[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015029964A1 - 有機エレクトロルミネッセンス素子、発光材料、発光性薄膜、表示装置及び照明装置 - Google Patents

有機エレクトロルミネッセンス素子、発光材料、発光性薄膜、表示装置及び照明装置 Download PDF

Info

Publication number
WO2015029964A1
WO2015029964A1 PCT/JP2014/072224 JP2014072224W WO2015029964A1 WO 2015029964 A1 WO2015029964 A1 WO 2015029964A1 JP 2014072224 W JP2014072224 W JP 2014072224W WO 2015029964 A1 WO2015029964 A1 WO 2015029964A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
organic
general formula
light
Prior art date
Application number
PCT/JP2014/072224
Other languages
English (en)
French (fr)
Inventor
池水 大
押山 智寛
秀雄 ▲高▼
北 弘志
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015534210A priority Critical patent/JPWO2015029964A1/ja
Publication of WO2015029964A1 publication Critical patent/WO2015029964A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/653Aromatic compounds comprising a hetero atom comprising only oxygen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine

Definitions

  • the present invention relates to an organic electroluminescence element and a light emitting material.
  • the present invention also relates to a light-emitting thin film containing the light-emitting material, a display device and a lighting device including the organic electroluminescence element, the light-emitting material, or the light-emitting thin film. More specifically, the present invention relates to an organic electroluminescence element with improved luminous efficiency.
  • Organic EL elements also referred to as “organic electroluminescent elements” using electroluminescence of organic materials (Electro Luminescence: hereinafter abbreviated as “EL”) have already been put into practical use as a new light emitting system that enables planar light emission.
  • EL Electro Luminescence
  • organic EL emission methods There are two types of organic EL emission methods: “phosphorescence emission” that emits light when returning from the triplet excited state to the ground state and “fluorescence emission” that emits light when returning from the singlet excited state to the ground state. There is.
  • phosphorescence emission that emits light when returning from the triplet excited state to the ground state
  • fluorescence emission that emits light when returning from the singlet excited state to the ground state.
  • quantum yield in the phosphorescence emission method, it is necessary to use a complex using a rare metal such as iridium or platinum as a central metal, In addition, there is concern that the reserves of rare metals and the price of the metals themselves will be a major issue in the industry.
  • the TADF mechanism is a compound having a smaller difference ( ⁇ Est) between the singlet excitation energy level and the triplet excitation energy level ( ⁇ Est (TADF) in FIG. 1) as compared with a normal fluorescent compound. Is smaller than ⁇ Est (F).), A light emission mechanism utilizing a phenomenon in which a reverse intersystem crossing from a triplet exciton to a singlet exciton occurs.
  • some of the conventional fluorescent luminescent compounds including the fluorescent luminescent compound using the TADF mechanism exhibit the property of aggregating, and the aggregation is seen on the longer wavelength side than the emission wavelength indicated by one molecule. It is known that there are those that emit excimer light. When the fluorescent compound emits excimer light, the light emission intensity is lowered, which may lead to a decrease in light emission efficiency. Further, as a characteristic of the fluorescent light-emitting compound itself, there is a problem that the charge transport property is biased, and in particular, when the charge transport property is poor, the light emission efficiency is similarly reduced.
  • the present inventor in the electron density distribution of the fluorescent compound obtained by structural optimization calculation using a semi-empirical molecular orbital calculation method
  • the present inventors have found that the luminous efficiency is improved when the distance between the centers of the highest occupied orbit (HOMO) and the lowest empty orbit (LUMO) is in the range of 5.0 to 9.0 mm. That is, the said subject which concerns on this invention is solved by the following means.
  • An organic electroluminescence device having at least one organic layer including an organic layer containing a fluorescent compound between a pair of electrodes, The distance between centers of the highest occupied orbital (HOMO) and the lowest unoccupied orbital (LUMO) in the electron density distribution of the fluorescent compound obtained by structural optimization calculation using a semi-empirical molecular orbital calculation method is 5.
  • An organic electroluminescence device characterized by being in the range of 0 to 9.0 mm.
  • the longest distance from the molecular center of the lowest unoccupied orbital (LUMO) in the electron density distribution of the fluorescent compound obtained by structural optimization calculation using the semiempirical molecular orbital calculation method is the semiempirical molecule.
  • a host compound having a structure represented by the following general formula (I) is contained:
  • X 101 represents NR 101 , an oxygen atom, a sulfur atom, CR 102 R 103 or SiR 102 R 103.
  • y 1 to y 8 each represents CR 104 or a nitrogen atom.
  • 101 to R 104 each represent a hydrogen atom or a substituent, and may be bonded to each other to form a ring, and Ar 101 and Ar 102 each represent an aromatic ring, and may be the same or different.
  • n101 and n102 each represents an integer of 0 to 4, but when R 101 is a hydrogen atom, n101 represents an integer of 1 to 4.
  • the center-to-center distance between the highest occupied orbital (HOMO) and the lowest unoccupied orbital (LUMO) in the electron density distribution obtained by the structural optimization calculation using the semi-empirical molecular orbital calculation method is 5.0 to 9.0 mm.
  • the longest distance from the molecular center of the lowest unoccupied orbital (LUMO) in the electron density distribution obtained by structural optimization calculation using the semiempirical molecular orbital calculation method is calculated by the semiempirical molecular orbital calculation method. 6.
  • Item 7 The light-emitting material according to Item 5 or 6, which contains a host compound having a structure represented by the following general formula (I) in addition to the fluorescent compound.
  • X 101 represents NR 101 , an oxygen atom, a sulfur atom, CR 102 R 103 or SiR 102 R 103.
  • y 1 to y 8 each represents CR 104 or a nitrogen atom.
  • 101 to R 104 each represent a hydrogen atom or a substituent, and may be bonded to each other to form a ring, and Ar 101 and Ar 102 each represent an aromatic ring, and may be the same or different.
  • n101 and n102 represents an each an integer of 0 to 4, when R 101 is a hydrogen atom, n101 represents an integer of 1-4.
  • a luminescent thin film comprising the luminescent material according to any one of items 5 to 8.
  • a display device comprising the organic electroluminescence element according to any one of items 1 to 4.
  • a display device comprising the luminescent material according to any one of items 5 to 8.
  • a light-emitting thin film according to item 9 is used.
  • the above-mentioned means of the present invention can provide an organic electroluminescence element and a light emitting material capable of improving the light emission efficiency.
  • a light-emitting thin film containing the light-emitting material and a display device and a lighting device including the organic electroluminescent element, the light-emitting material, or the light-emitting thin film can be provided.
  • the expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
  • the present inventors have found that the center of the highest occupied orbital (HOMO) and the lowest empty orbital (LUMO) in the ground state of the fluorescent compound. It was found that excimer luminescence was observed when the distance was away from a certain distance, and the decrease in luminescence intensity was noticeable.
  • the distance from the molecular center of the lowest unoccupied orbital (LUMO) is shorter than the van der Waals radius in the re-stabilized structure of the ground state of the fluorescent compound, and the distance from the molecular center of the highest occupied orbital (HOMO) It has also been found that when the distance is longer than the van der Waals distance, the charge transport property is biased, and particularly the electron transport property is significantly reduced.
  • HOMO and LUMO are separated.
  • a molecule having both a donor site and an acceptor site in the molecule In such a case, HOMO is often localized at the donor site, and LUMO is often localized at the acceptor site.
  • HOMO and LUMO are located at both ends of the molecule. Will exist.
  • the organic molecule is synonymous with performing its own charge during the HOMO-LUMO transition, that is, it can be said that the intramolecular charge transfer (CT) property is strong.
  • CT intramolecular charge transfer
  • Such a molecule has a large bias in charge density within the molecule itself, and it is considered that the donor and the acceptor site are close to each other by electrostatic attraction, and an aggregate is easily formed. It is considered that stable low energy levels are formed by forming aggregates, which leads to excimer emission.
  • the organic molecule is a fluorescent compound that undergoes a triplet, that is, a TADF compound
  • the triplet component is deactivated by forming an aggregate, which may lead to a decrease in the emission quantum yield.
  • the molecule is a spherical molecule.
  • HOMO is present at the end of the molecule, and LUMO is close to the center of the molecule.
  • the LUMO is hidden inside the HOMO of the spherical molecule, and in the latter case, the LUMO is hidden in a substituent that does not participate in light emission outside the LUMO.
  • a fluorescent compound is used in an electronic device such as an organic EL element, holes can smoothly move (hop) through the HOMO level of the molecule, but LUMO is hidden inside the molecule. Therefore, it is considered that electron hopping is prevented as compared with holes, and as a result, the charge transport property is biased. Therefore, it is possible to provide an organic EL device with improved luminous efficiency by suppressing aggregation of the fluorescent compound and improving charge transportability.
  • a light-emitting thin film containing the light-emitting material and a display device and a lighting device including the organic electroluminescent element, the light-emitting material, or the light-emitting thin film can be provided.
  • Schematic diagram showing energy diagrams of normal fluorescent compounds and TADF compounds Schematic diagram showing an example of a display device composed of organic EL elements
  • Schematic diagram of an active matrix display device Schematic showing the pixel circuit
  • Schematic diagram of a passive matrix display device Schematic of lighting device
  • An organic electroluminescence device having at least one organic layer including an organic layer containing a fluorescent compound between a pair of electrodes,
  • the distance between centers of the highest occupied orbital (HOMO) and the lowest unoccupied orbital (LUMO) in the electron density distribution of the fluorescent compound obtained by structural optimization calculation using a semi-empirical molecular orbital calculation method is 5. It is characterized by being in the range of 0 to 9.0 mm. This feature is a technical feature common to the inventions according to claims 1 to 15.
  • the longest distance from the molecular center of the lowest unoccupied orbital (LUMO) in the electron density distribution of the fluorescent compound obtained by structural optimization calculation using the semiempirical molecular orbital calculation method is the semiempirical value.
  • the electron mobility in the organic EL device is improved, and accordingly, the light emission efficiency at the high current density in the organic EL device is decreased. Since the effect of roll-off improvement is acquired, it is preferable.
  • At least one of the organic layers contains a host compound having a structure represented by the general formula (I) in addition to the fluorescent compound. Is preferable.
  • the host compound having the structure represented by the general formula (I) preferably has the structure represented by the general formula (II).
  • the good interaction between the host compound and the dopant compound improves the cohesiveness of the molecules and enables good charge transfer, so the effect obtained by the fluorescent compound can be synergistically improved.
  • the effect of improving the luminous efficiency and half-life can be obtained.
  • the center-to-center distance between the highest occupied orbital (HOMO) and the lowest unoccupied orbital (LUMO) in the electron density distribution obtained by structural optimization calculation using a semi-empirical molecular orbital calculation method. Is characterized by containing a fluorescent compound that is in the range of 5.0 to 9.0 mm.
  • the longest distance from the molecular center of the lowest unoccupied orbital (LUMO) in the electron density distribution obtained by structural optimization calculation using the semiempirical molecular orbital calculation method It is preferable to contain a fluorescent compound having a size that is 0.1 mm or more larger than the van der Waals radius calculated by the semi-empirical molecular orbital calculation method.
  • a host compound having a structure represented by the general formula (I) in order to further enhance the effects of the present invention.
  • the host compound having the structure represented by the general formula (I) it is preferable for the host compound having the structure represented by the general formula (I) to have the structure represented by the general formula (II) in order to further enhance the effects of the present invention.
  • the luminescent material of the present invention can be suitably provided for a luminescent thin film. Thereby, a luminescent thin film with improved luminous efficiency is obtained.
  • the organic electroluminescence element of the present invention can be suitably provided in a display device. As a result, a display device with improved luminous efficiency and half life can be obtained.
  • the light emitting material of the present invention can be suitably included in a display device. As a result, a display device with improved luminous efficiency and half life can be obtained.
  • the luminescent thin film of the present invention can be suitably provided in a display device. As a result, a display device with improved luminous efficiency and half life can be obtained.
  • the organic electroluminescence element of the present invention can be suitably provided in a lighting device. Thereby, the illuminating device with improved luminous efficiency and half life can be obtained.
  • the luminescent material of the present invention can be suitably included in a lighting device. Thereby, the illuminating device with improved luminous efficiency and half life can be obtained.
  • the luminescent thin film of the present invention can be suitably provided in a lighting device. Thereby, the illuminating device with improved luminous efficiency and half life can be obtained.
  • Organic EL emission methods There are two types of organic EL emission methods: “phosphorescence emission” that emits light when returning from the triplet excited state to the ground state, and “fluorescence emission” that emits light when returning from the singlet excited state to the ground state. is there.
  • phosphorescence emission that emits light when returning from the triplet excited state to the ground state
  • fluorescence emission that emits light when returning from the singlet excited state to the ground state.
  • TTA triplet-triplet annealing
  • the rate constant is usually small. That is, since the transition is difficult to occur, the exciton lifetime is increased from millisecond to second order, and it is difficult to obtain desired light emission.
  • the rate constant of the forbidden transition increases by 3 digits or more due to the heavy atom effect of the central metal. % Phosphorescence quantum yield can be obtained.
  • a rare metal called a white metal such as iridium, palladium, or platinum, which is a rare metal. The price of the metal itself is a major industrial issue.
  • a general fluorescent compound is not necessarily a heavy metal complex like a phosphorescent compound, and is a so-called organic compound composed of a combination of general elements such as carbon, oxygen, nitrogen, and hydrogen.
  • other non-metallic elements such as phosphorus, sulfur, and silicon can be used, and complexes of typical metals such as aluminum and zinc can be used.
  • high efficiency light emission such as phosphorescence emission cannot be expected.
  • TTA triplet-triplet annihilation
  • Thermal activated delayed fluorescence (TADF) compound which is another highly efficient fluorescent emission, is a method that can solve the problems of TTA.
  • the fluorescent compound has the advantage that it can be designed indefinitely. That is, among the molecularly designed compounds, there are compounds in which the absolute value of the energy level difference between the triplet excited state and the singlet excited state (hereinafter referred to as ⁇ Est) is extremely close (see FIG. 1). Although such a compound does not have a heavy atom in the molecule, a reverse intersystem crossing from a triplet excited state to a singlet excited state, which cannot normally occur due to a small ⁇ Est, occurs.
  • TADF can ideally emit 100% fluorescence.
  • Non-Patent Document 1 by introducing an electron-withdrawing skeleton such as a cyano group, a sulfonyl group, or triazine and an electron-donating skeleton such as a carbazole or diphenylamino group, LUMO and HOMO Are localized. It is also effective to reduce the change in molecular structure between the ground state and triplet excited state of the compound. As a method for reducing the structural change, for example, making the compound rigid is effective.
  • Rigidity described here means that there are few sites that can move freely in the molecule, for example, by suppressing free rotation in the bond between rings in the molecule or by introducing a condensed ring with a large ⁇ conjugate plane. means. In particular, it is possible to reduce the structural change in the excited state by making the portion involved in light emission rigid.
  • TADF compounds have various problems in terms of their light emission mechanism and molecular structure. The following describes some of the problems generally associated with TADF compounds.
  • the electronic state of the molecule is a donor / acceptor type molecule in which the HOMO and LUMO sites are separated. It becomes a state close to the inner CT (intramolecular charge transfer state).
  • CT intramolecular charge transfer state
  • Such a stabilization state is not limited to the formation between two molecules, but can also be formed between a plurality of molecules, such as between three or five molecules, resulting in various stable distributions with a wide distribution. Therefore, the shape of the absorption spectrum and the emission spectrum is broad. In addition, even when a multimolecular assembly exceeding two molecules is not formed, various existence states can be taken depending on the direction and angle of interaction between the two molecules. The shape of the emission spectrum becomes broad.
  • the broad emission spectrum creates two major problems.
  • One problem is that the color purity of the emitted color is lowered. This is not a big problem when applied to lighting applications, but when used for electronic displays, the color gamut is small and the color reproducibility of pure colors is low. It becomes difficult.
  • fluorescence zero-zero band the rising wavelength (referred to as “fluorescence zero-zero band”) on the short wavelength side of the emission spectrum is shortened, that is, the S 1 is increased (the lowest excitation singlet energy is increased). It is to end.
  • the fluorescence zero-zero band is shortened, the phosphorescence zero-zero band derived from T 1 having lower energy than S 1 is also shortened (higher T 1 ). Therefore, the compound used in the host compound in order not to cause reverse energy transfer from the dopant, arises the need to 1 reduction and high T 1 of high S. This is a very big problem.
  • a host compound consisting essentially of an organic compound takes a plurality of active and unstable chemical species such as a cation radical state, an anion radical state, and an excited state in an organic EL device.
  • active and unstable chemical species such as a cation radical state, an anion radical state, and an excited state in an organic EL device.
  • the reverse energy from the triplet excited state of the fluorescent compound to the host compound is determined from the length of the existence time. The probability of causing movement increases. As a result, the reverse reverse energy transfer from the triplet excited state to the singlet excited state of the originally intended TADF compound does not occur sufficiently, and unfavorable reverse energy transfer to the host compound becomes the mainstream, resulting in sufficient luminous efficiency. Inconvenience that cannot be obtained.
  • the present invention includes, as a design concept, a fluorescent compound that suppresses the structural change in the excited state as described above and a fluorescent compound that has a short triplet excited state.
  • a fluorescent compound that suppresses the structural change in the excited state as described above and a fluorescent compound that has a short triplet excited state.
  • HOMO and LUMO are substantially separated in the molecule from the viewpoint of reducing ⁇ Est.
  • the distribution states of these HOMO and LUMO can be obtained from the electron density distribution when the structure is optimized obtained by semi-empirical molecular orbital calculation.
  • the structure optimization and the calculation of the electron density distribution by the semi-empirical molecular orbital calculation of the fluorescent compound in the present invention are carried out using a molecular orbital calculation using B3LYP as a functional and 6-31G (d) as a basis function.
  • B3LYP as a functional and 6-31G (d) as a basis function.
  • Gaussian 09 (Revision C.01, MJ Frisch, et al, Gaussian, Inc., 2010.) manufactured by Gaussian, USA was used as molecular orbital calculation software.
  • “HOMO and LUMO are substantially separated” means that the HOMO orbital distribution calculated by the above molecular calculation and the central part of the LUMO orbital distribution are separated, more preferably the HOMO orbital distribution and the LUMO orbital. This means that the distributions of do not overlap.
  • the separation state of HOMO and LUMO from the above-mentioned structure optimization calculation using B3LYP as the functional and 6-31G (d) as the basis function, the time-dependent density functional method (Time-Dependent DFT) is used.
  • ⁇ Est is smaller, HOMO and LUMO are more separated.
  • ⁇ Est calculated using the same calculation method as described above is preferably 0.5 eV or less, more preferably 0.2 eV or less, and further preferably 0.1 eV or less.
  • the highest occupied orbit (HOMO) and the lowest unoccupied orbit (LUMO) according to the present invention are calculated by molecular orbital calculation. That is, the structure optimization and the calculation of the electron density distribution by the semi-empirical molecular orbital calculation method of the fluorescent compound in the present invention are B3LYP as a functional, 6-31G (d) as a basis function, or a general function. It can be calculated using molecular orbital calculation software using M06-2X as a function and 6-31G (d) as a basis function, and there is no particular limitation on the software, and any of them can be similarly obtained. .
  • Gaussian 09 (Revision C.01, MJ Frisch, et al, Gaussian, Inc., 2010.) manufactured by Gaussian, USA was used as molecular orbital calculation software. Winstar, available as free software, was used to display the coordinates of the optimized structure and the highest occupied orbit (HOMO) and lowest empty orbit (LUMO).
  • the HOMO and LUMO calculated by the semi-empirical molecular orbital calculation method use the optimized structure of the ground state (S 0 ).
  • the distance between the centers of HOMO and LUMO is defined as follows.
  • the center of the molecule is determined as the origin in XYZ coordinates.
  • a group of constituent atoms having the highest electron density displayed as HOMO is defined as a three-dimensional region having a volume corresponding to the electron density distribution, and the center coordinates of the three-dimensional region are calculated.
  • An intermediate point between the center of the molecule determined as the origin and the center coordinate of the three-dimensional region corresponding to the electron density distribution is calculated and defined as a.
  • the center coordinates of the three-dimensional region corresponding to the electron density distribution are calculated for a group of constituent atoms having the highest electron density displayed as LUMO, and the center of the molecule and the tertiary corresponding to the electron density distribution are calculated.
  • the middle point of the center coordinates of the original area is defined as b.
  • a distance obtained by connecting a and b with a straight line is defined as a center-to-center distance between HOMO and LUMO.
  • the average value of the distances connecting the distances a and b between the centers is defined as the distance between the centers of HOMO and LUMO.
  • the intermediate points a and b when the intermediate points a and b are deviated from the coordinates where atoms in the molecule exist, the intermediate points a and b can be approximated to a and b, respectively, by the atoms at the shortest distance from the coordinates.
  • the highest occupied orbit (HOMO) and the lowest unoccupied orbit (in the electron density distribution of the fluorescent compound obtained by structure optimization calculation using a semi-empirical molecular orbital calculation method is within the range of 5.0 to 9.0 mm.
  • the distance between the centers of HOMO and LUMO in the electron density distribution of the fluorescent compound is within the range of 5.0 to 9.0 mm.
  • the distance between the centers of HOMO and LUMO in the electron density distribution of the fluorescent compound is in the range of 5.5 to 7.5 mm.
  • the longest distance from the center of gravity of the lowest empty orbit (LUMO) is obtained by determining the distance between the aforementioned molecular center and the atom at the longest distance among a group of atoms with the highest electron density displayed as LUMO. .
  • VDW radius The van der Waals radius of a molecule can be obtained from the van der Waals volume of the molecule by the following formula when a structure optimized by the molecular calculation method is displayed by Winmoster.
  • V 4/3 ⁇ ⁇ r 3
  • V the van der Waals volume
  • r the van der Waals radius.
  • the longest distance from the molecular center of the lowest orbital (LUMO) in the electron density distribution of the fluorescent compound obtained by structural optimization calculation using a semi-empirical molecular orbital calculation method is The radius is preferably 0.1 mm or more larger than the van der Waals radius calculated by the semi-empirical molecular orbital calculation method.
  • the lowest excited singlet energy S 1 of the fluorescent compound in the present invention is defined in the present invention as calculated in the same manner as in a normal method. That is, a sample to be measured is deposited on a quartz substrate to prepare a sample, and the absorption spectrum (vertical axis: absorbance, horizontal axis: wavelength) of this sample is measured at room temperature (300 K). A tangent line is drawn with respect to the rising edge of the absorption spectrum on the long wavelength side, and is calculated from a predetermined conversion formula based on the wavelength value at the intersection of the tangent line and the horizontal axis.
  • the aggregation property of the molecule of the fluorescent compound used in the present invention is relatively high, an error due to aggregation may occur in the measurement of the thin film.
  • the lowest excited singlet energy S 1 in the present invention is at room temperature (25 ° C.). The peak value of the maximum emission wavelength in the solution state of the fluorescent compound was used as an approximate value.
  • a solvent that does not affect the aggregation state of the fluorescent compound that is, a solvent having a small influence of the solvent effect, for example, a nonpolar solvent such as cyclohexane or toluene can be used.
  • the lowest excited triplet energy (T 1 ) of the fluorescent compound in the present invention was calculated from the photoluminescence (PL) characteristics of the solution or thin film.
  • PL photoluminescence
  • the lowest excited triplet energy can be obtained from the lowest excited singlet energy with the energy difference as ⁇ Est.
  • an absolute PL quantum yield measuring apparatus C9920-02 manufactured by Hamamatsu Photonics
  • the light emission lifetime was measured using a streak camera C4334 (manufactured by Hamamatsu Photonics) while exciting the sample with laser light.
  • the light emitting layer according to the present invention is composed of a single layer or a plurality of layers, and when there are a plurality of light emitting layers, a non-light emitting intermediate layer may be provided between the light emitting layers.
  • a hole blocking layer also referred to as a hole blocking layer
  • an electron injection layer also referred to as a cathode buffer layer
  • An electron blocking layer also referred to as an electron barrier layer
  • a hole injection layer also referred to as an anode buffer layer
  • the electron transport layer according to the present invention is a layer having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. Moreover, you may be comprised by multiple layers.
  • the hole transport layer according to the present invention is a layer having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. Moreover, you may be comprised by multiple layers. In the above-described typical element configuration, the layer excluding the anode and the cathode is also referred to as “organic layer”.
  • the organic EL element of the present invention may be a so-called tandem element in which a plurality of light emitting units including at least one light emitting layer are stacked.
  • a tandem element in which a plurality of light emitting units including at least one light emitting layer are stacked.
  • the first light emitting unit, the second light emitting unit and the third light emitting unit are all the same, May be different.
  • Two light emitting units may be the same, and the remaining one may be different.
  • a plurality of light emitting units may be laminated directly or via an intermediate layer, and the intermediate layer is generally an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, an intermediate layer.
  • a known material structure can be used as long as it is also called an insulating layer and has a function of supplying electrons to the anode-side adjacent layer and holes to the cathode-side adjacent layer.
  • Examples of materials used for the intermediate layer include ITO (indium tin oxide), IZO (indium zinc oxide), ZnO 2 , TiN, ZrN, HfN, TiOx, VOx, CuI, InN, GaN, and CuAlO 2.
  • tandem organic EL element examples include, for example, US Pat. No. 6,337,492, US Pat. No. 7,420,203, US Pat. No. 7,473,923, US Pat. No. 6,872,472, US Pat. No. 6,107,734. Specification, U.S. Pat. No. 6,337,492, International Publication No.
  • JP-A-2006-228712 JP-A-2006-24791, JP-A-2006-49393, JP-A-2006-49394 JP-A-2006-49396, JP-A-2011-96679, JP-A-2005-340187, JP-A-4711424, JP-A-34968681, JP-A-3884564, JP-A-42131169, JP-A-2010-192719.
  • Examples include constituent materials, but the present invention is not limited to these.
  • the light emitting layer according to the present invention is a layer that provides a field in which electrons and holes injected from an electrode or an adjacent layer are recombined to emit light via excitons, and the light emitting portion is a layer of the light emitting layer. Even within, it may be the interface between the light emitting layer and the adjacent layer.
  • the structure of the light emitting layer according to the present invention is not particularly limited as long as it satisfies the requirements defined in the present invention.
  • the total thickness of the light emitting layer is not particularly limited, but it prevents the uniformity of the film to be formed, the application of unnecessary high voltage during light emission, and the improvement of the stability of the emission color against the drive current.
  • each light emitting layer according to the present invention is preferably adjusted to a range of 2 nm to 1 ⁇ m, more preferably adjusted to a range of 2 to 200 nm, and further preferably adjusted to a range of 3 to 150 nm. Is done.
  • the light-emitting layer according to the present invention contains a light-emitting dopant (a light-emitting compound, a light-emitting dopant compound, a dopant compound, also simply referred to as a dopant), and further includes the aforementioned host compound (a matrix material, a light-emitting host compound, or simply a host). It is preferable to contain.
  • a light-emitting dopant a light-emitting compound, a light-emitting dopant compound, a dopant compound, also simply referred to as a dopant
  • the aforementioned host compound a matrix material, a light-emitting host compound, or simply a host. It is preferable to contain.
  • Luminescent dopant As the luminescent dopant, a fluorescent luminescent dopant (also referred to as a fluorescent luminescent compound, a fluorescent dopant, or a fluorescent compound) and a phosphorescent dopant (phosphorescent compound, phosphorescent dopant, phosphorescence). It is also referred to as a functional compound).
  • a fluorescent luminescent dopant also referred to as a fluorescent luminescent compound, a fluorescent dopant, or a fluorescent compound
  • phosphorescent dopant phosphorescent compound, phosphorescent dopant, phosphorescence
  • the light emitting layer contains the fluorescent compound in the range of 5 to 40% by mass, and particularly preferably in the range of 10 to 30% by mass.
  • the concentration of the fluorescent compound in the light emitting layer can be arbitrarily determined based on the specific fluorescent compound used and the requirements of the device, and is uniform in the thickness direction of the light emitting layer. It may be contained in a concentration and may have any concentration distribution.
  • the fluorescent compound according to the present invention may be used in combination of two or more kinds, a combination of fluorescent compounds having different structures, or a combination of a fluorescent compound and a phosphorescent compound. May be. Thereby, arbitrary luminescent colors can be obtained.
  • the light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 3.16 on page 108 of “New Color Science Handbook” (edited by the Japan Society of Color Science, University of Tokyo Press, 1985). It is determined by the color when the result measured with a total of CS-1000 (manufactured by Konica Minolta Co., Ltd.) is applied to the CIE chromaticity coordinates.
  • the light emitting layer of one layer or a plurality of layers contains a plurality of light emitting dopants having different emission colors and emits white light.
  • the fluorescent compound according to the present invention is preferably a fluorescent compound having a structure represented by the following general formula (1).
  • Ar represents an aromatic hydrocarbon ring group or an aromatic heterocyclic group which may be condensed, and at least one place is substituted with Q.
  • n represents a natural number. When n is 2 or more, each Ar may be different.
  • Q represents an electron donating group or an electron accepting group.
  • L represents a divalent linking group.
  • m represents a natural number, and when m is 2 or more, each L may be different.
  • p represents a natural number, and when p is 2 or more, each of Ar, Q and L may be different.
  • a fluorescent compound having a structure represented by the following general formula (2) is preferable.
  • Ar and Ar ′ represent an aromatic hydrocarbon ring group having a substituent which may be condensed or an aromatic heterocyclic group having a substituent.
  • Ar and Ar ′ may be different.
  • R represents a methyl group or a phenyl group.
  • a fluorescent compound having a structure represented by the following general formula (3) is preferable.
  • R 1 , R 2 , R 3 and R 4 each represent a hydrogen atom, a branched alkyl group, an aryl group, a heteroaryl group or a cyano group.
  • X 1 to X 4 each represents a sulfur atom, a sulfinyl group or a sulfonyl group.
  • the fluorescent compound preferably has an aromatic hydrocarbon ring group or an aromatic heterocyclic group derived from the following compounds represented by Ar-1 to Ar-8 as Ar.
  • R ′ represents an alkyl group, an aryl group or a heteroaryl group.
  • the fluorescent compound has an aromatic hydrocarbon ring group or an aromatic heterocyclic group derived from the compound having a structure represented by Ar-1 to Ar-8 as the Ar ′.
  • the fluorescent compound represented by the general formula (3) preferably used in the present invention will be given below, but the present invention is not limited thereto.
  • the fluorescent compound represented by the general formula (3) represents a compound in which X 1 to X 4 and R 1 to R 4 are substituted with the elements described in Tables 1 and 2.
  • Cz represents a carbazolyl group.
  • the compound represented by the general formula (1) can be synthesized by using a known synthesis reaction such as an experimental chemistry course (edited by the Chemical Society of Japan).
  • a known synthesis reaction such as an experimental chemistry course (edited by the Chemical Society of Japan).
  • the compound represented by the general formula (2) is described in Chem. Lett. , 2012, 1652 and the like.
  • the fluorescent compound according to the present invention includes a 5-membered or 6-membered aromatic heterocycle containing 1 or 2 nitrogen atoms or a condensed aromatic heterocycle containing the 5-membered or 6-membered aromatic heterocycle in the skeleton.
  • a compound represented by the following general formula (A) having an electron-withdrawing group and a monocyclic or condensed ring group as the electron-donating group is preferable.
  • Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond.
  • the linking site represented by Ar 0 may be anything as long as it does not inhibit the function of the compound of the general formula (A), and is preferably an aromatic hydrocarbon ring, an aromatic heterocyclic ring, or a combination thereof. It is.
  • EWG represents a 5-membered or 6-membered aromatic heterocycle containing 1 or 2 nitrogen atoms, or a condensed aromatic heterocycle containing the 5-membered or 6-membered aromatic heterocycle in the skeleton. Represents an electron-withdrawing group.
  • Examples of the electron-withdrawing group include those shown as the following 6 ⁇ -type electron withdrawing group, 10 ⁇ -type electron withdrawing group, and 14 ⁇ -type electron withdrawing group.
  • the 6 ⁇ electron-withdrawing group is a 5- or 6-membered heterocyclic group containing a nitrogen atom.
  • examples thereof include a pyridine ring, a pyrimidine ring, a pyridazine ring, a pyrazine ring, a pyrrole ring, an oxazole ring, an isoxazole ring, a thiazole ring, an isothiazole ring, an imidazole ring, a pyrazole ring, and a furazane ring.
  • Preferable examples include a pyridine ring, a pyrimidine ring, a pyridazine ring, and a pyrazine ring.
  • the electron-withdrawing group of 10 ⁇ electron system is a condensed ring compound consisting of 5 or 6 members containing a nitrogen atom.
  • Examples include indole ring, indazole ring, benzothiazole ring, benzoxazole ring, benzimidazole ring, quinoline ring, isoquinoline ring, quinazoline ring, quinoxaline ring, isoindole ring, naphthyridine ring, phthalazine ring and the like.
  • a benzothiazole ring, a benzoxazole ring, and a benzimidazole ring are mentioned.
  • the electron-withdrawing group of 14 ⁇ electron system is a 5- or 6-membered condensed ring compound containing a nitrogen atom.
  • a carbazole ring, carboline ring, diazacarbazole ring in which one of the carbon atoms constituting the carboline ring is replaced by a nitrogen atom
  • acridine ring phenanthridine ring, phenanthroline ring, phenazine ring, azadibenzofuran Ring, azadibenzothiophene ring and the like.
  • a carboline ring, a diazacarbazole ring, an azadibenzofuran ring, and an azadibenzothiophene ring are mentioned.
  • EDG represents a monocyclic or condensed ring group which is an electron donating group.
  • carbazole ring, thiophene ring, pyrrole ring, mesityl group, xylyl group and the like can be mentioned.
  • m and n represent an integer of 1 to 6.
  • X 11 , X 12 , X 13 , X 14 and X 15 each independently represent a nitrogen atom or CRa, but X 11 , X 12 , X 13 , X 14 and X 15 One or two of them represent a nitrogen atom.
  • Ra represents a hydrogen atom or a substituent.
  • substituents include an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a pentyl group, a hexyl group, Octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), cycloalkyl group (eg, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (eg, vinyl group, allyl group, etc.), alkynyl group (eg, ethynyl) Group, propargyl group, etc.), aromatic hydrocarbon group (aromatic hydrocarbon ring group, aromatic carbocyclic group, aryl group, etc.
  • alkyl group for example, a methyl group, an ethyl
  • substituents may be further substituted with the above substituents. Further, these substituents may be bonded together to form a ring.
  • Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond.
  • EDG represents a monocyclic or condensed ring group which is an electron donating group.
  • n and n represent an integer of 1 to 6.
  • X 21 represents NRb, C (Rc) (Rd), an oxygen atom or a sulfur atom.
  • X 22 , X 23 , X 24 , X 25 and X 26 each independently represent a nitrogen atom or CRa.
  • X 21 , X 22 , X 23 , X 24 , X 25 and X 26 represent a nitrogen atom.
  • Ra, Rb, Rc and Rd each independently represent a hydrogen atom or a substituent.
  • Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond.
  • EDG represents a monocyclic or condensed ring group which is an electron donating group.
  • m and n each represents an integer of 1 to 6.
  • X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 each independently represent a nitrogen atom or CRa.
  • One or two of X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 represent a nitrogen atom.
  • Ra represents a hydrogen atom or a substituent.
  • Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond.
  • EDG represents a monocyclic or condensed ring group which is an electron donating group.
  • m and n represent an integer of 1 to 6.
  • X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 each independently represent a nitrogen atom or CRa.
  • One or two of X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 represent a nitrogen atom.
  • R 1 and Ra represent a hydrogen atom or a substituent.
  • Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond.
  • EDG represents a monocyclic or condensed ring group which is an electron donating group.
  • m and n each represents an integer of 1 to 6.
  • R 1 and Ra represent a substituent
  • the substituent has the same meaning as Ra in the general formula (1-1).
  • substitution position of Ar 0 , X 35 or X 37 is preferable.
  • X 31, X 32, X 33, X 34, X 35, X 36 and X 38 each independently represent a nitrogen atom or CRa.
  • One or two of X 31 , X 32 , X 33 , X 34 , X 35 , X 36 and X 38 represent a nitrogen atom.
  • R 2 and Ra represent a hydrogen atom or a substituent.
  • Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond.
  • EDG represents a monocyclic or condensed ring group which is an electron donating group.
  • m and n each represents an integer of 1 to 6.
  • X 11 , X 12 , X 13 , X 14 and X 15 each independently represent a nitrogen atom or CRa, but X 11 , X 12 , X 13 , X 14 and X 15 One or two of them represent a nitrogen atom.
  • Ra represents a hydrogen atom or a substituent.
  • R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 and R 48 each independently represent a hydrogen atom or a substituent.
  • Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond.
  • m and n represent an integer of 1 to 6.
  • R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 , R 48 and Ra represent a substituent
  • the substituent may be represented by the general formula (1 It is synonymous with Ra in -1).
  • X 21 , X 22 , X 23 , X 24 , X 25 and X 26 each independently represent a nitrogen atom, NRb, an oxygen atom, a sulfur atom or CRa.
  • One or two of X 21 , X 22 , X 23 , X 24 , X 25 and X 26 represent a nitrogen atom.
  • R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 and R 48 are each independently a hydrogen atom or a substituent.
  • Ra and Rb represent a hydrogen atom or a substituent.
  • Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond.
  • m and n represent an integer of 1 to 6.
  • X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 in the general formula (3-4) each independently represent a nitrogen atom or CRa.
  • One or two of X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 represent a nitrogen atom.
  • R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 and R 48 each independently represent a hydrogen atom or a substituent.
  • Ra represents a hydrogen atom or a substituent.
  • Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond.
  • m and n represent an integer of 1 to 6.
  • X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 each independently represent a nitrogen atom or CRa.
  • One or two of X 31 , X 32 , X 33 and X 34 represent a nitrogen atom.
  • One or two of X 31 , X 32 , X 33 , X 34 , X 35 , X 36 , X 37 and X 38 represent a nitrogen atom.
  • R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 and R 48 each independently represent a hydrogen atom or a substituent.
  • R 3 and Ra represent a hydrogen atom or a substituent.
  • Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond.
  • m and n represent an integer of 1 to 6.
  • X 31 , X 32 , X 33 , X 34 , X 35 , X 36 and X 38 represented by the general formula (3-6) each independently represent a nitrogen atom or CRa.
  • One or two of X 31 , X 32 , X 33 , X 34 , X 35 , X 36 and X 38 represent a nitrogen atom.
  • One or two of X 35 , X 36 and X 38 represent a nitrogen atom.
  • Ar 0 represents a site connecting an electron-withdrawing group and an electron-donating group or a direct bond.
  • m and n represent an integer of 1 to 6.
  • R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 and R 48 each independently represent a hydrogen atom or a substituent.
  • R 4 and Ra each independently represent a hydrogen atom or a substituent.
  • Rp, Rq, Rr, Rs, Rt and Ru each independently represent a hydrogen atom or a substituent, at least one represents EWG, and at least one represents EDG.
  • x represents an integer of 0 or 1.
  • —Y— and —Z— are each independently represented by a direct bond or —O—, —S— or —N (Rg) —.
  • Rg represents a substituent.
  • Rp, Rq, Rr, Rs, Rt and Ru may be linked to each other to form a bond.
  • Rp 1 , Rq 1 , Rr 1 , Rs 1 , Rt 1 and Ru 1 represented by the general formula (4-2) each independently represent a hydrogen atom or a substituent, and at least one represents EWG, One represents EDG.
  • Rp 1 , Rq 1 , Rr 1 , Rs 1 , Rt 1 and Ru 1 may be linked together to form a bond.
  • Rp 2 , Rq 2 , Rr 2 , Rs 2 , Rt 2 , Ru 2 , Rv 2 and Rw 2 represented by the general formula (4-3) each independently represent a hydrogen atom or a substituent, and at least one One represents EWG and at least one represents EDG.
  • —X— is represented by any of —O—, —S—, —N (Rg) — or —C (Rh) (Ri) —.
  • Rg, Rh and Ri represent a substituent.
  • Rp 2 , Rq 2 , Rr 2 , Rs 2 , Rt 2 , Ru 2 , Rv 2 and Rw 2 may be linked to each other to form a bond.
  • N—R 1 , N—R 2 , N—R 3 , N—R 4 It is also preferable that is represented by an oxygen atom or a sulfur atom.
  • the said fluorescent compound can be synthesize
  • the phosphorescent dopant used in the present invention is a compound in which light emission from an excited triplet is observed, specifically, a compound that emits phosphorescence at room temperature (25 ° C.), and a phosphorescence quantum yield. Is defined as a compound of 0.01 or more at 25 ° C., but a preferable phosphorescence quantum yield is 0.1 or more.
  • the phosphorescence quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of Experimental Chemistry Course 4 of the 4th edition.
  • the phosphorescence dopant used in the present invention achieves the phosphorescence quantum yield (0.01 or more) in any solvent. Just do it.
  • the phosphorescent dopant can be appropriately selected from known materials used for the light emitting layer of the organic EL device. Specific examples of known phosphorescent dopants that can be used in the present invention include compounds described in the following documents. Nature 395, 151 (1998), Appl. Phys. Lett. 78, 1622 (2001), Adv. Mater. 19, 739 (2007), Chem. Mater. 17, 3532 (2005), Adv. Mater. 17, 1059 (2005), International Publication No. 2009/100991, International Publication No.
  • Patent Application Publication No. 2006/0263635 U.S. Patent Application Publication No. 2003/0138657, U.S. Patent Application Publication No. 2003/0152802, U.S. Patent No. 7090928, Angew. Chem. lnt. Ed. 47, 1 (2008), Chem. Mater. 18, 5119 (2006), Inorg. Chem. 46, 4308 (2007), Organometallics 23, 3745 (2004), Appl. Phys. Lett. 74, 1361 (1999), International Publication No. 2002/002714, International Publication No. 2006/009024, International Publication No. 2006/056418, International Publication No. 2005/019373, International Publication No. 2005/123873, International Publication No.
  • a preferable phosphorescent dopant includes an organometallic complex having Ir as a central metal. More preferably, a complex containing at least one coordination mode of metal-carbon bond, metal-nitrogen bond, metal-oxygen bond, and metal-sulfur bond is preferable.
  • the host compound used in the present invention is a compound mainly responsible for charge injection and transport in the light emitting layer, and its own light emission is not substantially observed in the organic EL device.
  • the host compound preferably has a mass ratio in the layer of 20% or more among the compounds contained in the light emitting layer.
  • a host compound may be used independently or may be used in combination of multiple types. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient.
  • the host compound that is preferably used in the present invention will be described below.
  • the host compound used together with the fluorescent compound in the present invention is not particularly limited, but from the viewpoint of reverse energy transfer, those having an excitation energy larger than the excitation singlet energy of the fluorescent compound according to the present invention are preferable. Further, those having an excitation triplet energy larger than the excitation triplet energy of the fluorescent compound according to the present invention are more preferable.
  • the host compound is responsible for carrier transport and exciton generation in the light emitting layer. Therefore, it can exist stably in all active species states such as cation radical state, anion radical state, and excited state, and does not cause chemical changes such as decomposition and addition reaction. It is preferable not to move at the angstrom level.
  • the light-emitting dopant used in combination exhibits TADF light emission
  • the T 1 energy of the host compound itself is high, and the host compounds are associated with each other.
  • the host compound in prevention of generation of a low T 1 state, that the TADF compound and the host compound does not form a exciplex, such that the host compound does not form a electro-mer by the electric field, the host compound is a molecular structure such as not to lower T 1 of Appropriate design is required.
  • the host compound itself must have high electron hopping mobility, high hole hopping movement, and small structural change when it is in a triplet excited state. It is.
  • host compounds that satisfy these requirements include high ⁇ -energy conjugated skeletons with high T 1 energy, such as carbazole skeleton, azacarbazole skeleton, dibenzofuran skeleton, dibenzothiophene skeleton, or azadibenzofuran skeleton. What has as a partial structure is mentioned preferably.
  • the light-emitting layer contains a carbazole derivative, it is possible to promote appropriate carrier hopping and dispersion of the light-emitting material in the light-emitting layer, and the effect of improving the light-emitting performance of the device and the stability of the thin film can be obtained. Therefore, it is preferable.
  • aryl includes not only an aromatic hydrocarbon ring but also an aromatic heterocyclic ring. More preferably, it is a compound in which a carbazole skeleton and a 14 ⁇ -electron aromatic heterocyclic compound having a molecular structure different from that of the carbazole skeleton are directly bonded, and further a 14 ⁇ -electron aromatic heterocyclic compound is incorporated in the molecule.
  • a carbazole derivative having at least one is preferred.
  • the carbazole derivative is preferably a compound having two or more conjugated structures having 14 ⁇ electrons or more in order to further enhance the effects of the present invention.
  • the compound represented by the following general formula (I) is also preferable. This is because the compound represented by the following general formula (I) has a condensed ring structure, and therefore a ⁇ electron cloud spreads, the carrier transportability is high, and the glass transition temperature (Tg) is high. Further, generally, the condensed aromatic ring tends to have a small triplet energy (T 1 ), but the compound represented by the general formula (I) has a high T 1 and has a short emission wavelength (that is, T 1). and larger S 1) it can be suitably used also for the light emitting material.
  • X 101 represents NR 101 , an oxygen atom, a sulfur atom, CR 102 R 103 or SiR 102 R 103 .
  • y 1 to y 8 each represents CR 104 or a nitrogen atom.
  • R 101 to R 104 each represent a hydrogen atom or a substituent, and may be bonded to each other to form a ring.
  • Ar 101 and Ar 102 each represent an aromatic ring and may be the same or different.
  • n101 and n102 represents an each an integer of 0 to 4, when R 101 is a hydrogen atom, n101 represents an integer of 1-4.
  • R 101 to R 104 in the general formula (I) represent hydrogen or a substituent, and the substituent referred to here refers to what may be contained within a range not inhibiting the function of the host compound used in the present invention, for example, In the case where a substituent is introduced in the synthetic scheme, the compound having the effect of the present invention is defined as being included in the present invention.
  • Examples of the substituent represented by each of R 101 to R 104 include linear or branched alkyl groups (for example, methyl group, ethyl group, propyl group, isopropyl group, t-butyl group, pentyl group, hexyl group, octyl group).
  • alkenyl group eg, vinyl group, allyl group, etc.
  • alkynyl group eg, ethynyl group, propargyl group, etc.
  • aromatic hydrocarbon ring group aromatic Also referred to as carbocyclic group, aryl group, etc.
  • benzene ring biphenyl, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, triphenylene ring, o-terphenyl ring, m- Terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, indene ring, fluorene ring A group derived from a fluoranthrene ring, a naphthacene ring, a pentacene ring, a perylene ring, a pentaphen ring, a picene ring, a pyrene ring, a pyrantolen ring, an anthraanthrene ring, tetralin, etc.), an aromatic heterocyclic group (for example, a furan
  • azacarbazole ring non-aromatic hydrocarbon ring group (eg, cyclopentyl group, cyclohexyl group, etc.), non-aromatic heterocyclic group (eg, pyrrolidyl group, imidazolidyl group, morpholyl group, oxazolidyl) Group), alkoxy group (for example, methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group, etc.), cycloalkoxy group (for example, cyclopentyloxy group, cyclohexyloxy group) Etc.), aryloxy group (for example, phenoxy group, naphthyloxy group) Etc.), alkylthio groups (eg, methylthio group, e
  • substituents may be further substituted with the above substituents.
  • a plurality of these substituents may be bonded to each other to form a ring.
  • y 1 to y 8 in the general formula (I) preferably at least three of y 1 to y 4 or at least three of y 5 to y 8 are represented by CR 102 , more preferably y 1 to y 8 are all CR 102 .
  • Such a skeleton is excellent in hole transport property or electron transport property, and can efficiently recombine and emit holes / electrons injected from the anode / cathode in the light emitting layer.
  • a compound in which X 101 is NR 101 , an oxygen atom, or a sulfur atom in general formula (I) is preferable as a structure having a shallow LUMO energy level and excellent electron transport properties. More preferably, the condensed ring formed with X 101 and y 1 to y 8 is a carbazole ring, an azacarbazole ring, a dibenzofuran ring or an azadibenzofuran ring.
  • R 101 is an aromatic hydrocarbon ring which is a ⁇ -conjugated skeleton among the substituents mentioned above. It is preferably a group or an aromatic heterocyclic group. Further, these R 101 may be further substituted with the substituents represented by R 101 to R 104 described above.
  • examples of the aromatic ring represented by Ar 101 and Ar 102 include an aromatic hydrocarbon ring and an aromatic heterocyclic ring. The aromatic ring may be a single ring or a condensed ring, and may be unsubstituted or may have a substituent similar to the substituents represented by R 101 to R 104 described above.
  • examples of the aromatic hydrocarbon ring represented by Ar 101 and Ar 102 include the aromatic hydrocarbon rings exemplified as the substituents represented by R 101 to R 104 described above. Examples include the same ring as the group.
  • examples of the aromatic heterocycle represented by Ar 101 and Ar 102 include the substituents represented by R 101 to R 104 described above. The same ring as an aromatic heterocyclic group is mentioned.
  • the aromatic ring itself represented by Ar 101 and Ar 102 preferably has a high T 1
  • the benzene ring (Including polyphenylene skeletons (biphenyl, terphenyl, quarterphenyl, etc.) with multiple benzene rings), fluorene ring, triphenylene ring, carbazole ring, azacarbazole ring, dibenzofuran ring, azadibenzofuran ring, dibenzothiophene ring, dibenzothiophene ring
  • each of the aromatic rings represented by Ar 101 and Ar 102 is preferably a condensed ring having three or more rings. .
  • these rings may further have the above substituent.
  • Specific examples of the aromatic heterocycle condensed with three or more rings include an acridine ring, a benzoquinoline ring, a carbazole ring, a carboline ring, a phenazine ring, a phenanthridine ring, a phenanthroline ring, a carboline ring, a cyclazine ring, Kindin ring, tepenidine ring, quinindrin ring, triphenodithiazine ring, triphenodioxazine ring, phenanthrazine ring, anthrazine ring, perimidine ring, diazacarbazole ring (any one of the carbon atoms constituting the carboline ring is a nitrogen atom Phenanthroline ring, dibenzofuran ring, dibenzothiophene ring, naphthofuran ring, naphthothiophene ring
  • n101 and n102 are each preferably an integer of 0 to 2, and more preferably n101 + n102 is an integer of 1 to 3. Furthermore, since the R 101 is the n101 and n102 when the hydrogen atom is 0 at the same time, the general formula (I) only a low Tg small molecular weight of the host compounds represented by not achievable, when R 101 is a hydrogen atom N101 represents an integer of 1 to 4.
  • the carbazole derivative is preferably a compound having a structure represented by the general formula (II). This is because such a compound tends to have particularly excellent carrier transportability.
  • X 101, Ar 101, Ar 102, n102 have the same meanings as X 101, Ar 101, Ar 102 , n102 in the formula (I).
  • n102 is preferably an integer of 0 to 2, more preferably 0 or 1.
  • the condensed ring formed containing X 101 may further have a substituent other than Ar 101 and Ar 102 as long as the function of the host compound used in the present invention is not impaired.
  • the compound represented by the general formula (II) is preferably represented by the following general formula (III-1), (III-2) or (III-3).
  • X 101, Ar 102, n102 have the same meanings as X 101, Ar 102, n102 in the general formula (II).
  • R 104 has the same meaning as R 104 in formula (I).
  • the condensed ring, carbazole ring and benzene ring formed containing X 101 are further substituted within the range not inhibiting the function of the host compound used in the present invention. You may have.
  • examples of the host compound used in the present invention include compounds represented by the general formulas (I), (II), (III-1) to (III-3) and other structures. It is not limited to these.
  • the preferred host compound used in the present invention may be a low molecular compound having a molecular weight that can be purified by sublimation or a polymer having a repeating unit.
  • a low molecular weight compound sublimation purification is possible, so that there is an advantage that purification is easy and a high-purity material is easily obtained.
  • the molecular weight is not particularly limited as long as sublimation purification is possible, but the preferred molecular weight is 3000 or less, more preferably 2000 or less.
  • the polymer used as the host compound used in the present invention is not particularly limited as long as the desired device performance can be achieved, but preferably the general formula (I), (II) or (III-1) to (III- What has the structure of 3) in a principal chain or a side chain is preferable.
  • the general formula (I), (II) or (III-1) to (III- What has the structure of 3) in a principal chain or a side chain is preferable.
  • limiting in particular as molecular weight Molecular weight 5000 or more is preferable or a thing with 10 or more repeating units is preferable.
  • the host compound has a hole transporting ability or an electron transporting ability, prevents the emission of light from being long-wavelength, and is stable with respect to heat generated when the organic EL element is driven at a high temperature or during the driving of the element.
  • Tg glass transition temperature
  • Tg is preferably 90 ° C. or higher, more preferably 120 ° C. or higher.
  • the glass transition point (Tg) is a value determined by a method based on JIS K 7121-2012 using DSC (Differential Scanning Colorimetry).
  • the electron transport layer is made of a material having a function of transporting electrons, and may have a function of transmitting electrons injected from the cathode to the light emitting layer.
  • the total thickness of the electron transport layer according to the present invention is not particularly limited, but is usually in the range of 2 nm to 5 ⁇ m, more preferably 2 to 500 nm, and further preferably 5 to 200 nm.
  • the organic EL element when the light generated in the light emitting layer is extracted from the electrode, the light extracted directly from the light emitting layer interferes with the light extracted after being reflected by the electrode from which the light is extracted and the electrode located at the counter electrode. It is known to wake up.
  • the electron mobility of the electron transport layer is preferably 10 ⁇ 5 cm 2 / Vs or more.
  • the material used for the electron transport layer may be any of electron injecting or transporting properties and hole blocking properties, and can be selected from conventionally known compounds. Can be selected and used.
  • nitrogen-containing aromatic heterocyclic derivatives (carbazole derivatives, azacarbazole derivatives (one or more carbon atoms constituting the carbazole ring are substituted with nitrogen atoms), pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, pyridazine derivatives, Triazine derivatives, quinoline derivatives, quinoxaline derivatives, phenanthroline derivatives, azatriphenylene derivatives, oxazole derivatives, thiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, benzimidazole derivatives, benzoxazole derivatives, benzthiazole derivatives, etc.), dibenzofuran derivatives, Dibenzothiophene derivatives, silole derivatives, aromatic hydrocarbon ring derivatives (naphthalene derivatives, anthracene derivatives, triphenylene derivatives, etc.) It is.
  • a metal complex having a quinolinol skeleton or a dibenzoquinolinol skeleton as a ligand such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7- Dibromo-8-quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
  • a metal complex in which the central metal is replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as the electron transport material.
  • metal-free or metal phthalocyanine or those in which the terminal thereof is substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transport material.
  • the distyrylpyrazine derivative exemplified as the material for the light emitting layer can also be used as an electron transport material, and an inorganic semiconductor such as n-type-Si, n-type-SiC, etc. as in the case of the hole injection layer and the hole transport layer. Can also be used as an electron transporting material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • the electron transport layer may be doped with a doping material as a guest material to form an electron transport layer having a high n property (electron rich).
  • the doping material include n-type dopants such as metal complexes and metal compounds such as metal halides.
  • Specific examples of the electron transport layer having such a structure include, for example, JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J. Pat. Appl. Phys. , 95, 5773 (2004) and the like.
  • More preferable electron transport materials in the present invention include aromatic heterocyclic compounds containing at least one nitrogen atom.
  • aromatic heterocyclic compounds containing at least one nitrogen atom For example, pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, triazine derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, azadibenzofuran derivatives. , Azadibenzothiophene derivatives, carbazole derivatives, azacarbazole derivatives, benzimidazole derivatives, and the like.
  • the electron transport material may be used alone or in combination of two or more.
  • the hole blocking layer is a layer having a function of an electron transport layer in a broad sense, and is preferably made of a material having a function of transporting electrons while having a small ability to transport holes, and transporting electrons while transporting holes. The probability of recombination of electrons and holes can be improved by blocking.
  • the structure of the electron carrying layer mentioned above can be used as a hole-blocking layer concerning this invention as needed.
  • the hole blocking layer provided in the organic EL device of the present invention is preferably provided adjacent to the cathode side of the light emitting layer.
  • the layer thickness of the hole blocking layer according to the present invention is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
  • the material used for a hole-blocking layer the material used for the above-mentioned electron carrying layer is used preferably, and the material used as the above-mentioned host compound is also preferably used for a hole-blocking layer.
  • the electron injection layer (also referred to as “cathode buffer layer”) according to the present invention is a layer provided between the cathode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance. It is described in detail in Chapter 2 “Electrode Materials” (pages 123 to 166) of the second edition of “The Forefront of Industrialization (issued by NTT Corporation on November 30, 1998)”.
  • the electron injection layer may be provided as necessary, and may be present between the cathode and the light emitting layer or between the cathode and the electron transport layer as described above.
  • the electron injection layer is preferably a very thin film, and the layer thickness is preferably in the range of 0.1 to 5 nm depending on the material. Moreover, the nonuniform layer (film
  • JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like Specific examples of materials preferably used for the electron injection layer are as follows. , Metals typified by strontium and aluminum, alkali metal compounds typified by lithium fluoride, sodium fluoride, potassium fluoride, etc., alkaline earth metal compounds typified by magnesium fluoride, calcium fluoride, etc., oxidation Examples thereof include metal oxides typified by aluminum, metal complexes typified by 8-hydroxyquinolinate lithium (Liq), and the like. Further, the above-described electron transport material can also be used. Moreover, the material used for said electron injection layer may be used independently, and may be used in combination of multiple types.
  • the hole transport layer contains a material having a function of transporting holes and may have a function of transmitting holes injected from the anode to the light emitting layer.
  • the total thickness of the hole transport layer according to the present invention is not particularly limited, but is usually in the range of 5 nm to 5 ⁇ m, more preferably 2 to 500 nm, and further preferably 5 to 200 nm.
  • a material used for the hole transport layer hereinafter referred to as a hole transport material
  • any material that has either a hole injection property or a transport property or an electron barrier property may be used. Any one can be selected and used.
  • porphyrin derivatives for example, porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, triarylamine derivatives, carbazole derivatives , Indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, and polyvinyl carbazole, polymeric materials or oligomers with aromatic amines introduced into the main chain or side chain, polysilane, conductive And polymer (for example, PEDOT / PSS, aniline copolymer, polyaniline, polythiophene, etc.).
  • PEDOT / PSS aniline copolymer, poly
  • Examples of the triarylamine derivative include a benzidine type typified by ⁇ -NPD, a starburst type typified by MTDATA, and a compound having fluorene or anthracene in the triarylamine linking core part.
  • hexaazatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as hole transport materials.
  • a hole transport layer having a high p property doped with impurities can be used. Examples thereof include JP-A-4-297076, JP-A-2000-196140, and JP-A-2001-102175. Appl. Phys. 95, 5773 (2004), and the like.
  • JP-A-11-251067, J. Org. Huang et. al. It is also possible to use so-called p-type hole transport materials and inorganic compounds such as p-type-Si and p-type-SiC, as described in the literature (Applied Physics Letters 80 (2002), p. 139). Further, ortho-metalated organometallic complexes having Ir or Pt as the central metal as typified by Ir (ppy) 3 are also preferably used.
  • the above-mentioned materials can be used as the hole transport material, a triarylamine derivative, a carbazole derivative, an indolocarbazole derivative, an azatriphenylene derivative, an organometallic complex, or an aromatic amine is introduced into the main chain or side chain.
  • the polymer materials or oligomers used are preferably used.
  • the electron blocking layer is a layer having a function of a hole transport layer in a broad sense, and is preferably made of a material having a function of transporting holes and a small ability to transport electrons, and transporting electrons while transporting holes. The probability of recombination of electrons and holes can be improved by blocking.
  • the structure of the positive hole transport layer mentioned above can be used as an electron blocking layer according to the present invention, if necessary.
  • the electron blocking layer provided in the organic EL device of the present invention is preferably provided adjacent to the anode side of the light emitting layer.
  • the thickness of the electron blocking layer according to the present invention is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
  • the material used for the electron blocking layer the material used for the above-described hole transport layer is preferably used, and the above-mentioned host compound is also preferably used for the electron blocking layer.
  • the hole injection layer (also referred to as “anode buffer layer”) according to the present invention is a layer provided between the anode and the light emitting layer for the purpose of lowering the driving voltage and improving the light emission luminance. It is described in detail in Volume 2, Chapter 2, “Electrode Materials” (pages 123 to 166) of “The Forefront of Industrialization (issued by NTT Corporation on November 30, 1998)”.
  • the hole injection layer may be provided as necessary, and may be present between the anode and the light emitting layer or between the anode and the hole transport layer as described above.
  • the details of the hole injection layer are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, etc.
  • materials used for the hole injection layer include: Examples include materials used for the hole transport layer described above. Among them, phthalocyanine derivatives typified by copper phthalocyanine, hexaazatriphenylene derivatives, metal oxides typified by vanadium oxide, amorphous carbon as described in JP-T-2003-519432 and JP-A-2006-135145, etc.
  • the materials used for the hole injection layer described above may be used alone or in combination of two or more.
  • the organic layer in the present invention described above may further contain other additives.
  • the additive include halogen elements such as bromine, iodine and chlorine, halogenated compounds, alkali metals such as Pd, Ca and Na, alkaline earth metals, transition metal compounds, complexes, and salts.
  • the content of the additive can be arbitrarily determined, but is preferably 1000 ppm or less, more preferably 500 ppm or less, and further preferably 50 ppm or less with respect to the total mass% of the contained layer. . However, it is not within this range depending on the purpose of improving the transportability of electrons and holes or the purpose of favoring the exciton energy transfer.
  • a method for forming an organic layer (hole injection layer, hole transport layer, light emitting layer, hole blocking layer, electron transport layer, electron injection layer, etc.) according to the present invention will be described.
  • the method for forming the organic layer according to the present invention is not particularly limited, and a conventionally known method such as a vacuum deposition method or a wet method (also referred to as a wet process) can be used.
  • a conventionally known method such as a vacuum deposition method or a wet method (also referred to as a wet process) can be used.
  • the wet method include spin coating method, casting method, ink jet method, printing method, die coating method, blade coating method, roll coating method, spray coating method, curtain coating method, and LB method (Langmuir-Blodgett method).
  • a method with high roll-to-roll method suitability such as a die coating method, a roll coating method, an ink jet method and a spray coating method is preferable.
  • the liquid medium for dissolving or dispersing the organic EL material used in the present invention include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, Aromatic hydrocarbons such as mesitylene and cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane, and organic solvents such as DMF and DMSO can be used.
  • ketones such as methyl ethyl ketone and cyclohexanone
  • fatty acid esters such as ethyl acetate
  • halogenated hydrocarbons such as dichlorobenz
  • dispersion method it can disperse
  • the vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C., a degree of vacuum of 10 ⁇ 6 to 10 ⁇ 2 Pa, and a vapor deposition rate of 0.01 to It is desirable to select appropriately within a range of 50 nm / second, a substrate temperature of ⁇ 50 to 300 ° C., and a layer (film) thickness of 0.1 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the organic layer according to the present invention is preferably formed from the hole injection layer to the cathode consistently by a single evacuation, but it may be taken out halfway and subjected to different film forming methods. In that case, it is preferable to perform the work in a dry inert gas atmosphere.
  • anode As the anode in the organic EL element, a material having a work function (4 eV or more, preferably 4.5 eV or more) of a metal, an alloy, an electrically conductive compound, or a mixture thereof is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • the anode may be formed by depositing a thin film of these electrode materials by vapor deposition or sputtering, and a pattern having a desired shape may be formed by photolithography, or when pattern accuracy is not so high (about 100 ⁇ m or more) A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material. Or when using the substance which can be apply
  • the film thickness of the anode depends on the material, it is usually selected in the range of 10 nm to 1 ⁇ m, preferably 10 to 200 nm.
  • cathode As the cathode, a material having a work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, aluminum, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the emission luminance is advantageously improved.
  • a transparent or translucent cathode can be produced by producing a conductive transparent material mentioned in the description of the anode on the cathode after producing the above metal with a thickness of 1 to 20 nm.
  • the support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention is not particularly limited in the type of glass, plastic, etc., and is transparent. Or opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefin resins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by J
  • the surface of the resin film may be formed with an inorganic film, an organic film, or a hybrid film of both, and the water vapor permeability (25 ⁇ 0.5 ° C.) measured by a method according to JIS K 7129-1992.
  • Relative humidity (90 ⁇ 2)% RH) is preferably 0.01 g / m 2 ⁇ 24 h or less, and further, oxygen permeability measured by a method according to JIS K 7126-1987.
  • it is preferably a high-barrier film having 1 ⁇ 10 ⁇ 3 ml / m 2 ⁇ 24 h ⁇ atm or less and a water vapor permeability of 1 ⁇ 10 ⁇ 5 g / m 2 ⁇ 24 h or less.
  • any material may be used as long as it has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
  • the method for forming the barrier film is not particularly limited.
  • vacuum deposition sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma polymerization
  • a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
  • the opaque support substrate examples include metal plates such as aluminum and stainless steel, films, opaque resin substrates, and ceramic substrates.
  • the external extraction quantum efficiency at room temperature (25 ° C.) of light emission of the organic EL device of the present invention is preferably 1% or more, and more preferably 5% or more.
  • external extraction quantum efficiency (%) number of photons emitted to the outside of the organic EL element / number of electrons flowed to the organic EL element ⁇ 100.
  • a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination.
  • sealing means used for sealing the organic EL element of the present invention include a method of bonding a sealing member, an electrode, and a support substrate with an adhesive.
  • a sealing member it should just be arrange
  • transparency and electrical insulation are not particularly limited. Specific examples include a glass plate, a polymer plate / film, and a metal plate / film. Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • polymer plate examples include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • metal plate examples include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • a polymer film and a metal film can be preferably used because the organic EL element can be thinned.
  • the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 ml / m 2 ⁇ 24 h ⁇ atm or less, and is measured by a method according to JIS K 7129-1992.
  • the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity 90 ⁇ 2%) is preferably 1 ⁇ 10 ⁇ 3 g / m 2 ⁇ 24 h or less.
  • the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to.
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • an organic EL element may deteriorate by heat processing, what can be adhesive-hardened from room temperature to 80 degreeC is preferable.
  • a desiccant may be dispersed in the adhesive.
  • coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
  • the electrode and the organic layer are coated on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film.
  • the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
  • vacuum deposition sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma
  • a combination method a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase.
  • a vacuum can also be used.
  • a hygroscopic compound can also be enclosed inside. Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
  • perchloric acids eg perchloric acid Barium, magnesium perchlorate, and the like
  • anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
  • a protective film or a protective plate may be provided outside the sealing film or the sealing film on the side facing the support substrate with the organic layer interposed therebetween.
  • the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate.
  • the same glass plate, polymer plate / film, metal plate / film, etc. used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
  • An organic EL element emits light inside a layer having a refractive index higher than that of air (within a refractive index of about 1.6 to 2.1), and is about 15% to 20% of light generated in the light emitting layer. It is generally said that it can only be taken out. This is because light incident on the interface (interface between the transparent substrate and air) at an angle ⁇ greater than the critical angle causes total reflection and cannot be taken out of the device, This is because light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the side surface of the device.
  • a technique for improving the light extraction efficiency for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the transparent substrate and the air interface (for example, US Pat. No. 4,774,435), A method for improving efficiency by providing light condensing property (for example, Japanese Patent Laid-Open No. 63-134795), a method for forming a reflective surface on the side surface of an element (for example, Japanese Patent Laid-Open No. 1-220394), a substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the substrate and the light emitter (for example, Japanese Patent Laid-Open No.
  • these methods can be used in combination with the organic EL device of the present invention.
  • a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, transparent A method of forming a diffraction grating between any layers of the electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
  • by combining these means it is possible to obtain an element having higher luminance or durability.
  • the low refractive index layer include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally in the range of about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Furthermore, it is preferable that it is 1.35 or less.
  • the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave exuded by evanescent enters the substrate.
  • the method of introducing a diffraction grating into an interface that causes total reflection or in any medium has a feature that the effect of improving the light extraction efficiency is high.
  • This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction, such as first-order diffraction or second-order diffraction.
  • the light that cannot be emitted due to total internal reflection between layers is diffracted by introducing a diffraction grating into any layer or medium (in the transparent substrate or transparent electrode). , Trying to extract light out.
  • the introduced diffraction grating desirably has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. The light extraction efficiency does not increase so much. However, by making the refractive index distribution a two-dimensional distribution, light traveling in all directions is diffracted, and light extraction efficiency is increased.
  • the position where the diffraction grating is introduced may be in any of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.
  • the period of the diffraction grating is preferably in the range of about 1/2 to 3 times the wavelength of light in the medium.
  • the arrangement of the diffraction gratings is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.
  • the organic EL element of the present invention can be processed in a specific direction, for example, by combining a so-called condensing sheet with a microlens array structure on the light extraction side of the support substrate (substrate). Condensing light in the front direction with respect to the light emitting surface can increase the luminance in a specific direction.
  • the microlens array quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate. One side is preferably within a range of 10 to 100 ⁇ m.
  • the condensing sheet for example, a sheet that is put into practical use in an LED backlight of a liquid crystal display device can be used.
  • a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used.
  • the shape of the prism sheet for example, the base material may be formed by forming a ⁇ -shaped stripe having a vertex angle of 90 degrees and a pitch of 50 ⁇ m, or the vertex angle is rounded and the pitch is changed randomly. Other shapes may be used.
  • a light-diffusion plate and a film together with a condensing sheet For example, a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
  • the organic EL element of the present invention can be used as an electronic device such as a display device, a display, and various light emitting devices.
  • light emitting devices include lighting devices (home lighting, interior lighting), clocks and backlights for liquid crystals, billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light Although the light source of a sensor etc. are mentioned, It is not limited to this, Especially, it can use effectively for the use as a backlight of a liquid crystal display device, and a light source for illumination.
  • patterning may be performed by a metal mask, an ink jet printing method, or the like as needed during film formation. In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned. In the fabrication of the element, a conventionally known method is used. Can do.
  • the light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 3.16 on page 108 of “New Color Science Handbook” (edited by the Japan Society of Color Science, University of Tokyo Press, 1985). It is determined by the color when the result measured with a total of CS-1000 (manufactured by Konica Minolta Co., Ltd.) is applied to the CIE chromaticity coordinates.
  • the display device including the organic EL element of the present invention may be single color or multicolor, but here, the multicolor display device will be described.
  • a shadow mask is provided only at the time of forming a light emitting layer, and a film can be formed on one surface by vapor deposition, casting, spin coating, ink jet, printing, or the like.
  • vapor deposition there is no limitation on the method, but a vapor deposition method, an inkjet method, a spin coating method, and a printing method are preferable.
  • the configuration of the organic EL element included in the display device is selected from the above-described configuration examples of the organic EL element as necessary.
  • the manufacturing method of an organic EL element is as having shown in the one aspect
  • a DC voltage When a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode. Further, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Further, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state.
  • the alternating current waveform to be applied may be arbitrary.
  • the multicolor display device can be used as a display device, a display, or various light emission sources.
  • a display device or display full-color display is possible by using three types of organic EL elements of blue, red, and green light emission.
  • Examples of the display device or display include a television, a personal computer, a mobile device, an AV device, a character broadcast display, and an information display in a car.
  • the display device or display may be used as a display device for reproducing still images and moving images
  • the driving method when used as a display device for reproducing moving images may be either a simple matrix (passive matrix) method or an active matrix method.
  • Light-emitting devices include household lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, optical storage media light sources, electrophotographic copying machine light sources, optical communication processor light sources, optical sensor light sources, etc.
  • the present invention is not limited to these.
  • FIG. 2 is a schematic view showing an example of a display device composed of organic EL elements. It is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
  • the display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, a wiring unit C that electrically connects the display unit A and the control unit B, and the like.
  • the control unit B is electrically connected to the display unit A via the wiring unit C, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside. Sequentially emit light according to the image data signal, scan the image, and display the image information on the display unit A.
  • FIG. 3 is a schematic diagram of a display device using an active matrix method.
  • the display unit A includes a wiring unit C including a plurality of scanning lines 5 and data lines 6, a plurality of pixels 3 and the like on a substrate.
  • the main members of the display unit A will be described below.
  • FIG. 3 shows a case where the light emitted from the pixel 3 is extracted in the direction of the white arrow (downward).
  • the scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions (details are illustrated) Not)
  • the pixel 3 receives an image data signal from the data line 6 and emits light according to the received image data.
  • Full-color display is possible by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.
  • FIG. 4 is a schematic diagram showing a pixel circuit.
  • the pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like.
  • a full color display can be performed by using red, green, and blue light emitting organic EL elements as the organic EL elements 10 in a plurality of pixels, and juxtaposing them on the same substrate.
  • an image data signal is applied from the control unit B to the drain of the switching transistor 11 via the data line 6.
  • a scanning signal is applied from the control unit B to the gate of the switching transistor 11 via the scanning line 5
  • the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is supplied to the capacitor 13 and the driving transistor 12. Is transmitted to the gate.
  • the capacitor 13 is charged according to the potential of the image data signal, and the drive transistor 12 is turned on.
  • the drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10, and the power supply line 7 connects to the organic EL element 10 according to the potential of the image data signal applied to the gate. Current is supplied.
  • the driving of the switching transistor 11 is turned off.
  • the driving of the driving transistor 12 is kept on and the next scanning signal is applied. Until then, the light emission of the organic EL element 10 continues.
  • the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
  • the organic EL element 10 emits light by the switching transistor 11 and the drive transistor 12 that are active elements for the organic EL element 10 of each of the plurality of pixels, and the light emission of the organic EL element 10 of each of the plurality of pixels 3. It is carried out.
  • Such a light emitting method is called an active matrix method.
  • the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or by turning on / off a predetermined light emission amount by a binary image data signal. Good.
  • the potential of the capacitor 13 may be held continuously until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
  • a passive matrix light emission drive in which the organic EL element emits light according to the data signal only when the scanning signal is scanned.
  • FIG. 5 is a schematic diagram of a passive matrix display device.
  • a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
  • the scanning signal of the scanning line 5 is applied by sequential scanning, the pixels 3 connected to the applied scanning line 5 emit light according to the image data signal.
  • the pixel 3 has no active element, and the manufacturing cost can be reduced.
  • the organic EL element of the present invention By using the organic EL element of the present invention, a display device with improved luminous efficiency can be obtained.
  • the organic EL element of the present invention can also be used for a lighting device.
  • the organic EL element of the present invention may be used as an organic EL element having a resonator structure.
  • Examples of the purpose of use of the organic EL element having such a resonator structure include a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processing machine, and a light source of an optical sensor. It is not limited. Moreover, you may use for the said use by making a laser oscillation.
  • the organic EL element of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, or a type for directly viewing a still image or a moving image. It may be used as a display device (display).
  • the driving method when used as a display device for reproducing a moving image may be either a passive matrix method or an active matrix method. Alternatively, it is possible to produce a full-color display device by using two or more organic EL elements of the present invention having different emission colors.
  • the fluorescent compound used in the present invention can be applied to an organic EL element that emits substantially white light as a lighting device.
  • white light emission can be obtained by simultaneously emitting a plurality of light emission colors and mixing the colors.
  • the combination of a plurality of emission colors may include three emission maximum wavelengths of three primary colors of red, green, and blue, or two of the complementary colors such as blue and yellow, blue green and orange, etc. The thing containing the light emission maximum wavelength may be used.
  • the organic EL device forming method of the present invention may be simply arranged by providing a mask only when forming a light emitting layer, a hole transport layer, an electron transport layer, or the like, and separately coating with the mask. Since the other layers are common, patterning of a mask or the like is unnecessary, and for example, an electrode film can be formed on one surface by a vapor deposition method, a cast method, a spin coating method, an ink jet method, a printing method, or the like, and productivity is improved. According to this method, unlike a white organic EL device in which light emitting elements of a plurality of colors are arranged in parallel in an array, the elements themselves are luminescent white.
  • FIG. 1 One Embodiment of Lighting Device of the Present Invention.
  • the non-light emitting surface of the organic EL device of the present invention is covered with a glass case, a 300 ⁇ m thick glass substrate is used as a sealing substrate, and an epoxy photocurable adhesive (LUX The track LC0629B) is applied, and this is overlaid on the cathode and brought into close contact with the transparent support substrate, irradiated with UV light from the glass substrate side, cured, sealed, and illuminated as shown in FIGS.
  • a device can be formed.
  • FIG. 1 An epoxy photocurable adhesive
  • FIG. 6 shows a schematic diagram of the lighting device, and the organic EL element of the present invention (organic EL element 101 in the lighting device) is covered with a glass cover 102 (note that the sealing operation with the glass cover is performed by lighting. This was performed in a glove box under a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more) without bringing the organic EL element 101 in the apparatus into contact with the air.
  • FIG. 7 is a cross-sectional view of the lighting device, 105 is a cathode, 106 is an organic layer, and 107 is a glass substrate with a transparent electrode.
  • the glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
  • the light emitting material of the present invention has a distance between centers of the highest occupied orbital (HOMO) and the lowest unoccupied orbital (LUMO) in the electron density distribution obtained by structural optimization calculation using a semi-empirical molecular orbital calculation method. It contains a fluorescent compound that is in the range of 0.0 to 9.0 mm. As a result, the electron mobility in the organic EL element is improved, and as a result, the emission efficiency is reduced at a high current density in the organic EL element, that is, the effect of improving the roll-off is obtained. An improvement effect is obtained.
  • HOMO highest occupied orbital
  • LUMO lowest unoccupied orbital
  • the longest distance from the molecular center of the lowest unoccupied orbital (LUMO) in the electron density distribution obtained by structural optimization calculation using the semi-empirical molecular orbital calculation method is It is preferable to contain a fluorescent compound that is 0.1 mm or more larger than the van der Waals radius calculated by the semi-empirical molecular orbital calculation method.
  • the fluorescent compound it is preferable to contain a host compound having a structure represented by the general formula (I) or / and the general formula (II). As a result, the effects of further improving the luminous efficiency and improving the lifetime can be obtained.
  • the luminescent material of the present invention can also be used for a luminescent thin film, a display device, and a lighting device.
  • the luminescent thin film of the present invention will be described.
  • the light-emitting thin film of the present invention can be produced in the same manner as the organic layer forming method.
  • the method for forming the light-emitting thin film of the present invention is not particularly limited, and a conventionally known method such as a vacuum deposition method or a wet method (also referred to as a wet process) can be used.
  • the wet method include spin coating method, casting method, ink jet method, printing method, die coating method, blade coating method, roll coating method, spray coating method, curtain coating method, and LB method (Langmuir-Blodgett method). From the viewpoint of obtaining a homogeneous thin film easily and high productivity, a method with high roll-to-roll method suitability such as a die coating method, a roll coating method, an ink jet method and a spray coating method is preferable.
  • liquid medium for dissolving or dispersing the light emitting material of the present invention examples include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, mesitylene, and cyclohexyl.
  • Aromatic hydrocarbons such as benzene, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane, and organic solvents such as DMF and DMSO can be used.
  • dispersion method it can disperse
  • different film forming methods may be applied for each layer.
  • the vapor deposition conditions vary depending on the type of compound used, but generally the boat heating temperature is in the range of 50 to 450 ° C., and the degree of vacuum is in the range of 10 ⁇ 6 to 10 ⁇ 2 Pa.
  • the deposition rate is within the range of 0.01 to 50 nm / second
  • the substrate temperature is within the range of ⁇ 50 to 300 ° C.
  • the layer thickness is within the range of 0.1 to 5 ⁇ m, and preferably within the range of 5 to 200 nm. desirable.
  • the light-emitting thin film of the present invention can be used for a display device and a lighting device. As a result, a display device and a lighting device with improved luminous efficiency can be obtained.
  • Table 3 shows the results of calculating the HOMO-LUMO center-to-center distance and VDW distance obtained by structure optimization calculation using the semi-empirical molecular orbital calculation method of the compounds used in the examples and the longest distance from the molecular center to LUMO. Shown in
  • Example 1 ⁇ Production of thin film >> (Method for producing thin film 1-A) A quartz substrate having a size of 50 mm ⁇ 50 mm and a thickness of 0.7 mm was subjected to ultrasonic cleaning with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes. After coating for 30 seconds, it was baked at 120 ° C. for 30 minutes and dried. The thin film was sealed by covering it with a can-shaped glass case in an atmosphere of high-purity nitrogen gas with a purity of 99.999% or higher to produce a thin film 1-A having a thickness of 40 nm.
  • the concentration of the dopant compound 2-4 and the host compound PVK is 100% by mass
  • the concentration of the dopant compound 2-4 is changed to 10%, 20%, 30%, and 40% by mass. A thin film was also produced.
  • Thin films 1-B to 1-E were prepared in the same manner as thin film 1-A except that the dopant compounds were changed as shown in Table 4, and the dopant compound concentrations were 10%, 20%, and 30% by weight. Also, a thin film changed to 40% by mass was prepared.
  • UV-970 (Hitachi, Ltd.) was used for the thin film 1-A to 1-E samples, the UV spectrum was measured, the excitation wavelength was determined, and the PL spectrum of each thin film was measured.
  • an absolute PL quantum yield measuring device C9920-02 manufactured by Hamamatsu Photonics was used.
  • the peak intensity at the emission maximum wavelength (initial maximum wavelength) when the doping concentration of the dopant compound is 5% by mass was set to 1, and the peak intensity at the initial maximum wavelength at each doping concentration was shown in Table 4 as a relative value.
  • Example 2 (Method for producing organic EL element 2-A) A transparent substrate on which ITO (indium tin oxide) is formed as an anode with a thickness of 150 nm on a glass substrate having a thickness of 50 mm ⁇ 50 mm and a thickness of 0.7 mm and patterned, and then this ITO transparent electrode is attached. After ultrasonic cleaning with isopropyl alcohol, drying with dry nitrogen gas and UV ozone cleaning for 5 minutes, this transparent substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus. Each of the vapor deposition crucibles in the vacuum vapor deposition apparatus was filled with the constituent material of each layer in an amount optimal for device fabrication.
  • ITO indium tin oxide
  • the evaporation crucible used was made of a resistance heating material made of molybdenum or tungsten. After reducing the vacuum to 1 ⁇ 10 ⁇ 4 Pa, energize and heat the deposition crucible containing Ca, deposit on the ITO transparent electrode at a deposition rate of 0.1 nm / second, and form an electron injection layer with a layer thickness of 5 nm Formed. Next, the substrate was moved from the vacuum deposition apparatus to the attached glove box, and a light emitting material having the following composition was applied in a nitrogen atmosphere to form a light emitting layer.
  • Dopant compound 3-1 5 parts by mass Host compound polyvinylcarbazole (PVK) 95 parts by mass Chlorobenzene 20000 parts by mass
  • Organic EL elements 2-B to 2-G were prepared in the same manner as the organic EL element 2-A, except that the compounds used in the organic EL element 2-A were changed to the compounds shown in Table 5.
  • Organic EL device 2-H was produced in the same manner as device 2-A, except that no dopant compound was used.
  • organic EL element 2-H which is a device to which no dopant compound is added
  • the organic mobility in the light emitting layer of the organic EL elements (2-E to 2-G) using the comparative compound is low, and the organic EL element
  • the electron mobility of 2-B and 2-D was almost the same as that of the host compound.
  • organic EL elements 2-A and 2-C showed good electron mobility. This means that when the LUMO distance from the molecular center is 0.1 mm or more larger than the van der Waals radius, that is, when the LUMO exists outside the molecule, electron hopping is good and the electron transport property is improved. Conceivable.
  • Example 3 (Preparation of organic EL device 3-A) A transparent substrate on which ITO (indium tin oxide) is formed as an anode with a thickness of 150 nm on a glass substrate having a thickness of 50 mm ⁇ 50 mm and a thickness of 0.7 mm and patterned, and then this ITO transparent electrode is attached. After ultrasonic cleaning with isopropyl alcohol, drying with dry nitrogen gas and UV ozone cleaning for 5 minutes, this transparent substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus. Each of the vapor deposition crucibles in the vacuum vapor deposition apparatus was filled with the constituent material of each layer in an amount optimal for device fabrication. The evaporation crucible used was made of a resistance heating material made of molybdenum or tungsten.
  • the deposition crucible containing ⁇ -NPD was energized and heated, and deposited on the ITO transparent electrode at a deposition rate of 0.1 nm / second.
  • a hole injection transport layer was formed.
  • the host compound UGH2 and the dopant compound 2-4 were co-deposited at a deposition rate of 0.1 nm / second so that the volume percentage was 90% and 10%, respectively, to form a light emitting layer having a layer thickness of 35 nm.
  • BCP electron transport material
  • Organic EL elements 3-B to 3-T were produced in the same manner as the organic EL element 3-A, except that the dopant compound 2-4 and the host compound UGH2 were changed as shown in Table 6.
  • Each of the produced organic EL elements was evaluated for roll-off characteristics at room temperature (about 25 ° C.).
  • a graph of luminance vs. external quantum yield obtained when voltage was applied to each element to emit light from 0 to 10,000 cd / A was prepared.
  • the emission luminance was measured using a spectral radiance meter CS-2000 (manufactured by Konica Minolta).
  • the roll-off characteristic R is observed with respect to the emission luminance at which the maximum value of the external quantum yield of each organic EL element was obtained, and the emission luminance at which a decrease in the external quantum yield of 20% was observed. The relative value is shown.
  • Roll-off characteristic R (value of emission luminance at which a decrease in external quantum yield of 20% was observed from the maximum value) / (value of emission luminance at which the maximum value of external quantum yield was obtained) A larger value indicates better roll-off characteristics (less roll-off).
  • the organic EL elements 3-A to 3-L are superior in roll-off characteristics and external quantum yield as compared with the organic EL element of the comparative example. This is presumably because the center-to-center distance between HOMO and LUMO is preferable, and thus it is possible to suppress undesirable interactions such as aggregation between dopant compounds.
  • the organic EL device 3-C of the example since the distance from the molecular center of the fluorescent compound to LUMO is larger than 0.1 mm from the van der Waals radius, the electron transport of the fluorescent compound is As a result, it is considered that the range in which charges can be recombined when the organic EL element is driven is greatly expanded.
  • an organic electroluminescence element capable of improving luminous efficiency can be obtained, and a display device, a display, a home lighting, an interior lighting, a clock or a liquid crystal backlight provided with the organic EL element.
  • Wide light-emitting sources such as signboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light sources of optical sensors, and general household appliances that require display devices can be suitably used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

 本発明の課題は、発光効率を向上させることが可能な有機エレクトロルミネッセンス素子及び発光材料を提供することである。また、当該発光材料を含有する発光性薄膜並びに当該有機エレクトロルミネッセンス素子、発光材料又は発光性薄膜が具備された表示装置及び照明装置を提供することである。 本発明の有機エレクトロルミネッセンス素子は、一対の電極間に、蛍光発光性化合物を含有する有機層を含む少なくとも1層の有機層を有する有機エレクトロルミネッセンス素子であって、半経験的分子軌道計算法を用いて構造最適化計算して得られる当該蛍光発光性化合物の電子密度分布における最高被占軌道(HOMO)と最低空軌道(LUMO)の中心間距離が、5.0~9.0Åの範囲内であることを特徴とする。

Description

有機エレクトロルミネッセンス素子、発光材料、発光性薄膜、表示装置及び照明装置
 本発明は、有機エレクトロルミネッセンス素子及び発光材料に関する。また、当該発光材料を含有する発光性薄膜並びに当該有機エレクトロルミネッセンス素子、発光材料又は発光性薄膜が具備された表示装置及び照明装置に関する。より詳しくは、発光効率が改良された有機エレクトロルミネッセンス素子等に関する。
 有機材料のエレクトロルミネッセンス(Electro Luminescence:以下「EL」と略記する。)を利用した有機EL素子(「有機電界発光素子」ともいう。)は、平面発光を可能とする新しい発光システムとして既に実用化されている技術である。有機EL素子は、電子ディスプレイはもとより、最近では照明機器にも適用され、その発展が期待されている。
 有機ELの発光方式としては、三重項励起状態から基底状態に戻る際に光を発する「リン光発光」と、一重項励起状態から基底状態に戻る際に光を発する「蛍光発光」の二通りがある。
 有機EL素子に電界をかけると、陽極と陰極からそれぞれ正孔と電子が注入され、発光層において再結合し励起子を生じる。このとき一重項励起子と三重項励起子とが25%:75%の割合で生成するため、三重項励起子を利用するリン光発光の方が、蛍光発光に比べ、理論的に高い内部量子効率が得られることが知られている。
 しかしながら、リン光発光方式において実際に高い量子効率(以下、量子収率ともいう。)を得るためには、中心金属にイリジウムや白金などの希少金属を用いた錯体を用いる必要があり、将来的に希少金属の埋蔵量や金属自体の値段が産業上大きな問題となることが懸念される。
 一方で、蛍光発光型においても発光効率を向上させるために様々な開発がなされており、近年新しい動きが出てきた。
 例えば、特許文献1には、二つの三重項励起子の衝突により一重項励起子が生成する現象(以下、Triplet-Triplet Annihilation:以下、適宜「TTA」と略記する。また、Triplet-Triplet Fusion:「TTF」ともいう。)に着目し、TTAを効率的に起こして蛍光素子の高効率化を図る技術が開示されている。この技術により蛍光発光材料(以下、蛍光発光性材料、蛍光材料ともいう。)の発光効率は従来の蛍光発光材料の2~3倍まで向上しているが、TTAにおける理論的な一重項励起子生成効率は40%程度にとどまるため、依然としてリン光発光に比べ高発光効率化の課題を有している。
 さらに、近年では、安達らにより、熱活性化型遅延蛍光(「熱励起型遅延蛍光」ともいう:Thermally Activated Delayed Fluorescence:以下、適宜「TADF」と略記する。)機構を利用した蛍光発光材料と、有機EL素子への利用の可能性が報告されている(例えば、非特許文献1~7、特許文献2参照。)。
 TADF機構は、図1に示すように、通常の蛍光発光性化合物に比べ、一重項励起エネルギー準位と三重項励起エネルギー準位の差(ΔEst)が小さい化合物(図1では、ΔEst(TADF)がΔEst(F)よりも小さい。)を用いた場合に、三重項励起子から一重項励起子への逆項間交差が生じる現象を利用した発光機構である。すなわち、ΔEstが小さいことによって、電界励起により75%の確率で発生する三重項励起子が、本来なら発光に寄与できないところ、有機EL素子駆動時の熱エネルギーなどで一重項励起状態に遷移し、その状態から基底状態へ輻射失活(「輻射遷移」又は「放射失活」ともいう。)し蛍光発光を起こすものである。このTADF機構による遅延蛍光を利用すると、蛍光発光においても、理論的には100%の内部量子効率が可能となると考えられている。
 しかしながら、TADF機構を利用した蛍光発光性化合物を含め、従来の蛍光発光性化合物は、凝集する性質を示すものがあり、凝集することで、1分子が示す発光波長よりも長波長側で見られる、エキシマー発光するものがあることが知られている。蛍光発光性化合物が、エキシマー発光すると、発光強度が低くなり、発光効率の低下につながる場合がある。
 また、蛍光発光性化合物自身の特性として、電荷輸送性に偏りがあり、特に、電荷輸送性に乏しい場合も同様に発光効率の低下につながることが問題となっている。
国際公開第2012/133188号 特開2013-116975号公報
「照明に向けた燐光有機EL技術の開発」応用物理 第80巻、第4号、2011年 H.Uoyama,et al.,Nature,2012,492,234-238 S.Y.Lee et al.,Applied Physics Letters,2012,101,093306-093309 Q.Zhang et al.,J.Am.Chem.Soc.,2012,134,14706-14709 T.Nakagawa et al.,Chem.Commun.,2012,48,9580-9582 A.Endo et al.,Adv.Mater.,2009,21,4802-4806 有機EL討論会 第10回例会予稿集 p11-12,2010
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、発光効率を向上させることが可能な有機エレクトロルミネッセンス素子及び発光材料を提供することである。また、当該発光材料を含有する発光性薄膜並びに当該有機エレクトロルミネッセンス素子、発光材料又は発光性薄膜が具備された表示装置及び照明装置を提供することである。
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討した結果、半経験的分子軌道計算法を用いて構造最適化計算して得られる当該蛍光発光性化合物の電子密度分布における最高被占軌道(HOMO)と最低空軌道(LUMO)の中心間距離が、5.0~9.0Åの範囲内であることにより発光効率を向上させることを見いだし本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.一対の電極間に、蛍光発光性化合物を含有する有機層を含む少なくとも1層の有機層を有する有機エレクトロルミネッセンス素子であって、
 半経験的分子軌道計算法を用いて構造最適化計算して得られる当該蛍光発光性化合物の電子密度分布における最高被占軌道(HOMO)と最低空軌道(LUMO)の中心間距離が、5.0~9.0Åの範囲内であることを特徴とする有機エレクトロルミネッセンス素子。
 2.前記半経験的分子軌道計算法を用いて構造最適化計算して得られる当該蛍光発光性化合物の電子密度分布における前記最低空軌道(LUMO)の分子中心からの最長距離が、前記半経験的分子軌道計算法により算出されるファンデルワールス半径よりも0.1Å以上大きいことを特徴とする第1項に記載の有機エレクトロルミネッセンス素子。
 3.前記有機層のうち少なくとも1層が、前記蛍光発光性化合物に加えて、下記一般式(I)で表される構造を有するホスト化合物を含有することを特徴とする第1項又は第2項に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000005
(一般式(I)中、X101は、NR101、酸素原子、硫黄原子、CR102103又はSiR102103を表す。y~yは、各々CR104又は窒素原子を表す。R101~R104は、各々水素原子又は置換基を表し、また互いに結合して環を形成してもよい。Ar101及びAr102は、各々芳香環を表し、それぞれ同一でも異なっていてもよい。n101及びn102は、各々0~4の整数を表すが、R101が水素原子の場合は、n101は1~4の整数を表す。)
 4.前記一般式(I)で表される構造を有するホスト化合物が、下記一般式(II)で表される構造を有することを特徴とする第3項に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000006
(一般式(II)中、X101は、NR101、酸素原子、硫黄原子、CR102103又はSiR102103を表す。R101~R103は、各々水素原子又は置換基を表し、また互いに結合して環を形成してもよい。Ar101及びAr102は、各々芳香環を表し、それぞれ同一でも異なっていても良い。n102は0~4の整数を表す。)
 5.半経験的分子軌道計算法を用いて構造最適化計算して得られる電子密度分布における最高被占軌道(HOMO)と最低空軌道(LUMO)の中心間距離が、5.0~9.0Åの範囲内である蛍光発光性化合物を含有することを特徴とする発光材料。
 6.前記半経験的分子軌道計算法を用いて構造最適化計算して得られる前記電子密度分
布における前記最低空軌道(LUMO)の分子中心からの最長距離が、前記半経験的分子軌道計算法により算出されるファンデルワールス半径よりも0.1Å以上大きい蛍光発光性化合物を含有することを特徴とする第5項に記載の発光材料。
 7.前記蛍光発光性化合物に加えて、下記一般式(I)で表される構造を有するホスト化合物を含有することを特徴とする第5項又は第6項に記載の発光材料。
Figure JPOXMLDOC01-appb-C000007
(一般式(I)中、X101は、NR101、酸素原子、硫黄原子、CR102103又はSiR102103を表す。y~yは、各々CR104又は窒素原子を表す。R101~R104は、各々水素原子又は置換基を表し、また互いに結合して環を形成してもよい。Ar101及びAr102は、各々芳香環を表し、それぞれ同一でも異なっていても良い。n101及びn102は各々0~4の整数を表すが、R101が水素原子の場合は、n101は1~4の整数を表す。)
 8.前記一般式(I)で表される構造を有するホスト化合物が、下記一般式(II)で表される構造を有することを特徴とする第7項に記載の発光材料。
Figure JPOXMLDOC01-appb-C000008
(一般式(II)中、X101は、NR101、酸素原子、硫黄原子、CR102103又はSiR102103を表す。R101~R103は、各々水素原子又は置換基を表し、また互いに結合して環を形成してもよい。Ar101及びAr102は、各々芳香環を表し、それぞれ同一でも異なっていても良い。n102は0~4の整数を表す。)
 9.第5項から第8項までのいずれか一項に記載の発光材料を含有することを特徴とする発光性薄膜。
 10.第1項から第4項までのいずれか一項に記載の有機エレクトロルミネッセンス素子が、具備されていることを特徴とする表示装置。
 11.第5項から第8項までのいずれか一項に記載の発光材料が、用いられていることを特徴とする表示装置。
 12.第9項に記載の発光性薄膜が、用いられていることを特徴とする表示装置。
 13.第1項から第4項までのいずれか一項に記載の有機エレクトロルミネッセンス素子が、具備されていることを特徴とする照明装置。
 14.第5項から第8項までのいずれか一項に記載の発光材料が、用いられていることを特徴とする照明装置。
 15.第9項に記載の発光性薄膜が、用いられていることを特徴とする照明装置。
 本発明の上記手段により、発光効率を向上させることが可能な有機エレクトロルミネッセンス素子及び発光材料を提供することができる。また、当該発光材料を含有する発光性薄膜並びに当該有機エレクトロルミネッセンス素子、発光材料又は発光性薄膜が具備された表示装置及び照明装置を提供することができる。
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。
 本発明者らは、半経験的分子軌道計算を用いることにより、上記の問題を解析した結果、蛍光発光性化合物の基底状態における最高被占軌道(HOMO)と、最低空軌道(LUMO)の中心間距離がある一定の距離から離れた場合に、エキシマー発光が見られ、発光強度の低下が顕著に見られることを見いだした。
 また、蛍光発光性化合物の基底状態の再安定化構造におけるファンデルワールス半径よりも、最低空軌道(LUMO)の分子中心からの距離が短く、かつ最高被占軌道(HOMO)の分子中心からの距離がファンデルワールス距離よりも長い場合に、電荷輸送性に偏りがあり、特に電子輸送性の低下が顕著に見られることも見いだした。
 有機分子の中には、HOMOとLUMOがある一定の重なりをもち、それが発光の強度(振動子強度)と相関することは古くから知られている。しかしながら、有機分子の中には、HOMOとLUMOが分離しているものも多く見られている。例えば、分子内にドナー部位とアクセプター部位を両方備える分子である。このような場合、HOMOはドナー部位、LUMOはアクセプター部位に局在化することが多く、特に、巨大分子の両末端にドナー、アクセプター部位を有する場合には、HOMOとLUMOは、分子の両末端に存在することになる。
 このような場合、有機分子は、自身の持つ電荷をHOMO-LUMO遷移の間で行うことと同義となり、すなわち分子内電荷移動(CT)性が強いといえる。
 このような分子は、それ自身分子内での電荷密度の偏りが大きいため、静電引力によってドナーとアクセプター部位が近づき、凝集体を形成しやすいと考えられる。凝集体を形成することで安定な低エネルギー準位が形成され、それがエキシマー発光につながると考えられる。
 さらに、当該有機分子が三重項を経る蛍光発光性化合物、すなわちTADF化合物である場合においては、凝集体を形成することで三重項成分が失活し、発光量子収率の低下を招くと考えられる。
 また、蛍光発光性化合物のファンデルワールス半径よりもLUMOの分子中心からの距離が短く、かつHOMOの分子中心からの距離がファンデルワールス半径よりも長い場合には、球状の分子であれば分子の外殻にHOMOが存在し、LUMOは分子の内殻に存在しているか、平面分子の場合には、分子の末端にHOMOが存在し、LUMOは分子の中心に近いことになる。このような場合、前者では球状分子のHOMOの内側にLUMOが隠れていることになり、後者の場合、LUMOよりも外側にある発光に関与しない置換基にLUMOが隠れることになる。
 このような場合、蛍光発光性化合物を有機EL素子のような電子デバイスに使用すると、正孔は分子のHOMO準位を経由し(ホッピングし)円滑に移動できるが、LUMOは分子の内側に隠れているため、正孔と比較すると電子のホッピングが妨げられ、結果として電荷輸送性に偏りが生じると考えられる。
 したがって、蛍光発光性化合物の凝集を抑制し、電荷輸送性を向上させることで、発光効率を向上させた有機EL素子を提供することができる。また、当該発光材料を含有する発光性薄膜並びに当該有機エレクトロルミネッセンス素子、発光材料又は発光性薄膜が具備された表示装置及び照明装置を提供することができる。
通常の蛍光発光性化合物及びTADF化合物のエネルギーダイヤグラムを示した模式図 有機EL素子から構成される表示装置の一例を示した模式図 アクティブマトリクス方式による表示装置の模式図 画素の回路を示した概略図 パッシブマトリクス方式による表示装置の模式図 照明装置の概略図 照明装置の模式図
 一対の電極間に、蛍光発光性化合物を含有する有機層を含む少なくとも1層の有機層を有する有機エレクトロルミネッセンス素子であって、
 半経験的分子軌道計算法を用いて構造最適化計算して得られる当該蛍光発光性化合物の電子密度分布における最高被占軌道(HOMO)と最低空軌道(LUMO)の中心間距離が、5.0~9.0Åの範囲内であることを特徴とする。この特徴は、請求項1から請求項15までの請求項に係る発明に共通する技術的特徴である。
 また、前記半経験的分子軌道計算法を用いて構造最適化計算して得られる当該蛍光発光性化合物の電子密度分布における前記最低空軌道(LUMO)の分子中心からの最長距離が、前記半経験的分子軌道計算法により算出されるファンデルワールス半径よりも0.1Å以上大きいことにより、有機EL素子中の電子移動度向上、それに伴い有機EL素子中の高電流密度における発光効率の低下、すなわちロールオフ改善の効果が得られることから、好ましい。
 また、前記有機層のうち少なくとも1層が、前記蛍光発光性化合物に加えて、前記一般式(I)で表される構造を有するホスト化合物を含有することが、本発明の効果を一層高めるために好ましい。
 また、本発明においては、前記一般式(I)で表される構造を有するホスト化合物が、前記一般式(II)で表される構造を有することが好ましい。これにより、ホスト化合物とドーパント化合物間の良好な相互作用により、分子の凝集性が改善し、良好な電荷の授受が可能になることから、前記の蛍光発光性化合物により得られる効果を相乗的に高めることができ、さらに発光効率及び半減寿命を改善する効果が得られる。
 また、本発明の発光材料においては、半経験的分子軌道計算法を用いて構造最適化計算して得られる電子密度分布における最高被占軌道(HOMO)と最低空軌道(LUMO)の中心間距離が、5.0~9.0Åの範囲内である蛍光発光性化合物を含有することを特徴とする。これにより、蛍光発光性化合物間の凝集を抑制する効果及び分子内での電荷がクエンチすることを抑制し、発光効率を向上させる効果が得られる。
 また、本発明の発光材料においては、前記半経験的分子軌道計算法を用いて構造最適化計算して得られる前記電子密度分布における前記最低空軌道(LUMO)の分子中心からの最長距離が、前記半経験的分子軌道計算法により算出されるファンデルワールス半径よりも0.1Å以上大きい蛍光発光性化合物を含有することが好ましい。これにより、有機EL素子中の電子移動度の向上、それに伴い有機EL素子中の高電流密度における発光効率の低下、すなわちロールオフの改善の効果が得られることから、発光効率を高め、寿命を改善する効果が得られる。
 また、前記蛍光発光性化合物に加えて、前記一般式(I)で表される構造を有するホスト化合物を含有することが、本発明の効果を一層高めるために好ましい。
 また、前記一般式(I)で表される構造を有するホスト化合物が、前記一般式(II)で表される構造を有することが、本発明の効果を一層高めるために好ましい。
 本発明の発光材料は、発光性薄膜に好適に具備され得る。これにより、発光効率が改善された発光性薄膜が得られる。
 本発明の有機エレクトロルミネッセンス素子は、表示装置に好適に具備され得る。これにより、発光効率及び半減寿命が改善された表示装置が得られる。
 本発明の発光材料は、表示装置に好適に具備され得る。これにより、発光効率及び半減寿命が改善された表示装置が得られる。
 本発明の発光性薄膜は、表示装置に好適に具備され得る。これにより、発光効率及び半減寿命が改善された表示装置が得られる。
 本発明の有機エレクトロルミネッセンス素子は、照明装置に好適に具備され得る。これにより、発光効率及び半減寿命が改善された照明装置が得られる。
 本発明の発光材料は、照明装置に好適に具備され得る。これにより、発光効率及び半減寿命が改善された照明装置が得られる。
 本発明の発光性薄膜は、照明装置に好適に具備され得る。これにより、発光効率及び半減寿命が改善された照明装置が得られる。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
 本論に入る前に、本発明の技術思想と関連する、有機ELの発光方式及び発光材料について述べる。
 <有機ELの発光方式>
 有機ELの発光方式としては三重項励起状態から基底状態に戻る際に光を発する「リン光発光」と、一重項励起状態から基底状態に戻る際に光を発する「蛍光発光」の二通りがある。
 有機ELのような電界で励起する場合には、三重項励起子が75%の確率で、一重項励起子が25%の確率で生成するため、リン光発光の方が蛍光発光に比べ発光効率を高くすることが可能で、低消費電力化を実現するには優れた方式である。
 一方、蛍光発光においても、75%の確率で生成してしまう、通常では、励起子のエネルギーが、無輻射失活により、熱にしかならない三重項励起子を、高密度で存在させることによって、二つの三重項励起子から一つの一重項励起子を発生させて発光効率を向上させるTTA(Triplet-Triplet Annihilation、また、Triplet-Triplet Fusion:「TTF」と略記する。)機構を利用した方式が見つかっている。
 さらに、近年では、安達らの発見により一重項励起状態と三重項励起状態のエネルギーギャップを小さくすることで、発光中のジュール熱及び/又は発光素子が置かれる環境温度によりエネルギー準位の低い三重項励起状態から一重項励起状態に逆項間交差がおこり、結果としてほぼ100%に近い蛍光発光を可能とする現象(熱励起型遅延蛍光、又は熱励起型遅延蛍光ともいう:「TADF」)とそれを可能にする蛍光物質が見いだされている(例えば、非特許文献1等参照。)。
 <リン光発光性化合物>
 前述のとおり、リン光発光は発光効率的には蛍光発光よりも理論的には3倍有利であるが、三重項励起状態から一重項基底状態へのエネルギー失活(=リン光発光)は禁制遷移であり、また同様に一重項励起状態から三重項励起状態への項間交差も禁制遷移であるため、通常その速度定数は小さい。すなわち、遷移が起こりにくいため、励起子寿命はミリ秒から秒オーダーと長くなり、所望の発光を得ることは困難である。
 ただし、イリジウムや白金などの重金属を用いた錯体が発光する場合には、中心金属の重原子効果によって、前記の禁制遷移の速度定数が3桁以上増大し、配位子の選択によっては、100%のリン光量子収率を得ることも可能となる。
 しかしながら、このような理想的な発光を得るためには、希少金属であるイリジウムやパラジウム、白金などのいわゆる白金属と呼ばれる貴金属を用いる必要があり、大量に使用されることになるとその埋蔵量や金属自体の値段が産業上大きな問題となってくる。
 <蛍光発光性化合物>
 一般的な蛍光発光性化合物は、リン光発光性化合物のような重金属錯体である必要性は特になく、炭素、酸素、窒素、水素などの一般的な元素の組み合わせから構成される、いわゆる有機化合物が適用でき、さらに、リンや硫黄、ケイ素などその他の非金属元素を用いることも可能で、また、アルミニウムや亜鉛などの典型金属の錯体も活用できるなど、その多様性はほぼ無限と言える。
 ただし、従来の蛍光化合物では前記のように励起子の25%しか発光に適用できないために、リン光発光のような高効率発光は望めない。
 <遅延蛍光化合物>
 [励起三重項-三重項消滅(TTA)遅延蛍光化合物]
 蛍光発光性化合物の問題点を解決すべく登場したのが遅延蛍光を利用した発光方式である。三重項励起子同士の衝突を起源とするTTA方式は、下記のような一般式で記述できる。すなわち、従来、励起子のエネルギーが、無輻射失活により、熱にしか変換されなかった三重項励起子の一部が、発光に寄与しうる一重項励起子に逆項間交差できるメリットがあり、実際の有機EL素子においても従来の蛍光発光素子の約2倍の外部取り出し量子効率を得ることができている。
 一般式: T + T → S + S
(式中、Tは三重項励起子、Sは一重項励起子、Sは基底状態分子を表す。)
 しかしながら、上式からもわかるように、二つの三重項励起子から発光に利用できる一重項励起子は一つしか生成しないため、この方式で100%の内部量子効率を得ることは原理上できない。
 [熱活性型遅延蛍光(TADF)化合物]
 もう一つの高効率蛍光発光であるTADF方式は、TTAの問題点を解決できる方式である。
 蛍光化合物は前記のごとく無限に分子設計できる利点を持っている。すなわち、分子設計された化合物の中で、特異的に三重項励起状態と一重項励起状態のエネルギー準位差の絶対値(以降、ΔEstと記載する。)が極めて近接する化合物が存在する(図1参照)。
 このような化合物は、分子内に重原子を持っていないにもかかわらず、ΔEstが小さいために通常では起こりえない三重項励起状態から一重項励起状態への逆項間交差が起こる。さらに、一重項励起状態から基底状態への失活(=蛍光発光)の速度定数が極めて大きいことから、三重項励起子はそれ自体が基底状態に熱的に失活(無輻射失活)するよりも、一重項励起状態経由で蛍光を発しながら基底状態に戻る方が速度論的に有利である。そのため、TADFでは理想的には100%の蛍光発光が可能となる。
 <ΔEstに関する分子設計思想>
 上記ΔEstを小さくするための分子設計について説明する。
 ΔEstを小さくするためには、原理上分子内の最高被占軌道(Highest Occupied Molecular Orbital:HOMO)と最低空軌道(Lowest Unoccupied Molecular Orbital:LUMO)の空間的な重なりを小さくすることが最も効果的である。
 一般に分子の電子軌道において、HOMOは電子供与性部位に、LUMOは電子吸引性部位に分布することが知られており、分子内に電子供与性と電子吸引性の骨格を導入することによって、HOMOとLUMOが存在する位置を遠ざけることが可能である。
 例えば、前述の非特許文献1においては、シアノ基やスルホニル基、トリアジンなどの電子吸引性の骨格と、カルバゾールやジフェニルアミノ基等の電子供与性の骨格とを導入することで、LUMOとHOMOとをそれぞれ局在化させている。
 また、化合物の基底状態と三重項励起状態との分子構造変化を小さくすることも効果的である。構造変化を小さくするための方法としては、例えば、化合物を剛直にすることなどが効果的である。ここで述べる剛直とは、例えば、分子内の環と環との結合における自由回転を抑制したり、またπ共役面の大きい縮合環を導入するなど、分子内において自由に動ける部位が少ないことを意味する。特に、発光に関与する部位を剛直にすることによって、励起状態における構造変化を小さくすることが可能である。
 <TADF化合物が抱える一般的な問題>
 TADF化合物は、その発光機構及び分子構造の面から種々の問題を抱えている。
 以下に、一般的にTADF化合物が抱える問題の一部について記載する。
 TADF化合物においては、ΔEstを小さくするためにHOMOとLUMOの存在する部位をできるだけ離すことが必要であるが、このため、分子の電子状態はHOMO部位とLUMO部位が分離したドナー/アクセプター型の分子内CT(分子内電荷移動状態)に近い状態となってしまう。
 このような分子は、複数存在する場合、一方の分子のドナー部分と他方の分子のアクセプター部分とを近接させると安定化が図られる。そのような安定化状態は2分子間での形成に限らず、3分子間若しくは5分子間であったりと、複数の分子間でも形成が可能であり、結果、広い分布を持った種々の安定化状態が存在することになり、吸収スペクトル及び発光スペクトルの形状はブロードとなる。また、2分子を超える多分子集合体を形成しない場合であっても、二つの分子の相互作用する方向や角度などの違いによって様々な存在状態を取り得るため、基本的にはやはり吸収スペクトル及び発光スペクトルの形状はブロードになる。
 発光スペクトルがブロードになることは二つの大きな問題を発生する。
 一つは、発光色の色純度が低くなってしまう問題である。照明用途に適用する場合にはそれほど大きな問題にはならないが、電子ディスプレイ用途に用いる場合には色再現域が小さくなり、また、純色の色再現性が低くなることから、実際に商品として適用するのは困難になる。
 もう一つの問題は、発光スペクトルの短波長側の立ち上がり波長(「蛍光ゼロ-ゼロバンド」と呼ぶ。)が短波長化、すなわち高S化(最低励起一重項エネルギーの高エネルギー化)してしまうことである。
 当然、蛍光ゼロ-ゼロバンドが短波長化すると、Sよりもエネルギーの低いTに由来するリン光ゼロ-ゼロバンドも短波長化(高T化)してしまう。そのため、ホスト化合物に用いる化合物はドーパントからの逆エネルギー移動を起こさないようにするために、高S化かつ高T化する必要が生じてくる。
 これは非常に大きな問題である。基本的に有機化合物からなるホスト化合物は、有機EL素子中で、カチオンラジカル状態、アニオンラジカル状態及び励起状態という、複数の活性かつ不安定な化学種の状態を取るが、それら化学種は分子内のπ共役系を拡大することで比較的安定に存在させることができる。
 しかしながら、高S化かつ高T化を達成するには、分子内のπ共役系を縮小するか若しくは断ち切ることが必要となり、安定性と両立させることが困難になって、結果的には発光素子の寿命を短くしてしまうことになる。
 また、重金属を含まないTADF化合物においては、三重項励起状態から基底状態に失活する遷移は禁制遷移であるため、三重項励起状態での存在時間(励起子寿命)は数百μ秒からミリ秒オーダーと極めて長い。そのため、仮にホスト化合物のTエネルギーが蛍光発光性化合物のそれよりも高いエネルギーレベルであったとしても、その存在時間の長さから蛍光発光性化合物の三重項励起状態からホスト化合物へと逆エネルギー移動を起こす確率が増大してしまう。その結果、本来意図するTADF化合物の三重項励起状態から一重項励起状態への逆項間交差が十分に起こらずに、ホスト化合物への好ましくない逆エネルギー移動が主流となって、十分な発光効率が得られないという不具合が生じてしまう。
 上記のような問題を解決するためには、TADF化合物の発光スペクトル形状をシャープ化し、発光極大波長と発光スペクトルの立ち上がり波長の差を小さくすることが必要となる。そのためには、基本的には一重項励起状態及び三重項励起状態の分子構造の変化を小さくすることにより達成することが可能である。
 また、ホスト化合物への逆エネルギー移動を抑制するためには、TADF化合物の三重項励起状態の存在時間(励起子寿命)を短くすることが効果的である。それを実現するには、基底状態と三重項励起状態との分子構造変化を小さくすること、及び、禁制遷移をほどくのに好適な置換基や元素を導入することなどの対策を講じることで、問題点を解決することが可能である。
 本発明は、上記のように励起状態の構造変化を抑えた蛍光発光性化合物、及び三重項励起状態の存在時間が短い蛍光発光性化合物も設計思想として含むものである。
 以下に、本発明に係る蛍光発光性化合物に関する種々の測定方法について記載する。
 [電子密度分布]
 本発明に係る蛍光発光性化合物は、ΔEstを小さくするという観点から、分子内においてHOMOとLUMOが実質的に分離していることが好ましい。これらHOMO及びLUMOの分布状態については、半経験的分子軌道計算により得られる構造最適化した際の電子密度分布から求めることができる。
 本発明における蛍光発光性化合物の半経験的分子軌道計算による構造最適化及び電子密度分布の算出は、計算手法として、汎関数としてB3LYP、基底関数として6-31G(d)を用いた分子軌道計算用ソフトウェアを用いて算出することができ、ソフトウェアに特に限定はなく、いずれを用いても同様に求めることができる。
 本発明においては、分子軌道計算用ソフトウェアとして、米国Gaussian社製のGaussian09(Revision C.01,M.J.Frisch,et al,Gaussian,Inc.,2010.)を用いた。
 また、「HOMOとLUMOが実質的に分離している」とは、上記分子計算により算出されたHOMO軌道分布及びLUMO軌道分布の中心部位が離れており、より好ましくはHOMO軌道の分布とLUMO軌道の分布がほぼ重なっていないことを意味する。
 また、HOMOとLUMOの分離状態については、前述の汎関数としてB3LYP、基底関数として6-31G(d)を用いた構造最適化計算から、さらに時間依存密度汎関数法(Time-Dependent DFT)による励起状態計算を実施してS、Tのエネルギー(それぞれE(S)、E(T))を求めてΔEst=|E(S)-E(T)|として算出することも可能である。算出されたΔEstが小さいほど、HOMOとLUMOがより分離していることを示す。本発明においては、前述と同様の計算手法を用いて算出されたΔEstが0.5eV以下であることが好ましく、より好ましくは0.2eV以下であり、さらに好ましくは0.1eV以下である。
 [最高被占軌道(HOMO)と最低空軌道(LUMO)の中心間距離]
 本発明に係る最高被占軌道(HOMO)と最低空軌道(LUMO)については、分子軌道計算により算出したものである。すなわち、本発明における蛍光発光性化合物の半経験的分子軌道計算法による構造最適化及び電子密度分布の算出は、計算手法として、汎関数としてB3LYP、基底関数として6-31G(d)、若しくは汎関数としてM06-2X及び基底関数として6-31G(d)を用いた分子軌道計算用ソフトウェアを用いて算出することができ、ソフトウェアに特に限定はなく、いずれを用いても同様に求めることができる。
 本発明においては、分子軌道計算用ソフトウェアとして、米国Gaussian社製のGaussian09(Revision C.01,M.J.Frisch,et al,Gaussian,Inc.,2010.)を用いた。最適化構造の及び最高被占軌道(HOMO)と最低空軌道(LUMO)の座標表示には、フリーソフトとして入手可能なWinmosterを使用した。
 本発明において、半経験的分子軌道計算法により算出したHOMO及びLUMOは基底状態(S)の最適化構造を使用した。
 本発明において、HOMOとLUMOの中心間距離は以下のように定義する。
 量子化学計算によって算出された最適化構造をWinmosterにより表示した際、まず、分子の中心をXYZ座標で原点と定める。そして、HOMOとして表示される最も電子密度の高い構成原子の一群を電子密度分布に応じた体積を有する三次元領域として規定し、当該三次元領域の中心座標を算出する。原点として定めた分子の中心と、電子密度分布に応じた三次元領域の中心座標の中間地点を計算しこれをaと定める。また、LUMOとして表示される最も電子密度の高い構成原子の一群についてもHOMOと同様に、電子密度分布に応じた三次元領域の中心座標を算出し、分子の中心と電子密度分布に応じた三次元領域の中心座標の中間地点をbと定める。この時、aとbを直線で結んだ距離をHOMOとLUMOの中心間距離と定義する。HOMO及びLUMOの電子密度が均等で複数の群に分散している場合は、各中心間距離a及びbを結んだ距離の平均値をHOMOとLUMOの中心間距離と定義する。
 また、中間地点a及びbは、そこが分子中の原子が存在する座標から外れている場合、そこから最短距離にある原子によってそれぞれa、bと近似することも可能である。
 若しくは、中間地点a及びbに相当する地点に水素原子を擬似的に配置し、その2点を結ぶことによってもHOMOとLUMOの中心間距離を求めることも可能である。
 本発明に係る蛍光発光性化合物においては、半経験的分子軌道計算法を用いて構造最適化計算して得られる蛍光発光性化合物の電子密度分布における最高被占軌道(HOMO)と最低空軌道(LUMO)の中心間距離が、5.0~9.0Åの範囲内であることを特徴とする。
 蛍光発光性化合物の電子密度分布におけるHOMOとLUMOの中心間距離を5.0~9.0Åの範囲内とすることで、当該蛍光発光性化合物の凝集を抑制し、電荷輸送性を向上させることができる。
 さらに、蛍光発光性化合物の電子密度分布におけるHOMOとLUMOの中心間距離を5.5~7.5Åの範囲内とすることがより好ましい。これにより、蛍光発光性化合物の凝集を抑制する効果と電荷輸送性を向上させる効果をさらに高めることができる。
 [最低空軌道(LUMO)の分子重心からの最長距離]
 最低空軌道(LUMO)の分子重心からの最長距離は前述の分子中心とLUMOとして表示される最も電子密度の高い一群の原子の中で最長の距離にある原子との距離を求めることによって得られる。
 [ファンデルワールス半径(VDW半径)]
 分子のファンデルワールス半径は、分子計算法により最適化された構造をWinmosterによって表示した際、分子のファンデルワールス体積から下記の数式によって求めることができる。
 V=4/3×πr
 ここで、Vはファンデルワールス体積、rはファンデルワールス半径である。
 本発明においては、半経験的分子軌道計算法を用いて構造最適化計算して得られる当該蛍光発光性化合物の電子密度分布における前記最低空軌道(LUMO)の分子中心からの最長距離が、前記半経験的分子軌道計算法により算出されるファンデルワールス半径よりも0.1Å以上大きいことが好ましい。これにより、有機EL素子中の電子移動度の向上、それに伴い有機EL素子中の高電流密度における発光効率の低下、すなわちロールオフ改善の効果が得られる。
 [最低励起一重項エネルギーS
 本発明における蛍光発光性化合物の最低励起一重項エネルギーSについては、本発明においても通常の手法と同様にして算出されるもので定義される。すなわち、測定対象となる化合物を石英基板上に蒸着して試料を作製し、常温(300K)でこの試料の吸収スペクトル(縦軸:吸光度、横軸:波長とする。)を測定する。この吸収スペクトルの長波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値に基づいて、所定の換算式から算出される。
 ただし、本発明において使用する蛍光発光性化合物の分子自体の凝集性が比較的高い場合、薄膜の測定においては凝集による誤差を生じる可能性がある。本発明における蛍光発光性化合物はストークスシフトが比較的小さいこと、さらに励起状態と基底状態の構造変化が小さいことを考慮し、本発明における最低励起一重項エネルギーSは、室温(25℃)における蛍光発光性化合物の溶液状態の最大発光波長のピーク値を近似値として用いた。ここで、使用する溶媒は、蛍光発光性化合物の凝集状態に影響を与えない、すなわち溶媒効果の影響が小さい溶媒、例えばシクロヘキサンやトルエン等の非極性溶媒等を用いることができる。
 [最低励起三重項エネルギーT
 本発明における蛍光発光性化合物の最低励起三重項エネルギー(T)については、溶液若しくは薄膜のフォトルミネッセンス(PL)特性により算出した。例えば、薄膜における算出方法としては、希薄状態の蛍光発光性化合物の分散物を薄膜にした後に、ストリークカメラを用い、過渡PL特性を測定することで、蛍光成分とリン光成分の分離を行い、そのエネルギー差をΔEstとして最低励起一重項エネルギーから最低励起三重項エネルギーを求めることができる。
 測定・評価にあたって、絶対PL量子収率の測定については、絶対PL量子収率測定装置C9920-02(浜松ホトニクス社製)を用いた。発光寿命は、ストリークカメラC4334(浜松ホトニクス社製)を用いて、サンプルをレーザー光で励起させながら測定した。
 《有機EL素子の構成層》
 本発明の有機EL素子における代表的な素子構成としては、以下の構成を挙げることができるが、これらに限定されるものではない。
(1)陽極/発光層/陰極
(2)陽極/発光層/電子輸送層/陰極
(3)陽極/正孔輸送層/発光層/陰極
(4)陽極/正孔輸送層/発光層/電子輸送層/陰極
(5)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(6)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
(7)陽極/正孔注入層/正孔輸送層/(電子阻止層/)発光層/(正孔阻止層/)電子輸送層/電子注入層/陰極
 上記の中で(7)の構成が好ましく用いられるが、これに限定されるものではない。
 本発明に係る発光層は、単層又は複数層で構成されており、発光層が複数の場合は各発光層の間に非発光性の中間層を設けてもよい。
 必要に応じて、発光層と陰極との間に正孔阻止層(正孔障壁層ともいう)や電子注入層(陰極バッファー層ともいう)を設けてもよく、また、発光層と陽極との間に電子阻止層(電子障壁層ともいう)や正孔注入層(陽極バッファー層ともいう)を設けてもよい。
 本発明に係る電子輸送層とは、電子を輸送する機能を有する層であり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。また、複数層で構成されていてもよい。
 本発明に係る正孔輸送層とは、正孔を輸送する機能を有する層であり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。また、複数層で構成されていてもよい。
 上記の代表的な素子構成において、陽極と陰極を除いた層を「有機層」ともいう。
 (タンデム構造)
 また、本発明の有機EL素子は、少なくとも1層の発光層を含む発光ユニットを複数積層した、いわゆるタンデム構造の素子であってもよい。
 タンデム構造の代表的な素子構成としては、例えば以下の構成を挙げることができる。
 陽極/第1発光ユニット/中間層/第2発光ユニット/中間層/第3発光ユニット/陰極
 ここで、上記第1発光ユニット、第2発光ユニット及び第3発光ユニットは全て同じであっても、異なっていてもよい。また二つの発光ユニットが同じであり、残る一つが異なっていてもよい。
 複数の発光ユニットは直接積層されていても、中間層を介して積層されていてもよく、中間層は、一般的に中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、陽極側の隣接層に電子を、陰極側の隣接層に正孔を供給する機能を持った層であれば、公知の材料構成を用いることができる。
 中間層に用いられる材料としては、例えば、ITO(インジウム・スズ酸化物)、IZO(インジウム・亜鉛酸化物)、ZnO、TiN、ZrN、HfN、TiOx、VOx、CuI、InN、GaN、CuAlO、CuGaO、SrCu、LaB、RuO、Al等の導電性無機化合物層や、Au/Bi等の2層膜や、SnO/Ag/SnO、ZnO/Ag/ZnO、Bi/Au/Bi、TiO/TiN/TiO、TiO/ZrN/TiO等の多層膜、またC60等のフラーレン類、オリゴチオフェン等の導電性有機物層、金属フタロシアニン類、無金属フタロシアニン類、金属ポルフィリン類、無金属ポルフィリン類等の導電性有機化合物層等が挙げられるが、本発明はこれらに限定されない。
 発光ユニット内の好ましい構成としては、例えば、上記の代表的な素子構成で挙げた(1)~(7)の構成から、陽極と陰極を除いたもの等が挙げられるが、本発明はこれらに限定されない。
 タンデム型有機EL素子の具体例としては、例えば、米国特許第6337492号明細書、米国特許第7420203号明細書、米国特許第7473923号明細書、米国特許第6872472号明細書、米国特許第6107734号明細書、米国特許第6337492号明細書、国際公開第2005/009087号、特開2006-228712号公報、特開2006-24791号公報、特開2006-49393号公報、特開2006-49394号公報、特開2006-49396号公報、特開2011-96679号公報、特開2005-340187号公報、特許第4711424号、特許第3496681号、特許第3884564号、特許第4213169号、特開2010-192719号公報、特開2009-076929号公報、特開2008-078414号公報、特開2007-059848号公報、特開2003-272860号公報、特開2003-045676号公報、国際公開第2005/094130号等に記載の素子構成や構成材料等が挙げられるが、本発明はこれらに限定されない。
 以下、本発明の有機EL素子を構成する各層について説明する。
 《発光層》
 本発明に係る発光層は、電極又は隣接層から注入されてくる電子及び正孔が再結合し、励起子を経由して発光する場を提供する層であり、発光する部分は発光層の層内であっても、発光層と隣接層との界面であってもよい。本発明に係る発光層は、本発明で規定する要件を満たしていれば、その構成に特に制限はない。
 発光層の層厚の総和は、特に制限はないが、形成する膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、かつ、駆動電流に対する発光色の安定性向上の観点から、2nm~5μmの範囲に調整することが好ましく、より好ましくは2~500nmの範囲に調整され、更に好ましくは5~200nmの範囲に調整される。
 また、本発明に係る個々の発光層の層厚としては、2nm~1μmの範囲に調整することが好ましく、より好ましくは2~200nmの範囲に調整され、更に好ましくは3~150nmの範囲に調整される。
 本発明に係る発光層には、発光ドーパント(発光性化合物、発光性ドーパント化合物、ドーパント化合物、単にドーパントともいう。)を含有し、さらに前述のホスト化合物(マトリックス材料、発光ホスト化合物、単にホストともいう。)を含有することが好ましい。
 (1)発光ドーパント
 発光ドーパントとしては、蛍光発光性ドーパント(蛍光発光性化合物、蛍光ドーパント、蛍光性化合物ともいう。)と、リン光発光性ドーパント(リン光発光性化合物、リン光ドーパント、リン光性化合物ともいう。)が好ましく用いられる。本発明においては、少なくとも1層の発光層が前述の蛍光発光性化合物を含有することが好ましい。
 本発明においては、発光層が蛍光発光性化合物を5~40質量%の範囲内で含有し、特に、10~30質量%の範囲内で含有することが好ましい。
 発光層中の蛍光発光性化合物の濃度については、使用される特定の蛍光発光性化合物及びデバイスの必要条件に基づいて、任意に決定することができ、発光層の層厚方向に対し、均一な濃度で含有されていてもよく、また任意の濃度分布を有していてもよい。
 また、本発明に係る蛍光発光性化合物は、複数種を併用して用いてもよく、構造の異なる蛍光発光性化合物同士の組み合わせや、蛍光発光性化合物とリン光発光性化合物とを組み合わせて用いてもよい。これにより、任意の発光色を得ることができる。
 本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図3.16において、分光放射輝度計CS-1000(コニカミノルタ(株)製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
 本発明においては、1層又は複数層の発光層が、発光色の異なる複数の発光ドーパントを含有し、白色発光を示すことも好ましい。
 白色を示す発光ドーパントの組み合わせについては特に限定はないが、例えば青と橙や、青と緑と赤の組み合わせ等が挙げられる。
 本発明の有機EL素子における白色とは、2度視野角正面輝度を前述の方法により測定した際に、1000cd/mでのCIE1931表色系における色度がx=0.39±0.09、y=0.38±0.08の領域内にあることが好ましい。
 (1.1)蛍光発光性化合物
 本発明に係る蛍光発光性化合物としては、下記一般式(1)で表される構造を有する蛍光発光性化合物が好ましい。
Figure JPOXMLDOC01-appb-C000009
 一般式(1)中、Arは、縮合していてもよい芳香族炭化水素環基又は芳香族複素環基を表し、少なくとも一箇所がQで置換されている。nは自然数を表し、nが2以上の場合、各々のArは異なっていてもよい。Qは、電子供与性基又は電子受容性基を表す。Lは、2価の連結基を表す。mは自然数を表し、mが2以上の場合、各々のLは異なっていてもよい。pは自然数を表し、pが2以上の場合、各々のAr、Q及びLは異なっていてもよい。
 また、本発明に係る蛍光発光性化合物としては、下記一般式(2)で表される構造を有する蛍光発光性化合物が好ましい。
Figure JPOXMLDOC01-appb-C000010
 一般式(2)中、Ar及びAr′は、縮環していてもよい置換基を有する芳香族炭化水素環基、又は置換基を有する芳香族複素環基を表す。ArとAr′は、異なっていてもよい。Rは、メチル基又はフェニル基を表す。
 また、本発明に係る蛍光発光性化合物としては、下記一般式(3)で表される構造を有する蛍光発光性化合物が好ましい。
Figure JPOXMLDOC01-appb-C000011
 一般式(3)中、R、R、R及びRは、それぞれ、水素原子、分岐アルキル基、アリール基、ヘテロアリール基又はシアノ基を表す。X~Xは、それぞれ、硫黄原子、スルフィニル基又はスルホニル基を表す。
 また、前記蛍光発光性化合物が、前記Arとして、下記Ar-1~Ar-8で表される化合物に由来する芳香族炭化水素環基又は芳香族複素環基を有することが好ましい。
Figure JPOXMLDOC01-appb-C000012
 Ar-8中、R′はアルキル基、アリール基又はヘテロアリール基を表す。
 また、前記蛍光発光性化合物が、前記Ar′として、前記Ar-1~Ar-8で表される構造の化合物に由来する芳香族炭化水素環基又は芳香族複素環基を有することが好ましい。
 以下に本発明で好ましく用いられる一般式(2)で表される蛍光発光性化合物を例に挙げるが、本発明はこれに限定されない。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 以下に本発明で好ましく用いられる一般式(3)で表される蛍光発光性化合物を例に挙げるが、本発明はこれに限定されない。一般式(3)で表される蛍光発光性化合物は、具体的には、X~X、R~Rが、表1及び表2に記載の元素で置換した化合物を表す。なお、表1及び表2中、Czはカルバゾリル基を表す。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 一般式(1)で示される化合物の合成は、実験化学講座(日本化学会編)等、公知の合成反応を用いることで、合成することができる。例えば、一般式(2)で示される化合物は、Chem.Lett.,2012,1652等を参考に合成することができる。
 また、以下の一般式(A)、一般式(1-1)、(1-2)、(2-1)、(2-2)、(3-1)~(3-6)及び(4-1)~(4-3)で表される蛍光発光性化合物も好ましく用いることができる。
 [一般式(A)で表される化合物]
 本発明に係る蛍光発光性化合物は、窒素原子を1個若しくは2個含む5員若しくは6員芳香族複素環又は該5員若しくは6員芳香族複素環を骨格に含む縮合芳香族複素環を、電子吸引性基として有し、かつ電子供与性基として単環又は縮環の基を有する下記一般式(A)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000020
 一般式(A)において、Arは、電子吸引性基と電子供与性基とを連結する部位、又は直接結合を表す。Arで表される連結部位としては、特に一般式(A)の化合物の機能を阻害しない範囲であればなんであっても良く、好ましくは芳香族炭化水素環、芳香族複素環又はこれらの組み合わせである。
 一般式(A)において、EWGは、窒素原子を1個又は若しくは2個含む5員若しくは6員芳香族複素環、又は該5員若しくは6員芳香族複素環を骨格に含む縮合芳香族複素環である電子吸引性基を表す。
 電子吸引性基としては、以下の6π電子系の電子吸引性基、10π電子系の電子吸引性基及び14π電子系の電子吸引性基として示したものが挙げられる。
 6π電子系の電子吸引性基は、窒素原子を含む5員又は6員の複素環基である。例えば、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、ピラゾール環、フラザン環等が挙げられる。好ましくは、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環が挙げられる。
 10π電子系の電子吸引性基は、窒素原子を含む5員又は6員からなる縮合環化合物である。
 例えば、インドール環、インダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、ベンゾイミダゾール環、キノリン環、イソキノリン環、キナゾリン環、キノキサリン環、イソインドール環、ナフチリジン環、フタラジン環等が挙げられる。好ましくは、ベンゾチアゾール環、ベンゾオキサゾール環、ベンゾイミダゾール環が挙げられる。
 14π電子系の電子吸引性基は、窒素原子を含む5員又は6員からなる縮合環化合物である。
 例えば、カルバゾール環、カルボリン環、ジアザカルバゾール環(前記カルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、アクリジン環、フェナントリジン環、フェナントロリン環、フェナジン環、アザジベンゾフラン環、アザジベンゾチオフェン環等が挙げられる。好ましくは、カルボリン環、ジアザカルバゾール環、アザジベンゾフラン環、アザジベンゾチオフェン環が挙げられる。
 一般式(A)において、EDGは、電子供与性基である単環又は縮環の基を表す。例えば、カルバゾール環、チオフェン環、ピロール環、メシチル基、キシリル基等が挙げられる。
 一般式(A)において、m及びnは、1~6の整数を表す。
 [一般式(1-1)で表される化合物]
 前記一般式(A)で表される構造が、下記一般式(1-1)で表される構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000021
 一般式(1-1)において、X11、X12、X13、X14及びX15は、それぞれ独立に窒素原子又はCRaを表すが、X11、X12、X13、X14及びX15のうち1個又は2個は窒素原子を表す。
 一般式(1-1)において、Raは、水素原子又は置換基を表す。一般式(1-1)において、Raが置換基を表す場合、その置換基としてはアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭化水素環基、芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4-トリアゾール-1-イル基、1,2,3-トリアゾール-1-イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ジフェニルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ホスホノ基等が挙げられる。好ましくは、アルキル基、芳香族炭化水素基、芳香族複素環基、アルコキシ基、アミノ基、シアノ基が挙げられる。
 また、これらの置換基は、上記の置換基によってさらに置換されていてもよい。また、これらの置換基は、複数が互いに結合して環を形成していてもよい。
 Arは、電子吸引性基と電子供与性基とを連結する部位、又は直接結合を表す。EDGは、電子供与性基である単環又は縮環の基を表す。
 一般式(1-1)において、m及びnは、1~6の整数を表す。
 [一般式(2-1)で表される化合物]
 また、前記一般式(A)で表される構造が、下記一般式(2-1)で表される構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000022
 一般式(2-1)において、X21は、NRb、C(Rc)(Rd)、酸素原子又は硫黄原子を表す。X22、X23、X24、X25及びX26は、それぞれ独立に窒素原子又はCRaを表す。
 X21、X22、X23、X24、X25及びX26のうち1個又は2個は窒素原子を表す。Ra、Rb、Rc及びRdは、それぞれ独立に水素原子又は置換基を表す。
 Arは、電子吸引性基と電子供与性基とを連結する部位、又は直接結合を表す。EDGは、電子供与性基である単環又は縮環の基を表す。m及びnは1~6の整数を表す。
 一般式(2-1)において、Ra、Rb、Rc及びRdが置換基を表す場合に、置換基としては一般式(1-1)のRaと同義である。
 [一般式(3-1)で表される化合物]
 前記一般式(A)で表される構造が、下記一般式(3-1)で表される構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000023
 一般式(3-1)におけるX31、X32、X33、X34、X35、X36、X37及びX38は、それぞれ独立に窒素原子、又はCRaを表す。X31、X32、X33、X34、X35、X36、X37及びX38のうち1個又は2個は窒素原子を表す。Raは、水素原子又は置換基を表す。Arは、電子吸引性基と、電子供与性基とを連結する部位、又は直接結合を表す。EDGは、電子供与性基である単環又は縮環の基を表す。m及びnは、1~6の整数を表す。
 一般式(3-1)において、Raが置換基を表す場合に、置換基としては一般式(1-1)のRaと同義である。
 [一般式(3-2)で表される化合物]
 前記一般式(A)で表される構造が、下記一般式(3-2)で表される構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000024
 一般式(3-2)において、X31、X32、X33、X34、X35、X36、X37及びX38は、それぞれ独立に窒素原子又はCRaを表す。X31、X32、X33、X34、X35、X36、X37及びX38のうち1個又は2個は窒素原子を表す。R及びRaは水素原子又は置換基を表す。Arは、電子吸引性基と、電子供与性基とを連結する部位、又は直接結合を表す。EDGは、電子供与性基である単環又は縮環の基を表す。m及びnは1~6の整数を表す。
 一般式(3-2)において、R及びRaが置換基を表す場合に、置換基としては一般式(1-1)のRaと同義である。Arの置換位置としては、X35若しくはX37が好ましい。
 [一般式(3-3)で表される化合物]
 前記一般式(3-2)が下記一般式(3-3)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000025
 一般式(3-3)において、X31、X32、X33、X34、X35、X36及びX38は、それぞれ独立に窒素原子又はCRaを表す。X31、X32、X33、X34、X35、X36及びX38のうち1個又は2個は窒素原子を表す。R及びRaは水素原子又は置換基を表す。Arは、電子吸引性基と、電子供与性基とを連結する部位、又は直接結合を表す。EDGは、電子供与性基である単環又は縮環の基を表す。m及びnは1~6の整数を表す。
 一般式(3-3)において、R及びRaが置換基を表す場合に、置換基としては一般式(1-1)のRaと同義である。
 [一般式(1-2)で表される化合物]
 前記一般式(1-1)で表される構造が下記一般式(1-2)で表される構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000026
 一般式(1-2)において、X11、X12、X13、X14及びX15は、それぞれ独立に窒素原子又はCRaを表すが、X11、X12、X13、X14及びX15のうち1個又は2個は窒素原子を表す。Raは水素原子又は置換基を表す。R41、R42、R43、R44、R45、R46、R47及びR48は、それぞれ独立に水素原子又は置換基を表す。Arは、電子吸引性基と電子供与性基とを連結する部位、又は直接結合を表す。m及びnは、1~6の整数を表す。
 一般式(1-2)において、R41、R42、R43、R44、R45、R46、R47、R48及びRaが置換基を表す場合に、置換基としては一般式(1-1)のRaと同義である。
 [一般式(2-2)で表される化合物]
 前記一般式(2-1)で表される構造が下記一般式(2-2)で表される構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000027
 一般式(2-2)において、X21、X22、X23、X24、X25及びX26は、それぞれ独立に窒素原子、NRb、酸素原子、硫黄原子又はCRaを表す。X21、X22、X23、X24、X25及びX26のうち1個又は2個は窒素原子を表す。R41、R42、R43、R44、R45、R46、R47及びR48は、それぞれ独立に水素原子又は置換基である。Ra及びRbは、水素原子又は置換基を表す。Arは、電子吸引性基と、電子供与性基とを連結する部位、又は直接結合を表す。m及びnは、1~6の整数を表す。
 一般式(2-2)において、Ra、Rb、R41、R42、R43、R44、R45、R46、R47、R48及びRbが置換基を表す場合に、置換基としては一般式(1-1)のRaと同義である。
 [一般式(3-4)で表される化合物]
 前記一般式(3-1)で表される構造が下記一般式(3-4)で表される構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000028
 一般式(3-4)におけるX31、X32、X33、X34、X35、X36、X37及びX38は、それぞれ独立に窒素原子又はCRaを表す。X31、X32、X33、X34、X35、X36、X37及びX38のうち1個又は2個は窒素原子を表す。R41、R42、R43、R44、R45、R46、R47及びR48は、それぞれ独立に水素原子又は置換基を表す。Raは、水素原子又は置換基を表す。Arは、電子吸引性基と電子供与性基とを連結する部位、又は直接結合を表す。m及びnは、1~6の整数を表す。
 一般式(3-4)において、Ra、R41、R42、R43、R44、R45、R46、R47及びR48が置換基を表す場合に、置換基としては一般式(1-1)のRaと同義である。
 [一般式(3-5)で表される化合物]
 前記一般式(3-2)で表される構造が下記一般式(3-5)で表される構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000029
 一般式(3-5)において、X31、X32、X33、X34、X35、X36、X37及びX38は、それぞれ独立に窒素原子、又はCRaを表す。X31、X32、X33及びX34のうち1個又は2個は窒素原子を表す。X31、X32、X33、X34、X35、X36、X37及びX38のうち1個又は2個は窒素原子を表す。R41、R42、R43、R44、R45、R46、R47及びR48は、それぞれ独立に水素原子又は置換基を表す。R及びRaは、水素原子又は置換基を表す。Arは、電子吸引性基と電子供与性基とを連結する部位、又は直接結合を表す。m及びnは、1~6の整数を表す。
 一般式(3-5)において、R、Ra、R41、R42、R43、R44、R45、R46、R47及びR48が置換基を表す場合に、置換基としては一般式(1-1)のRaと同義である。
 [一般式(3-6)で表される化合物]
 前記一般式(3-3)で表される構造が下記一般式(3-6)で表される構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000030
 一般式(3-6)で表されるX31、X32、X33、X34、X35、X36及びX38は、それぞれ独立に窒素原子又はCRaを表す。X31、X32、X33、X34、X35、X36及びX38のうち1個又は2個は窒素原子を表す。X35、X36及びX38のうち1個又は2個は窒素原子を表す。Arは、電子吸引性基と電子供与性基とを連結する部位、又は直接結合を表す。m及びnは、1~6の整数を表す。R41、R42、R43、R44、R45、R46、R47及びR48は、それぞれ独立に水素原子又は置換基を表す。R及びRaは、それぞれ独立に水素原子又は置換基を表す。
 一般式(3-6)において、R、Ra、R41、R42、R43、R44、R45、R46、R47及びR48が置換基を表す場合に、置換基としては一般式(1-1)のRaと同義である。
 [一般式(4-1)で表される化合物]
 前記一般式(A)で表される構造が、下記一般式(4-1)で表される構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000031
 一般式(4-1)において、Rp、Rq、Rr、Rs、Rt及びRuは、それぞれ独立に水素原子又は置換基を表し、少なくとも一つはEWGを表し、少なくとも一つはEDGを表す。xは0又は1の整数を表す。xが1の場合、-Y-及び-Z-は、それぞれ独立に直接結合又は-O-、-S-若しくは-N(Rg)-のいずれかで表される。Rgは置換基を表す。Rp、Rq、Rr、Rs、Rt及びRuは互いに連結して結合を形成してもよい。
 一般式(4-1)において、Rp、Rq、Rr、Rs、Rt、Ru及びRgが置換基を表す場合に、置換基としては一般式(1-1)のRaと同義である。
 [一般式(4-2)で表される化合物]
 前記一般式(4-1)で表される構造が下記一般式(4-2)で表される構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000032
 一般式(4-2)で表されるRp、Rq、Rr、Rs、Rt及びRuは、それぞれ独立に水素原子又は置換基を表し、少なくとも一つはEWGを表し、少なくとも一つはEDGを表す。Rp、Rq、Rr、Rs、Rt及びRuは互いに連結して結合を形成してもよい。
 一般式(4-2)において、Rp、Rq、Rr、Rs、Rt及びRuが置換基を表す場合に、置換基としては一般式(1-1)のRaと同義である。
 [一般式(4-3)で表される化合物]
 前記一般式(A)で表される構造が、下記一般式(4-3)で表される構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000033
 一般式(4-3)で表される、Rp、Rq、Rr、Rs、Rt、Ru、Rv及びRwは、それぞれ独立に水素原子又は置換基を表し、少なくとも一つはEWGを表し、少なくとも一つはEDGを表す。-X-は、-O-、-S-、-N(Rg)-又は-C(Rh)(Ri)-のいずれかで表される。Rg、Rh及びRiは置換基を表す。Rp、Rq、Rr、Rs、Rt、Ru、Rv及びRwは互いに連結して結合を形成してもよい。
 一般式(4-3)において、Rg、Rh、Ri、Rp、Rq、Rr、Rs、Rt、Ru、Rv及びRwが置換基を表す場合に、置換基としては一般式(1-1)のRaと同義である。
 一般式として、一般式(3-2)、(3-3)、(3-5)及び(3-6)において、N-R、N-R、N-R、N-Rが酸素原子、若しくは、硫黄原子で表される場合も好ましい。
 以下に、本発明に係る蛍光発光性化合物の具体例を挙げるが、これらに限られるものではない。具体的な化合物例は下記に挙げられる。
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
 
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
 <合成方法>
 上記蛍光発光性化合物は、例えば以下の文献、又は、その文献に記載の参照文献に記載の方法を参照することにより合成することができる。
・S.Riedmuller and Boris J Nachtsheim.,Beilstein J.Org.Chem.2013,9,1202-1209
・Wako Organic Square No.27(2009)
・N.M.Moazzam et al.,Appl.Organomet.Chem.,2012,26,7,330-334
・H.Kawai,et al.,Chemical Communication,2008,12,1464-1466
・S.Oi,et al.,Tetrahedron,2008,64,26,6051-6059・S.Oi,et al.,Organic Letters,2008,10,9,1832-1826
・H.Uoyama,et al.,Nature,2012,492,234-238(前述の非特許文献2)
 (1.2)リン光発光性ドーパント
 本発明に用いられるリン光発光性ドーパントについて説明する。
 本発明に用いられるリン光発光性ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に用いられるリン光ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。
 リン光ドーパントは、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。本発明に使用できる公知のリン光ドーパントの具体例としては、以下の文献に記載されている化合物等が挙げられる。
 Nature 395,151(1998)、Appl.Phys.Lett.78,1622(2001)、Adv.Mater.19,739(2007)、Chem.Mater.17,3532(2005)、Adv.Mater.17,1059(2005)、国際公開第2009/100991号、国際公開第2008/101842号、国際公開第2003/040257号、米国特許出願公開第2006/835469号明細書、米国特許出願公開第2006/0202194号明細書、米国特許出願公開第2007/0087321号明細書、米国特許出願公開第2005/0244673号明細書、Inorg.Chem.40,1704(2001)、Chem.Mater.16,2480(2004)、Adv.Mater.16,2003(2004)、Angew.Chem.lnt.Ed.2006,45,7800、Appl.Phys.Lett.86,153505(2005)、Chem.Lett.34,592(2005)、Chem.Commun.2906(2005)、Inorg.Chem.42,1248(2003)、国際公開第2009/050290号、国際公開第2002/015645号、国際公開第2009/000673号、米国特許出願公開第2002/0034656号明細書、米国特許第7332232号明細書、米国特許出願公開第2009/0108737号明細書、米国特許出願公開第2009/0039776号明細書、米国特許第6921915号明細書、米国特許第6687266号明細書、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2006/0008670号明細書、米国特許出願公開第2009/0165846号明細書、米国特許出願公開第2008/0015355号明細書、米国特許第7250226号明細書、米国特許第7396598号明細書、米国特許出願公開第2006/0263635号明細書、米国特許出願公開第2003/0138657号明細書、米国特許出願公開第2003/0152802号明細書、米国特許第7090928号明細書、Angew.Chem.lnt.Ed.47,1(2008)、Chem.Mater.18,5119(2006)、Inorg.Chem.46,4308(2007)、Organometallics 23,3745(2004)、Appl.Phys.Lett.74,1361(1999)、国際公開第2002/002714号、国際公開第2006/009024号、国際公開第2006/056418号、国際公開第2005/019373号、国際公開第2005/123873号、国際公開第2005/123873号、国際公開第2007/004380号、国際公開第2006/082742号、米国特許出願公開第2006/0251923号明細書、米国特許出願公開第2005/0260441号明細書、米国特許第7393599号明細書、米国特許第7534505号明細書、米国特許第7445855号明細書、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2008/0297033号明細書、米国特許第7338722号明細書、米国特許出願公開第2002/0134984号明細書、米国特許第7279704号明細書、米国特許出願公開第2006/098120号明細書、米国特許出願公開第2006/103874号明細書、国際公開第2005/076380号、国際公開第2010/032663号、国際公開第2008140115号、国際公開第2007/052431号、国際公開第2011/134013号、国際公開第2011/157339号、国際公開第2010/086089号、国際公開第2009/113646号、国際公開第2012/020327号、国際公開第2011/051404号、国際公開第2011/004639号、国際公開第2011/073149号、米国特許出願公開第2012/228583号明細書、米国特許出願公開第2012/212126号明細書、特開2012-069737号公報、特開2012-195554号公報、特開2009-114086号公報、特開2003-81988号公報、特開2002-302671号公報、特開2002-363552号公報等である。
 中でも、好ましいリン光ドーパントとしてはIrを中心金属に有する有機金属錯体が挙げられる。さらに好ましくは、金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合の少なくとも一つの配位様式を含む錯体が好ましい。
 (2)ホスト化合物
 本発明に用いられるホスト化合物は、発光層において主に電荷の注入及び輸送を担う化合物であり、有機EL素子においてそれ自体の発光は実質的に観測されない。
 ホスト化合物は、発光層に含有される化合物の内で、その層中での質量比が20%以上であることが好ましい。
 ホスト化合物は、単独で用いてもよく、又は複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。
 以下に、本発明において好ましく用いられるホスト化合物について述べる。
 本発明における蛍光発光性化合物とともに用いられるホスト化合物としては特に制限はないが、逆エネルギー移動の観点から、本発明に係る蛍光発光性化合物の励起一重項エネルギーより大きな励起エネルギーをもつものが好ましく、さらに本発明に係る蛍光発光性化合物の励起三重項エネルギーより大きな励起三重項エネルギーをもつものがより好ましい。
 ホスト化合物は、発光層内においてキャリアの輸送及び励起子の生成を担う。そのため、カチオンラジカル状態、アニオンラジカル状態、及び励起状態の全ての活性種の状態において安定に存在でき、分解や付加反応などの化学変化を起こさないこと、さらに、層中において通電経時でホスト分子がオングストロームレベルで移動しないことが好ましい。
 また、特に併用する発光ドーパントがTADF発光を示す場合には、TADF化合物の三重項励起状態の存在時間が長いことから、ホスト化合物自体のTエネルギーが高いこと、さらにホスト化合物同士が会合した状態で低T状態を作らないこと、TADF化合物とホスト化合物とがエキサイプレックスを形成しないこと、ホスト化合物が電界によりエレクトロマーを形成しないことなど、ホスト化合物が低T化しないような分子構造の適切な設計が必要となる。
 このような要件を満たすためには、ホスト化合物自体が電子のホッピング移動性が高いこと、かつ、正孔のホッピング移動が高いこと、三重項励起状態となったときの構造変化が小さいことが必要である。このような要件を満たすホスト化合物の代表格としてカルバゾール骨格、アザカルバゾール骨格、ジベンゾフラン骨格、ジベンゾチオフェン骨格又はアザジベンゾフラン骨格などの、高Tエネルギーを有し、かつ14π電子系の拡張π共役骨格を部分構造として有するものが好ましく挙げられる。特に、発光層が、カルバゾール誘導体を含有することにより、発光層内における適度なキャリアホッピングや発光材料の分散を促すことができ、素子の発光性能や薄膜の安定性を向上させる効果が得られることから、好ましい。
 さらに、これらの環がビアリール及び/又はマルチアリール構造を取った化合物などが代表例として挙げられる。ここでいう「アリール」とは、芳香族炭化水素環だけでなく芳香族複素環も含む。
 より好ましくは、カルバゾール骨格と、カルバゾール骨格とは異なる分子構造を持つ14π電子系の芳香族複素環化合物とが直接結合した化合物であり、さらに14π電子系の芳香族複素環化合物を分子内に二つ以上持つカルバゾール誘導体が好ましい。特に、前記カルバゾール誘導体が、14π電子以上の共役系構造部分を二つ以上有する化合物であることが、本発明の効果を一層高めるために好ましい。
 また、本発明に用いられるホスト化合物としては、下記一般式(I)で表される化合物も好ましい。これは、下記一般式(I)で表される化合物は、縮環構造を有するためにπ電子雲が広がっておりキャリア輸送性が高く、高いガラス転移温度(Tg)を有するためである。さらに、一般に縮合芳香族環は三重項エネルギー(T)が小さい傾向があるが、一般式(I)で表される化合物は高いTを有しており、発光波長の短い(すなわちT及びSの大きい)発光材料に対しても好適に用いることができる。
Figure JPOXMLDOC01-appb-C000052
 上記一般式(I)において、X101は、NR101、酸素原子、硫黄原子、CR102103又はSiR102103を表す。y~yは、各々CR104又は窒素原子を表す。
 R101~R104は、各々水素原子又は置換基を表し、また互いに結合して環を形成してもよい。
 Ar101及びAr102は、各々芳香族環を表し、それぞれ同一でも異なっていても良い。
 n101及びn102は各々0~4の整数を表すが、R101が水素原子の場合は、n101は1~4の整数を表す。
 一般式(I)におけるR101~R104は水素又は置換基を表し、ここにいう置換基は本発明に用いられるホスト化合物の機能を阻害しない範囲で有しても良いものを指し、例えば、合成スキーム上置換基が導入されてしまう場合で、本発明の効果を奏する化合物は本発明に包含される旨を規定するものである。
 R101~R104で各々表される置換基としては、例えば、直鎖又は分岐アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、t-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素環基(芳香族炭素環基、アリール基等ともいう。例えば、ベンゼン環、ビフェニル、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-ターフェニル環、m-ターフェニル環、p-ターフェニル環、アセナフテン環、コロネン環、インデン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環、テトラリン等から導出される基)、芳香族複素環基(例えば、フラン環、ジベンゾフラン環、チオフェン環、ジベンゾチオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭化水素環の炭素原子の一つが更に窒素原子で置換されている環等から導出される基。また、カルボリン環とジアザカルバゾール環を合わせて「アザカルバゾール環」と呼ぶ場合もある。)、非芳香族炭化水素環基(例えば、シクロペンチル基、シクロヘキシル基等)、非芳香族複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、チオール基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、重水素原子等が挙げられる。
 これらの置換基は、上記の置換基によって更に置換されていてもよい。また、これらの置換基は複数が互いに結合して環を形成していてもよい。
 一般式(I)におけるy~yとしては、好ましくは、y~yの内の少なくとも三つ、又はy~yの内の少なくとも三つがCR102で表され、より好ましくはy~yが全てCR102である。このような骨格は、正孔輸送性又は電子輸送性に優れ、陽極・陰極から注入された正孔・電子を効率よく発光層内で再結合・発光させることができる。
 中でも、LUMOのエネルギー準位が浅く、電子輸送性に優れる構造として、一般式(I)中でX101が、NR101、酸素原子又は硫黄原子である化合物が好ましい。より好ましくは、X101及びy~yとともに形成される縮合環が、カルバゾール環、アザカルバゾール環、ジベンゾフラン環又はアザジベンゾフラン環である。
 さらに、ホスト化合物を剛直にすることが好ましいという目的から考え、X101がNR101の場合においては、R101は前述で挙げられた置換基の内、π共役系骨格である芳香族炭化水素環基又は芳香族複素環基であることが好ましい。また、これらのR101は更に前述のR101~R104で表される置換基で置換されていてもよい。
 一般式(I)において、Ar101及びAr102により表される芳香族環としては、芳香族炭化水素環又は芳香族複素環が挙げられる。該芳香族環は単環でも縮合環でもよく、更に未置換でも、前述のR101~R104で表される置換基と同様の置換基を有してもよい。
 一般式(I)において、Ar101及びAr102により表される芳香族炭化水素環としては、例えば、前述のR101~R104で表される置換基の例として挙げられた芳香族炭化水素環基と同様の環が挙げられる。
 一般式(I)で表される部分構造において、Ar101及びAr102により表される芳香族複素環としては、例えば、前述のR101~R104で表される置換基の例として挙げられた芳香族複素環基と同様の環が挙げられる。
 一般式(I)で表されるホスト化合物が大きなTを有するという目的を考えた場合には、Ar101及びAr102で表される芳香族環自身のTが高いことが好ましく、ベンゼン環(ベンゼン環が複数連結したポリフェニレン骨格(ビフェニル、テルフェニル、クォーターフェニル等)も含む)、フルオレン環、トリフェニレン環、カルバゾール環、アザカルバゾール環、ジベンゾフラン環、アザジベンゾフラン環、ジベンゾチオフェン環、ジベンゾチオフェン環、ピリジン環、ピラジン環、インドロインドール環、インドール環、ベンゾフラン環、ベンゾチオフェン環、イミダゾール環又はトリアジン環等が好ましい。より好ましくはベンゼン環、カルバゾール環、アザカルバゾール環、ジベンゾフラン環である。
 Ar101及びAr102がカルバゾール環又はアザカルバゾール環の場合は、N位(又は9位ともいう)又は3位で結合していることがより好ましい。
 Ar101及びAr102がジベンゾフラン環の場合は、2位又は4位で結合していることがより好ましい。
 また、上記の目的とは別に、有機EL素子を車内に積載して使用する用途などを考えた場合においては、車内の環境温度が高くなることが想定されるため、ホスト化合物のTgが高いことも好ましい。そこで、一般式(I)で表されるホスト化合物を高Tg化するという目的から、Ar101及びAr102により表される芳香族環としては、各々3環以上の縮合環が好ましい一態様である。
 3環以上が縮合した芳香族炭化水素縮合環としては、具体的には、ナフタセン環、アントラセン環、テトラセン環、ペンタセン環、ヘキサセン環、フェナントレン環、ピレン環、ベンゾピレン環、ベンゾアズレン環、クリセン環、ベンゾクリセン環、アセナフテン環、アセナフチレン環、トリフェニレン環、コロネン環、ベンゾコロネン環、ヘキサベンゾコロネン環、フルオレン環、ベンゾフルオレン環、フルオランテン環、ペリレン環、ナフトペリレン環、ペンタベンゾペリレン環、ベンゾペリレン環、ペンタフェン環、ピセン環、ピラントレン環、コロネン環、ナフトコロネン環、オバレン環、アンスラアントレン環等が挙げられる。なお、これらの環は、更に上記の置換基を有していてもよい。
 また、3環以上が縮合した芳香族複素環としては、具体的には、アクリジン環、ベンゾキノリン環、カルバゾール環、カルボリン環、フェナジン環、フェナントリジン環、フェナントロリン環、カルボリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ジアザカルバゾール環(カルボリン環を構成する炭素原子の任意の一つが窒素原子で置き換わったものを表す)、フェナントロリン環、ジベンゾフラン環、ジベンゾチオフェン環、ナフトフラン環、ナフトチオフェン環、ベンゾジフラン環、ベンゾジチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、チオファントレン環(ナフトチオフェン環)等が挙げられる。なお、これらの環は更に置換基を有していてもよい。
 一般式(I)において、n101及びn102は各々0~2の整数であることが好ましく、より好ましくはn101+n102が1~3の整数である。また、R101が水素原子の場合にn101及びn102が同時に0であると、一般式(I)で表されるホスト化合物の分子量が小さく低いTgしか達成できないため、R101が水素原子の場合にはn101は1~4の整数を表す。
 本発明で用いられるホスト化合物として、カルバゾール誘導体が、一般式(II)で表される構造を有する化合物であることが好ましい。このような化合物は、特にキャリア輸送性に優れる傾向があるためである。
Figure JPOXMLDOC01-appb-C000053
 一般式(II)において、X101、Ar101、Ar102、n102は、前記一般式(I)におけるX101、Ar101、Ar102、n102と同義である。
 n102は好ましくは0~2の整数であり、より好ましくは0又は1である。
 一般式(II)において、X101を含んで形成される縮合環は、Ar101及びAr102以外にも本発明に用いられるホスト化合物の機能を阻害しない範囲でさらに置換基を有しても良い。
 さらに、一般式(II)で表される化合物が下記一般式(III-1)、(III-2)又は(III-3)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000054
 一般式(III-1)~(III-3)において、X101、Ar102、n102は、前記一般式(II)におけるX101、Ar102、n102と同義である。また、一般式(III-2)において、R104は、前記一般式(I)におけるR104と同義である。
 一般式(III-1)~(III-3)において、X101を含んで形成される縮合環、カルバゾール環及びベンゼン環は、本発明に用いられるホスト化合物の機能を阻害しない範囲でさらに置換基を有しても良い。
 以下に、本発明に用いられるホスト化合物として、一般式(I)、(II)、(III-1)~(III-3)で表される化合物及びその他の構造からなる化合物例を示すが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
 本発明に用いられる好ましいホスト化合物は、昇華精製が可能な程度の分子量をもった低分子化合物であっても、繰り返し単位を有するポリマーであってもよい。
 低分子化合物の場合、昇華精製が可能であるため精製が容易で、高純度の材料を得やすいという利点がある。分子量としては、昇華精製が可能な程度であれば特に制限はないが、好ましい分子量としては3000以下、より好ましくは2000以下である。
 繰り返し単位を有するポリマー又はオリゴマーの場合は、ウェットプロセスで成膜しやすいという利点があり、また一般にポリマーはTgが高いため耐熱性の点でも好ましい。本発明に用いられるホスト化合物として用いられるポリマーは、所望の素子性能が達成可能であれば特に制限はないが、好ましくは一般式(I)、(II)又は(III-1)~(III-3)の構造を主鎖若しくは側鎖に有するものが好ましい。分子量としては特に制限はないが、分子量5000以上が好ましく、若しくは繰り返し単位数が10以上のものが好ましい。
 また、ホスト化合物は、正孔輸送能又は電子輸送能を有しつつ、かつ、発光の長波長化を防ぎ、さらに、有機EL素子を高温駆動時や素子駆動中の発熱に対して安定して動作させる観点から、高いガラス転移温度(Tg)を有することが好ましい。好ましくはTgが90℃以上であり、より好ましくは120℃以上である。
 ここで、ガラス転移点(Tg)とは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS K 7121-2012に準拠した方法により求められる値である。
 《電子輸送層》
 本発明において電子輸送層とは、電子を輸送する機能を有する材料からなり、陰極より注入された電子を発光層に伝達する機能を有していればよい。
 本発明に係る電子輸送層の総層厚については特に制限はないが、通常は2nm~5μmの範囲であり、より好ましくは2~500nmであり、さらに好ましくは5~200nmである。
 また、有機EL素子においては発光層で生じた光を電極から取り出す際、発光層から直接取り出される光と、光を取り出す電極と対極に位置する電極によって反射されてから取り出される光とが干渉を起こすことが知られている。光が陰極で反射される場合は、電子輸送層の総層厚を数nm~数μmの間で適宜調整することにより、この干渉効果を効率的に利用することが可能である。
 一方で、電子輸送層の層厚を厚くすると電圧が上昇しやすくなるため、特に層厚が厚い場合においては、電子輸送層の電子移動度は10-5cm/Vs以上であることが好ましい。
 電子輸送層に用いられる材料(以下、電子輸送材料という)としては、電子の注入性又は輸送性、正孔の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。
 例えば、含窒素芳香族複素環誘導体(カルバゾール誘導体、アザカルバゾール誘導体(カルバゾール環を構成する炭素原子の一つ以上が窒素原子に置換されたもの)、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピリダジン誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、フェナントロリン誘導体、アザトリフェニレン誘導体、オキサゾール誘導体、チアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体等)、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、シロール誘導体、芳香族炭化水素環誘導体(ナフタレン誘導体、アントラセン誘導体、トリフェニレン誘導体等)等が挙げられる。
 また、配位子にキノリノール骨格やジベンゾキノリノール骨格を有する金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送材料として用いることができる。
 その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。
 また、これらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 本発明に係る電子輸送層においては、電子輸送層にドープ材をゲスト材料としてドープして、n性の高い(電子リッチ)電子輸送層を形成してもよい。ドープ材としては、金属錯体やハロゲン化金属など金属化合物等のn型ドーパントが挙げられる。このような構成の電子輸送層の具体例としては、例えば、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等の文献に記載されたものが挙げられる。
 本発明の有機EL素子に用いられる、公知の好ましい電子輸送材料の具体例としては、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。
 米国特許第6528187号明細書、米国特許第7230107号明細書、米国特許出願公開第2005/0025993号明細書、米国特許出願公開第2004/0036077号明細書、米国特許出願公開第2009/0115316号明細書、米国特許出願公開第2009/0101870号明細書、米国特許出願公開第2009/0179554号明細書、国際公開第2003/060956号、国際公開第2008/132085号、Appl.Phys.Lett.75,4(1999)、Appl.Phys.Lett.79,449(2001)、Appl.Phys.Lett.81,162(2002)、Appl.Phys.Lett.81,162(2002)、Appl.Phys.Lett.79,156(2001)、米国特許第7964293号明細書、米国特許出願公開第2009/030202号明細書、国際公開第2004/080975号、国際公開第2004/063159号、国際公開第2005/085387号、国際公開第2006/067931号、国際公開第2007/086552号、国際公開第2008/114690号、国際公開第2009/069442号、国際公開第2009/066779号、国際公開第2009/054253号、国際公開第2011/086935号、国際公開第2010/150593号、国際公開第2010/047707号、EP2311826号、特開2010-251675号公報、特開2009-209133号公報、特開2009-124114号公報、特開2008-277810号公報、特開2006-156445号公報、特開2005-340122号公報、特開2003-45662号公報、特開2003-31367号公報、特開2003-282270号公報、国際公開第2012/115034号等である。
 本発明におけるより好ましい電子輸送材料としては、少なくとも一つの窒素原子を含む芳香族複素環化合物が挙げられ、例えばピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、トリアジン誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、アザジベンゾフラン誘導体、アザジベンゾチオフェン誘導体、カルバゾール誘導体、アザカルバゾール誘導体、ベンズイミダゾール誘導体などが挙げられる。
 電子輸送材料は単独で用いてもよく、また複数種を併用して用いてもよい。
 《正孔阻止層》
 正孔阻止層とは広い意味では電子輸送層の機能を有する層であり、好ましくは電子を輸送する機能を有しつつ正孔を輸送する能力が小さい材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
 また、前述する電子輸送層の構成を必要に応じて、本発明に係る正孔阻止層として用いることができる。
 本発明の有機EL素子に設ける正孔阻止層は、発光層の陰極側に隣接して設けられることが好ましい。
 本発明に係る正孔阻止層の層厚としては、好ましくは3~100nmの範囲であり、更に好ましくは5~30nmの範囲である。
 正孔阻止層に用いられる材料としては、前述の電子輸送層に用いられる材料が好ましく用いられ、また、前述のホスト化合物として用いられる材料も正孔阻止層に好ましく用いられる。
 《電子注入層》
 本発明に係る電子注入層(「陰極バッファー層」ともいう)とは、駆動電圧低下や発光輝度向上のために陰極と発光層との間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。
 本発明において電子注入層は必要に応じて設け、上記のごとく陰極と発光層との間、又は陰極と電子輸送層との間に存在させてもよい。
 電子注入層はごく薄い膜であることが好ましく、素材にもよるがその層厚は0.1~5nmの範囲が好ましい。また構成材料が断続的に存在する不均一な層(膜)であってもよい。
 電子注入層は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、電子注入層に好ましく用いられる材料の具体例としては、ストロンチウムやアルミニウム等に代表される金属、フッ化リチウム、フッ化ナトリウム、フッ化カリウム等に代表されるアルカリ金属化合物、フッ化マグネシウム、フッ化カルシウム等に代表されるアルカリ土類金属化合物、酸化アルミニウムに代表される金属酸化物、8-ヒドロキシキノリネートリチウム(Liq)等に代表される金属錯体等が挙げられる。また、前述の電子輸送材料を用いることも可能である。
 また、上記の電子注入層に用いられる材料は単独で用いてもよく、複数種を併用して用いてもよい。
 《正孔輸送層》
 本発明において正孔輸送層とは、正孔を輸送する機能を有する材料を含有し、陽極より注入された正孔を発光層に伝達する機能を有していればよい。
 本発明に係る正孔輸送層の総層厚については特に制限はないが、通常は5nm~5μmの範囲であり、より好ましくは2~500nmであり、さらに好ましくは5~200nmである。
 正孔輸送層に用いられる材料(以下、正孔輸送材料という)としては、正孔の注入性又は輸送性、電子の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。
 例えば、ポルフィリン誘導体、フタロシアニン誘導体、オキサゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリアリールアルカン誘導体、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、イソインドール誘導体、アントラセンやナフタレン等のアセン系誘導体、フルオレン誘導体、フルオレノン誘導体、及びポリビニルカルバゾール、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー、ポリシラン、導電性ポリマー又はオリゴマー(例えばPEDOT/PSS、アニリン系共重合体、ポリアニリン、ポリチオフェン等)等が挙げられる。
 トリアリールアミン誘導体としては、α-NPDに代表されるベンジジン型や、MTDATAに代表されるスターバースト型、トリアリールアミン連結コア部にフルオレンやアントラセンを有する化合物等が挙げられる。
 また、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。
 さらに不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
 また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、いわゆるp型正孔輸送材料やp型-Si、p型-SiC等の無機化合物を用いることもできる。さらにIr(ppy)に代表されるような中心金属にIrやPtを有するオルトメタル化有機金属錯体も好ましく用いられる。
 正孔輸送材料としては、上記のものを使用することができるが、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、アザトリフェニレン誘導体、有機金属錯体、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー等が好ましく用いられる。
 本発明の有機EL素子に用いられる、公知の好ましい正孔輸送材料の具体例としては、上記で挙げた文献の他、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。
 例えば、Appl.Phys.Lett.,69,2160(1996)、J.Lumin.,72-74,985(1997)、Appl.Phys.Lett.,78,673(2001)、Appl.Phys.Lett.,90,183503(2007)、Appl.Phys.Lett.,90,183503(2007)、Appl.Phys.Lett.,51,913(1987)、Synth.Met.,87,171(1997)、Synth.Met.,91,209(1997)、Synth.Met.,111,421(2000)、SID Symposium Digest,37,923(2006)、J.Mater.Chem.,3,319(1993)、Adv.Mater.,6,677(1994)、Chem.Mater.,15,3148(2003)、米国特許出願公開第2003/0162053号明細書、米国特許出願公開第2002/0158242号明細書、米国特許出願公開第2006/0240279号明細書、米国特許出願公開第2008/0220265号明細書、米国特許第5061569号明細書、国際公開第2007/002683号、国際公開第2009/018009号、EP650955、米国特許出願公開第2008/0124572号明細書、米国特許出願公開第2007/0278938号明細書、米国特許出願公開第2008/0106190号明細書、米国特許出願公開第2008/0018221号明細書、国際公開第2012/115034号、特表2003-519432号公報、特開2006-135145号公報、米国特許出願番号13/585981号等である。
 正孔輸送材料は単独で用いてもよく、また複数種を併用して用いてもよい。
 《電子阻止層》
 電子阻止層とは広い意味では正孔輸送層の機能を有する層であり、好ましくは正孔を輸送する機能を有しつつ電子を輸送する能力が小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。
 また、前述する正孔輸送層の構成を必要に応じて、本発明に係る電子阻止層として用いることができる。
 本発明の有機EL素子に設ける電子阻止層は、発光層の陽極側に隣接して設けられることが好ましい。
 本発明に係る電子阻止層の層厚としては、好ましくは3~100nmの範囲であり、更に好ましくは5~30nmの範囲である。
 電子阻止層に用いられる材料としては、前述の正孔輸送層に用いられる材料が好ましく用いられ、また、前述のホスト化合物も電子阻止層に好ましく用いられる。
 《正孔注入層》
 本発明に係る正孔注入層(「陽極バッファー層」ともいう)とは、駆動電圧低下や発光輝度向上のために陽極と発光層との間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。
 本発明において正孔注入層は必要に応じて設け、上記のごとく陽極と発光層又は陽極と正孔輸送層との間に存在させてもよい。
 正孔注入層は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、正孔注入層に用いられる材料としては、例えば前述の正孔輸送層に用いられる材料等が挙げられる。
 中でも銅フタロシアニンに代表されるフタロシアニン誘導体、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体、酸化バナジウムに代表される金属酸化物、アモルファスカーボン、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子、トリス(2-フェニルピリジン)イリジウム錯体等に代表されるオルトメタル化錯体、トリアリールアミン誘導体等が好ましい。
 前述の正孔注入層に用いられる材料は単独で用いてもよく、また複数種を併用して用いてもよい。
 《添加物》
 前述した本発明における有機層は、更に他の添加物が含まれていてもよい。
 添加物としては、例えば臭素、ヨウ素及び塩素等のハロゲン元素やハロゲン化化合物、Pd、Ca、Na等のアルカリ金属やアルカリ土類金属、遷移金属の化合物や錯体、塩等が挙げられる。
 添加物の含有量は、任意に決定することができるが、含有される層の全質量%に対して1000ppm以下であることが好ましく、より好ましくは500ppm以下であり、さらに好ましくは50ppm以下である。
 ただし、電子や正孔の輸送性を向上させる目的や、励起子のエネルギー移動を有利にするための目的などによってはこの範囲内ではない。
 《有機層の形成方法》
 本発明に係る有機層(正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、電子注入層等)の形成方法について説明する。
 本発明に係る有機層の形成方法は、特に制限はなく、従来公知の例えば真空蒸着法、湿式法(ウェットプロセスともいう)等による形成方法を用いることができる。
 湿式法としては、スピンコート法、キャスト法、インクジェット法、印刷法、ダイコート法、ブレードコート法、ロールコート法、スプレーコート法、カーテンコート法、LB法(ラングミュア-ブロジェット法)等があるが、均質な薄膜が得られやすく、かつ高生産性の点から、ダイコート法、ロールコート法、インクジェット法、スプレーコート法などのロール・ツー・ロール方式適性の高い方法が好ましい。
 本発明に用いられる有機EL材料を溶解又は分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。
 また、分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。
 更に層ごとに異なる製膜法を適用してもよい。製膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50~450℃、真空度10-6~10-2Pa、蒸着速度0.01~50nm/秒、基板温度-50~300℃、層(膜)厚0.1nm~5μm、好ましくは5~200nmの範囲で適宜選ぶことが望ましい。
 本発明に係る有機層の形成は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる製膜法を施しても構わない。その際は作業を乾燥不活性ガス雰囲気下で行うことが好ましい。
 《陽極》
 有機EL素子における陽極としては、仕事関数の大きい(4eV以上、好ましくは4.5eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
 陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度を余り必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。
 あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。
 陽極の膜厚は材料にもよるが、通常10nm~1μm、好ましくは10~200nmの範囲で選ばれる。
 《陰極》
 陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、アルミニウム、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
 陰極はこれらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させることで作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。
 なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が透明又は半透明であれば発光輝度が向上し好都合である。
 また、陰極に上記金属を1~20nmの膜厚で作製した後に、陽極の説明で挙げる導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
 [支持基板]
 本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等ともいう。)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。
 樹脂フィルムの表面には、無機物、有機物の被膜又はその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/m・24h以下のバリア性フィルムであることが好ましく、更には、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3ml/m・24h・atm以下、水蒸気透過度が、1×10-5g/m・24h以下の高バリア性フィルムであることが好ましい。
 バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
 バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。
 不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
 本発明の有機EL素子の発光の室温(25℃)における外部取り出し量子効率は、1%以上であることが好ましく、5%以上であるとより好ましい。
 ここで、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。
 また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を、蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。
 [封止]
 本発明の有機EL素子の封止に用いられる封止手段としては、例えば、封止部材と、電極、支持基板とを接着剤で接着する方法を挙げることができる。封止部材としては、有機EL素子の表示領域を覆うように配置されていればよく、凹板状でも、平板状でもよい。また、透明性、電気絶縁性は特に限定されない。
 具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる1種以上の金属又は合金からなるものが挙げられる。
 本発明においては、有機EL素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。さらには、ポリマーフィルムはJIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/m・24h・atm以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度90±2%)が、1×10-3g/m・24h以下のものであることが好ましい。
 封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。
 接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
 なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
 また、有機層を挟み支持基板と対向する側の電極の外側に該電極と有機層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。
 さらに該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。
 封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、ヨウ化バリウム、ヨウ化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
 [保護膜、保護板]
 有機層を挟み支持基板と対向する側の前記封止膜あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために、保護膜あるいは保護板を設けてもよい。特に、封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
 [光取り出し向上技術]
 有機EL素子は、空気よりも屈折率の高い(屈折率1.6~2.1程度の範囲内)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として、光が素子側面方向に逃げるためである。
 この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(例えば、米国特許第4774435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(例えば、特開昭63-314795号公報)、素子の側面等に反射面を形成する方法(例えば、特開平1-220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(例えば、特開昭62-172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(例えば、特開2001-202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11-283751号公報)などが挙げられる。
 本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。
 本発明は、これらの手段を組み合わせることにより、更に高輝度あるいは耐久性に優れた素子を得ることができる。
 透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚さで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど、外部への取り出し効率が高くなる。
 低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマーなどが挙げられる。透明基板の屈折率は一般に1.5~1.7程度の範囲内であるので、低屈折率層は、屈折率がおよそ1.5以下であることが好ましい。またさらに1.35以下であることが好ましい。
 また、低屈折率媒質の厚さは、媒質中の波長の2倍以上となるのが望ましい。これは、低屈折率媒質の厚さが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。
 全反射を起こす界面又は、いずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は、回折格子が1次の回折や、2次の回折といった、いわゆるブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち、層間での全反射等により外に出ることができない光を、いずれかの層間若しくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。
 導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは、発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な一次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。
 しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。
 回折格子を導入する位置としては、いずれかの層間、若しくは媒質中(透明基板内や透明電極内)でも良いが、光が発生する場所である有機発光層の近傍が望ましい。このとき、回折格子の周期は、媒質中の光の波長の約1/2~3倍程度の範囲内が好ましい。回折格子の配列は、正方形のラチス状、三角形のラチス状、ハニカムラチス状など、二次元的に配列が繰り返されることが好ましい。
 [集光シート]
 本発明の有機EL素子は、支持基板(基板)の光取出し側に、例えばマイクロレンズアレイ状の構造を設けるように加工したり、あるいは、いわゆる集光シートと組み合わせることにより、特定方向、例えば素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を二次元に配列する。一辺は10~100μmの範囲内が好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚さが厚くなり好ましくない。
 集光シートとしては、例えば液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして例えば、住友スリーエム社製輝度上昇フィルム(BEF)などを用いることができる。プリズムシートの形状としては、例えば、基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であっても良い。
 また、有機EL素子からの光放射角を制御するために光拡散板・フィルムを、集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)などを用いることができる。
 [用途]
 本発明の有機EL素子は、電子機器、例えば、表示装置、ディスプレイ、各種発光装置として用いることができる。
 発光装置として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
 本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。
 本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図3.16において、分光放射輝度計CS-1000(コニカミノルタ(株)製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
 また、本発明の有機EL素子が白色素子の場合には、白色とは、2度視野角正面輝度を上記方法により測定した際に、1000cd/mでのCIE1931表色系における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあることをいう。
 <表示装置>
 本発明の有機EL素子を具備する表示装置は単色でも多色でもよいが、ここでは多色表示装置について説明する。
 多色表示装置の場合は発光層形成時のみシャドーマスクを設け、一面に蒸着法、キャスト法、スピンコート法、インクジェット法又は印刷法等で膜を形成できる。
 発光層のみパターニングを行う場合、その方法に限定はないが、好ましくは蒸着法、インクジェット法、スピンコート法及び印刷法である。
 表示装置に具備される有機EL素子の構成は、必要に応じて上記の有機EL素子の構成例の中から選択される。
 また、有機EL素子の製造方法は、上記の本発明の有機EL素子の製造の一態様に示したとおりである。
 このようにして得られた多色表示装置に直流電圧を印加する場合には、陽極を+、陰極を-の極性として電圧2~40V程度を印加すると発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。更に交流電圧を印加する場合には、陽極が+、陰極が-の状態になったときのみ発光する。なお、印加する交流の波形は任意でよい。
 多色表示装置は、表示デバイス、ディスプレイ又は各種発光光源として用いることができる。表示デバイス又はディスプレイにおいて、青、赤及び緑発光の3種の有機EL素子を用いることによりフルカラーの表示が可能となる。
 表示デバイス又はディスプレイとしては、テレビ、パソコン、モバイル機器、AV機器、文字放送表示及び自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。
 発光装置としては、家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、本発明はこれらに限定されない。
 以下、本発明の有機EL素子を有する表示装置の一例を図面に基づいて説明する。
 図2は有機EL素子から構成される表示装置の一例を示した模式図である。有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。
 ディスプレイ1は複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B、表示部Aと制御部Bとを電気的に接続する配線部C等を有する。
 制御部Bは表示部Aと配線部Cを介して電気的に接続され、複数の画素それぞれに外部からの画像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線ごとの画素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部Aに表示する。
 図3はアクティブマトリクス方式による表示装置の模式図である。
 表示部Aは基板上に、複数の走査線5及びデータ線6を含む配線部Cと複数の画素3等とを有する。表示部Aの主要な部材の説明を以下に行う。
 図3においては、画素3の発光した光が白矢印方向(下方向)へ取り出される場合を示している。
 配線部の走査線5及び複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示していない)。
 画素3は走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。
 発光の色が赤領域の画素、緑領域の画素、青領域の画素を適宜同一基板上に並置することによって、フルカラー表示が可能となる。
 次に、画素の発光プロセスを説明する。図4は画素の回路を示した概略図である。
 画素は、有機EL素子10、スイッチングトランジスタ11、駆動トランジスタ12、コンデンサー13等を備えている。複数の画素に有機EL素子10として、赤色、緑色及び青色発光の有機EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行うことができる。
 図4において、制御部Bからデータ線6を介してスイッチングトランジスタ11のドレインに画像データ信号が印加される。そして、制御部Bから走査線5を介してスイッチングトランジスタ11のゲートに走査信号が印加されると、スイッチングトランジスタ11の駆動がオンし、ドレインに印加された画像データ信号がコンデンサー13と駆動トランジスタ12のゲートに伝達される。
 画像データ信号の伝達により、コンデンサー13が画像データ信号の電位に応じて充電されるとともに、駆動トランジスタ12の駆動がオンする。駆動トランジスタ12は、ドレインが電源ライン7に接続され、ソースが有機EL素子10の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源ライン7から有機EL素子10に電流が供給される。
 制御部Bの順次走査により走査信号が次の走査線5に移ると、スイッチングトランジスタ11の駆動がオフする。しかし、スイッチングトランジスタ11の駆動がオフしてもコンデンサー13は充電された画像データ信号の電位を保持するので、駆動トランジスタ12の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機EL素子10の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスタ12が駆動して有機EL素子10が発光する。
 すなわち、有機EL素子10の発光は、複数の画素それぞれの有機EL素子10に対して、アクティブ素子であるスイッチングトランジスタ11と駆動トランジスタ12を設けて、複数の画素3それぞれの有機EL素子10の発光を行っている。このような発光方法をアクティブマトリクス方式と呼んでいる。
 ここで、有機EL素子10の発光は複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフでもよい。また、コンデンサー13の電位の保持は次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。
 本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査されたときのみデータ信号に応じて有機EL素子を発光させるパッシブマトリクス方式の発光駆動でもよい。
 図5は、パッシブマトリクス方式による表示装置の模式図である。図5において、複数の走査線5と複数の画像データ線6が画素3を挟んで対向して格子状に設けられている。
 順次走査により走査線5の走査信号が印加されたとき、印加された走査線5に接続している画素3が画像データ信号に応じて発光する。
 パッシブマトリクス方式では画素3にアクティブ素子が無く、製造コストの低減が計れる。
 本発明の有機EL素子を用いることにより、発光効率が向上した表示装置が得られる。
 <照明装置>
 本発明の有機EL素子は、照明装置に用いることもできる。
 本発明の有機EL素子は、共振器構造を持たせた有機EL素子として用いてもよい。このような共振器構造を有した有機EL素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザー発振をさせることにより上記用途に使用してもよい。
 また、本発明の有機EL素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。
 動画再生用の表示装置として使用する場合の駆動方式は、パッシブマトリクス方式でもアクティブマトリクス方式でもどちらでもよい。又は、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。
 また、本発明に用いられる蛍光発光性化合物は、照明装置として、実質的に白色の発光を生じる有機EL素子に適用できる。例えば、複数の発光材料を用いる場合、複数の発光色を同時に発光させて、混色することで白色発光を得ることができる。複数の発光色の組み合わせとしては、赤色、緑色及び青色の3原色の三つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した二つの発光極大波長を含有したものでもよい。
 また、本発明の有機EL素子の形成方法は、発光層、正孔輸送層あるいは電子輸送層等の形成時のみマスクを設け、マスクにより塗り分ける等単純に配置するだけでよい。他層は共通であるのでマスク等のパターニングは不要であり、一面に蒸着法、キャスト法、スピンコート法、インクジェット法及び印刷法等で、例えば、電極膜を形成でき、生産性も向上する。
 この方法によれば、複数色の発光素子をアレー状に並列配置した白色有機EL装置と異なり、素子自体が発光白色である。
 [本発明の照明装置の一態様]
 本発明の有機EL素子を具備した、本発明の照明装置の一態様について説明する。
 本発明の有機EL素子の非発光面をガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止し、図6及び図7に示すような照明装置を形成することができる。
 図6は、照明装置の概略図を示し、本発明の有機EL素子(照明装置内の有機EL素子101)はガラスカバー102で覆われている(なお、ガラスカバーでの封止作業は、照明装置内の有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った。)。
 図7は、照明装置の断面図を示し、105は陰極、106は有機層、107は透明電極付きガラス基板を示す。なお、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。
 本発明の有機EL素子を用いることにより、発光効率が向上した照明装置が得られた。
 <発光材料>
 本発明の発光材料は、半経験的分子軌道計算法を用いて構造最適化計算して得られる電子密度分布における最高被占軌道(HOMO)と最低空軌道(LUMO)の中心間距離が、5.0~9.0Åの範囲内である蛍光発光性化合物を含有することを特徴とする。
 これにより、有機EL素子中の電子移動度の向上、それに伴い有機EL素子中の高電流密度における発光効率の低下、すなわちロールオフの改善の効果が得られることから、発光効率を高め、寿命を改善する効果が得られる。
 また、本発明の発光材料は、前記半経験的分子軌道計算法を用いて構造最適化計算して得られる前記電子密度分布における前記最低空軌道(LUMO)の分子中心からの最長距離が、前記半経験的分子軌道計算法により算出されるファンデルワールス半径よりも0.1Å以上大きい蛍光発光性化合物を含有することが好ましい。
 これにより、有機EL素子中の電子移動度の向上、それに伴い有機EL素子中の高電流密度における発光効率の低下、すなわちロールオフの改善の効果が得られることから、発光効率を高め、寿命を改善する効果が得られる。
 また、蛍光発光性化合物に加えて、前記一般式(I)又は/及び前記一般式(II)で表される構造を有するホスト化合物を含有することが好ましい。これにより、さらに発光効率を高め、寿命を改善する効果が得られる。
 さらに、本発明の発光材料は、発光性薄膜、表示装置及び照明装置に用いることもできる。
 ここで、本発明の発光性薄膜について説明する。
 <発光性薄膜>
 本発明の発光性薄膜は、前記有機層の形成方法と同様に作製することができる。
 本発明の発光性薄膜の形成方法は、特に制限はなく、従来公知の例えば真空蒸着法、湿式法(ウェットプロセスともいう)等による形成方法を用いることができる。
 湿式法としては、スピンコート法、キャスト法、インクジェット法、印刷法、ダイコート法、ブレードコート法、ロールコート法、スプレーコート法、カーテンコート法、LB法(ラングミュア-ブロジェット法)等があるが、均質な薄膜が得られやすく、かつ高生産性の点から、ダイコート法、ロールコート法、インクジェット法、スプレーコート法などのロール・ツー・ロール方式適性の高い方法が好ましい。
 本発明の発光材料を溶解又は分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。
 また、分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。
 更に層毎に異なる製膜法を適用してもよい。製膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度を50~450℃の範囲内、真空度を10-6~10-2Paの範囲内、蒸着速度0.01~50nm/秒の範囲内、基板温度-50~300℃の範囲内、層厚0.1nm~5μmの範囲内、好ましくは5~200nmの範囲内で適宜選ぶことが望ましい。
 また、製膜にスピンコート法を採用する場合、スピンコーターを100~1000rpmの範囲内、10~120秒の範囲内で、乾燥不活性ガス雰囲気下で行うことが好ましい。
 また、本発明の発光性薄膜を表示装置及び照明装置に用いることもできる。
 これにより、発光効率が改善された表示装置及び照明装置が得られる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。
 また、各実施例における化合物の体積%は、作製する層厚を水晶発振子マイクロバランス法により測定し、質量を算出することで、比重から求めている。
 以下の実施例において用いた発光性化合物をドーパント化合物として表した。
 実施例で使用する化合物の半経験的分子軌道計算法を用いて構造最適化計算により得られたHOMO-LUMO中心間距離及びVDW距離と分子中心からLUMOまでの最長距離を計算した結果を表3に示す。
Figure JPOXMLDOC01-appb-T000094
 [実施例1]
 ≪薄膜の作製≫
 (薄膜1-Aの作製方法)
 50mm×50mm、厚さ0.7mmの石英基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、スピンコーターを用いて下記組成の発光材料を500rpm、30秒の条件で塗布したのち、120℃で30分焼成し乾燥を行った。上記薄膜は、純度99.999%以上の高純度窒素ガスの雰囲気下で、缶状ガラスケースで覆うことで封止し、膜厚40nmの薄膜1-Aを作製した。
ドーパント化合物2-4               5質量部
ホスト化合物ポリビニルカルバゾール(PVK)    95質量部
クロロベンゼン                   20000質量部
 さらに、ドーパント化合物2-4とホスト化合物のPVKを合わせた濃度を100質量%とした場合に、ドーパント化合物2-4の濃度を10質量%、20質量%、30質量%、40質量%に変更した薄膜も作製した。
 (薄膜1-B~1-Eの作製方法)
 ドーパント化合物を表4に示すように変えた以外は薄膜1-Aと同様の方法で薄膜1-Bから1-Eを作製し、ドーパント化合物の濃度を10質量%、20質量%、30質量%、40質量%に変更した薄膜も作製した。
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
 (薄膜の評価)
 薄膜1-A~1-Eの試料に対しUV-970(日立製作所)を使用し、UVスペクトルを測定し、励起波長を決定した上で、各薄膜のPLスペクトルを測定した。PL測定には絶対PL量子収率測定装置C9920-02(浜松ホトニクス社製)を用いた。
 ドーパント化合物のドープ濃度が5質量%の時の発光極大波長(初期極大波長)におけるピーク強度をそれぞれ1とし、各ドープ濃度での初期極大波長におけるピーク強度を相対値で表4に示した。
Figure JPOXMLDOC01-appb-T000097
 (結果)
 比較化合物1を用いた場合、ドーパント化合物の濃度が10%を超えると凝集に基づく長波の発光が観測された。それに伴い初期極大波長の強度上昇が20質量%までであったのに対し、化合物2-4、DP-2、DP-3、DP-4を使用した場合、濃度が20%を超えるまで長波の発光は見られず、初期極大波長の強度上昇は30質量%近くまで上昇した。このことは、比較例に使用した化合物のHOMO-LUMO中心間距離が大きく、分子のCT性が顕著なため、分子間の凝集が起こりやすいのに対し、本発明で使用した化合物のHOMO-LUMO中心間距離は適正であるため、分子のCT性が抑制され、それに伴い分子間の凝集が抑制されているためと考察される。
 [実施例2]
 (有機EL素子2-Aの作製方法)
 50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウム・スズ酸化物)を150nmの厚さで製膜し、パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
 真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。蒸着用るつぼはモリブデン製又はタングステン製の抵抗加熱用材料で作製されたものを用いた。
 真空度1×10-4Paまで減圧した後、Caの入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚5nmの電子注入層を形成した。
 次いで、基板を真空蒸着装置から併設のグローブボックスへ移動し、窒素雰囲気下で下記組成の発光材料を塗布し、発光層を形成した。
ドーパント化合物3-1               5質量部
ホスト化合物ポリビニルカルバゾール(PVK)    95質量部
クロロベンゼン                   20000質量部
 500rpm、30秒の条件で塗布したのち、120℃で30分間焼成した。
 次いで、この基板を再び真空蒸着装置に戻したのち、TPBiを蒸着速度1.0nm/秒で蒸着し、層厚80nmの電子輸送層を形成した。
 さらに、フッ化リチウムを膜厚0.8nmで形成した後に、アルミニウム100nmを蒸着して陰極を形成した。
 上記素子の非発光面側を、純度99.999%以上の高純度窒素ガスの雰囲気下で、缶状ガラスケースで覆い、電極取り出し配線を設置して、有機EL素子2-Aを作製した。
Figure JPOXMLDOC01-appb-C000098
 (有機EL素子2-Aから2-Hの作製方法)
 有機EL素子2-Aで使用した化合物を表5に示す化合物に変えた以外は有機EL素子2-Aと同様にして有機EL素子2-Bから2-Gを作製した。有機EL素子2-Hは、ドーパント化合物を用いていない以外は素子2-Aと同様にして作製した。
 (有機EL素子2-Aから2-Hの評価)
 有機EL素子2-Aから2-Hの発光層中の電子移動度は、ケースレーインスツルメンツ社製の微小電流測定装置を用い、-10Vから15Vの電圧を印加することで、I-V特性を評価した。得られたI-V特性からMott-Gurney lawの式を用い算出した。
 比較例の有機EL素子2-Hの電子移動度を1とし、各素子における発光層中の電子移動度を相対値で示した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000099
 (結果)
 ドーパント化合物が添加されていないデバイスである有機EL素子2-Hに対し、比較化合物を用いた有機EL素子(2-E~2-G)の発光層中の電子移動度は低く、有機EL素子2-B、2-Dの電子移動度はホスト化合物とほぼ同等であった。また、有機EL素子2-A、2-Cに関しては良好な電子移動度を示した。このことは分子中心からのLUMOの距離がファンデルワールス半径よりも0.1Å以上大きい場合、すなわち、LUMOが分子の外側に存在する場合、電子のホッピングが良好となり電子輸送性が向上するものと考えられる。ただし、比較例の有機EL素子2-E~2-Gで示したように、HOMO-LUMOの中心間距離が適正でない場合、この場合は近すぎるため、電子の分子内への閉じ込め効果が働き、電子輸送性が低下しているものと考えられる。
 [実施例3]
 (有機EL素子3-Aの作製)
 50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウム・スズ酸化物)を150nmの厚さで製膜し、パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
 真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。蒸着用るつぼはモリブデン製又はタングステン製の抵抗加熱用材料で作製されたものを用いた。
 真空度1×10-4Paまで減圧した後、α-NPDの入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚40nmの正孔注入輸送層を形成した。
 次いで、ホスト化合物UGH2、ドーパント化合物2-4が、それぞれ90%、10%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚35nmの発光層を形成した。
 その後、BCP(電子輸送材料)を蒸着速度0.1nm/秒で蒸着し、層厚30nmの電子輸送層を形成した。
 さらに、フッ化リチウムを膜厚0.5nmで形成した後に、アルミニウム100nmを蒸着して陰極を形成した。
 上記素子の非発光面側を、純度99.999%以上の高純度窒素ガスの雰囲気下で、缶状ガラスケースで覆い、電極取り出し配線を設置して、有機EL素子3-Aを作製した。
Figure JPOXMLDOC01-appb-C000100
 (有機EL素子3-B~3-Tの作製)
 ドーパント化合物2-4、ホスト化合物UGH2を表6に示すように変えた以外は有機EL素子3-Aと同様の方法で有機EL素子3-Bから3-Tを作製した。
 (評価)
 有機EL素子3-Aから3-Tについて、下記の評価を行った。
 (高輝度発光時のロールオフ特性)
 上記作製した各有機EL素子を、室温(約25℃)で、ロールオフ特性を評価した。まず、各素子に電圧を印加し、0~10000cd/Aまで発光させたときに得られた輝度-外部量子収率のグラフを作成した。発光輝度に関しては、分光放射輝度計CS-2000(コニカミノルタ社製)を用いて測定した。
 ロールオフ特性Rは、各有機EL素子の外部量子収率の極大値が得られた発光輝度に対し、20%の外部量子収率の低下が観測された発光輝度を観察し、以下の式であらわす相対値とした。
ロールオフ特性R=(極大値から20%の外部量子収率の低下が観測された発光輝度の値)/(外部量子収率の極大値が得られた発光輝度の値)
 値が大きいほどロールオフ特性が良好(ロールオフが少ない)ことを示す。
 (外部量子収率(発光輝度)の評価)
 上記作製した各有機EL素子を、室温(約25℃)で、2.5mA/cmの定電流条件下で発光させ、発光開始直後の発光輝度を、分光放射輝度計CS-2000(コニカミノルタ社製)を用いて測定した。
 次いで、比較例の有機EL素子3-Oの発光輝度を1とした相対発光輝度を求め、これを発光効率(外部量子収率)の尺度とした。数値が大きいほど、発光効率に優れていることを表す。
 (半減寿命(連続駆動安定性)の評価)
 各サンプルを初期輝度3000cd/mで連続駆動させながら、上記分光放射輝度計CS-2000を用いて輝度を測定し、測定した輝度が半減する時間(LT50)を求めた。
 比較例の有機EL素子3-OのLT50を1とした相対値を求め、これを連続駆動安定性の尺度とした。その評価結果を表6に示す。表中、数値が大きいほど、連続駆動安定性に優れている(長寿命である)ことを表す。
Figure JPOXMLDOC01-appb-T000101
 (結果)
 有機EL素子3-Aから3-Lにおいて、比較例の有機EL素子と比べてロールオフ特性及び外部量子収率に優れていることが分かる。
 これは、HOMO-LUMO間の中心間距離が好ましいため、ドーパント化合物間での凝集等の好ましくない相互作用を抑制できるためであると考えられる。この中でも、例えば、実施例の有機EL素子3-Cにおいては、蛍光発光性化合物の分子中心からLUMOまでの距離がファンデルワールス半径よりも0.1Åより大きいため、蛍光発光性化合物の電子輸送性が向上し、結果として有機EL素子の駆動の際に電荷の再結合できる範囲が大きく広がっているものと考えられる。蛍光発光性化合物の分子中心からのLUMO距離がファンデルワールス半径よりも小さい場合には、電子が分子内に捕捉されやすくなり、結果として有機EL素子の駆動の際に電荷の再結合できる範囲が狭くなると考えられる。電荷の再結合できる範囲が大きく広がることは高電流密度で駆動した場合に起こる発光位置のずれによる輝度低下(ロールオフ)を抑制し、寿命の向上に大きく寄与していると考えられる。
 さらに、この効果は本発明に用いられるホスト化合物を用いることで増強される。すなわち、ホスト化合物とドーパント化合物の間での良好な相互作用がロールオフの抑制を推進し、飛躍的な寿命向上につながっていると考えられる。
 本発明により、発光効率を向上させることが可能な有機エレクトロルミネッセンス素子を得ることができ、当該有機EL素子を備えた表示デバイス、ディスプレイや、家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源、さらには表示装置を必要とする一般の家庭用電気器具等の広い発光光源として好適に利用できる。
1 ディスプレイ
3 画素
5 走査線
6 データ線
7 電源ライン
10 有機EL素子
11 スイッチングトランジスタ
12 駆動トランジスタ
13 コンデンサー
101 照明装置内の有機EL素子
102 ガラスカバー
105 陰極
106 有機層
107 透明電極付きガラス基板
108 窒素ガス
109 捕水剤
A 表示部
B 制御部
C 配線部

Claims (15)

  1.  一対の電極間に、蛍光発光性化合物を含有する有機層を含む少なくとも1層の有機層を有する有機エレクトロルミネッセンス素子であって、
     半経験的分子軌道計算法を用いて構造最適化計算して得られる当該蛍光発光性化合物の電子密度分布における最高被占軌道(HOMO)と最低空軌道(LUMO)の中心間距離が、5.0~9.0Åの範囲内であることを特徴とする有機エレクトロルミネッセンス素子。
  2.  前記半経験的分子軌道計算法を用いて構造最適化計算して得られる当該蛍光発光性化合物の電子密度分布における前記最低空軌道(LUMO)の分子中心からの最長距離が、前記半経験的分子軌道計算法により算出されるファンデルワールス半径よりも0.1Å以上大きいことを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
  3.  前記有機層のうち少なくとも1層が、前記蛍光発光性化合物に加えて、下記一般式(I)で表される構造を有するホスト化合物を含有することを特徴とする請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(I)中、X101は、NR101、酸素原子、硫黄原子、CR102103又はSiR102103を表す。y~yは、各々CR104又は窒素原子を表す。R101~R104は、各々水素原子又は置換基を表し、また互いに結合して環を形成してもよい。Ar101及びAr102は、各々芳香環を表し、それぞれ同一でも異なっていてもよい。n101及びn102は、各々0~4の整数を表すが、R101が水素原子の場合は、n101は1~4の整数を表す。)
  4.  前記一般式(I)で表される構造を有するホスト化合物が、下記一般式(II)で表される構造を有することを特徴とする請求項3に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(II)中、X101は、NR101、酸素原子、硫黄原子、CR102103又はSiR102103を表す。R101~R103は、各々水素原子又は置換基を表し、また互いに結合して環を形成してもよい。Ar101及びAr102は、各々芳香環を表し、それぞれ同一でも異なっていても良い。n102は0~4の整数を表す。)
  5.  半経験的分子軌道計算法を用いて構造最適化計算して得られる電子密度分布における最高被占軌道(HOMO)と最低空軌道(LUMO)の中心間距離が、5.0~9.0Åの範囲内である蛍光発光性化合物を含有することを特徴とする発光材料。
  6.  前記半経験的分子軌道計算法を用いて構造最適化計算して得られる前記電子密度分布における前記最低空軌道(LUMO)の分子中心からの最長距離が、前記半経験的分子軌道計算法により算出されるファンデルワールス半径よりも0.1Å以上大きい蛍光発光性化合物を含有することを特徴とする請求項5に記載の発光材料。
  7.  前記蛍光発光性化合物に加えて、下記一般式(I)で表される構造を有するホスト化合物を含有することを特徴とする請求項5又は請求項6に記載の発光材料。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(I)中、X101は、NR101、酸素原子、硫黄原子、CR102103又はSiR102103を表す。y~yは、各々CR104又は窒素原子を表す。R101~R104は、各々水素原子又は置換基を表し、また互いに結合して環を形成してもよい。Ar101及びAr102は、各々芳香環を表し、それぞれ同一でも異なっていても良い。n101及びn102は各々0~4の整数を表すが、R101が水素原子の場合は、n101は1~4の整数を表す。)
  8.  前記一般式(I)で表される構造を有するホスト化合物が、下記一般式(II)で表される構造を有することを特徴とする請求項7に記載の発光材料。
    Figure JPOXMLDOC01-appb-C000004
    (一般式(II)中、X101は、NR101、酸素原子、硫黄原子、CR102103又はSiR102103を表す。R101~R103は、各々水素原子又は置換基を表し、また互いに結合して環を形成してもよい。Ar101及びAr102は、各々芳香環を表し、それぞれ同一でも異なっていても良い。n102は0~4の整数を表す。)
  9.  請求項5から請求項8までのいずれか一項に記載の発光材料を含有することを特徴とする発光性薄膜。
  10.  請求項1から請求項4までのいずれか一項に記載の有機エレクトロルミネッセンス素子が、具備されていることを特徴とする表示装置。
  11.  請求項5から請求項8までのいずれか一項に記載の発光材料が、用いられていることを特徴とする表示装置。
  12.  請求項9に記載の発光性薄膜が、用いられていることを特徴とする表示装置。
  13.  請求項1から請求項4までのいずれか一項に記載の有機エレクトロルミネッセンス素子が、具備されていることを特徴とする照明装置。
  14.  請求項5から請求項8までのいずれか一項に記載の発光材料が、用いられていることを特徴とする照明装置。
  15.  請求項9に記載の発光性薄膜が、用いられていることを特徴とする照明装置。
PCT/JP2014/072224 2013-08-30 2014-08-26 有機エレクトロルミネッセンス素子、発光材料、発光性薄膜、表示装置及び照明装置 WO2015029964A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015534210A JPWO2015029964A1 (ja) 2013-08-30 2014-08-26 有機エレクトロルミネッセンス素子、発光材料、発光性薄膜、表示装置及び照明装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-179337 2013-08-30
JP2013179337 2013-08-30

Publications (1)

Publication Number Publication Date
WO2015029964A1 true WO2015029964A1 (ja) 2015-03-05

Family

ID=52586521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072224 WO2015029964A1 (ja) 2013-08-30 2014-08-26 有機エレクトロルミネッセンス素子、発光材料、発光性薄膜、表示装置及び照明装置

Country Status (2)

Country Link
JP (1) JPWO2015029964A1 (ja)
WO (1) WO2015029964A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129687A1 (ja) * 2015-02-13 2016-08-18 出光興産株式会社 化合物、組成物、有機エレクトロルミネッセンス素子、および電子機器
WO2016158540A1 (ja) * 2015-03-27 2016-10-06 出光興産株式会社 有機エレクトロルミネッセンス素子、電子機器、および化合物
WO2016181846A1 (ja) * 2015-05-08 2016-11-17 コニカミノルタ株式会社 π共役系化合物、有機エレクトロルミネッセンス素子材料、発光材料、発光性薄膜、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2017075121A (ja) * 2015-10-15 2017-04-20 コニカミノルタ株式会社 π共役系化合物、有機エレクトロルミネッセンス素子材料、発光材料、発光性薄膜、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2017115068A1 (en) * 2015-12-29 2017-07-06 University Court Of The University Of St Andrews Light emitting compounds
US10651392B2 (en) 2015-09-30 2020-05-12 Samsung Electronics Co., Ltd. Organic light-emitting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049518A (ja) * 2010-07-27 2012-03-08 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子材料、化合物、有機エレクトロルミネッセンス素子、表示装置、並びに照明装置
WO2012086170A1 (ja) * 2010-12-20 2012-06-28 出光興産株式会社 芳香族複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2013011954A1 (ja) * 2011-07-15 2013-01-24 国立大学法人九州大学 有機エレクトロルミネッセンス素子およびそれに用いる化合物
WO2013081088A1 (ja) * 2011-12-02 2013-06-06 国立大学法人九州大学 有機発光素子ならびにそれに用いる遅延蛍光材料および化合物
JP2013253121A (ja) * 2011-07-15 2013-12-19 Kyushu Univ 遅延蛍光材料、それを用いた有機エレクトロルミネッセンス素子および化合物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049518A (ja) * 2010-07-27 2012-03-08 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子材料、化合物、有機エレクトロルミネッセンス素子、表示装置、並びに照明装置
WO2012086170A1 (ja) * 2010-12-20 2012-06-28 出光興産株式会社 芳香族複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2013011954A1 (ja) * 2011-07-15 2013-01-24 国立大学法人九州大学 有機エレクトロルミネッセンス素子およびそれに用いる化合物
JP2013253121A (ja) * 2011-07-15 2013-12-19 Kyushu Univ 遅延蛍光材料、それを用いた有機エレクトロルミネッセンス素子および化合物
WO2013081088A1 (ja) * 2011-12-02 2013-06-06 国立大学法人九州大学 有機発光素子ならびにそれに用いる遅延蛍光材料および化合物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SUNG-YU KU ET AL.: "Spiro-Configured Bipolar Host Materials for Highly Efficient Electrophosphorescent Devices", CHEMISTRY-AN ASIAN JOURNAL, vol. 7, no. ISSUE, 13 October 2012 (2012-10-13), pages 133 - 142 *
ZUJIN ZHAO ET AL.: "White Light from Excimer and Electromer in Single-Emitting-Component Electroluminescent Diodes", THE JOURNAL OF PHYSICAL CHEMISTRY C, vol. 112, no. 23, 16 May 2008 (2008-05-16), pages 8511 - 8515 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016129687A1 (ja) * 2015-02-13 2017-11-30 出光興産株式会社 化合物、組成物、有機エレクトロルミネッセンス素子、および電子機器
WO2016129687A1 (ja) * 2015-02-13 2016-08-18 出光興産株式会社 化合物、組成物、有機エレクトロルミネッセンス素子、および電子機器
US10547009B2 (en) 2015-03-27 2020-01-28 Idemitsu Kosan Co., Ltd. Organic electroluminescent element, electronic device and compound
JPWO2016158540A1 (ja) * 2015-03-27 2018-02-08 出光興産株式会社 有機エレクトロルミネッセンス素子、電子機器、および化合物
WO2016158540A1 (ja) * 2015-03-27 2016-10-06 出光興産株式会社 有機エレクトロルミネッセンス素子、電子機器、および化合物
WO2016181846A1 (ja) * 2015-05-08 2016-11-17 コニカミノルタ株式会社 π共役系化合物、有機エレクトロルミネッセンス素子材料、発光材料、発光性薄膜、有機エレクトロルミネッセンス素子、表示装置及び照明装置
CN107531628A (zh) * 2015-05-08 2018-01-02 柯尼卡美能达株式会社 π共轭类化合物、有机电致发光元件材料、发光材料、发光性薄膜、有机电致发光元件、显示装置及照明装置
KR20170128517A (ko) * 2015-05-08 2017-11-22 코니카 미놀타 가부시키가이샤 π 공액계 화합물, 유기 일렉트로루미네센스 소자 재료, 발광 재료, 발광성 박막, 유기 일렉트로루미네센스 소자, 표시 장치 및 조명 장치
JPWO2016181846A1 (ja) * 2015-05-08 2018-02-22 コニカミノルタ株式会社 π共役系化合物、有機エレクトロルミネッセンス素子材料、発光材料、発光性薄膜、有機エレクトロルミネッセンス素子、表示装置及び照明装置
KR102146446B1 (ko) * 2015-05-08 2020-08-20 코니카 미놀타 가부시키가이샤 π 공액계 화합물, 유기 일렉트로루미네센스 소자 재료, 발광 재료, 발광성 박막, 유기 일렉트로루미네센스 소자, 표시 장치 및 조명 장치
US11358951B2 (en) 2015-05-08 2022-06-14 Merck Patent Gmbh Π(PI)-conjugated compound, organic electroluminescence element material, light-emitting material, light-emitting thin film, organic electroluminescence element, display device, and illumination device
US10651392B2 (en) 2015-09-30 2020-05-12 Samsung Electronics Co., Ltd. Organic light-emitting device
JP2017075121A (ja) * 2015-10-15 2017-04-20 コニカミノルタ株式会社 π共役系化合物、有機エレクトロルミネッセンス素子材料、発光材料、発光性薄膜、有機エレクトロルミネッセンス素子、表示装置及び照明装置
CN108780852A (zh) * 2015-12-29 2018-11-09 圣安德鲁斯大学董事会 发光化合物
JP2019509977A (ja) * 2015-12-29 2019-04-11 ユニヴァーシティー コート オブ ザ ユニヴァーシティー オブ セント アンドリューズ 発光性化合物
WO2017115068A1 (en) * 2015-12-29 2017-07-06 University Court Of The University Of St Andrews Light emitting compounds

Also Published As

Publication number Publication date
JPWO2015029964A1 (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6627508B2 (ja) 有機エレクトロルミネッセンス素子、照明装置、表示装置及び蛍光発光性化合物
JP6304255B2 (ja) 有機エレクトロルミネッセンス素子、電子デバイス、発光装置及び発光材料
JP6314974B2 (ja) 有機エレクトロルミネッセンス素子、照明装置、表示装置、有機ルミネッセンス素子用発光性薄膜と組成物及び発光方法
JP6344382B2 (ja) 発光層形成用塗布液、有機エレクトロルミネッセンス素子とその製造方法及び照明・表示装置
JP6288092B2 (ja) 有機エレクトロルミネッセンス素子、発光装置、照明装置、表示装置及び電子機器
KR102137347B1 (ko) 유기 일렉트로루미네센스 소자, 발광성 박막, 표시 장치 및 조명 장치
JP6264001B2 (ja) 有機エレクトロルミネッセンス素子、発光性薄膜、表示装置及び照明装置
JP2016036025A (ja) 有機エレクトロルミネッセンス素子及びπ共役系化合物
JP6673203B2 (ja) 有機エレクトロルミネッセンス素子
WO2016017514A1 (ja) 有機エレクトロルミネッセンス素子、発光性薄膜、表示装置及び照明装置
WO2016017741A1 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置、蛍光発光性化合物及び発光性薄膜
JP7044108B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置
WO2015029964A1 (ja) 有機エレクトロルミネッセンス素子、発光材料、発光性薄膜、表示装置及び照明装置
JP2016092280A (ja) 発光性薄膜、有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2016092320A (ja) 有機エレクトロルミネッセンス素子及び照明装置
JP6115395B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子用金属錯体、並びに表示装置及び照明装置
JP6648434B2 (ja) 有機エレクトロルミネッセンス素子、照明装置、及びπ共役系化合物
JP6493202B2 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP5994753B2 (ja) 有機エレクトロルミネッセンス素子、それに用いる蛍光発光性化合物、当該有機エレクトロルミネッセンス素子を具備する照明装置及び表示装置
JP6701649B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置、π共役系化合物、及び発光性薄膜
JP6264603B2 (ja) 銅錯体及び有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838981

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534210

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14838981

Country of ref document: EP

Kind code of ref document: A1