および化合物

Also Published As

Publication number Publication date
CN103959502A (zh) 2014-07-30
JP5679496B2 (ja) 2015-03-04
US9153788B2 (en) 2015-10-06
EP2787549A4 (en) 2015-09-23
US20140336379A1 (en) 2014-11-13
CN103959502B (zh) 2017-03-01
EP2787549A1 (en) 2014-10-08
JPWO2013081088A1 (ja) 2015-04-27
KR20140106631A (ko) 2014-09-03

Similar Documents

Publication Publication Date Title
JP5679496B2 (ja) 有機発光素子ならびにそれに用いる遅延蛍光材料および化合物
JP6277182B2 (ja) 化合物、発光材料および有機発光素子
JP5594750B2 (ja) 化合物、発光材料および有機発光素子
KR102168905B1 (ko) 유기 발광 소자 그리고 그것에 사용하는 발광 재료 및 화합물
CN108473424B (zh) 化合物、发光材料及有机发光元件
JP6326050B2 (ja) 化合物、発光材料および有機発光素子
JP5366106B1 (ja) 有機発光素子ならびにそれに用いる発光材料および化合物
JP6318155B2 (ja) 化合物、発光材料および有機発光素子
JP6293417B2 (ja) 化合物、発光材料および有機発光素子
JP6263524B2 (ja) 化合物、発光材料および有機発光素子
JP6367189B2 (ja) 発光材料、有機発光素子および化合物
WO2013161437A1 (ja) 発光材料および有機発光素子
WO2015146541A1 (ja) 発光材料、有機発光素子および化合物
JP6647514B2 (ja) 有機発光素子ならびにそれに用いる発光材料および化合物
WO2014126076A1 (ja) 化合物、発光材料および有機発光素子
WO2017115834A1 (ja) 化合物、発光材料および有機発光素子
JP6249151B2 (ja) 発光材料およびそれを用いた有機発光素子
JP2019206511A (ja) 化合物、発光材料および有機発光素子
JP2018111751A (ja) 発光材料、化合物および有機発光素子
JP2016084283A (ja) 化合物、発光材料および有機発光素子
JP2016084284A (ja) 化合物、発光材料および有機発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853294

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013547225

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14362153

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147017966

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012853294

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012853294

Country of ref document: EP