WO2022270113A1 - 有機エレクトロルミネッセンス素子 - Google Patents
有機エレクトロルミネッセンス素子 Download PDFInfo
- Publication number
- WO2022270113A1 WO2022270113A1 PCT/JP2022/015888 JP2022015888W WO2022270113A1 WO 2022270113 A1 WO2022270113 A1 WO 2022270113A1 JP 2022015888 W JP2022015888 W JP 2022015888W WO 2022270113 A1 WO2022270113 A1 WO 2022270113A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- organic compound
- ring
- general formula
- substituted
- Prior art date
Links
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 306
- 239000000463 material Substances 0.000 claims abstract description 115
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 claims abstract description 86
- 230000003111 delayed effect Effects 0.000 claims abstract description 42
- 150000001875 compounds Chemical class 0.000 claims description 323
- 239000010410 layer Substances 0.000 claims description 248
- 125000001424 substituent group Chemical group 0.000 claims description 212
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 161
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 88
- 125000003118 aryl group Chemical group 0.000 claims description 87
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 86
- 229910052805 deuterium Inorganic materials 0.000 claims description 69
- 125000004122 cyclic group Chemical group 0.000 claims description 64
- 238000005401 electroluminescence Methods 0.000 claims description 58
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 56
- 229910052757 nitrogen Inorganic materials 0.000 claims description 51
- 125000001072 heteroaryl group Chemical group 0.000 claims description 49
- -1 5H-benzofuro[3,2-c]carbazol-5-yl group Chemical group 0.000 claims description 46
- 229910052796 boron Inorganic materials 0.000 claims description 34
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 31
- 125000004431 deuterium atom Chemical group 0.000 claims description 29
- IANQTJSKSUMEQM-UHFFFAOYSA-N 1-benzofuran Chemical group C1=CC=C2OC=CC2=C1 IANQTJSKSUMEQM-UHFFFAOYSA-N 0.000 claims description 18
- 125000000168 pyrrolyl group Chemical group 0.000 claims description 15
- 239000012044 organic layer Substances 0.000 claims description 14
- 125000005842 heteroatom Chemical group 0.000 claims description 9
- 125000004556 carbazol-9-yl group Chemical group C1=CC=CC=2C3=CC=CC=C3N(C12)* 0.000 claims description 8
- 230000000694 effects Effects 0.000 claims description 8
- 239000000470 constituent Substances 0.000 claims description 6
- 230000001747 exhibiting effect Effects 0.000 claims description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 115
- 125000000217 alkyl group Chemical group 0.000 description 64
- 150000001975 deuterium Chemical group 0.000 description 63
- 239000010408 film Substances 0.000 description 58
- 125000004430 oxygen atom Chemical group O* 0.000 description 58
- 125000004429 atom Chemical group 0.000 description 54
- 125000004434 sulfur atom Chemical group 0.000 description 49
- 239000000758 substrate Substances 0.000 description 38
- 230000004888 barrier function Effects 0.000 description 33
- 230000000903 blocking effect Effects 0.000 description 31
- 125000005647 linker group Chemical group 0.000 description 30
- 239000000203 mixture Substances 0.000 description 25
- 229910052717 sulfur Inorganic materials 0.000 description 24
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 20
- 125000003545 alkoxy group Chemical group 0.000 description 20
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 20
- 230000032258 transport Effects 0.000 description 20
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical group C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 18
- 229910052751 metal Inorganic materials 0.000 description 18
- 238000002347 injection Methods 0.000 description 17
- 239000007924 injection Substances 0.000 description 17
- 239000002184 metal Substances 0.000 description 17
- 125000003277 amino group Chemical group 0.000 description 16
- 125000001153 fluoro group Chemical group F* 0.000 description 15
- 238000004770 highest occupied molecular orbital Methods 0.000 description 15
- 230000005525 hole transport Effects 0.000 description 14
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical group C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 12
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical group C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 12
- 125000004104 aryloxy group Chemical group 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 12
- 239000010409 thin film Substances 0.000 description 12
- 125000003342 alkenyl group Chemical group 0.000 description 11
- 125000000732 arylene group Chemical group 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 11
- 229920000642 polymer Polymers 0.000 description 11
- 125000004986 diarylamino group Chemical group 0.000 description 10
- 238000005538 encapsulation Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 229910052731 fluorine Inorganic materials 0.000 description 9
- 239000004642 Polyimide Substances 0.000 description 8
- 125000001769 aryl amino group Chemical group 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- 229920001721 polyimide Polymers 0.000 description 8
- 238000007740 vapor deposition Methods 0.000 description 8
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 7
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 6
- 125000005843 halogen group Chemical group 0.000 description 6
- 125000005549 heteroarylene group Chemical group 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 125000003373 pyrazinyl group Chemical group 0.000 description 6
- 125000000714 pyrimidinyl group Chemical group 0.000 description 6
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 5
- FLBAYUMRQUHISI-UHFFFAOYSA-N 1,8-naphthyridine Chemical group N1=CC=CC2=CC=CN=C21 FLBAYUMRQUHISI-UHFFFAOYSA-N 0.000 description 5
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 5
- 150000001721 carbon Chemical group 0.000 description 5
- 239000003086 colorant Substances 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 5
- 125000001624 naphthyl group Chemical group 0.000 description 5
- 238000001296 phosphorescence spectrum Methods 0.000 description 5
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 5
- 125000006413 ring segment Chemical group 0.000 description 5
- 229930192474 thiophene Natural products 0.000 description 5
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 238000002161 passivation Methods 0.000 description 4
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical group C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 4
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 150000003577 thiophenes Chemical class 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 125000005580 triphenylene group Chemical group 0.000 description 4
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical group C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 3
- GWYPDXLJACEENP-UHFFFAOYSA-N 1,3-cycloheptadiene Chemical group C1CC=CC=CC1 GWYPDXLJACEENP-UHFFFAOYSA-N 0.000 description 3
- 229910001374 Invar Inorganic materials 0.000 description 3
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical group C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 125000001309 chloro group Chemical group Cl* 0.000 description 3
- 238000010549 co-Evaporation Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- CHVJITGCYZJHLR-UHFFFAOYSA-N cyclohepta-1,3,5-triene Chemical group C1C=CC=CC=C1 CHVJITGCYZJHLR-UHFFFAOYSA-N 0.000 description 3
- MGNZXYYWBUKAII-UHFFFAOYSA-N cyclohexa-1,3-diene Chemical group C1CC=CC=C1 MGNZXYYWBUKAII-UHFFFAOYSA-N 0.000 description 3
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 3
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical group C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 3
- 238000000295 emission spectrum Methods 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 238000002189 fluorescence spectrum Methods 0.000 description 3
- 125000005553 heteroaryloxy group Chemical group 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 125000002636 imidazolinyl group Chemical group 0.000 description 3
- 125000002883 imidazolyl group Chemical group 0.000 description 3
- ZLTPDFXIESTBQG-UHFFFAOYSA-N isothiazole Chemical group C=1C=NSC=1 ZLTPDFXIESTBQG-UHFFFAOYSA-N 0.000 description 3
- 125000000842 isoxazolyl group Chemical group 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 125000001434 methanylylidene group Chemical group [H]C#[*] 0.000 description 3
- 125000002950 monocyclic group Chemical group 0.000 description 3
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 125000002971 oxazolyl group Chemical group 0.000 description 3
- 230000000379 polymerizing effect Effects 0.000 description 3
- 125000003226 pyrazolyl group Chemical group 0.000 description 3
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical group C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 description 2
- 125000003229 2-methylhexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 description 2
- 125000004105 2-pyridyl group Chemical group N1=C([*])C([H])=C([H])C([H])=C1[H] 0.000 description 2
- 125000003349 3-pyridyl group Chemical group N1=C([H])C([*])=C([H])C([H])=C1[H] 0.000 description 2
- 125000000339 4-pyridyl group Chemical group N1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 2
- JHYLKGDXMUDNEO-UHFFFAOYSA-N [Mg].[In] Chemical compound [Mg].[In] JHYLKGDXMUDNEO-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 125000002723 alicyclic group Chemical group 0.000 description 2
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 2
- 125000003282 alkyl amino group Chemical group 0.000 description 2
- 125000004414 alkyl thio group Chemical group 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- 125000000304 alkynyl group Chemical group 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 2
- 125000005577 anthracene group Chemical group 0.000 description 2
- 125000005161 aryl oxy carbonyl group Chemical group 0.000 description 2
- 125000005110 aryl thio group Chemical group 0.000 description 2
- 150000007980 azole derivatives Chemical class 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 150000001907 coumarones Chemical class 0.000 description 2
- ZXIJMRYMVAMXQP-UHFFFAOYSA-N cycloheptene Chemical group C1CCC=CCC1 ZXIJMRYMVAMXQP-UHFFFAOYSA-N 0.000 description 2
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentene Chemical group C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 description 2
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 2
- 230000005283 ground state Effects 0.000 description 2
- 125000005226 heteroaryloxycarbonyl group Chemical group 0.000 description 2
- 125000005368 heteroarylthio group Chemical group 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 125000001041 indolyl group Chemical group 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 2
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000000555 isopropenyl group Chemical group [H]\C([H])=C(\*)C([H])([H])[H] 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- SJCKRGFTWFGHGZ-UHFFFAOYSA-N magnesium silver Chemical compound [Mg].[Ag] SJCKRGFTWFGHGZ-UHFFFAOYSA-N 0.000 description 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N monobenzene Natural products C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 2
- 125000004370 n-butenyl group Chemical group [H]\C([H])=C(/[H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 2
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 2
- 238000001420 photoelectron spectroscopy Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 2
- 125000000547 substituted alkyl group Chemical group 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- 125000004665 trialkylsilyl group Chemical group 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 238000003631 wet chemical etching Methods 0.000 description 2
- UWRZIZXBOLBCON-VOTSOKGWSA-N (e)-2-phenylethenamine Chemical class N\C=C\C1=CC=CC=C1 UWRZIZXBOLBCON-VOTSOKGWSA-N 0.000 description 1
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 1
- VERMWGQSKPXSPZ-BUHFOSPRSA-N 1-[(e)-2-phenylethenyl]anthracene Chemical class C=1C=CC2=CC3=CC=CC=C3C=C2C=1\C=C\C1=CC=CC=C1 VERMWGQSKPXSPZ-BUHFOSPRSA-N 0.000 description 1
- MVWPVABZQQJTPL-UHFFFAOYSA-N 2,3-diphenylcyclohexa-2,5-diene-1,4-dione Chemical class O=C1C=CC(=O)C(C=2C=CC=CC=2)=C1C1=CC=CC=C1 MVWPVABZQQJTPL-UHFFFAOYSA-N 0.000 description 1
- 125000000590 4-methylphenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 1
- ZYASLTYCYTYKFC-UHFFFAOYSA-N 9-methylidenefluorene Chemical class C1=CC=C2C(=C)C3=CC=CC=C3C2=C1 ZYASLTYCYTYKFC-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- VVJKKWFAADXIJK-UHFFFAOYSA-N Allylamine Chemical class NCC=C VVJKKWFAADXIJK-UHFFFAOYSA-N 0.000 description 1
- TVVTWOGRPVJKDJ-UHFFFAOYSA-N Befunolol hydrochloride Chemical group [Cl-].CC(C)[NH2+]CC(O)COC1=CC=CC2=C1OC(C(C)=O)=C2 TVVTWOGRPVJKDJ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910000799 K alloy Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N N-phenyl amine Natural products NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 1
- 229910004205 SiNX Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- OWXLRKWPEIAGAT-UHFFFAOYSA-N [Mg].[Cu] Chemical compound [Mg].[Cu] OWXLRKWPEIAGAT-UHFFFAOYSA-N 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229940051880 analgesics and antipyretics pyrazolones Drugs 0.000 description 1
- 125000002490 anilino group Chemical group [H]N(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 150000008425 anthrones Chemical class 0.000 description 1
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- RFRXIWQYSOIBDI-UHFFFAOYSA-N benzarone Chemical class CCC=1OC2=CC=CC=C2C=1C(=O)C1=CC=C(O)C=C1 RFRXIWQYSOIBDI-UHFFFAOYSA-N 0.000 description 1
- BHXFKXOIODIUJO-UHFFFAOYSA-N benzene-1,4-dicarbonitrile Chemical compound N#CC1=CC=C(C#N)C=C1 BHXFKXOIODIUJO-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 125000001162 cycloheptenyl group Chemical group C1(=CCCCCC1)* 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 238000000609 electron-beam lithography Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 150000008376 fluorenones Chemical class 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- VVVPGLRKXQSQSZ-UHFFFAOYSA-N indolo[3,2-c]carbazole Chemical class C1=CC=CC2=NC3=C4C5=CC=CC=C5N=C4C=CC3=C21 VVVPGLRKXQSQSZ-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229940079865 intestinal antiinfectives imidazole derivative Drugs 0.000 description 1
- LAQPNDIUHRHNCV-UHFFFAOYSA-N isophthalonitrile Chemical compound N#CC1=CC=CC(C#N)=C1 LAQPNDIUHRHNCV-UHFFFAOYSA-N 0.000 description 1
- 125000003253 isopropoxy group Chemical group [H]C([H])([H])C([H])(O*)C([H])([H])[H] 0.000 description 1
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000006606 n-butoxy group Chemical group 0.000 description 1
- 125000003506 n-propoxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002829 nitrogen Chemical group 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000004866 oxadiazoles Chemical class 0.000 description 1
- 150000007978 oxazole derivatives Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000001820 oxy group Chemical group [*:1]O[*:2] 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- 150000004986 phenylenediamines Chemical class 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 108091008695 photoreceptors Proteins 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- JEXVQSWXXUJEMA-UHFFFAOYSA-N pyrazol-3-one Chemical class O=C1C=CN=N1 JEXVQSWXXUJEMA-UHFFFAOYSA-N 0.000 description 1
- 150000003219 pyrazolines Chemical class 0.000 description 1
- 238000006862 quantum yield reaction Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical class C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229940042055 systemic antimycotics triazole derivative Drugs 0.000 description 1
- 150000004867 thiadiazoles Chemical class 0.000 description 1
- IBBLKSWSCDAPIF-UHFFFAOYSA-N thiopyran Chemical compound S1C=CC=C=C1 IBBLKSWSCDAPIF-UHFFFAOYSA-N 0.000 description 1
- 125000004306 triazinyl group Chemical group 0.000 description 1
- 150000003852 triazoles Chemical group 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/56—Ring systems containing three or more rings
- C07D209/80—[b, c]- or [b, d]-condensed
- C07D209/82—Carbazoles; Hydrogenated carbazoles
- C07D209/86—Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D519/00—Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/12—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
- H10K85/636—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/654—Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6574—Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/658—Organoboranes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B2200/00—Indexing scheme relating to specific properties of organic compounds
- C07B2200/05—Isotopically modified compounds, e.g. labelled
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/20—Delayed fluorescence emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/27—Combination of fluorescent and phosphorescent emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/30—Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
Definitions
- the present invention relates to an organic electroluminescence device with high luminous efficiency.
- Patent Literature 1 proposes a three-component organic electroluminescence device in which a light-emitting layer is composed of a host material, a delayed fluorescent material, and a fluorescent material.
- the excited triplet energy transferred from the host material to the delayed fluorescent material and the excited triplet energy generated in the delayed fluorescent material undergo reverse intersystem crossing from triplet to singlet in the delayed fluorescent material. is converted into excited singlet energy by , which migrates to the fluorescent material and is emitted as fluorescence. It is said that, as a result, excited triplet energy generated in the light-emitting layer is effectively utilized for light emission of the fluorescent material, resulting in high luminous efficiency.
- the emission wavelength of fluorescent materials depends on the HOMO-LUMO energy gap and Stokes shift, and various fluorescent materials with different energy values have been developed. Therefore, in the three-component light-emitting layer, depending on the fluorescent material used, the LUMO energy of the fluorescent material may be higher than the LUMO energy of the delayed fluorescent material, or it may be lower (deeper) than that. There is also Under these circumstances, the present inventors combined various delayed fluorescent materials and fluorescent materials with a host material to form a light-emitting layer. It was found that when the concentration of the fluorescent material was increased, a phenomenon was observed in which the luminous efficiency decreased, and the luminous efficiency could not be sufficiently improved.
- the present inventors have developed an organic electroluminescence device containing a host material, a delayed fluorescent material, and a fluorescent material in a light emitting layer, in which the LUMO energy of the fluorescent material is higher than the LUMO energy of the delayed fluorescent material, even if it is lower Intensive studies have been carried out for the purpose of providing an organic electroluminescence device that can obtain high luminous efficiency.
- the present inventors found that even when the LUMO energy of the fluorescent material is lower than the LUMO energy of the delayed fluorescent material, the orientation value S of the organic compound molecules used as the fluorescent material is ⁇ 0. .3 or less, the luminous efficiency can be improved even if the concentration of the fluorescent material is increased.
- the present invention has been proposed based on these findings, and specifically has the following configurations.
- An organic electroluminescence device having an anode, a cathode, and at least one organic layer including a light-emitting layer between the anode and the cathode,
- the light-emitting layer contains a first organic compound, a second organic compound and a third organic compound, and satisfies the following (a) and the following formula (b), the second organic compound is a delayed fluorescence material,
- the organic electroluminescence device wherein the largest component of light emission from the device is fluorescence from the third organic compound.
- E LUMO (2) is the LUMO energy of the second organic compound
- E LUMO (3) is the LUMO energy of the third organic compound
- S represents the orientation value of the third organic compound in the light-emitting layer.
- the third organic compound is a compound having a structure in which a hetero 6-membered ring containing a boron atom and a nitrogen atom is condensed with a pyrrole ring and two benzene rings sharing a nitrogen atom, [1] to [ 3].
- the organic electroluminescence device according to any one of [1] to [4], wherein the third organic compound is a compound represented by the following general formula (16).
- general formula (16) [In the general formula (16), one of X 1 and X 2 is a nitrogen atom, and the other is a boron atom.
- R 1 to R 26 , A 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
- R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 4 and R 5 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 8 and R 9 , R 9 and R10 , R10 and R11 , R11 and R12 , R13 and R14 , R14 and R15 , R15 and R16 , R16 and R17 , R17 and R18 , R18 and R 19 , R 19 and R 20 , R 20 and R 21 , R 21 and R 22 , R 22 and R 23 , R 23 and R 24 , R 24 and R 25 , R 25 and R 26 are bonded together to form a cyclic It may form a structure.
- X 1 is a nitrogen atom
- R 7 and R 8 and R 21 and R 22 are bonded through the nitrogen atom to form a 6-membered ring
- R 17 and R 18 are bonded together to form a single bond at least one of R 1 to R 6 is a substituted or unsubstituted aryl group, or R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 4 and R 5 , R5 and R6 are bonded to each other to form an aromatic ring or heteroaromatic ring.
- [6] The organic electroluminescence device according to any one of [1] to [5], wherein the concentration of the second organic compound in the light-emitting layer is 25% by weight or more.
- E LUMO (1) is the LUMO energy of the first organic compound
- E LUMO (2) is the LUMO energy of the second organic compound
- E LUMO (3) is the LUMO energy of the third organic compound S is , represents the orientation value of the third organic compound in the light-emitting layer.
- the LUMO energy of the second organic compound is Even when the LUMO energy of the third organic compound is lower than that, the concentration of the third organic compound can be increased to improve the luminous efficiency.
- substituted means an atom or group of atoms other than a hydrogen atom and a deuterium atom.
- the expressions "substituted or unsubstituted” and “optionally substituted” mean that a hydrogen atom may be substituted with a deuterium atom or a substituent.
- the term “transparent” in the present invention means that the visible light transmittance is 50% or more, preferably 80% or more, more preferably 90% or more, and still more preferably 99% or more. Visible light transmittance can be measured with an ultraviolet/visible spectrophotometer.
- the organic electroluminescence device of the present invention is an organic electroluminescence device having an anode, a cathode, and at least one organic layer including a light-emitting layer between the anode and the cathode.
- the organic layer may be composed only of the light-emitting layer, or may include organic layers other than the light-emitting layer.
- an organic layer may or may not be interposed between the anode and the light-emitting layer and between the light-emitting layer and the cathode.
- the anode and the light-emitting layer may be laminated so as to be in direct contact with each other, or may be laminated so as not to be in direct contact with each other.
- the light emitting layer and the cathode may be laminated so as to be in direct contact with each other, or may be laminated so as not to be in direct contact with each other.
- the light-emitting layer is located between the anode and the cathode, and is preferably arranged without protruding into the region between the anode and the cathode.
- the organic electroluminescence device of the present invention may have a substrate supporting at least one organic layer including an anode, a cathode, and a light-emitting layer.
- the substrate may be arranged on the side of the anode opposite to the light emitting layer, or may be arranged on the side of the cathode opposite to the light emitting layer.
- the organic electroluminescence device of the present invention may be a top emission type device in which most of the light is emitted from the side opposite to the substrate, or a bottom emission type device in which most of the light is emitted from the substrate side.
- “most light” means light that is 60% or more of the amount of light emitted from the device.
- the organic electroluminescence device of the present invention contains a first organic compound, a second organic compound and a third organic compound in the light emitting layer.
- the second organic compound is a delayed fluorescence material.
- the third organic compound is a compound that emits fluorescence.
- the maximum component of light emission from the device is fluorescence from the third organic compound.
- the second organic compound and the third organic compound contained in the light-emitting layer satisfy the following formulas (a) and (b).
- the first organic compound, the second organic compound, and the third organic compound contained in the light-emitting layer satisfy formula (a1) and formula (b) below.
- E LUMO (1) in formula (a) and formula (a1) represents the LUMO energy of the first organic compound
- E LUMO (2) represents the LUMO energy of the second organic compound
- E LUMO (3) represents It represents the LUMO energy of the third organic compound.
- LUMO is an abbreviation for Lowest Unoccupied Molecular Orbital, and can be obtained by atmospheric photoelectron spectroscopy (AC-3 manufactured by Riken Keiki Co., Ltd.). Since the present invention satisfies the relationship of formula (a), the LUMO energy of the second organic compound contained in the light-emitting layer is higher than the LUMO energy of the third organic compound.
- the first organic compound has the highest LUMO energy among the first organic compound, the second organic compound, and the third organic compound contained in the light-emitting layer, and the second organic compound has the highest LUMO energy. is the next highest and the third organic compound is the lowest.
- LUMO energy difference [E LUMO (1) - E LUMO (2)] is, for example, in the range of 0.1 eV or more, or in the range of 0.5 eV or more, or in the range of 0.8 eV or more, 1.0 eV or more, 2.0 eV or less, 1.5 eV or less, 1.3 eV or less, or 1.1 eV or less.
- the LUMO energy difference [E LUMO (2) - E LUMO (3)] is, for example, in the range of 0.01 eV or more, or in the range of 0.05 eV or more, or in the range of 0.1 eV or more, 0.15 eV or more, 0.2 eV or more, 0.7 eV or less, 0.5 eV or less, or 0.4 eV or less. can be within the range, or within the range of 0.3 eV or less.
- a compound having a LUMO energy in the range of ⁇ 2.0 to ⁇ 5.0 eV or a compound having a LUMO energy in the range of ⁇ 2.5 to ⁇ 4.0 eV is employed as the first organic compound. can do.
- a compound having a LUMO energy in the range of ⁇ 2.0 to ⁇ 5.0 eV or a compound having a LUMO energy in the range of ⁇ 2.5 to ⁇ 4.0 eV is employed as the second organic compound. can do.
- a compound having a LUMO energy in the range of ⁇ 2.0 to ⁇ 5.0 eV or a compound in the range of ⁇ 2.5 to ⁇ 4.0 eV is employed as the third organic compound. You can
- the relationship of the HOMO energies of the first organic compound, the second organic compound and the third organic compound is not particularly limited.
- the HOMO energy of the second organic compound may be less than or greater than the HOMO energy of the first organic compound, or may be the same as the HOMO energy of the first organic compound.
- the HOMO energy of the third organic compound may be smaller or larger than the HOMO energy of the second organic compound, or may be the same as the HOMO energy of the second organic compound.
- HOMO is an abbreviation for Highest Occupied Molecular Orbital, and can be determined by atmospheric photoelectron spectroscopy (AC-3 manufactured by Riken Keiki Co., Ltd.).
- a compound having a HOMO energy in the range of ⁇ 4.0 to ⁇ 6.5 eV or a compound in the range of ⁇ 5.5 to ⁇ 6.2 eV is used as the first organic compound. can do.
- a compound having a HOMO energy within the range of ⁇ 4.0 to ⁇ 6.5 eV or a compound having a HOMO energy within the range of ⁇ 5.5 to ⁇ 6.2 eV is employed as the second organic compound.
- a compound having a HOMO energy in the range of ⁇ 4.0 to ⁇ 6.5 eV or a compound in the range of ⁇ 5.0 to ⁇ 6.0 eV is employed as the third organic compound. You can
- S in formula (b) represents the orientation value of the third organic compound in the light-emitting layer. Since the present invention satisfies the formula (b), the orientation value of the third organic compound in the light-emitting layer is -0.3 or less.
- the orientation value is also called an S value, and is an index indicating the degree of orientation of the third organic compound in the light-emitting layer. A larger negative value (a smaller value) means a higher orientation.
- the orientation value (S value) is from Scientific Reports 2017, 7, 8405. In the organic electroluminescence device of the present invention, since the orientation value of the third organic compound is ⁇ 0.3 or less, a high external quantum yield is realized while satisfying the LUMO energy relationship of formula (a). can do.
- the LUMO energy of the third organic compound that emits fluorescence is set lower than the LUMO energy of the second organic compound, which is the delayed fluorescence material.
- the third organic compound having an orientation value of ⁇ 0.3 or less has high stability, and the use of this as a light-emitting material has the effect of improving the life of the device.
- the orientation value of the third organic compound in the light-emitting layer is preferably ⁇ 0.38 or less, more preferably ⁇ 0.40 or less, further preferably ⁇ 0.41 or less, and ⁇ 0.42. It is even more preferred that:
- the first organic compound, the second organic compound, and the third organic compound contained in the light-emitting layer preferably satisfy the following formula (c).
- E S1 (1) in formula (c) represents the lowest excited singlet energy of the first organic compound
- E S1 (2) represents the lowest excited singlet energy of the second organic compound
- E S1 (3) represents the second 3 represents the lowest excited singlet energy of organic compounds.
- eV is adopted as a unit.
- the lowest excited singlet energy can be obtained by preparing a thin film or a toluene solution (concentration 10 ⁇ 5 mol/L) of the compound to be measured and measuring the fluorescence spectrum at room temperature (300 K) (for details, see the second organic See the measurement method of the lowest excited singlet energy in the description column of the compound).
- E S1 (1) - E S1 (2) can be, for example, in the range of 0.20 eV or more, or in the range of 0.40 eV or more, or in the range of 0.60 eV or more, and It can be in the range of 1.50 eV or less, in the range of 1.20 eV or less, or in the range of 0.80 eV or less.
- E S1 (2) - E S1 (3) can be, for example, in the range of 0.05 eV or more, or in the range of 0.10 eV or more, or in the range of 0.15 eV or more, and It can be in the range of 0.50 eV or less, in the range of 0.30 eV or less, or in the range of 0.20 eV or less.
- E S1 (1) - E S1 (3) can be, for example, in the range of 0.25 eV or more, or in the range of 0.45 eV or more, or in the range of 0.65 eV or more, and It can be in the range of 2.00 eV or less, in the range of 1.70 eV or less, or in the range of 1.30 eV or less.
- the largest component of light emission from the device is fluorescence from the third organic compound.
- "Emission from a device" in the present invention means light emitted from the device when the device is driven at 20.degree.
- the emission from the organic electroluminescence device of the present invention can be emitted from phosphorescence from the third organic compound, phosphorescence from the first organic compound or the second organic compound, as long as the maximum component of light emission from the device is fluorescence from the third organic compound. Emissions may be included, but it is preferred that these emissions be insignificant compared to the fluorescence from the third organic compound.
- 70% or more of the light emitted from the device may be fluorescence from the third organic compound, 90% or more may be fluorescence from the third organic compound, and 99% or more may be fluorescence from the third organic compound. It may be fluorescence from a compound.
- the concentration of the third organic compound in the light-emitting layer of the organic electroluminescence device of the present invention is preferably higher than 0.3% by weight.
- the concentration of the third organic compound in the light-emitting layer is in the range of 0.35% by weight or more, 0.5% by weight or more, 1% by weight or more, or 2% by weight or more. be able to.
- the concentration of the third organic compound in the light-emitting layer can be in the range of 10% by weight or less, 5% by weight or less, or 3% by weight or less.
- Conc(1), Conc(2), and Conc(3) are the concentrations of the first organic compound, the second organic compound, and the third organic compound in the light emitting layer of the organic electroluminescence device of the present invention, respectively, the following It is preferable to satisfy the relationship of formula (d).
- Conc (1) is preferably 30% by weight or more, can be in the range of 50% by weight or more, can be in the range of 60% by weight or more, and can be in the range of 99% by weight or less. , 85% by weight or less, or 70% by weight or less.
- Conc (2) is preferably 5% by weight or more, and can be in the range of 15% by weight or more, 25% by weight or more, or 30% by weight or more, and , 45% by weight or less, 40% by weight or less, or 35% by weight or less. In a preferred embodiment of the invention, Conc(2) is 25-45% by weight.
- Conc(1)/Conc(3) can be in the range of 10 or more, 50 or more, or 90 or more, and can be in the range of 10000 or less, or 1000 or less. , or 200 or less.
- Conc(2)/Conc(3) can be in the range of 10 or more, in the range of 50 or more, or in the range of 90 or more, and in the range of 10000 or less, or 1000 or less. , or 200 or less.
- the light-emitting layer of the organic electroluminescence device of the present invention preferably does not contain metal elements other than boron.
- a light-emitting layer that does not contain a metal element containing boron can also be used.
- the light emitting layer can be composed only of compounds consisting of atoms selected from the group consisting of carbon atoms, hydrogen atoms, nitrogen atoms, oxygen atoms, sulfur atoms, fluorine atoms and boron atoms.
- the light emitting layer can be composed only of compounds consisting of atoms selected from the group consisting of carbon atoms, hydrogen atoms, nitrogen atoms, oxygen atoms, sulfur atoms, fluorine atoms and boron atoms.
- the light emitting layer can be composed only of compounds consisting of atoms selected from the group consisting of carbon atoms, hydrogen atoms, nitrogen atoms, oxygen atoms and sulfur atoms.
- the light emitting layer can be composed only of compounds consisting of atoms selected from the group consisting of carbon atoms, hydrogen atoms, nitrogen atoms and oxygen atoms.
- the first organic compound used in the light-emitting layer of the organic electroluminescence device of the present invention is selected from compounds having higher LUMO energy than the second organic compound and the third organic compound.
- the first organic compound is selected from compounds having a LUMO energy higher than that of the second organic compound and the third organic compound and having a lowest excited singlet energy higher than that of the second organic compound and the third organic compound.
- the first organic compound preferably functions as a host material that transports carriers.
- the first organic compound preferably has a function of confining the energy of the third organic compound in the compound.
- the third organic compound can efficiently convert the energy generated by recombination of holes and electrons in the molecule and the energy received from the first organic compound and the second organic compound into light emission.
- the first organic compound is preferably an organic compound that has a hole-transporting ability and an electron-transporting ability, prevents emission from having a longer wavelength, and has a high glass transition temperature.
- the first organic compound is selected from compounds that do not emit delayed fluorescence. Emission from the first organic compound is preferably less than 1% of the light emission from the organic electroluminescent device of the present invention, more preferably less than 0.1%, for example less than 0.01%, detection limit It may be below.
- the first organic compound does not contain metal atoms.
- a compound consisting of atoms selected from the group consisting of carbon atoms, hydrogen atoms, nitrogen atoms, oxygen atoms and sulfur atoms can be selected.
- a compound consisting of atoms selected from the group consisting of carbon atoms, hydrogen atoms, nitrogen atoms and oxygen atoms can be selected.
- a compound consisting of carbon atoms, hydrogen atoms and nitrogen atoms can be selected as the first organic compound.
- Preferred compounds that can be used as the first organic compound are listed below.
- the second organic compound used in the light-emitting layer of the organic electroluminescence device of the present invention is a delayed fluorescence material having a lower LUMO energy than the first organic compound and a higher LUMO energy than the third organic compound.
- the second organic compound has a lower LUMO energy than the first organic compound, a higher LUMO energy than the third organic compound, and a lower minimum than the first organic compound and a higher minimum than the third organic compound.
- a delayed fluorescence material having excited singlet energy is preferred.
- the “delayed fluorescence material” in the present invention means that in an excited state, a reverse intersystem crossing occurs from an excited triplet state to an excited singlet state, and fluorescence (delayed fluorescence) when returning from the excited singlet state to the ground state is an organic compound that emits
- a delayed fluorescence material is defined as a material that emits fluorescence with an emission lifetime of 100 ns (nanoseconds) or more when measured by a fluorescence lifetime measurement system (such as a streak camera system manufactured by Hamamatsu Photonics).
- the second organic compound is a material capable of emitting delayed fluorescence, it is not essential to emit delayed fluorescence derived from the second organic compound when used in the organic electroluminescence device of the present invention.
- the emission from the second organic compound is preferably less than 10% of the emission from the organic electroluminescent device of the present invention, for example, less than 1%, less than 0.1%, less than 0.01%, and below the detection limit. There may be.
- the second organic compound receives energy from the first organic compound in the excited singlet state and transitions to the excited singlet state.
- the second organic compound may receive energy from the first organic compound in the excited triplet state and transition to the excited triplet state. Since the difference ( ⁇ E ST ) between the excited singlet energy and the excited triplet energy of the second organic compound is small, the second organic compound in the excited triplet state undergoes reverse intersystem crossing to the second organic compound in the excited singlet state. Cheap.
- the excited singlet state second organic compound generated by these pathways gives energy to the third organic compound, causing the third organic compound to transition to an excited singlet state.
- the difference ⁇ E ST between the lowest excited singlet energy and the lowest excited triplet energy at 77 K is preferably 0.3 eV or less, more preferably 0.25 eV or less, and 0.2 eV or less. is more preferably 0.15 eV or less, more preferably 0.1 eV or less, even more preferably 0.07 eV or less, and still more preferably 0.05 eV or less It is preferably 0.03 eV or less, more preferably 0.01 eV or less, and particularly preferably 0.01 eV or less.
- thermally activated delayed fluorescence material absorbs the heat emitted by the device and relatively easily undergoes reverse intersystem crossing from the excited triplet state to the excited singlet state, and efficiently contributes the excited triplet energy to light emission. can be done.
- the lowest excited singlet energy (E S1 ) and the lowest excited triplet energy (E T1 ) of the compound in the present invention are values determined by the following procedure.
- ⁇ E ST is a value obtained by calculating E S1 -E T1 .
- (2) Lowest excited singlet energy (E S1 ) A thin film or a toluene solution (concentration 10 ⁇ 5 mol/L) of the compound to be measured is prepared and used as a sample. The fluorescence spectrum of this sample is measured at room temperature (300K). In the fluorescence spectrum, the vertical axis is light emission and the horizontal axis is wavelength.
- the maximum point with a peak intensity of 10% or less of the maximum peak intensity of the spectrum is not included in the maximum value on the shortest wavelength side described above, and is closest to the maximum value on the short wavelength side.
- the tangent line drawn at the point where the value is taken is taken as the tangent line to the rise on the short wavelength side of the phosphorescence spectrum.
- the second organic compound preferably does not contain metal atoms.
- a compound consisting of atoms selected from the group consisting of carbon atoms, hydrogen atoms, nitrogen atoms, oxygen atoms and sulfur atoms can be selected.
- a compound consisting of atoms selected from the group consisting of carbon atoms, hydrogen atoms, nitrogen atoms and oxygen atoms can be selected as the second organic compound.
- a compound consisting of carbon atoms, hydrogen atoms and nitrogen atoms can be selected as the second organic compound.
- a typical second organic compound is a compound having a structure in which one to two cyano groups and at least one donor group are bonded to a benzene ring.
- a preferred example of the donor group is a substituted or unsubstituted carbazol-9-yl group.
- a specific example of the group having a structure in which a substituted or unsubstituted benzofuran ring is fused to a benzene ring constituting a carbazol-9-yl group is substituted or unsubstituted 5H-benzofuro[3,2-c]carbazole-5. -yl group.
- X 1 to X 5 represent N or CR.
- R represents a hydrogen atom, a deuterium atom or a substituent.
- X 1 to X 5 represent C—R
- those C—R may be the same or different.
- at least one of X 1 to X 5 is CD (wherein D represents a donor group).
- Z represents an acceptor group.
- a compound represented by the following general formula (2) is particularly preferable among the compounds represented by the general formula (1).
- X 1 to X 5 represent N or CR.
- R represents a hydrogen atom, a deuterium atom or a substituent.
- X 1 to X 5 represent C—R
- those C—R may be the same or different.
- at least one of X 1 to X 5 is CD (wherein D represents a donor group).
- none of X 1 to X 5 are C—CN. That is, it is a compound having a structure in which one to two cyano groups and at least one donor group are bonded to a benzene ring.
- only X 2 represents C-CN and X 1 , X 3 -X 5 are not C-CN.
- X 3 represents C-CN and X 1 , X 2 , X 4 , X 5 are not C-CN. That is, it is a compound having a structure in which at least one donor group is bonded to the benzene ring of terephthalonitrile.
- the acceptor group represented by Z in the general formula (1) is a group having the property of donating electrons to the ring to which Z is bonded, and for example, selected from groups having a positive Hammett's ⁇ p value. can be done.
- the donor group represented by D in the general formulas (1) and (2) is a group having the property of attracting electrons to the ring to which D is bonded, for example, a group having a negative Hammett's ⁇ p value. can be selected from In the following, the acceptor group may be referred to as A.
- "Hammet's ⁇ p value" is defined by L.P. P.
- the equilibrium constant of the benzene derivative substituted with ⁇ represents the reaction constant determined by the type and conditions of the reaction.
- the acceptor group include a cyano group and an acceptor group preferable as A in general formulas (12) to (14) described later.
- the donor group reference can be made to a donor group preferable as D in general formulas (12) to (14) described later.
- X 1 to X 5 represent N or CR, at least one of which is CD.
- the number of N in X 1 to X 5 is 0 to 4, for example, X 1 and X 3 and X 5 , X 1 and X 3 , X 1 and X 4 , X 2 and X 3 , X 1 and X 5 , X 2 and X 4 , X 1 only, X 2 only, and X 3 only are N.
- the number of CDs is 1 to 5, preferably 2 to 5.
- X 1 and X 2 and X 3 and X 4 and X 5 , X 1 and X 2 and X 4 and X 5 , X 1 and X 2 and X 3 and X 4 , X 1 and X 3 and X 4 and X 5 , X 1 and X 3 and X 5 , X 1 and X 2 and X 5 , X 1 and X 2 and X 4 , X 1 and X 3 and X 4 , X 1 and X 3 and X 4 , X 1 and X 3 , X 1 and X 4 , X 2 and X 3 , X 1 and X 5 , X 2 and X 4 , X 1 only, X 2 only, and X 3 only are CD.
- At least one of X 1 to X 5 may be CA.
- a here represents an acceptor group.
- the number of CAs is preferably 0 to 2, more preferably 0 or 1.
- a of CA preferably includes a cyano group and a heterocyclic aromatic group having an unsaturated nitrogen atom.
- X 1 to X 5 may each independently be CD or CA.
- the two R's may be bonded together to form a cyclic structure.
- the cyclic structure formed by bonding to each other may be an aromatic ring or an alicyclic ring, or may contain a heteroatom, and the cyclic structure may be a condensed ring of two or more rings. .
- heteroatoms referred to here are preferably those selected from the group consisting of nitrogen atoms, oxygen atoms and sulfur atoms.
- cyclic structures formed include benzene ring, naphthalene ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, pyrrole ring, imidazole ring, pyrazole ring, imidazoline ring, oxazole ring, isoxazole ring, thiazole ring, iso thiazole ring, cyclohexadiene ring, cyclohexene ring, cyclopentaene ring, cycloheptatriene ring, cycloheptadiene ring, cycloheptaene ring, furan ring, thiophene ring, naphthyridine ring, quinoxaline ring, quinoline ring and the like. .
- the donor group D in general formulas (1) and (2) is preferably, for example, a group represented by general formula (3) below.
- General formula (3)
- R 11 and R 12 each independently represent a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
- R 11 and R 12 may combine with each other to form a cyclic structure.
- L represents a single bond, a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group.
- a substituent that can be introduced into the arylene group or heteroarylene group of L may be a group represented by general formula (1) or general formula (2), or general formulas (3) to (6) described later.
- alkyl group may be linear, branched, or cyclic. Moreover, two or more of the linear portion, the cyclic portion and the branched portion may be mixed.
- the number of carbon atoms in the alkyl group can be, for example, 1 or more, 2 or more, or 4 or more.
- the number of carbon atoms can be 30 or less, 20 or less, 10 or less, 6 or less, or 4 or less.
- alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, n-hexyl group, isohexyl group, 2-ethylhexyl group, n-heptyl group, isoheptyl group, n-octyl group, isooctyl group, n-nonyl group, isononyl group, n-decanyl group, isodecanyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group.
- alkyl group as a substituent may be further substituted with an aryl group.
- An "alkenyl group” may be linear, branched, or cyclic. Moreover, two or more of the linear portion, the cyclic portion and the branched portion may be mixed.
- the number of carbon atoms in the alkenyl group can be, for example, 2 or more and 4 or more. Also, the number of carbon atoms can be 30 or less, 20 or less, 10 or less, 6 or less, or 4 or less.
- alkenyl groups include ethenyl, n-propenyl, isopropenyl, n-butenyl, isobutenyl, n-pentenyl, isopentenyl, n-hexenyl, isohexenyl, and 2-ethylhexenyl groups. can be mentioned.
- the alkenyl group as a substituent may be further substituted with a substituent.
- the “aryl group” and “heteroaryl group” may be monocyclic or condensed rings in which two or more rings are condensed. In the case of condensed rings, the number of condensed rings is preferably 2 to 6, and can be selected from 2 to 4, for example.
- rings include benzene ring, pyridine ring, pyrimidine ring, triazine ring, naphthalene ring, anthracene ring, phenanthrene ring, triphenylene ring, quinoline ring, pyrazine ring, quinoxaline ring, and naphthyridine ring.
- aryl or heteroaryl groups include phenyl, 1-naphthyl, 2-naphthyl, 1-anthracenyl, 2-anthracenyl, 9-anthracenyl, 2-pyridyl, 3-pyridyl, 4 - pyridyl group.
- Arylene group and “heteroaryl group” can be read by changing the valence number from 1 to 2 in the description of the aryl group and heteroaryl group.
- a substituent means a monovalent group capable of substituting a hydrogen atom, and does not include condensed groups.
- the explanation and preferred range of the substituent the explanation and preferred range of the substituent of general formula (7) described later can be referred to.
- the compound represented by the general formula (3) is preferably a compound represented by any one of the following general formulas (4) to (6).
- R 51 to R 60 , R 61 to R 68 and R 71 to R 78 each independently represent a hydrogen atom, a deuterium atom or a substituent.
- R 51 to R 60 , R 61 to R 68 and R 71 to R 78 is independently a group represented by any one of the general formulas (4) to (6).
- the number of substituents in general formulas (4) to (6) is not particularly limited. It is also preferred if all are unsubstituted (ie hydrogen or deuterium atoms).
- substituents in each of the general formulas (4) to (6) may be the same or different.
- the substituent is preferably any one of R 52 to R 59 in general formula (4), and general formula (5) Any one of R 62 to R 67 is preferred in the case of general formula (6), and any one of R 72 to R 77 is preferred in the case of general formula (6).
- X is a divalent oxygen atom, a sulfur atom, a substituted or unsubstituted nitrogen atom, a substituted or unsubstituted carbon atom, a substituted or unsubstituted silicon atom, or a carbonyl having a linked chain length of 1 atom. or a divalent substituted or unsubstituted ethylene group, a substituted or unsubstituted vinylene group, a substituted or unsubstituted o-arylene group, or a substituted or unsubstituted o-hetero represents an arylene group. Specific examples and preferred ranges of the substituents can be referred to the description of the substituents in the general formulas (1) and (2) above.
- L 12 to L 14 each represent a single bond, a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group.
- L 12 to L 14 are preferably single bonds or substituted or unsubstituted arylene groups.
- the substituents of the arylene group and heteroarylene group referred to herein may be groups represented by general formulas (1) to (6).
- the groups represented by formulas (1) to (6) may be introduced into L 11 to L 14 up to the maximum number of substituents that can be introduced. Moreover, when a plurality of groups represented by formulas (1) to (6) are introduced, the substituents thereof may be the same or different.
- * represents the bonding position to the carbon atom (C) constituting the ring skeleton of the ring in general formula (1) or general formula (2).
- R 51 and R 52 , R 52 and R 53 , R 53 and R 54 , R 54 and R 55 , R 55 and R 56 , R 56 and R 57 , R 57 and R58 , R58 and R59 , R59 and R60 , R61 and R62 , R62 and R63 , R63 and R64 , R65 and R66 , R66 and R67 , R67 and R68 , R 71 and R 72 , R 72 and R 73 , R 73 and R 74 , R 75 and R 76 , R 76 and R 77 , R 77 and R 78 may be bonded to each other to form a cyclic structure. good.
- the description and preferred examples of the cyclic structure the description and preferred examples of the cyclic structure for X 1 to X 5 in general formulas (1) and (2) above can be referred to.
- cyclic structures Preferred among cyclic structures are a substituted or unsubstituted benzofuran ring, a substituted or unsubstituted benzothiophene ring, a substituted or unsubstituted indole ring, a substituted or unsubstituted indene ring, and a substituted or unsubstituted silaindene ring, It is a structure fused to at least one benzene ring of general formulas (4) to (6). More preferred are groups represented by the following general formulas (5a) to (5f) condensed with general formula (5).
- L 11 and L 21 to L 26 each represent a single bond or a divalent linking group.
- the description and preferred ranges of L 11 and L 21 to L 26 can be referred to the description and preferred ranges of L 2 above.
- R 41 to R 110 each independently represent a hydrogen atom or a substituent.
- the cyclic structure formed by bonding to each other may be an aromatic ring or an alicyclic ring, or may contain a heteroatom, and the cyclic structure may be a condensed ring of two or more rings.
- the heteroatoms referred to here are preferably those selected from the group consisting of nitrogen atoms, oxygen atoms and sulfur atoms.
- Examples of cyclic structures formed include benzene ring, naphthalene ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, pyrrole ring, imidazole ring, pyrazole ring, imidazoline ring, oxazole ring, isoxazole ring, thiazole ring, iso thiazole ring, cyclohexadiene ring, cyclohexene ring, cyclopentaene ring, cycloheptatriene ring, cycloheptadiene ring, cycloheptaene ring, furan ring, thiophene ring, naphthyridine ring, quinoxaline ring, quinoline ring and the like.
- a ring formed by condensing a large number of rings such as a phenanthrene ring or a triphenylene ring may be formed.
- the number of rings contained in the group represented by formula (6) may be selected from the range of 3-5, or may be selected from the range of 5-7.
- the number of rings contained in the groups represented by general formulas (5a) to (5f) may be selected from within the range of 5 to 7, and may be 5.
- substituents that R 41 to R 110 can take include the groups of the above-described substituent group B, preferably an unsubstituted alkyl group having 1 to 10 carbon atoms or an unsubstituted alkyl group having 1 to 10 carbon atoms.
- R 41 to R 110 are hydrogen atoms or unsubstituted alkyl groups having 1 to 10 carbon atoms.
- R 41 to R 110 are hydrogen atoms or unsubstituted aryl groups having 6 to 10 carbon atoms.
- all of R 41 to R 110 are hydrogen atoms.
- the carbon atoms (ring skeleton-constituting carbon atoms) to which R 41 to R 110 are bonded in general formulas (5a) to (5f) may each independently be substituted with a nitrogen atom.
- C—R 41 to C—R 110 in general formulas (5a) to (5f) may each independently be substituted with N.
- the number of nitrogen atoms substituted is preferably 0 to 4, more preferably 1 to 2, among the groups represented by general formulas (5a) to (5f). In one aspect of the present invention, the number of nitrogen atoms substituted is 0. Also, when two or more are substituted with nitrogen atoms, the number of nitrogen atoms substituted in one ring is preferably one.
- X 1 to X 6 represent an oxygen atom, a sulfur atom or NR. In one aspect of the invention, X 1 -X 6 are oxygen atoms.
- X 1 -X 6 are sulfur atoms. In one aspect of the invention, X 1 -X 6 are NR.
- R represents a hydrogen atom or a substituent, preferably a substituent.
- a substituent selected from the substituent group A can be exemplified. For example, an unsubstituted phenyl group or a phenyl group substituted with one or a combination of two or more groups selected from the group consisting of alkyl groups and aryl groups can be preferably employed.
- * represents a bonding position.
- a compound that is represented by the following general formula (7) and emits delayed fluorescence can be particularly preferably used as the delayed fluorescence material.
- a compound represented by general formula (7) can be employed as the second organic compound.
- R 1 to R 5 represent a cyano group
- at least one of R 1 to R 5 represents a substituted amino group
- the remaining R 1 to R 5 represent hydrogen atoms
- It represents a deuterium atom or a substituent other than a cyano group and a substituted amino group.
- the substituted amino group here is preferably a substituted or unsubstituted diarylamino group, and two aryl groups constituting the substituted or unsubstituted diarylamino group may be linked to each other.
- the linkage may be a single bond (in which case a carbazole ring is formed), -O-, -S-, -N(R 6 )-, -C(R 7 )(R 8 )-, -Si(R 9 )(R 10 )- or the like.
- R 6 to R 10 each represent a hydrogen atom, a deuterium atom or a substituent
- R 7 and R 8 and R 9 and R 10 may be linked together to form a cyclic structure.
- Substituted amino groups can be any of R 1 to R 5 , for example R 1 and R 2 , R 1 and R 3 , R 1 and R 4 , R 1 and R 5 , R 2 and R 3 , R 2 and R 4 , R 1 and R 2 and R 3 , R 1 and R 2 and R 4 , R 1 and R 2 and R 5 , R 1 and R 3 and R 4 , R 1 and R 3 and R 5 , R 2 and R 3 and R 4 , R 1 and R 2 and R 3 and R 4 , R 1 and R 2 and R 3 and R 4 , R 1 and R 2 and R 3 and R 4 , R 1 and R 2 and R 3 and R 5 , R 1 and R 2 and R 4 and R 5 , R 1 and R 2 and R 3 , R 4 and R 5 can be substituted amino groups, and the like.
- Cyano groups may also be any of R 1 to R 5 , for example R 1 , R 2 , R 3 , R 1 and R 2 , R 1 and R 3 , R 1 and R 4 , R 1 and R 5 , R 2 and R 3 , R 2 and R 4 , R 1 and R 2 and R 3 , R 1 and R 2 and R 4 , R 1 and R 2 and R 5 , R 1 and R 3 and R 4 , R 1 and R 3 and R 5 , R 2 and R 3 and R 4 can be cyano groups.
- R 1 to R 5 which are neither a cyano group nor a substituted amino group represent a hydrogen atom, a deuterium atom or a substituent.
- substituents here include hydroxyl group, halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom), alkyl group (eg, 1 to 40 carbon atoms), alkoxy group (eg, 1 to 40 carbon atoms).
- halogen atom eg, fluorine atom, chlorine atom, bromine atom, iodine atom
- alkyl group eg, 1 to 40 carbon atoms
- alkoxy group eg, 1 to 40 carbon atoms
- an alkylthio group eg, 1 to 40 carbon atoms
- an aryl group eg, 6 to 30 carbon atoms
- an aryloxy group eg, 6 to 30 carbon atoms
- an arylthio group eg, 6 to 30 carbon atoms
- a heteroaryl group For example, ring skeleton atoms of 5 to 30), heteroaryloxy groups (for example, ring skeleton atoms of 5 to 30), heteroarylthio groups (for example, ring skeleton atoms of 5 to 30), acyl groups (for example, carbon atoms of 1 to 40), alkenyl groups (eg, 1 to 40 carbon atoms), alkynyl groups (eg, 1 to 40 carbon atoms), alkoxycarbonyl groups (eg, 1 to 40 carbon atoms), aryloxycarbonyl groups (eg, 1 to 40 carbon atoms) , a heteroaryloxycarbonyl group (e.g., 1
- Substituent group A consisting of substituted groups can be mentioned.
- substituent when the aryl group of the diarylamino group is substituted include the substituents of the above substituent group A, and further include a cyano group and a substituted amino group.
- Specific examples of the compound group and compounds encompassed by the general formula (7) are referred to here as part of the present specification, paragraphs 0008 to 0048 of WO2013/154064, and paragraphs 0009 to WO2015/080183. 0030, paragraphs 0006 to 0019 of WO2015/129715, paragraphs 0013 to 0025 of JP-A-2017-119663, and paragraphs 0013-0026 of JP-A-2017-119664.
- any two of Y 1 , Y 2 and Y 3 represent a nitrogen atom and the remaining one represents a methine group, or all of Y 1 , Y 2 and Y 3 represent a nitrogen atom.
- Z 1 and Z 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
- R 11 to R 18 each independently represent a hydrogen atom, a deuterium atom or a substituent, and at least one of R 11 to R 18 is a substituted or unsubstituted arylamino group or a substituted or unsubstituted carbazolyl group is preferably
- the benzene ring constituting the arylamino group and the benzene ring constituting the carbazolyl group may each form a single bond or a linking group together with R 11 to R 18 .
- the compound represented by general formula (8) contains at least two carbazole structures in its molecule. Examples of the substituents that Z 1 and Z 2 can take include the substituents of the substituent group A described above.
- R 11 to R 18 , the arylamino group and the carbazolyl group can take include the substituents of the substituent group A, the cyano group, the substituted arylamino group and the substituted alkylamino group. be able to.
- R 11 and R 12 , R 12 and R 13 , R 13 and R 14 , R 15 and R 16 , R 16 and R 17 , R 17 and R 18 are bonded to each other to form a cyclic structure. good too.
- the compounds represented by the general formula (9) are particularly useful.
- any two of Y 1 , Y 2 and Y 3 represent a nitrogen atom and the remaining one represents a methine group, or all of Y 1 , Y 2 and Y 3 represent a nitrogen atom.
- Z2 represents a hydrogen atom, a deuterium atom or a substituent.
- R 11 to R 18 and R 21 to R 28 each independently represent a hydrogen atom, a deuterium atom or a substituent. At least one of R 11 to R 18 and/or at least one of R 21 to R 28 preferably represents a substituted or unsubstituted arylamino group or a substituted or unsubstituted carbazolyl group.
- the benzene ring constituting the arylamino group and the benzene ring constituting the carbazolyl group may be combined with R 11 to R 18 or R 21 to R 28 to form a single bond or a linking group.
- substituents that Z 2 can take include the substituents of the substituent group A described above.
- specific examples of the substituents that R 11 to R 18 , R 21 to R 28 , the arylamino group and the carbazolyl group can take include the substituents of the above substituent group A, the cyano group, the substituted arylamino group, Substituted alkylamino groups may be mentioned.
- R 11 and R 12 , R 12 and R 13 , R 13 and R 14 , R 15 and R 16 , R 16 and R 17 , R 17 and R 18 , R 21 and R 22 , R 22 and R 23 , R 23 and R 24 , R 25 and R 26 , R 26 and R 27 , R 27 and R 28 may combine with each other to form a cyclic structure.
- Specific examples of the compound group and compounds encompassed by general formula (9) are described in paragraphs 0020 to 0062 of WO2013/081088, which is cited here as part of the present specification, and Appl. Phys. Let, 98, 083302 (2011) can be referred to.
- R 91 to R 96 each independently represent a hydrogen atom, a deuterium atom, a donor group, or an acceptor group, at least one of which is the donor group, and at least two One is the acceptor group.
- Substitution positions of at least two acceptor groups are not particularly limited, but two acceptor groups in a meta-position relationship with each other are preferably included.
- R 91 is a donor group
- a structure in which at least R 92 and R 94 are acceptor groups and a structure in which at least R 92 and R 96 are acceptor groups can be preferably exemplified.
- Acceptor groups present in the molecule may all be the same or different from each other, but for example, it is possible to select a structure in which all are the same.
- the number of acceptor groups is preferably 2-3, and for example 2 can be selected.
- two or more donor groups may be present, and the donor groups in that case may all be the same or different from each other.
- the number of donor groups is preferably 1 to 3, and may be, for example, only 1 or 2.
- the description and preferred ranges of the donor group and the acceptor group the description and preferred ranges of D and Z in formula (1) can be referred to.
- the donor group is preferably represented by general formula (3)
- the acceptor group is preferably represented by a cyano group or general formula (11) below.
- Y 4 to Y 6 represent a nitrogen atom or a methine group, at least one of which represents a nitrogen atom, preferably all of which represent a nitrogen atom.
- Each of R 101 to R 110 independently represents a hydrogen atom, a deuterium atom, or a substituent, and at least one is preferably an alkyl group.
- L 15 represents a single bond or a linking group, and the description and preferred range of L in general formula (3) can be referred to.
- L15 in general formula ( 11) is a single bond. * represents the bonding position to the carbon atom (C) constituting the ring skeleton of the ring in general formula (10).
- a compound represented by general formula (12) can be employed as the second organic compound.
- Compounds represented by general formula (12) include compounds represented by general formula (12a).
- a compound represented by general formula (15) can be employed as the second organic compound.
- D represents a donor group
- A represents an acceptor group
- R represents a hydrogen atom, a deuterium atom or a substituent.
- Two D's in the general formula (15) may be the same or different.
- substituents for R include an alkyl group and an aryl group optionally substituted with one or a combination of two or more groups selected from the group consisting of an alkyl group and an aryl group. Specific examples of preferred donor groups for D in formulas (12) to (15) are shown below.
- * represents a bonding position and "D" represents a deuterium atom.
- hydrogen atoms may be substituted, for example, with alkyl groups.
- a substituted or unsubstituted benzene ring may be further condensed.
- R in formulas (12) to (15) are shown below.
- * represents a binding position and "D" represents deuterium.
- a compound represented by the following general formula (15a) is particularly preferable among the compounds represented by the general formula (15).
- R 201 to R 221 each independently represent a hydrogen atom or a substituent, preferably a hydrogen atom, an alkyl group, an aryl group, or a group in which an alkyl group and an aryl group are bonded.
- R201 and R202 , R202 and R203 , R203 and R204 , R205 and R206 , R206 and R207 , R207 and R208 , R214 and R215 , R215 and R216 , R216 and R 217 , R 218 and R 219 , R 219 and R 220 , R 220 and R 221 are bonded to each other to form a benzofuro structure or a benzothieno structure.
- R 201 and R 202 , R 202 and R 203 , R 203 and R 204 , R 205 and R 206 , R 206 and R 207 , R 207 and R 208 and R 214 and R 215 , R 215 and R 216 , R 216 and R 217 , R 218 and R 219 , R 219 and R 220 , R 220 and R 221 are bonded together to form a benzofuro structure or It forms a benzothieno structure.
- R 203 and R 204 are bonded together to form a benzofuro structure or a benzothieno structure, and even more preferably R 203 and R 204 and R 216 and R 217 are bonded together to form a benzofuro structure or a benzothieno structure.
- R 203 and R 204 , R 216 and R 217 are bonded to each other to form a benzofuro structure or benzothieno structure
- R 206 and R 219 are substituted or unsubstituted aryl groups (preferably substituted or unsubstituted a substituted phenyl group, more preferably an unsubstituted phenyl group).
- Some or all of the hydrogen atoms in general formula (15a) may be replaced with deuterium atoms.
- some or all of the hydrogen atoms of the two phenyl groups bonded to the triazinyl group may be replaced with deuterium atoms.
- some or all of the hydrogen atoms bonded to the two carbazolyl groups may be replaced with deuterium atoms.
- R 209 to R 213 may be deuterium atoms.
- t-Bu represents a tertiary butyl group.
- the second organic compound it is possible to use a suitable combination of known delayed fluorescence materials other than those described above. Moreover, even unknown delayed fluorescence materials can be used.
- compounds represented by the general formula (1) described in paragraphs 0013 to 0042 of Japanese Patent Application No. 2021-188860 cited here as part of the present specification, particularly described in paragraphs 0043 to 0048 A compound can be preferably used.
- JP 2013-253121, WO2013/133359, WO2014/034535, WO2014/115743, WO2014/122895, WO2014/126200, WO2014/136758, WO2014/133121 Publications, WO2014/136860, WO2014/196585, WO2014/189122, WO2014/168101, WO2015/008580, WO2014/203840, WO2015/002213, WO2010/01620 WO2015/019725, WO2015/072470, WO2015/108049, WO2015/080182, WO2015/072537, WO2015/080183, JP 2015-129240, WO2015/129714, WO2015/129715, WO2015/133501, WO2015/136880, WO2015/137244, WO2015/137202, WO2015/137136, WO2015/146541, WO2015/159541
- a luminescent material that emits delayed fluorescence can also be employed.
- the third organic compound used in the light-emitting layer of the organic electroluminescence device of the present invention is a compound that emits fluorescence and has a lower LUMO energy than the first organic compound and the second organic compound.
- the third organic compound is a compound that emits fluorescence, has a lower LUMO energy than the first organic compound and the second organic compound, and is the lowest excited singlet smaller than the first organic compound and the second organic compound.
- a compound having energy is preferred.
- the orientation value of the third organic compound in the light-emitting layer is ⁇ 0.3 or less. Then, the organic electroluminescence device of the present invention emits fluorescence derived from the third organic compound.
- Emission from the third organic compound usually includes delayed fluorescence.
- the largest component of light emission from the device is fluorescence from the third organic compound. That is, among the light emitted from the organic electroluminescence device of the present invention, the amount of fluorescence emitted from the third organic compound is the largest.
- the third organic compound includes the first organic compound in an excited singlet state, the second organic compound in an excited singlet state, and the excited singlet state through reverse intersystem crossing from the excited triplet state. It receives energy from the second organic compound and transitions to an excited singlet state.
- the third organic compound has energy from the second organic compound in the excited singlet state and the second organic compound in the excited singlet state through reverse intersystem crossing from the excited triplet state. and transits to the excited singlet state. The resulting excited singlet state of the third organic compound then emits fluorescence when returning to the ground state.
- any fluorescent material fluorescent compound that satisfies predetermined conditions can be used without particular limitation.
- the term “fluorescent material” refers to a material for which fluorescence with an emission lifetime of less than 100 ns (nanoseconds) is observed when the emission lifetime is measured using a fluorescence lifetime measurement system (such as a streak camera system manufactured by Hamamatsu Photonics).
- the emission from the third organic compound may contain delayed fluorescence or phosphorescence, but the largest component of the emission from the third organic compound is fluorescence.
- the organic electroluminescent device does not emit phosphorescence, or emits less than 1% of the fluorescence.
- Two or more of the third organic compounds may be used as long as they satisfy the conditions of the present invention. For example, by using together two or more third organic compounds having different emission colors, it is possible to emit light of a desired color. Moreover, monochromatic light may be emitted from the third organic compound by using one type of the third organic compound.
- the maximum emission wavelength of the compound that can be used as the third organic compound is not particularly limited.
- a luminescent material having a maximum emission wavelength in the visible region (380 to 780 nm), a luminescent material having a maximum emission wavelength in the infrared region (780 nm to 1 mm), or a luminescent material having a maximum emission wavelength in the ultraviolet region (for example, 280 to 380 nm)
- a compound or the like can be appropriately selected and used.
- fluorescent materials having emission maxima in the visible region For example, a luminescent material with a maximum emission wavelength in the range of 380 to 780 nm is selected and used, or a luminescent material with a maximum emission wavelength in the range of 570 to 650 nm is selected and used.
- a luminescent material having a maximum emission wavelength in the range of 650 to 700 nm may be selected and used, or a luminescent material having a maximum emission wavelength in the range of 700 to 780 nm may be selected and used.
- the compounds are selected and combined such that there is overlap between the emission wavelength range of the second organic compound and the absorption wavelength range of the third organic compound.
- the third organic compound does not contain metal atoms other than boron atoms.
- the third organic compound may be a compound containing both boron and fluorine atoms. Moreover, it may be a compound containing a boron atom but not containing a fluorine atom. It may also contain no metal atoms at all.
- a compound consisting of atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms, oxygen atoms, sulfur atoms, fluorine atoms and boron atoms can be selected.
- a compound consisting of atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms, oxygen atoms, fluorine atoms and boron atoms can be selected.
- a compound consisting of atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms, oxygen atoms, sulfur atoms and boron atoms can be selected.
- a compound consisting of atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms and boron atoms can be selected.
- a compound consisting of atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms, oxygen atoms and sulfur atoms can be selected.
- a compound consisting of atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms and oxygen atoms can be selected.
- a compound consisting of carbon atoms and hydrogen atoms can be selected as the third organic compound.
- Examples of the third organic compound include compounds having a multiple resonance effect of boron atoms and nitrogen atoms, and compounds containing condensed aromatic ring structures such as anthracene, pyrene, and perylene.
- Examples of the third organic compound include compounds having a condensed ring structure containing a boron atom and a nitrogen atom exhibiting a multiple resonance effect and having four or more constituent rings.
- a compound having a structure in which a hetero 6-membered ring containing a boron atom and a nitrogen atom is condensed with a pyrrole ring and two benzene rings sharing a nitrogen atom can also be exemplified.
- a compound represented by the following general formula (16) is used as the third organic compound.
- one of X 1 and X 2 is a nitrogen atom and the other is a boron atom.
- X 1 is a nitrogen atom and X 2 is a boron atom.
- R 17 and R 18 combine with each other to form a single bond to form a pyrrole ring.
- X 1 is a boron atom and X 2 is a nitrogen atom.
- R 21 and R 22 combine with each other to form a single bond to form a pyrrole ring.
- R 1 to R 26 , A 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
- R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 4 and R 5 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 8 and R 9 , R 9 and R10 , R10 and R11 , R11 and R12 , R13 and R14 , R14 and R15 , R15 and R16 , R16 and R17 , R17 and R18 , R18 and R 19 , R 19 and R 20 , R 20 and R 21 , R 21 and R 22 , R 22 and R 23 , R 23 and R 24 , R 24 and R 25 , R 25 and R 26 are bonded together to form a cyclic It may form a structure.
- the cyclic structure formed by combining R 7 and R 8 contains a boron atom and 4 carbon atoms as ring skeleton-constituting atoms.
- the cyclic structure formed by combining R 17 and R 18 contains a boron atom and 4 carbon atoms as ring skeleton constituent atoms when X 1 is a boron atom.
- X 1 is a nitrogen atom
- the cyclic structure is limited to pyrrole rings.
- the cyclic structure formed by combining R 21 and R 22 contains a boron atom and 4 carbon atoms as ring skeleton constituent atoms when X 2 is a boron atom.
- the cyclic structure is limited to pyrrole rings.
- R 7 and R 8 , R 17 and R 18 , R 21 and R 22 are bonded together to form a cyclic structure containing a boron atom, the cyclic structure is preferably a 5- to 7-membered ring.
- a 6-membered ring is more preferred, and a 6-membered ring is even more preferred.
- R 7 and R 8 , R 17 and R 18 , R 21 and R 22 are bonded to each other, they are bonded to form a single bond, —O—, —S—, —N(R 27 )—, —C( R 28 )(R 29 )—, —Si(R 30 )(R 31 )—, —B(R 32 )—, —CO—, —CS—, are preferably formed, and —O—, —S It is more preferred to form - or -N(R 27 )-, and more preferred to form -N(R 27 )-.
- R 27 to R 32 each independently represent a hydrogen atom, a deuterium atom or a substituent.
- R 27 is particularly preferably a substituted or unsubstituted aryl group.
- R 27 to R 32 in the ring formed by combining R 17 and R 18 may combine with at least one of R 16 and R 19 to further form a cyclic structure
- R 21 and R R 27 to R 32 in the ring formed by combining 22 with each other may further combine with at least one of R 20 and R 23 to form a cyclic structure.
- only one pair of R 7 and R 8 , R 17 and R 18 , R 21 and R 22 are bound together.
- only two pairs of R 7 and R 8 , R 17 and R 18 , R 21 and R 22 are attached to each other.
- all of R 7 and R 8 , R 17 and R 18 , R 21 and R 22 are bonded together.
- R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 4 and R 5 , R 5 and R 6 , R 6 and R 7 , R 8 and R 9 , R 9 and R 10 , R 10 and R 11 , R 11 and R 12 , R 13 and R 14 , R 14 and R 15 , R 15 and R 16 , R 16 and R 17 , R 18 and R 19 , R 19 and R 20 , R 20 and R 21 , R 22 and R 23 , R 23 and R 24 , R 24 and R 25 , and R 25 and R 26 may be bonded to each other to form a cyclic structure, which may be an aromatic ring or an aliphatic ring, It may also contain a heteroatom, and may be condensed with one or more other rings.
- heteroatoms referred to here are preferably those selected from the group consisting of nitrogen atoms, oxygen atoms and sulfur atoms.
- cyclic structures formed include benzene ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, pyrrole ring, imidazole ring, pyrazole ring, triazole ring, imidazoline ring, furan ring, thiophene ring, oxazole ring, and isoxazole ring.
- the cyclic structure is a substituted or unsubstituted benzene ring (the ring may be further condensed), for example, a benzene ring optionally substituted with an alkyl group or an aryl group. .
- the cyclic structure is a substituted or unsubstituted heteroaromatic ring, preferably a furan ring of benzofuran or a thiophene ring of benzothiophene.
- any one of 1 to 4 can be selected, and 1 can be selected, 2 can be selected, 3 or 4 can be selected.
- a pair selected from R 1 and R 2 , R 2 and R 3 , R 3 and R 4 are bonded together to form a cyclic structure.
- R 5 and R 6 are linked together to form a cyclic structure.
- a pair selected from R 9 and R 10 , R 10 and R 11 , and R 11 and R 12 are bonded together to form a cyclic structure.
- both R 1 and R 2 and R 13 and R 14 are bonded together to form a cyclic structure.
- a pair selected from R 1 and R 2 , R 2 and R 3 , R 3 and R 4 are bonded to each other to form a cyclic structure, and R 5 and R 6 are bonded to each other to form a ring structure.
- both R 5 and R 6 and R 19 and R 20 are bonded together to form a cyclic structure.
- R 1 to R 26 that are not bonded to adjacent R n are hydrogen atoms, deuterium atoms or substituents.
- substituents a group selected from any of Substituent Groups A to E described later can be employed.
- Preferred substituents that R 1 to R 26 can take are a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, for example, the substituent is a substituted or unsubstituted aryl groups and, for example, substituents may be substituted or unsubstituted alkyl groups.
- the substituents of the alkyl group, aryl group, and heteroaryl group referred to herein can also adopt a group selected from any one of the substituent groups A to E, but preferably an alkyl group, an aryl group, and a heteroaryl group. It is one or more groups selected from the group consisting of, more preferably a group of substituent group E, which may be unsubstituted.
- at least one of R 1 to R 6 is a substituent, preferably a group of substituents E.
- at least one of R 1 to R 6 is a substituent, preferably a group of substituents E.
- At least one of R 5 and R 6 is a substituent, preferably a group of substituent group E.
- at least one of R 3 and R 6 is a substituent, more preferably both are substituents, preferably a group of substituents E.
- when X 1 is a nitrogen atom at least one of R 15 and R 20 is a substituent, more preferably both are substituents, preferably a group of substituent group E be. At this time, R16 and R17 are bonded to each other to form a single bond.
- R19 and R24 are substituents, more preferably both are substituents, preferably a group of substituent group E be.
- R 21 and R 22 are bonded together to form a single bond.
- at least one of R 8 and R 12 is a substituent, preferably both are substituents.
- R 8 , R 10 and R 12 are substituents.
- Unsubstituted alkyl groups are preferred as substituents for R 8 to R 12 .
- X 1 is a boron atom
- at least one of R 13 and R 17 is a substituent, preferably both are substituents.
- R 13 , R 15 and R 17 are substituents when X 1 is a boron atom.
- the substituents of R 13 to R 17 are preferably unsubstituted alkyl groups.
- X2 is a boron atom
- at least one of R22 and R26 is a substituent, preferably both are substituents.
- R 22 , R 24 and R 26 are substituents when X 2 is a boron atom.
- the substituents of R 22 to R 26 are preferably unsubstituted alkyl groups.
- a 1 and A 2 are hydrogen atoms, deuterium atoms or substituents.
- substituents a group selected from any of Substituent Groups A to E described later can be employed.
- a preferred substituent that A 1 and A 2 can take is an acceptor group.
- the acceptor group is a group having a positive Hammett ⁇ p value.
- Hammet's ⁇ p value is defined by L.P. P. Proposed by Hammett, it quantifies the effect of substituents on the reaction rate or equilibrium of para-substituted benzene derivatives.
- k 0 is the rate constant of the benzene derivative without a substituent
- k is the rate constant of the benzene derivative substituted with a substituent
- K 0 is the equilibrium constant of the benzene derivative without the substituent
- K is the substituent
- the equilibrium constant of the benzene derivative substituted with ⁇ represents the reaction constant determined by the type and conditions of the reaction.
- the acceptor group that A 1 and A 2 can take is more preferably a group having a Hammett's ⁇ p value of greater than 0.2.
- Groups having a Hammett's ⁇ p value of greater than 0.2 include a cyano group, an aryl group substituted with at least a cyano group, a group containing a fluorine atom, and a substituted or unsubstituted heteroaryl group containing a nitrogen atom as a ring skeleton-constituting atom.
- the aryl group substituted with at least a cyano group here may be substituted with a substituent other than a cyano group (for example, an alkyl group or an aryl group), but it is an aryl group substituted only with a cyano group.
- the aryl group substituted with at least a cyano group is preferably a phenyl group substituted with at least a cyano group.
- the number of substituents of the cyano group is preferably 1 or 2, and may be 1 or 2, for example.
- the group containing a fluorine atom includes a fluorine atom, a fluorinated alkyl group, and an aryl group substituted with at least a fluorine atom or a fluorinated alkyl group.
- the fluorinated alkyl group is preferably a perfluoroalkyl group and preferably has 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms.
- a heteroaryl group containing a nitrogen atom as a ring skeleton-constituting atom may be a monocyclic ring or a condensed ring in which two or more rings are condensed.
- the number of rings after condensed is preferably 2 to 6, and can be selected from 2 to 4, or can be 2, for example.
- Specific examples of the ring constituting the heteroaryl group include pyridine ring, pyrimidine ring, pyrazine ring, triazine ring, quinoline ring, isoquinoline ring, quinazoline ring, quinoxaline ring, naphthyridine ring other than quinazoline ring and quinoxaline ring. .
- the ring constituting the heteroaryl group may be substituted with a deuterium atom or a substituent, and the substituent is, for example, one or two groups selected from the group consisting of alkyl groups, aryl groups and heteroaryl groups
- a group composed of one or more can be mentioned.
- a cyano group is particularly preferred as an acceptor group that A 1 and A 2 can take.
- a 1 and A 2 are each independently a hydrogen atom or a deuterium atom.
- at least one of A 1 and A 2 is an acceptor group.
- at least one of A 1 and A 2 is an acceptor group.
- both A 1 and A 2 are acceptor groups.
- both A 1 and A 2 are acceptor groups. In one aspect of the invention, A 1 and A 2 are cyano groups. In one aspect of the invention, A 1 and A 2 are halogen atoms, for example bromine atoms.
- Methyl groups are omitted in this specification. Therefore, for example, A15 indicates a group containing two 4-methylphenyl groups.
- D represents a deuterium atom. * represents a binding position.
- X 1 is a nitrogen atom
- R 7 and R 8 are bonded via a nitrogen atom to form a 6-membered ring
- R 21 and R 22 are bonded via a nitrogen atom to form a 6-membered ring.
- R 17 and R 18 are joined together to form a single bond
- at least one of R 1 to R 6 is a substituted or unsubstituted aryl group, or R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 4 and R 5 , R 5 and R 6 are bonded to each other to form an aromatic ring (optionally condensed substituted or unsubstituted benzene ring) or heteroaromatic It forms a ring (preferably a furan ring of optionally condensed substituted or unsubstituted benzofuran, or a thiophene ring of optionally condensed substituted or unsubstituted benzothiophene).
- Each hydrogen atom in skeletons (16a) and (16b) may be substituted with a deuterium atom or a substituent. In addition, it may be substituted with a linking group together with an adjacent hydrogen atom to form a cyclic structure.
- R 1 to R 26 , A 1 and A 2 in general formula (16) a compound in which the phenyl groups bonded to the boron atoms in the skeletons (16a) and (16b) are all substituted with a mesityl group, a 2,6-diisopropylphenyl group or a 2,4,6-triisopropylphenyl group; can be exemplified.
- each hydrogen atom in skeletons (16a) and (16b) is not substituted with a linking group together with an adjacent hydrogen atom to form a cyclic structure.
- Ar 1 to Ar 4 each independently represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group.
- R 41 and R 42 each independently represent a substituted or unsubstituted alkyl group.
- m1 and m2 each independently represent an integer of 0 to 5;
- n1 and n3 each independently represent an integer of 0 to 4;
- n2 and n4 each independently represent an integer of 0 to 3;
- a 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
- each of n1-n4 independently represents an integer of 0-2.
- n1 to n4 is 1 or more, preferably at least one of n1 and n2 is 1 or more, and at least one of n3 and n4 is 1 or more.
- n1 and n3 are each independently 1 or 2, and n2 and n4 are 0.
- n2 and n4 are each independently 1 or 2
- n1 and n3 are 0.
- n1-n4 are each independently 1 or 2.
- n1 and n3 are equal and n2 and n4 are equal.
- n1 and n3 are 1 and n2 and n4 are 0. In one aspect of the invention, n1 and n3 are 0 and n2 and n4 are 1. In one aspect of the present invention, n1 to n4 are all 1.
- the bonding positions of Ar 1 to Ar 4 may be at least one of the 3- and 6-positions of the carbazole ring, at least one of the 2- and 7-positions, or at least one of the 1- and 8-positions. It may be one or at least one of the 4th and 5th positions.
- the bonding positions of Ar 1 to Ar 4 may be both 3 and 6 positions, both 2 and 7 positions, or both 1 and 8 positions of the carbazole ring. and may be both 4th and 5th.
- positions 3 and 6 can be preferably selected, or both positions 3 and 6 can be more preferably selected.
- Ar 1 to Ar 4 are all the same group.
- Ar 1 to Ar 4 are each independently a substituted or unsubstituted aryl group, more preferably a substituted or unsubstituted phenyl group or naphthyl group, still more preferably a substituted or unsubstituted is the phenyl group of Examples of the substituent include a group selected from any one of Substituent Groups A to E described below, but an unsubstituted phenyl group is also preferred.
- Ar 1 to Ar 4 include a phenyl group, an o-biphenyl group, an m-biphenyl group, a p-biphenyl group and a terphenyl group.
- m1 and m2 are each independently 0.
- m1 and m2 are each independently an integer from 1 to 5.
- m1 and m2 are equal.
- R 41 and R 42 are alkyl groups having 1 to 6 carbon atoms and can be selected, for example, from alkyl groups having 1 to 3 carbon atoms, or can be selected as methyl groups. .
- substitution positions of the alkyl group are 2-position only, 3-position only, 4-position only, 3-position and 5-position, 2-position and 4-position, 2-position and 6-position with the carbon atom bonded to the boron atom as 1-position.
- 2-position, 4-position and 6-position can be exemplified, preferably at least 2-position, more preferably at least 2-position and 6-position.
- a 1 and A 2 reference can be made to the corresponding description of general formula (16).
- Ar 5 to Ar 8 each independently represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group.
- R43 and R44 each independently represent a substituted or unsubstituted alkyl group.
- m3 and m4 each independently represent an integer of 0 to 5;
- n6 and n8 each independently represent an integer of 0 to 3;
- n5 and n7 each independently represent an integer of 0 to 4;
- a 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
- the compound of the present invention has, for example, the following skeleton (17a) when X 1 is a nitrogen atom, and X When 2 is a nitrogen atom, it has, for example, the following skeleton (17b).
- Ph is a phenyl group.
- Each hydrogen atom in skeletons (17a) and (17b) may be substituted with a deuterium atom or a substituent. In addition, it may be substituted with a linking group together with adjacent hydrogen atoms to form a cyclic structure.
- a deuterium atom or a substituent may be substituted with a linking group together with adjacent hydrogen atoms to form a cyclic structure.
- R 1 to R 26 A 1 and A 2 in general formula (16).
- At least one hydrogen atom of the benzene ring constituting the carbazole partial structure contained in skeleton (17a) is substituted with a substituted or unsubstituted aryl group.
- each hydrogen atom in skeletons (17a) and (17b) is not substituted with a linking group together with an adjacent hydrogen atom to form a cyclic structure.
- Ar 9 to Ar 14 each independently represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group.
- n9, n11, n12 and n14 each independently represent an integer of 0 to 4; n10 and n13 each independently represent an integer of 0 to 2; However, at least one of n9, n10, n12, and n13 is 1 or more.
- a 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
- each of n9-n14 independently represents an integer of 0-2. In one aspect of the present invention, at least one of n9 to n14 is 1 or more.
- n9 and n12 can be 1 or more, and n10 and n13 can be 1 or more. In a preferred embodiment of the present invention, at least one of n9, n10, n12 and n13 is 1 or more. In one aspect of the present invention, n9 and n12 are each independently 1 or 2, and n10, n11, n13 and n14 are 0. In one aspect of the present invention, n10 and n13 are each independently 1 or 2, and n9, n11, n12 and n14 are 0. In one aspect of the present invention, n9 and n12 are each independently 1 or 2, n10 and n13 are each independently 1 or 2, and n11 and n14 are 0.
- n9-n14 are all 1.
- the binding positions of Ar 9 to Ar 14 can be the 3,6 positions of the carbazole ring or other positions.
- Ar 9 to Ar 14 are all the same group.
- Ar 15 to Ar 20 each independently represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group.
- n15, n17, n18 and n20 each independently represent an integer of 0 to 4; n16 and n19 each independently represent an integer of 0 to 2; A 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
- Ar 15 to Ar 20 , n15 to n20, A 1 and A 2 the descriptions of Ar 9 to Ar 14 , n9 to n14, A 1 and A 2 in general formula (17a) can be referred to in order. .
- the compound of the present invention has, for example, the following skeleton (18a) when X 1 is a nitrogen atom, and X 2 is a nitrogen atom, it has, for example, the following skeleton (18b).
- Each hydrogen atom in skeletons (18a) and (18b) may be substituted with a deuterium atom or a substituent. In addition, it may be substituted with a linking group together with adjacent hydrogen atoms to form a cyclic structure.
- R 1 to R 26 , A 1 and A 2 in general formula (16) each hydrogen atom in skeletons (18a) and (18b) is not substituted with a linking group together with an adjacent hydrogen atom to form a cyclic structure.
- Ar 21 to Ar 26 each independently represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group.
- n21, n23, n24 and n26 each independently represent an integer of 0 to 4;
- n22 and n25 each independently represent an integer of 0 to 2;
- a 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
- Ar 9 to Ar 14 , n9 to n14, A 1 and A 2 in general formula (17a) can be referred to.
- Ar 27 to Ar 32 each independently represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group.
- n27, n29, n30 and n32 each independently represent an integer of 0 to 4; n28 and n31 each independently represent an integer of 0 to 2;
- a 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
- a compound is selected in which two benzene rings constituting the carbazole partial structure present in general formula (16) are condensed with another ring.
- a compound in which a benfuran ring is condensed, a compound in which a benzothiophene ring is condensed, and a compound in which a benzene ring is condensed can be particularly preferably selected. Compounds in which these rings are condensed will be described below with specific examples.
- Preferred examples include compounds in which a benzofuran ring or a benzothiophene ring is condensed with a benzene ring to which a boron atom is not directly bonded, of the two benzene rings constituting the carbazole partial structure present in general formula (16).
- Examples of such compounds include compounds having the following skeleton (19a) and compounds having the following skeleton (19b).
- Y 1 to Y 4 each independently represent two hydrogen atoms, a single bond or N(R 27 ).
- the two hydrogen atoms here indicate a state in which two benzene rings bonded to the boron atom are not connected to each other.
- Y 1 and Y 2 are preferably the same, and Y 3 and Y 4 are preferably the same, but they may be different.
- Y 1 -Y 4 are single bonds.
- Y 1 -Y 4 are N(R 27 ).
- R27 represents a hydrogen atom, a deuterium atom or a substituent.
- Z 1 to Z 4 each independently represent an oxygen atom or a sulfur atom.
- Z 1 and Z 2 are preferably the same, and Z 3 and Z 4 are preferably the same, but they may be different.
- Z 1 -Z 4 are oxygen atoms.
- the furan ring of benzofuran is fused to the benzene ring constituting the carbazole partial structure in (19a) and (19b).
- the orientation of the condensed furan ring is not restricted.
- Z 1 -Z 4 are sulfur atoms.
- the thiophene ring of benzothiophene is fused to the benzene ring that constitutes the carbazole moiety in (19a) and (19b).
- the orientation of the fused thiophene rings is not restricted.
- Each hydrogen atom in skeletons (19a) and (19b) may be substituted with a deuterium atom or a substituent. In addition, it may be substituted with a linking group together with adjacent hydrogen atoms to form a cyclic structure.
- a deuterium atom or a substituent may be substituted with a linking group together with adjacent hydrogen atoms to form a cyclic structure.
- R 1 to R 26 A 1 and A 2 in general formula (16).
- each hydrogen atom in skeletons (19a) and (19b) is not substituted with a linking group together with an adjacent hydrogen atom to form a cyclic structure.
- Ar 51 and Ar 52 each independently represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group.
- R51 and R52 each independently represent a substituted or unsubstituted alkyl group.
- m51 and m52 each independently represent an integer of 0 to 4;
- n51 and n52 each independently represent an integer of 0 to 2;
- Y 1 to Y 4 each independently represent two hydrogen atoms, a single bond or N(R 27 ).
- R27 represents a hydrogen atom, a deuterium atom or a substituent.
- Z 1 to Z 4 each independently represent an oxygen atom or a sulfur atom.
- a 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
- n51 and n52 are the same number.
- n51 and n52 may be 0, and n51 and n52 may be 1.
- m51 and m52 are the same number.
- m51 and m52 are integers from 0-3.
- m51 and m52 may be 0, m51 and m52 may be 1, m51 and m52 may be 2, and m51 and m52 may be 3.
- Preferred groups for Ar 51 , Ar 52 , R 51 , R 52 , A 1 and A 2 are the corresponding descriptions for Ar 1 to Ar 4 , R 41 to R 42 , A 1 and A 2 in general formula (16a) can be referred to.
- Ar 53 and Ar 54 each independently represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group.
- R53 and R54 each independently represent a substituted or unsubstituted alkyl group.
- m53 and m54 each independently represent an integer of 0 to 4;
- n53 and n54 each independently represent an integer of 0 to 2;
- Y 3 and Y 4 each independently represent two hydrogen atoms, a single bond or N(R 27 ).
- R27 represents a hydrogen atom, a deuterium atom or a substituent.
- Z3 and Z4 each independently represent an oxygen atom or a sulfur atom.
- a 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
- Ar 53 , Ar 54 , R 53 , R 54 , m53, m54, n53, n54, A 1 and A 2 refer to Ar 51 , Ar 52 , R 51 , R 52 , m51, The descriptions of m52, n51, n52, A 1 and A 2 can be referred to.
- the compound represented by the general formula (19b) is not limited to the following specific examples.
- compounds in which all Xs in the molecule are oxygen atoms and compounds in which all Xs in the molecule are sulfur atoms are disclosed, respectively.
- a compound in which a part of X in the molecule is an oxygen atom and the rest is a sulfur atom can also be employed.
- a compound in which a benzofuran ring or a benzothiophene ring is condensed with a benzene ring to which a boron atom is directly bonded, of the two benzene rings constituting the carbazole partial structure present in general formula (16) can be preferably mentioned.
- Examples of such compounds include compounds having the following skeleton (20a) and compounds having the following skeleton (20b).
- Y 5 to Y 8 each independently represent two hydrogen atoms, a single bond or N(R 27 ).
- Z 5 to Z 8 each independently represent an oxygen atom or a sulfur atom.
- each hydrogen atom in skeletons (20a) and (20b) is not substituted with a linking group together with an adjacent hydrogen atom to form a cyclic structure.
- Ar 55 and Ar 56 each independently represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group.
- R55 and R56 each independently represent a substituted or unsubstituted alkyl group.
- m55 and m56 each independently represents an integer of 0 to 4;
- n55 and n56 each independently represent an integer of 0 to 4;
- Y 5 and Y 6 each independently represent two hydrogen atoms, a single bond or N(R 27 ).
- R27 represents a hydrogen atom, a deuterium atom or a substituent.
- Z5 and Z6 each independently represent an oxygen atom or a sulfur atom.
- a 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
- n55 and n56 are integers from 0-2.
- n55 and n56 may be 0 and n55 and n56 may be 1.
- m51 and m52 are the same number.
- the description of m51 and m52 in general formula (19a) can be referred to.
- corresponding descriptions of Ar 1 , Ar 3 , R 41 , R 42 , A 1 and A 2 in general formula (16a) can be referred to.
- Ar 57 and Ar 58 each independently represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group.
- R57 and R58 each independently represent a substituted or unsubstituted alkyl group.
- m57 and m58 each independently represents an integer of 0 to 4;
- n57 and n58 each independently represent an integer of 0 to 4;
- Y7 and Y8 each independently represent two hydrogen atoms, a single bond or N( R27 ).
- R27 represents a hydrogen atom, a deuterium atom or a substituent.
- Z7 and Z8 each independently represent an oxygen atom or a sulfur atom.
- a 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
- Ar 57 , Ar 58 , R 57 , R 58 , m57, m58, n57, n58, A 1 and A 2 refer to Ar 55 , Ar 56 , R 55 , R 56 , m55, The descriptions of m56, n55, n56, A 1 and A 2 can be referred to.
- the compound represented by the general formula (20b) is not limited to the following specific examples.
- compounds in which all Xs in the molecule are oxygen atoms and compounds in which all Xs in the molecule are sulfur atoms are disclosed, respectively.
- a compound in which a part of X in the molecule is an oxygen atom and the rest is a sulfur atom can also be employed.
- a compound in which a benzofuran ring or a benzothiophene ring is condensed with both of the two benzene rings constituting the carbazole partial structure present in general formula (16) can be preferably mentioned.
- Examples of such compounds include compounds having the following skeleton (21a) and compounds having the following skeleton (21b).
- Y 9 to Y 12 each independently represent two hydrogen atoms, a single bond or N(R 27 ).
- Z 9 to Z 16 each independently represent an oxygen atom or a sulfur atom.
- Z 9 to Z 16 are preferably the same, but may be different.
- Z 9 -Z 16 are oxygen atoms.
- Z 9 -Z 16 are sulfur atoms.
- each hydrogen atom in skeletons (21a) and (21b) is not substituted with a linking group together with an adjacent hydrogen atom to form a cyclic structure.
- R 59 and R 60 each independently represent a substituted or unsubstituted alkyl group.
- m59 and m60 each independently represents an integer of 0 to 4;
- Y9 and Y10 each independently represent two hydrogen atoms, a single bond or N( R27 ).
- R27 represents a hydrogen atom, a deuterium atom or a substituent.
- Z 9 to Z 12 each independently represent an oxygen atom or a sulfur atom.
- a 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
- R 61 and R 62 each independently represent a substituted or unsubstituted alkyl group.
- m61 and m60 each independently represents an integer of 0 to 4;
- Y 11 and Y 12 each independently represent two hydrogen atoms, a single bond or N(R 27 ).
- R27 represents a hydrogen atom, a deuterium atom or a substituent.
- Z 13 to Z 16 each independently represent an oxygen atom or a sulfur atom.
- a 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
- the compound represented by the general formula (21b) is not limited to the following specific examples.
- compounds in which all Xs in the molecule are oxygen atoms and compounds in which all Xs in the molecule are sulfur atoms are disclosed, respectively.
- a compound in which a part of X in the molecule is an oxygen atom and the rest is a sulfur atom can also be used.
- a compound in which a benzene ring is condensed with a benzene ring to which a boron atom is not directly bonded can be preferably mentioned.
- examples of such compounds include compounds having the following skeleton (22a) and compounds having the following skeleton (22b).
- Y 21 to Y 24 each independently represent two hydrogen atoms, a single bond or N(R 27 ).
- Y 21 to Y 24 each independently represent two hydrogen atoms, a single bond or N(R 27 ).
- the descriptions of Y 1 to Y 4 in skeletons (19a) and (19b) can be referred to.
- each hydrogen atom in skeletons (22a) and (22b) is not substituted with a linking group together with an adjacent hydrogen atom to form a cyclic structure.
- Ar 71 to Ar 74 each independently represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group.
- n71 and n73 each independently represents an integer of 0 to 2;
- n72 and n74 each independently represents an integer of 0 to 4;
- Y 21 and Y 22 each independently represent two hydrogen atoms, a single bond or N(R 27 ).
- R27 represents a hydrogen atom, a deuterium atom or a substituent.
- a 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
- n71-n74 are integers from 0-2.
- n71 and n73 are the same number, and n72 and n74 are the same number.
- n71 to n74 may be the same number.
- n71-n74 may be zero. All of n71 to n74 may be 1.
- n71 and n73 may be 0, and n72 and n74 may be 1, for example.
- Ar 71 to Ar 74 , A 1 and A 2 the corresponding descriptions of Ar 1 to Ar 4 , A 1 and A 2 in general formula (16a) can be referred to.
- Ar 75 to Ar 78 each independently represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group.
- n75 and n77 each independently represent an integer of 0 to 2;
- n76 and n78 each independently represents an integer of 0 to 4;
- Y 23 and Y 24 each independently represent two hydrogen atoms, a single bond or N(R 27 ).
- R27 represents a hydrogen atom, a deuterium atom or a substituent.
- n75 to n78 the descriptions of n71 to n74 in general formula (22a) can be referred to.
- the corresponding descriptions of Ar 1 to Ar 4 in general formula (16a) can be referred to.
- a compound in which a benzene ring is condensed with a benzene ring to which a boron atom is directly bonded can be preferably mentioned.
- examples of such compounds include compounds having the following skeleton (23a) and compounds having the following skeleton (23b).
- Y 25 to Y 28 each independently represent two hydrogen atoms, a single bond or N(R 27 ).
- Y 25 -Y 28 For details of Y 25 -Y 28 , reference can be made to the corresponding descriptions of skeletons (19a) and (19b).
- each hydrogen atom in skeletons (23a) and (23b) is not substituted with a linking group together with an adjacent hydrogen atom to form a cyclic structure.
- Ar 79 and Ar 80 each independently represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group.
- R71 and R72 each independently represent a substituted or unsubstituted alkyl group.
- m71 and m72 each independently represents an integer of 0 to 4;
- n79 and n80 each independently represent an integer of 0 to 4;
- Y 25 and Y 26 each independently represent two hydrogen atoms, a single bond or N(R 27 ).
- R27 represents a hydrogen atom, a deuterium atom or a substituent.
- a 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
- n79 and n80 are integers from 0-2. In one aspect of the present invention, n79 and n80 are the same number, for example both may be 0 or both may be 1. In one aspect of the invention, m71 and m72 are integers from 0-2. In one aspect of the invention, m71 and m72 are the same number, for example both may be 0 or both may be 1. For preferred groups of Ar 79 , Ar 80 , R 71 , R 72 , A 1 and A 2 , corresponding descriptions of Ar 1 , Ar 3 , R 41 , R 42 , A 1 and A 2 in general formula (16a) can be referred to.
- Ar 81 and Ar 82 each independently represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group.
- R73 and R74 each independently represent a substituted or unsubstituted alkyl group.
- m73 and m74 each independently represents an integer of 0 to 4;
- n81 and n82 each independently represents an integer of 0 to 4;
- Y 27 and Y 28 each independently represent two hydrogen atoms, a single bond or N(R 27 ).
- R27 represents a hydrogen atom, a deuterium atom or a substituent.
- a 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
- a compound in which benzene rings are condensed to both of the two benzene rings constituting the carbazole partial structure present in general formula (16) can be preferably mentioned.
- Examples of such compounds include compounds having the following skeleton (24a) and compounds having the following skeleton (24b).
- Y 29 to Y 32 each independently represent two hydrogen atoms, a single bond or N(R 27 ).
- Y 29 -Y 32 For details of Y 29 -Y 32 , reference can be made to the corresponding descriptions of skeletons (19a) and (19b).
- each hydrogen atom in skeletons (24a) and (24b) is not substituted with a linking group together with an adjacent hydrogen atom to form a cyclic structure.
- R 75 and R 76 each independently represent a substituted or unsubstituted alkyl group.
- m75 and m76 each independently represents an integer of 0 to 4;
- Y 29 and Y 30 each independently represent two hydrogen atoms, a single bond or N(R 27 ).
- R27 represents a hydrogen atom, a deuterium atom or a substituent.
- a 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
- R 75 , R 76 , m75, m76, A 1 and A 2 the descriptions of R 71 , R 72 , m71, m72, A 1 and A 2 in general formula (23a) can be referred to.
- R 77 and R 78 each independently represent a substituted or unsubstituted alkyl group.
- m77 and m78 each independently represent an integer of 0 to 4;
- Y 31 and Y 32 each independently represent two hydrogen atoms, a single bond or N(R 27 ).
- R27 represents a hydrogen atom, a deuterium atom or a substituent.
- a 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
- R 77 , R 78 , m77, m78, A 1 and A 2 the description of R 71 , R 72 , m71, m72, A 1 and A 2 in general formula (23a) can be referred to.
- Each hydrogen atom in skeleton (25) may be replaced by a deuterium atom or a substituent. In addition, it may be substituted with a linking group together with adjacent hydrogen atoms to form a cyclic structure.
- a deuterium atom or a substituent may be substituted with a linking group together with adjacent hydrogen atoms to form a cyclic structure.
- R 1 to R 26 A 1 and A 2 in general formula (16).
- At least one hydrogen atom of the benzene ring constituting the carbazole moiety contained in skeleton (25) is substituted with a substituted or unsubstituted aryl group.
- each hydrogen atom in skeleton (25) is not substituted with a linking group together with an adjacent hydrogen atom to form a cyclic structure.
- Ar 91 to Ar 94 each independently represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group.
- n91 and n93 each independently represent an integer of 0-4, and n92 and n94 each independently represent an integer of 0-3.
- ⁇ ring, ⁇ ring, ⁇ ring, and ⁇ ring may be substituted, and at least one ring is substituted with a substituted or unsubstituted aryl group, or optionally substituted benzene ring is condensed or the furan ring of substituted or unsubstituted benzofuran or the thiophene ring of substituted or unsubstituted thiophene are condensed.
- a 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
- n91-n94 are integers from 0-2.
- n91 and n93 are the same number, and n92 and n94 are the same number. All of n91 to n94 may be the same number, for example, all may be 0 or all may be 1.
- Ar 91 to Ar 94 the corresponding descriptions of Ar 1 to Ar 4 in general formula (16a) can be referred to.
- the ⁇ and ⁇ rings have the same substituents or have the same condensed structure, and the ⁇ and ⁇ rings have the same substituents or have the same condensed structure. have.
- both the ⁇ ring and the ⁇ ring are substituted with a substituted or unsubstituted aryl group, an optionally substituted benzene ring is condensed, or a substituted or unsubstituted furan ring of benzofuran Alternatively, the thiophene rings of substituted or unsubstituted thiophene are condensed.
- both the ⁇ ring and the ⁇ ring are substituted with a substituted or unsubstituted aryl group, an optionally substituted benzene ring is condensed, or a substituted or unsubstituted furan ring of benzofuran Alternatively, the thiophene rings of substituted or unsubstituted thiophene are condensed.
- all of the ⁇ ring, ⁇ ring, ⁇ ring, and ⁇ ring are substituted with a substituted or unsubstituted aryl group, or condensed with an optionally substituted benzene ring, or substituted
- the furan ring of unsubstituted benzofuran or the thiophene ring of substituted or unsubstituted thiophene is condensed.
- a 1 and A 2 reference can be made to the corresponding description of general formula (16).
- the skeletons (16a) to (25) are skeletons to which other rings are not condensed. In one aspect of the present invention, the skeletons (16a) to (25) are skeletons to which other rings may be condensed.
- R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 4 and R 5 , R 5 and R 6 , R 6 and R 7 , R 8 and R9 , R9 and R10 , R10 and R11 , R11 and R12 , R13 and R14 , R14 and R15 , R15 and R16 , R16 and R17 , R18 and R19 , R 19 and R 20 , R 20 and R 21 , R 22 and R 23 , R 23 and R 24 , R 24 and R 25 , R 25 and R 26 are linked to each other to form a ring structure. be able to.
- a 1 and A 2 in general formula (16) are acceptor groups.
- examples thereof include compounds having acceptor groups at positions A 1 and A 2 and having any of skeletons (16a) to (25).
- the description and specific examples of the acceptor group the description and specific examples of the acceptor groups of A 1 and A 2 in formula (16) above can be referred to.
- Specific examples of compounds in which A 1 and A 2 are acceptor groups are given below.
- the compounds in which A 1 and A 2 are acceptor groups that can be used in the present invention are not limited to the following specific examples.
- the following specific examples have a structure in which both A 1 and A 2 are "A", and the structure of each compound is specified by individually specifying "A".
- a compound having a rotationally symmetric structure is selected as the compound represented by general formula (16).
- a compound having an axisymmetric structure is selected as the compound represented by General Formula (16).
- a compound having an asymmetric structure is selected as the compound represented by general formula (16).
- Specific examples of compounds having an asymmetric skeleton are given below.
- the compound having an asymmetric skeleton and the compound having an asymmetric structure that can be used in the present invention are not limited to the following specific examples.
- compounds in which all Xs in the molecule are oxygen atoms and compounds in which all Xs in the molecule are sulfur atoms are disclosed, respectively.
- a compound in which a part of X in the molecule is an oxygen atom and the rest is a sulfur atom can also be used.
- a compound having at least one of a tert-butyl group and a phenyl group introduced into the skeleton (26a) or (26b) below is selected as the third organic compound.
- the molecular weight of the compound represented by the general formula (16) is, for example, 1500 or less when the organic layer containing the compound represented by the general formula (16) is intended to be formed by a vapor deposition method and used. It is preferably 1,200 or less, more preferably 1,000 or less, and even more preferably 900 or less.
- the lower limit of molecular weight is the molecular weight of the smallest compound in the compound group represented by general formula (16). Preferably it is 624 or more.
- the compound represented by general formula (16) may be formed into a film by a coating method regardless of its molecular weight. If a coating method is used, it is possible to form a film even with a compound having a relatively large molecular weight.
- the compound represented by general formula (16) has the advantage of being easily dissolved in an organic solvent. Therefore, the compound represented by the general formula (16) can be easily applied to the coating method, and can be easily purified to increase its purity.
- a compound containing a plurality of structures represented by general formula (16) in its molecule as a light-emitting material.
- a polymerizable group is preliminarily present in the structure represented by the general formula (16), and a polymer obtained by polymerizing the polymerizable group is used as the light-emitting material.
- a monomer containing a polymerizable functional group in any of the structures represented by the general formula (16) and polymerizing it alone or copolymerizing it with other monomers, repeating It is conceivable to obtain a polymer having units and use the polymer as a light-emitting material. Alternatively, it is conceivable to obtain a dimer or trimer by coupling the compounds represented by the general formula (16) and use them as a light-emitting material.
- Examples of the polymer having a repeating unit containing the structure represented by general formula (16) include polymers containing the structure represented by the following general formula.
- Q represents a group containing a structure represented by general formula (16), and L 1 and L 2 represent linking groups.
- the number of carbon atoms in the linking group is preferably 0-20, more preferably 1-15, still more preferably 2-10.
- the linking group preferably has a structure represented by -X 11 -L 11 -.
- X 11 represents an oxygen atom or a sulfur atom, preferably an oxygen atom.
- L 11 represents a linking group, preferably a substituted or unsubstituted alkylene group or a substituted or unsubstituted arylene group, a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted A phenylene group is more preferred.
- R 101 , R 102 , R 103 and R 104 each independently represent a substituent. Preferred are substituted or unsubstituted alkyl groups having 1 to 6 carbon atoms, substituted or unsubstituted alkoxy groups having 1 to 6 carbon atoms, and halogen atoms, more preferably unsubstituted alkyl groups having 1 to 3 carbon atoms.
- linking groups represented by L 1 and L 2 can be bonded to any position of the structure representing Q and represented by general formula (16). Two or more linking groups may be linked to one Q to form a crosslinked structure or network structure.
- a polymer having a repeating unit containing these formulas is obtained by introducing a hydroxy group at any position of the structure represented by the general formula (16), and using it as a linker, reacting the following compound to obtain a polymerizable group.
- the polymer containing the structure represented by the general formula (16) in the molecule may be a polymer consisting only of repeating units having the structure represented by the general formula (16), or may have other structures. It may be a polymer containing a repeating unit having Moreover, the repeating unit having the structure represented by the general formula (16) contained in the polymer may be of a single type or of two or more types. Examples of repeating units having no structure represented by general formula (16) include those derived from monomers used in ordinary copolymerization. Examples thereof include repeating units derived from monomers having ethylenically unsaturated bonds such as ethylene and styrene.
- the compound represented by general formula (16) preferably does not contain a metal atom.
- a boron atom is not contained in the metal atom here.
- a compound consisting of atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms, oxygen atoms, sulfur atoms and boron atoms can be selected. can be done.
- a compound consisting of atoms selected from the group consisting of carbon, hydrogen, deuterium, nitrogen, oxygen and boron atoms can be selected.
- a compound consisting of atoms selected from the group consisting of carbon, hydrogen, deuterium, nitrogen, sulfur and boron atoms can be selected.
- a compound consisting of atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms and boron atoms can be selected.
- a compound consisting of atoms selected from the group consisting of carbon atoms, hydrogen atoms, nitrogen atoms, oxygen atoms, sulfur atoms and boron atoms can be selected.
- the "alkyl group” may be linear, branched, or cyclic. Moreover, two or more of the linear portion, the cyclic portion and the branched portion may be mixed.
- the number of carbon atoms in the alkyl group can be, for example, 1 or more, 2 or more, or 4 or more. Also, the number of carbon atoms can be 30 or less, 20 or less, 10 or less, 6 or less, or 4 or less.
- alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, n-hexyl group, isohexyl group, 2-ethylhexyl group, n-heptyl group, isoheptyl group, n-octyl group, isooctyl group, n-nonyl group, isononyl group, n-decanyl group, isodecanyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group.
- alkyl group as a substituent may be further substituted with an aryl group.
- An "alkenyl group” may be linear, branched, or cyclic. Moreover, two or more of the linear portion, the cyclic portion and the branched portion may be mixed.
- the number of carbon atoms in the alkenyl group can be, for example, 2 or more and 4 or more. Also, the number of carbon atoms can be 30 or less, 20 or less, 10 or less, 6 or less, or 4 or less.
- alkenyl groups include ethenyl, n-propenyl, isopropenyl, n-butenyl, isobutenyl, n-pentenyl, isopentenyl, n-hexenyl, isohexenyl, and 2-ethylhexenyl groups. can be mentioned.
- the alkenyl group as a substituent may be further substituted with a substituent.
- the “aryl group” and “heteroaryl group” may be monocyclic or condensed rings in which two or more rings are condensed. In the case of condensed rings, the number of condensed rings is preferably 2 to 6, and can be selected from 2 to 4, for example.
- rings include benzene ring, pyridine ring, pyrimidine ring, triazine ring, naphthalene ring, anthracene ring, phenanthrene ring, triphenylene ring, quinoline ring, pyrazine ring, quinoxaline ring, and naphthyridine ring, which are condensed. It may be a circular ring.
- aryl or heteroaryl groups include phenyl, 1-naphthyl, 2-naphthyl, 1-anthracenyl, 2-anthracenyl, 9-anthracenyl, 2-pyridyl, 3-pyridyl, 4 - pyridyl group.
- the number of atoms constituting the ring skeleton of the aryl group is preferably 6 to 40, more preferably 6 to 20, selected within the range of 6 to 14, or selected within the range of 6 to 10.
- the number of atoms constituting the ring skeleton of the heteroaryl group is preferably 4 to 40, more preferably 5 to 20, selected within the range of 5 to 14, or selected within the range of 5 to 10. You may "Arylene group” and "heteroaryl group” can be read by changing the valence number from 1 to 2 in the description of the aryl group and heteroaryl group.
- substituted group A refers to a hydroxyl group, a halogen atom (e.g., fluorine atom, chlorine atom, bromine atom, iodine atom), an alkyl group (e.g., 1 to 40 carbon atoms), an alkoxy group (e.g., 1 to 40), alkylthio groups (eg, 1 to 40 carbon atoms), aryl groups (eg, 6 to 30 carbon atoms), aryloxy groups (eg, 6 to 30 carbon atoms), arylthio groups (eg, 6 to 30 carbon atoms), Heteroaryl group (eg, 5 to 30 ring atoms), heteroaryloxy group (eg, 5 to 30 ring atoms), heteroarylthio group (eg, 5 to 30 ring atoms), acyl group ( For example, 1 to 40 carbon atoms), alkenyl groups (eg, 1 to 40 carbon atoms), alkenyl groups (eg, 1 to 40
- substituted group B means an alkyl group (eg, 1 to 40 carbon atoms), an alkoxy group (eg, 1 to 40 carbon atoms), an aryl group (eg, 6 to 30 carbon atoms), an aryloxy group (eg for example, 6 to 30 carbon atoms), heteroaryl groups (eg, 5 to 30 ring atoms), heteroaryloxy groups (eg, 5 to 30 ring atoms), diarylaminoamino groups (eg, 0 to 30 carbon atoms).
- substituted group C refers to an alkyl group (eg, 1 to 20 carbon atoms), an aryl group (eg, 6 to 22 carbon atoms), a heteroaryl group (eg, 5 to 20 ring skeleton atoms), It means one group or a combination of two or more groups selected from the group consisting of diarylamino groups (eg, 12 to 20 carbon atoms).
- substituted group D refers to an alkyl group (eg, 1 to 20 carbon atoms), an aryl group (eg, 6 to 22 carbon atoms) and a heteroaryl group (eg, 5 to 20 ring skeleton atoms). It means one group selected from the group consisting of or a combination of two or more groups.
- substituted group E refers to one group selected from the group consisting of an alkyl group (eg, 1 to 20 carbon atoms) and an aryl group (eg, 6 to 22 carbon atoms), or a combination of two or more means a group.
- substituent when described as “substituent” or “substituted or unsubstituted” may be selected from, for example, substituent group A, or selected from substituent group B may be selected from Substituent Group C, may be selected from Substituent Group D, or may be selected from Substituent Group E.
- Ar 1 to Ar 3 are each independently an aryl ring or a heteroaryl ring, and at least one hydrogen atom in these rings may be substituted, or the rings are condensed.
- a hydrogen atom is substituted, it is preferably substituted with one or a combination of two or more groups selected from the group consisting of deuterium atoms, aryl groups, heteroaryl groups and alkyl groups.
- a benzene ring or a heteroaromatic ring for example, a furan ring, a thiophene ring, a pyrrole ring, etc.
- R a and R a ' each independently represent a substituent, preferably one or a combination of two or more selected from the group consisting of a deuterium atom, an aryl group, a heteroaryl group and an alkyl group.
- Ra and Ar 1 , Ar 1 and Ar 2 , Ar 2 and Ra′, Ra ′ and Ar 3 , and Ar 3 and Ra may combine with each other to form a cyclic structure.
- the compound represented by general formula (27) preferably contains at least one carbazole structure.
- one benzene ring constituting the carbazole structure may be a ring represented by Ar 1
- one benzene ring constituting the carbazole structure may be a ring represented by Ar 2
- the carbazole structure may be a ring represented by Ar 3 .
- a carbazolyl group may be bonded to one or more of Ar 1 to Ar 3 .
- a substituted or unsubstituted carbazol-9-yl group may be attached to the ring represented by Ar 3 .
- a condensed aromatic ring structure such as anthracene, pyrene, or perylene may be bonded to Ar 1 to Ar 3 .
- the rings represented by Ar 1 to Ar 3 may be one ring constituting a condensed aromatic ring structure.
- at least one of R a and R a ′ may be a group having a condensed aromatic ring structure.
- a plurality of skeletons represented by general formula (27) may be present in the compound.
- it may have a structure in which skeletons represented by general formula (27) are bonded to each other via a single bond or a linking group.
- the skeleton represented by the general formula (27) may be added with a structure exhibiting a multiple resonance effect in which benzene rings are connected to each other by a boron atom, a nitrogen atom, an oxygen atom, or a sulfur atom.
- a compound containing a BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) structure is used as the third organic compound.
- a compound represented by the following general formula (28) is used.
- R 1 to R 7 are each independently a hydrogen atom, a deuterium atom or a substituent. At least one of R 1 to R 7 is preferably a group represented by general formula (29) below.
- general formula (29) In general formula (29), R 11 to R 15 each independently represent a hydrogen atom, a deuterium atom or a substituent, and * represents a bonding position.
- the group represented by general formula (29) may be one, two, or three of R 1 to R 7 in general formula (28). Also, it may be at least four, for example four or five. In a preferred embodiment of the present invention, one of R 1 to R 7 is a group represented by general formula (29).
- R 1 , R 3 , R 5 and R 7 are groups represented by general formula (29). In a preferred embodiment of the present invention, only R 1 , R 3 , R 4 , R 5 and R 7 are groups represented by general formula (29). In a preferred embodiment of the present invention, R 1 , R 3 , R 4 , R 5 and R 7 are groups represented by general formula (29), R 2 and R 4 are hydrogen atoms, deuterium atoms, A substituted alkyl group (eg, 1 to 10 carbon atoms) or an unsubstituted aryl group (eg, 6 to 14 carbon atoms). In one aspect of the present invention, all of R 1 to R 7 are groups represented by general formula (29).
- R 1 and R 7 are the same. In one preferred aspect of the invention, R 3 and R 5 are the same. In one preferred aspect of the invention, R 2 and R 6 are the same. In a preferred embodiment of the present invention, R 1 and R 7 are the same, R 3 and R 5 are the same, and R 1 and R 3 are different from each other. In one preferred aspect of the invention, R 1 , R 3 , R 5 and R 7 are identical. In one preferred embodiment of the invention, R 1 , R 4 and R 7 are the same and different from R 3 and R 5 . In a preferred embodiment of the invention, R3 , R4 and R5 are the same and different from R1 and R7 . In one preferred aspect of the invention, R 1 , R 3 , R 5 and R 7 are all different from R 4 .
- the groups of the substituent group A can be selected.
- Substituents that R 11 to R 15 can take include substituted or unsubstituted alkyl groups (eg, 1 to 40 carbon atoms), substituted or unsubstituted alkoxy groups (eg, 1 to 40 carbon atoms), and substituted or unsubstituted aryl groups. group (eg, 6 to 30 carbon atoms), substituted or unsubstituted aryloxy group (eg, 6 to 30 carbon atoms), substituted or unsubstituted amino group (eg, 0 to 20 carbon atoms).
- Substituent group C groups it is preferably one group or a combination of two or more groups (these groups are hereinafter referred to as "substituent group C groups").
- Substituent group C unsubstituted alkyl groups having 1 to 20 carbon atoms, unsubstituted alkoxy groups having 1 to 20 carbon atoms, unsubstituted aryl groups having 6 to 14 carbon atoms, and aryl groups having 6 to 14 carbon atoms. It is preferable to select an oxy group or an unsubstituted diarylamino group having 5 to 20 ring skeleton atoms (hereinafter, these groups are referred to as "substituent group D groups").
- the substituted amino group here is preferably a disubstituted amino group, and the two substituents for the amino group are each independently a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, or a substituted or unsubstituted A substituted alkyl group is preferred, and a substituted or unsubstituted aryl group (diarylamino group) is particularly preferred.
- a group of the above substituent group A, a group of the above substituent group B, or a group of the above substituent group C can be selected.
- the two aryl groups of the diarylamino group may be bonded to each other via a single bond or a linking group, and the linking group referred to here can be referred to the description of the linking group for R 33 and R 34 .
- a specific example of the diarylamino group is, for example, a substituted or unsubstituted carbazol-9-yl group.
- substituted or unsubstituted carbazol-9-yl groups include groups in which L 11 in the above general formula (6) is a single bond.
- R 13 in general formula (29) is a substituent, and R 11 , R 12 , R 14 and R 15 are hydrogen atoms.
- R 11 in general formula (29) is a substituent
- R 12 , R 13 , R 14 and R 15 are hydrogen atoms.
- R 11 and R 13 in general formula (29) are substituents
- R 12 , R 14 and R 15 are hydrogen atoms.
- R 1 to R 7 of general formula (28) may include a group in which all of R 11 to R 15 of general formula (29) are hydrogen atoms (ie, phenyl group).
- R2 , R4 , R6 may be phenyl groups.
- R 8 and R 9 each independently represent a hydrogen atom, a deuterium atom, a halogen atom, an alkyl group (eg, 1 to 40 carbon atoms), an alkoxy group (eg, 1 to 40 carbon atoms), an aryloxy It is preferably one or a combination of two or more groups selected from the group consisting of a group (for example, 6 to 30 carbon atoms) and a cyano group.
- R8 and R9 are the same .
- R 8 and R 9 are halogen atoms, particularly preferably fluorine atoms.
- the total number of substituted or unsubstituted alkoxy groups, substituted or unsubstituted aryloxy groups, and substituted or unsubstituted amino groups present in R 1 to R 9 of general formula (28) is The number is preferably three or more, and for example, three compounds or four compounds can be employed. More preferably, the total number of substituted or unsubstituted alkoxy groups, substituted or unsubstituted aryloxy groups, and substituted or unsubstituted amino groups present in R 1 to R 7 in general formula (28) is 3 or more. is preferable, and for example, a compound with three or a compound with four can be used.
- an alkoxy group, an aryloxy group, or an amino group may not be present in R8 and R9. More preferably, substituted or unsubstituted alkoxy group , substituted or unsubstituted aryloxy group, substituted or unsubstituted amino
- the total number of groups is preferably 3 or more, and for example, a compound with 3 or a compound with 4 can be used.
- R 2 , R 6 , R 8 and R 9 may be free of an alkoxy group, an aryloxy group and an amino group. In a preferred embodiment of the invention, there are 3 or more substituted or unsubstituted alkoxy groups.
- each of R 1 , R 4 and R 7 is a substituted or unsubstituted alkoxy group or a substituted or unsubstituted aryloxy. In a preferred embodiment of the present invention, each of R 1 , R 4 and R 7 has a substituted or unsubstituted alkoxy group.
- the total number of substituents having a Hammett's ⁇ p value of less than ⁇ 0.2 in R 1 to R 9 of the general formula (28) is 3 or more.
- Hammett's ⁇ p value is less than -0.2 substituents, for example, methoxy group (-0.27), ethoxy group (-0.24), n-propoxy group (-0.25), isopropoxy group (- 0.45) and the n-butoxy group (-0.32).
- fluorine atom (0.06), methyl group (-0.17), ethyl group (-0.15), tert-butyl group (-0.20), n-hexyl group (-0.15), cyclohexyl Groups such as ( ⁇ 0.15) are not substituents with a Hammett ⁇ p value of less than ⁇ 0.2.
- a compound in which the number of substituents having a Hammett's ⁇ p value of less than ⁇ 0.2 in R 1 to R 9 of the general formula (28) is three, or four can be employed.
- the number of substituents having a Hammett's ⁇ p value of less than ⁇ 0.2 in R 1 to R 7 of the general formula (28) is preferably 3 or more, for example, a compound having 3 can be employed, or a compound that is four. At this time, a substituent having a Hammett's ⁇ p value of less than ⁇ 0.2 may not be present in R 8 and R 9 . More preferably, the number of substituents having a Hammett's ⁇ p value of less than ⁇ 0.2 in R 1 , R 3 , R 4 , R 5 and R 7 of the general formula (28) is 3 or more. Preferably, for example, three compounds can be employed, or four compounds can be employed.
- each of R 1 , R 4 and R 7 has a Hammett's ⁇ p value of less than ⁇ 0.2.
- t-Bu represents a tertiary butyl group.
- Derivatives of the above-exemplified compounds include compounds in which at least one hydrogen atom is substituted with a deuterium atom, an alkyl group, an aryl group, a heteroaryl group, or a diarylamino group.
- the light-emitting layer of the organic electroluminescence device of the present invention contains a first organic compound, a second organic compound and a third organic compound that satisfy the conditions (a) and (b).
- compound T132 is used as the second organic compound
- a compound selected from the group consisting of compounds F101 to F128 is used as the third organic compound.
- the light-emitting layer may have a structure that does not contain any compound that transfers charge or energy, or a metal element other than boron, in addition to the first organic compound, the second organic compound, and the third organic compound.
- the light-emitting layer can also be composed only of a compound consisting of atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms, boron atoms, oxygen atoms and sulfur atoms.
- the light-emitting layer can consist only of compounds consisting of atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms, boron atoms and oxygen atoms.
- the light-emitting layer can consist only of compounds consisting of atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms, boron atoms and sulfur atoms.
- the light-emitting layer can consist only of compounds consisting of atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms and boron atoms.
- the light-emitting layer can consist only of compounds consisting of atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms, oxygen atoms and sulfur atoms.
- the light-emitting layer can consist only of compounds consisting of atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms and nitrogen atoms.
- the light-emitting layer comprises a first organic compound composed of atoms selected from the group consisting of carbon atoms, hydrogen atoms, nitrogen atoms and oxygen atoms, and carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms, oxygen atoms and sulfur.
- a second organic compound composed of atoms selected from the group consisting of atoms and atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms, boron atoms, oxygen atoms and sulfur atoms may contain a third organic compound.
- the light-emitting layer comprises a first organic compound composed of atoms selected from the group consisting of carbon atoms, hydrogen atoms, nitrogen atoms and oxygen atoms, and a group consisting of carbon atoms, hydrogen atoms, deuterium atoms and nitrogen atoms. and a third organic compound composed of atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms and boron atoms.
- the light-emitting layer may be formed by co-depositing the first organic compound, the second organic compound and the third organic compound, or a solution in which the first organic compound, the second organic compound and the third organic compound are dissolved.
- the light-emitting layer may be formed by a coating method using .
- the light-emitting layer is formed by co-evaporation, two or more of the first organic compound, the second organic compound and the third organic compound are mixed in advance and placed in a crucible or the like to form a vapor deposition source, and the vapor deposition source is used.
- a light-emitting layer may be formed by co-evaporation.
- the first organic compound and the second organic compound are mixed in advance to form one vapor deposition source, and the vapor deposition source and the third organic compound vapor deposition source are used to co-evaporate to form the light-emitting layer.
- the organic electroluminescent device of the present invention is held by a substrate, which is not particularly limited and commonly used in organic electroluminescent devices such as glass, transparent plastic, quartz and silicon. Any material formed by
- the anode of the organic electroluminescent device is made from metals, alloys, conductive compounds, or combinations thereof.
- the metal, alloy or conductive compound has a high work function (4 eV or greater).
- the metal is Au.
- the conductive transparent material is selected from CuI, indium tin oxide ( ITO), SnO2 and ZnO. Some embodiments use amorphous materials that can form transparent conductive films, such as IDIXO (In 2 O 3 —ZnO).
- the anode is a thin film. In some embodiments, the thin film is made by evaporation or sputtering.
- the film is patterned by photolithographic methods. In some embodiments, if the pattern does not need to be highly precise (eg, about 100 ⁇ m or greater), the pattern may be formed using a mask with a shape suitable for vapor deposition or sputtering onto the electrode material. In some embodiments, wet film forming methods such as printing and coating methods are used when coating materials such as organic conductive compounds can be applied.
- the anode has a transmittance of greater than 10% when emitted light passes through the anode, and the anode has a sheet resistance of several hundred ohms per unit area or less. In some embodiments, the thickness of the anode is 10-1,000 nm. In some embodiments, the thickness of the anode is 10-200 nm. In some embodiments, the thickness of the anode varies depending on the materials used.
- the cathode is made of electrode materials such as metals with a low work function (4 eV or less) (referred to as electron-injecting metals), alloys, conductive compounds, or combinations thereof.
- the electrode material is sodium, sodium-potassium alloys, magnesium, lithium, magnesium-copper mixtures, magnesium-silver mixtures, magnesium-aluminum mixtures, magnesium-indium mixtures, aluminum - aluminum oxide (Al2 O 3 ) mixtures, indium, lithium-aluminum mixtures and rare earth elements.
- a mixture of an electron-injecting metal and a second metal that is a stable metal with a higher work function than the electron-injecting metal is used.
- the mixture is selected from magnesium-silver mixtures, magnesium-aluminum mixtures, magnesium-indium mixtures, aluminum-aluminum oxide (Al 2 O 3 ) mixtures, lithium-aluminum mixtures and aluminum. In some embodiments, the mixture improves electron injection properties and resistance to oxidation.
- the cathode is manufactured by depositing or sputtering the electrode material as a thin film. In some embodiments, the cathode has a sheet resistance of no more than several hundred ohms per unit area. In some embodiments, the thickness of said cathode is between 10 nm and 5 ⁇ m. In some embodiments, the thickness of the cathode is 50-200 nm.
- either one of the anode and cathode of the organic electroluminescent device is transparent or translucent to allow transmission of emitted light.
- transparent or translucent electroluminescent elements enhance light radiance.
- the cathode is formed of a conductive transparent material as described above for the anode, thereby forming a transparent or translucent cathode.
- the device includes an anode and a cathode, both transparent or translucent.
- the injection layer is the layer between the electrode and the organic layer. In some embodiments, the injection layer reduces drive voltage and enhances light radiance. In some embodiments, the injection layer comprises a hole injection layer and an electron injection layer. The injection layer can be placed between the anode and the light-emitting layer or hole-transporting layer and between the cathode and the light-emitting layer or electron-transporting layer. In some embodiments, an injection layer is present. In some embodiments, there is no injection layer. Preferred examples of compounds that can be used as the hole injection material are given below.
- a barrier layer is a layer that can prevent charges (electrons or holes) and/or excitons present in the light-emitting layer from diffusing out of the light-emitting layer.
- an electron blocking layer is between the light-emitting layer and the hole-transporting layer to block electrons from passing through the light-emitting layer to the hole-transporting layer.
- a hole blocking layer is between the emissive layer and the electron transport layer and blocks holes from passing through the emissive layer to the electron transport layer.
- the barrier layer prevents excitons from diffusing out of the emissive layer.
- the electron blocking layer and the hole blocking layer constitute an exciton blocking layer.
- the terms "electron blocking layer” or "exciton blocking layer” include layers that have the functionality of both an electron blocking layer and an exciton blocking layer.
- Hole blocking layer functions as an electron transport layer. In some embodiments, the hole blocking layer blocks holes from reaching the electron transport layer during electron transport. In some embodiments, the hole blocking layer increases the probability of recombination of electrons and holes in the emissive layer.
- the materials used for the hole blocking layer can be the same materials as described above for the electron transport layer. Preferred examples of compounds that can be used in the hole blocking layer are given below.
- Electron barrier layer The electron blocking layer transports holes. In some embodiments, the electron blocking layer prevents electrons from reaching the hole transport layer during hole transport. In some embodiments, the electron blocking layer increases the probability of recombination of electrons and holes in the emissive layer.
- the materials used for the electron blocking layer may be the same materials as described above for the hole transport layer. Specific examples of preferred compounds that can be used as the electron barrier material are given below.
- Exciton barrier layer The exciton blocking layer prevents diffusion of excitons generated through recombination of holes and electrons in the light emitting layer to the charge transport layer. In some embodiments, the exciton blocking layer allows effective confinement of excitons in the emissive layer. In some embodiments, the light emission efficiency of the device is improved. In some embodiments, an exciton blocking layer is adjacent to the emissive layer on either the anode side or the cathode side, and on both sides thereof. In some embodiments, when an exciton blocking layer is present on the anode side, it may be present between and adjacent to the hole-transporting layer and the light-emitting layer.
- an exciton blocking layer when an exciton blocking layer is present on the cathode side, it may be between and adjacent to the emissive layer and the cathode. In some embodiments, a hole-injection layer, electron-blocking layer, or similar layer is present between the anode and an exciton-blocking layer adjacent to the light-emitting layer on the anode side. In some embodiments, a hole injection layer, electron blocking layer, hole blocking layer or similar layer is present between the cathode and an exciton blocking layer adjacent to the emissive layer on the cathode side. In some embodiments, the exciton blocking layer comprises an excited singlet energy and an excited triplet energy, at least one of which is higher than the excited singlet energy and triplet energy, respectively, of the emissive material.
- the hole-transporting layer comprises a hole-transporting material.
- the hole transport layer is a single layer.
- the hole transport layer has multiple layers.
- the hole transport material has one property of a hole injection or transport property and an electron barrier property.
- the hole transport material is an organic material.
- the hole transport material is an inorganic material. Examples of known hole transport materials that can be used in the present invention include, but are not limited to, triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolones.
- the hole transport material is selected from porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds. In some embodiments, the hole transport material is an aromatic tertiary amine compound. Specific examples of preferred compounds that can be used as the hole-transporting material are given below.
- the electron transport layer includes an electron transport material.
- the electron transport layer is a single layer.
- the electron transport layer has multiple layers.
- the electron-transporting material need only function to transport electrons injected from the cathode to the emissive layer.
- the electron transport material also functions as a hole blocking material.
- electron-transporting layers examples include, but are not limited to, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidene methane derivatives, anthraquinodimethanes, anthrone derivatives, oxazide Azole derivatives, azole derivatives, azine derivatives or combinations thereof, or polymers thereof.
- the electron transport material is a thiadiazole derivative or a quinoxaline derivative.
- the electron transport material is a polymeric material. Specific examples of preferred compounds that can be used as the electron-transporting material are given below.
- examples of preferred compounds as materials that can be added to each organic layer are given.
- it may be added as a stabilizing material.
- Preferred materials that can be used in organic electroluminescence elements are specifically exemplified, but materials that can be used in the present invention are not limitedly interpreted by the following exemplified compounds. Moreover, even compounds exemplified as materials having specific functions can be used as materials having other functions.
- the emissive layer is incorporated into the device.
- devices include, but are not limited to, OLED bulbs, OLED lamps, television displays, computer monitors, mobile phones and tablets.
- an electronic device includes an OLED having at least one organic layer including an anode, a cathode, and a light-emitting layer between the anode and the cathode.
- compositions described herein can be incorporated into various photosensitive or photoactivated devices, such as OLEDs or optoelectronic devices.
- the composition may be useful in facilitating charge or energy transfer within a device and/or as a hole transport material.
- OLEDs organic light emitting diodes
- OICs organic integrated circuits
- O-FETs organic field effect transistors
- O-TFTs organic thin film transistors
- O-LETs organic light emitting transistors
- O-SC organic solar cells.
- O-SC organic optical detectors
- O-FQD organic field-quench devices
- LOC luminescent fuel cells
- O-lasers organic laser diodes
- an electronic device includes an OLED including at least one organic layer including an anode, a cathode, and a light-emitting layer between the anode and the cathode.
- the device includes OLEDs of different colors.
- the device includes an array including combinations of OLEDs.
- said combination of OLEDs is a combination of three colors (eg RGB).
- the combination of OLEDs is a combination of colors other than red, green, and blue (eg, orange and yellow-green).
- said combination of OLEDs is a combination of two, four or more colors.
- the device a circuit board having a first side with a mounting surface and a second opposite side and defining at least one opening; at least one OLED on the mounting surface, wherein the at least one OLED is configured to emit light, wherein the at least one OLED includes at least one organic layer including an anode, a cathode, and a light-emitting layer between the anode and the cathode; at least one OLED comprising a housing for a circuit board; at least one connector disposed at an end of said housing, said housing and said connector defining a package suitable for attachment to a lighting fixture.
- the OLED light comprises multiple OLEDs mounted on a circuit board such that light is emitted in multiple directions. In some embodiments, some light emitted in the first direction is polarized and emitted in the second direction. In some embodiments, a reflector is used to polarize light emitted in the first direction.
- the emissive layers of the invention can be used in screens or displays.
- the compounds of the present invention are deposited onto a substrate using processes such as, but not limited to, vacuum evaporation, deposition, evaporation or chemical vapor deposition (CVD).
- the substrate is a photoplate structure useful in two-sided etching to provide unique aspect ratio pixels.
- Said screens also called masks
- the corresponding artwork pattern design allows placement of very steep narrow tie-bars between pixels in the vertical direction as well as large and wide beveled openings in the horizontal direction.
- the internal patterning of the pixels makes it possible to construct three-dimensional pixel openings with various aspect ratios in the horizontal and vertical directions. Further, the use of imaged "stripes" or halftone circles in pixel areas protects etching in specific areas until these specific patterns are undercut and removed from the substrate. All pixel areas are then treated with a similar etch rate, but their depth varies with the halftone pattern. Varying the size and spacing of the halftone patterns allows for etching with varying degrees of protection within the pixel, allowing for the localized deep etching necessary to form steep vertical bevels. . A preferred material for the evaporation mask is Invar.
- Invar is a metal alloy that is cold rolled into long thin sheets in steel mills. Invar cannot be electrodeposited onto a spin mandrel as a nickel mask.
- a suitable and low-cost method for forming the open areas in the deposition mask is by wet chemical etching.
- the screen or display pattern is a matrix of pixels on a substrate.
- screen or display patterns are fabricated using lithography (eg, photolithography and e-beam lithography).
- the screen or display pattern is processed using wet chemical etching.
- the screen or display pattern is fabricated using plasma etching.
- An OLED display is generally manufactured by forming a large mother panel and then cutting the mother panel into cell panels.
- each cell panel on a mother panel is formed by forming a thin film transistor (TFT) having an active layer and source/drain electrodes on a base substrate, coating the TFT with a planarizing film, pixel electrodes, and a light emitting layer. , a counter electrode and an encapsulation layer, are sequentially formed and cut from the mother panel.
- TFT thin film transistor
- An OLED display is generally manufactured by forming a large mother panel and then cutting the mother panel into cell panels.
- each cell panel on a mother panel is formed by forming a thin film transistor (TFT) having an active layer and source/drain electrodes on a base substrate, coating the TFT with a planarizing film, pixel electrodes, and a light emitting layer. , a counter electrode and an encapsulation layer, are sequentially formed and cut from the mother panel.
- TFT thin film transistor
- an organic light emitting diode (OLED) display comprising: forming a barrier layer on the base substrate of the mother panel; forming a plurality of display units on the barrier layer in cell panel units; forming an encapsulation layer over each of the display units of the cell panel; and applying an organic film to the interfaces between the cell panels.
- the barrier layer is an inorganic film, eg, made of SiNx, and the edges of the barrier layer are covered with an organic film, made of polyimide or acrylic.
- the organic film helps the mother panel to be softly cut into cell panels.
- a thin film transistor (TFT) layer has an emissive layer, a gate electrode, and source/drain electrodes.
- Each of the plurality of display units may have a thin film transistor (TFT) layer, a planarization film formed on the TFT layer, and a light emitting unit formed on the planarization film, and The applied organic film is made of the same material as that of the planarizing film, and is formed at the same time as the planarizing film is formed.
- the light-emitting unit is coupled with the TFT layer by a passivation layer, a planarizing film therebetween, and an encapsulation layer that covers and protects the light-emitting unit.
- the organic film is not connected to the display unit or encapsulation layer.
- each of the organic film and the planarizing film may include one of polyimide and acrylic.
- the barrier layer may be an inorganic film.
- the base substrate may be formed of polyimide.
- the method further includes attaching a carrier substrate made of a glass material to another surface of a base substrate made of polyimide before forming a barrier layer on the other surface of the base substrate; separating the carrier substrate from the base substrate prior to cutting along the interface.
- the OLED display is a flexible display.
- the passivation layer is an organic film placed on the TFT layer to cover the TFT layer.
- the planarizing film is an organic film formed over a passivation layer.
- the planarizing film is formed of polyimide or acrylic, as is the organic film formed on the edge of the barrier layer. In some embodiments, the planarizing film and the organic film are formed simultaneously during the manufacture of an OLED display. In some embodiments, the organic film may be formed on the edge of the barrier layer such that a portion of the organic film is in direct contact with the base substrate and a remaining portion of the organic film is , in contact with the barrier layer while surrounding the edges of the barrier layer.
- the emissive layer comprises a pixel electrode, a counter electrode, and an organic emissive layer disposed between the pixel electrode and the counter electrode.
- the pixel electrodes are connected to source/drain electrodes of the TFT layer.
- a suitable voltage is formed between the pixel electrode and the counter electrode, causing the organic light-emitting layer to emit light, thereby displaying an image. is formed.
- An image forming unit having a TFT layer and a light emitting unit is hereinafter referred to as a display unit.
- the encapsulation layer that covers the display unit and prevents the penetration of external moisture may be formed into a thin encapsulation structure in which organic films and inorganic films are alternately laminated.
- the encapsulation layer has a thin film-like encapsulation structure in which multiple thin films are stacked.
- the organic film applied to the interface portion is spaced apart from each of the plurality of display units.
- the organic film is formed such that a portion of the organic film is in direct contact with the base substrate and a remaining portion of the organic film is in contact with the barrier layer while surrounding the edges of the barrier layer. be done.
- the OLED display is flexible and uses a flexible base substrate made of polyimide.
- the base substrate is formed on a carrier substrate made of glass material, and then the carrier substrate is separated.
- a barrier layer is formed on the surface of the base substrate opposite the carrier substrate.
- the barrier layer is patterned according to the size of each cell panel. For example, a base substrate is formed on all surfaces of a mother panel, while barrier layers are formed according to the size of each cell panel, thereby forming grooves at the interfaces between the barrier layers of the cell panels. Each cell panel can be cut along the groove.
- the manufacturing method further comprises cutting along the interface, wherein a groove is formed in the barrier layer, at least a portion of the organic film is formed with the groove, and the groove is Does not penetrate the base substrate.
- a TFT layer of each cell panel is formed, and a passivation layer, which is an inorganic film, and a planarization film, which is an organic film, are placed on and cover the TFT layer.
- the planarizing film eg made of polyimide or acrylic
- the interface grooves are covered with an organic film, eg made of polyimide or acrylic. This prevents cracking by having the organic film absorb the impact that occurs when each cell panel is cut along the groove at the interface.
- the grooves at the interfaces between the barrier layers are coated with an organic film to absorb shocks that might otherwise be transmitted to the barrier layers, so that each cell panel is softly cut and the barrier layers It may prevent cracks from forming.
- the organic film covering the groove of the interface and the planarizing film are spaced apart from each other. For example, when the organic film and the planarizing film are connected to each other as a single layer, external moisture may enter the display unit through the planarizing film and the portion where the organic film remains. The organic film and planarizing film are spaced from each other such that the organic film is spaced from the display unit.
- the display unit is formed by forming a light emitting unit and an encapsulating layer is placed over the display unit to cover the display unit.
- the carrier substrate carrying the base substrate is separated from the base substrate.
- the carrier substrate separates from the base substrate due to the difference in coefficient of thermal expansion between the carrier substrate and the base substrate.
- the mother panel is cut into cell panels.
- the mother panel is cut along the interfaces between the cell panels using a cutter.
- the interface groove along which the mother panel is cut is coated with an organic film so that the organic film absorbs impact during cutting.
- the barrier layer can be prevented from cracking during cutting.
- the method reduces the reject rate of the product and stabilizes its quality.
- Another embodiment includes a barrier layer formed on a base substrate, a display unit formed on the barrier layer, an encapsulation layer formed on the display unit, and an organic layer applied to the edges of the barrier layer.
- An OLED display comprising a film.
- the HOMO energies E HOMO and LUMO energies E LUMO of the above compounds are shown in Table 1 below.
- the lowest excited singlet energy ES1 and the lowest excited triplet energy ET1 measured for some compounds are also shown.
- Examples 1 to 10, Comparative Examples 5 to 7, 9, 10, 12 Each thin film was laminated at a degree of vacuum of 1 ⁇ 10 ⁇ 6 Pa by a vacuum evaporation method on a 2 mm-thick glass substrate on which an anode made of indium tin oxide (ITO) with a thickness of 50 nm was formed.
- ITO indium tin oxide
- HATCN was deposited on ITO to a thickness of 5 nm to form a hole injection layer
- NPD was deposited thereon to a thickness of 60 nm to form a hole transport layer.
- EB1 was deposited to a thickness of 5 nm to form an electron blocking layer.
- the first organic compound, the second organic compound, and the third organic compound were co-deposited from different vapor deposition sources so as to have the composition shown in Table 2 or Table 3, thereby forming a light-emitting layer with a thickness of 40 nm.
- HB1 was deposited to a thickness of 10 nm to form a hole blocking layer, followed by deposition of ET1 to a thickness of 30 nm to form an electron transport layer.
- Liq was vapor-deposited to a thickness of 2 nm to form an electron injection layer, and then aluminum (Al) was vapor-deposited to a thickness of 100 nm to form a cathode.
- An organic electroluminescence device was thus produced. It was confirmed that all the devices produced here satisfied the formula (a), and the maximum component of light emission was the fluorescence from the third organic compound.
- the light-emitting layer having the composition shown in Table 2 was formed by co-evaporation of the first organic compound and the second organic compound without using the evaporation source of the third organic compound.
- An organic electroluminescence device was produced in the same manner as in 1.
- Table 2 shows the composition of the light-emitting layer, the measurement results of the external quantum efficiency EQE and the emission maximum wavelength for each of the devices fabricated in Examples 1-6 and Comparative Examples 1-10.
- the composition ratio of the third organic compound in Examples 1 to 4 and Comparative Examples 5 to 7, 9, and 10 is the ratio (% by weight) of the total weight of the first organic compound and the second organic compound.
- the composition ratio of other organic compounds is expressed as a ratio (% by weight) to the total weight of the organic compounds constituting the light-emitting layer.
- "-" indicates that the third organic compound was not added.
- Table 3 shows the composition of the light-emitting layer of each element produced in Examples 7 to 10 and evaluation results of durability.
- "LT95%” in Table 3 is measured by measuring the time (T95%) until the luminance reaches 95% of the initial luminance by continuously driving each device at a current density of 12.6 mA/cm is a relative value calculated by dividing the value of by T95% of the element manufactured in Example 7. A larger value of LT95% means better durability.
- the devices of Examples 7 to 10 differed in the concentration of the second organic compound in the light emitting layer, and had the same emission maximum wavelength of 529 nm and an external quantum efficiency of about 22%. Moreover, Table 3 shows that the durability of the device tends to be improved by increasing the concentration of the second organic compound.
- the LUMO energy of the second organic compound is Even if the LUMO energy of the first organic compound is lower than that of the second organic compound, the external quantum efficiency can be improved by increasing the concentration of the second organic compound. As a result, the range of selection of the LUMO energy of the third organic compound can be expanded, so that the degree of freedom in designing the material of the organic electroluminescence device can be increased. Therefore, the present invention has high industrial applicability.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Organic Chemistry (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
例えば、特許文献1には、ホスト材料と遅延蛍光材料と蛍光材料で発光層を構成した3成分系の有機エレクトロルミネッセンス素子が提案されている。この発光層では、ホスト材料から遅延蛍光材料に移動してきた励起三重項エネルギー、および、遅延蛍光材料で生じた励起三重項エネルギーが、遅延蛍光材料での三重項から一重項への逆項間交差により励起一重項エネルギーに変換され、蛍光材料に移動して蛍光として放射される。これにより、発光層で生じた励起三重項エネルギーが蛍光材料の発光に有効利用されて高い発光効率が得られるとされている。
本発明はこうした知見に基づいて提案されたものであり、具体的に、以下の構成を有する。
前記発光層は、第1有機化合物、第2有機化合物および第3有機化合物を含み、下記(a)および下記式(b)を満たしており、
前記第2有機化合物は遅延蛍光材料であり、
前記素子からの発光の最大成分は前記第3有機化合物からの蛍光である、有機エレクトロルミネッセンス素子。
ELUMO(2)は、前記第2有機化合物のLUMOのエネルギー
ELUMO(3)は、前記第3有機化合物のLUMOのエネルギー
Sは、前記発光層における前記第3有機化合物の配向値を表す。]
[2] 前記発光層における前記第3有機化合物の濃度が0.3重量%より大きい、[1]に記載の有機エレクトロルミネッセンス素子。
[3] 前記第3有機化合物は、多重共鳴効果を示すホウ素原子と窒素原子を含み、構成環数が4つ以上である縮合環構造を有する化合物である、[1]または[2]に記載の有機エレクトロルミネッセンス素子。
[4] 前記第3有機化合物は、ホウ素原子と窒素原子を含む複素6員環に、窒素原子を共有するピロール環および2つのベンゼン環が縮合した構造を有する化合物である、[1]~[3]のいずれか1つに記載の有機エレクトロルミネッセンス素子。
[5] 前記第3有機化合物は、下記一般式(16)で表される化合物である、[1]~[4]のいずれか1つに記載の有機エレクトロルミネッセンス素子。
一般式(16)
[6] 前記発光層における前記第2有機化合物の濃度が25重量%以上である、[1]~[5]のいずれか1つに記載の有機エレクトロルミネッセンス素子。
[7] 前記第2有機化合物が、ベンゼン環に1~2つのシアノ基と少なくとも1つのドナー性基が結合した構造を有する、[1]~[6]のいずれか1つに記載の有機エレクトロルミネッセンス素子。
[8] 前記ドナー性基が、カルバゾール-9-イル基を構成するベンゼン環に置換もしくは無置換のベンゾフラン環が縮合した構造を有する、[7]に記載の有機エレクトロルミネッセンス素子。
[9] 前記ドナー性基が、置換もしくは無置換の5H-ベンゾフロ[3,2-c]カルバゾール-5-イル基である、[8]に記載の有機エレクトロルミネッセンス素子。
[10] 前記ベンゼン環に前記ドナー性基が3つ以上結合している、[7]~[9]のいずれか1つに記載の有機エレクトロルミネッセンス素子。
[11] 前記第1有機化合物、前記第2有機化合物および前記第3有機化合物が下記(a1)を満たしている、[1]~[10]のいずれか1つに記載の有機エレクトロルミネッセンス素子。
ELUMO(1)> ELUMO(2)> ELUMO(3) 式(a1)
[ここで、
ELUMO(1)は、前記第1有機化合物のLUMOのエネルギー
ELUMO(2)は、前記第2有機化合物のLUMOのエネルギー
ELUMO(3)は、前記第3有機化合物のLUMOのエネルギー
Sは、前記発光層における前記第3有機化合物の配向値を表す。]
本発明の有機エレクトロルミネッセンス素子は、陽極、陰極、および、発光層を含む少なくとも1層の有機層を支持する基板を有していてもよい。この場合、基板は、陽極の発光層と反対側に配置していてもよいし、陰極の発光層と反対側に配置していてもよい。また、本発明の有機エレクトロルミネッセンス素子は、大半の光が基板と反対側から放出されるトップエミッション方式の素子であってもよいし、大半の光が基板側から放出されるボトムエミッション方式の素子であってもよい。ここで、「大半の光」とは、素子から放出される光の量の60%以上の光であることを意味する。
ELUMO(2)> ELUMO(3) 式(a)
S ≦-0.3 式(b)
本発明の一態様では、発光層に含まれる第1有機化合物と第2有機化合物と第3有機化合物は下記の式(a1)および式(b)を満たす。
ELUMO(1)> ELUMO(2)> ELUMO(3) 式(a1)
S ≦-0.3 式(b)
本発明は式(a)の関係を満たすものであることから、発光層に含まれる第2有機化合物のLUMOのエネルギーは第3有機化合物のLUMOのエネルギーよりも高い。式(a1)の関係を満たす場合は、発光層に含まれる第1有機化合物、第2有機化合物、第3有機化合物の中では、第1有機化合物のLUMOのエネルギーが最も高く、第2有機化合物が次に高く、そして第3有機化合物が最も低い。LUMOのエネルギー差[ELUMO(1)-ELUMO(2)]は、例えば0.1eV以上の範囲内にしたり、0.5eV以上の範囲内にしたり、0.8eV以上の範囲内にしたり、1.0eV以上の範囲内にしたりすることができ、また、2.0eV以下の範囲内にしたり、1.5eV以下の範囲内にしたり、1.3eV以下の範囲内にしたり、1.1eV以下の範囲内にしたりすることができる。LUMOのエネルギー差[ELUMO(2)-ELUMO(3)]は、例えば0.01eV以上の範囲内にしたり、0.05eV以上の範囲内にしたり、0.1eV以上の範囲内にしたり、0.15eV以上の範囲内にしたり、0.2eV以上の範囲にしたりすることができ、また、0.7eV以下の範囲内にしたり、0.5eV以下の範囲内にしたり、0.4eV以下の範囲内にしたり、0.3eV以下の範囲内にしたりすることができる。本発明の一態様では、第1有機化合物としてLUMOのエネルギーが-2.0~-5.0eVの範囲内の化合物や、-2.5~-4.0eVの範囲内の化合物を採用したりすることができる。本発明の一態様では、第2有機化合物としてLUMOのエネルギーが-2.0~-5.0eVの範囲内の化合物や、-2.5~-4.0eVの範囲内の化合物を採用したりすることができる。また、本発明の一態様では、第3有機化合物としてLUMOのエネルギーが-2.0~-5.0eVの範囲内の化合物や、-2.5~-4.0eVの範囲内の化合物を採用したりすることができる。
ES1(1)> ES1(2)> ES1(3) 式(c)
また、本発明の有機エレクトロルミネッセンス素子の発光層における第1有機化合物、第2有機化合物、第3有機化合物の濃度をそれぞれConc(1)、Conc(2)、Conc(3)としたとき、下記式(d)の関係を満たすことが好ましい。
Conc(1)>Conc(2)>Conc(3) 式(d)
Conc(1)は30重量%以上であることが好ましく、50重量%以上の範囲内にしたり、60重量%以上の範囲内にしたりすることができ、また、99重量%以下の範囲内にしたり、85重量%以下の範囲内にしたり、70重量%以下の範囲内にしたりすることができる。
Conc(2)は5重量%以上であることが好ましく、15重量%以上の範囲内にしたり、25重量%以上の範囲内にしたり、30重量%以上の範囲内にしたりすることができ、また、45重量%以下の範囲内にしたり、40重量%以下の範囲内にしたり、35重量%以下の範囲内にしたりすることができる。本発明の好ましい態様では、Conc(2)は25~45重量%である。
Conc(3)の好ましい範囲については、上記の発光層における第3有機化合物の濃度についての記載を参照することができる。
Conc(1)/Conc(3)は10以上の範囲内にしたり、50以上の範囲内にしたり、90以上の範囲内にしたりすることができ、また、10000以下の範囲内にしたり、1000以下の範囲内にしたり、200以下の範囲内にしたりすることができる。
Conc(2)/Conc(3)は10以上の範囲内にしたり、50以上の範囲内にしたり、90以上の範囲内にしたりすることができ、また、10000以下の範囲内にしたり、1000以下の範囲内にしたり、200以下の範囲内にしたりすることができる。
本発明の有機エレクトロルミネッセンス素子の発光層に用いる第1有機化合物は、第2有機化合物や第3有機化合物よりもLUMOのエネルギーが高い化合物の中から選択する。第1有機化合物は、第2有機化合物や第3有機化合物よりもLUMOのエネルギーが高くて、なおかつ、第2有機化合物や第3有機化合物よりも大きな最低励起一重項エネルギーを有する化合物の中から選択することが好ましい。第1有機化合物は、キャリアの輸送を担うホスト材料としての機能を有することが好ましい。また第1有機化合物は、第3有機化合物のエネルギーを該化合物中に閉じ込める機能を有することが好ましい。これにより、第3有機化合物は、分子内でホールと電子とが再結合することによって生じたエネルギー、および、第1有機化合物および第2有機化合物から受け取ったエネルギーを効率よく発光に変換することができる。
第1有機化合物としては、正孔輸送能、電子輸送能を有し、かつ発光の長波長化を防ぎ、なおかつ高いガラス転移温度を有する有機化合物であることが好ましい。また、本発明の好ましい一態様では、第1有機化合物は遅延蛍光を放射しない化合物の中から選択する。第1有機化合物からの発光は、本発明の有機エレクトロルミネッセンス素子からの発光の1%未満であることが好ましく、0.1%未満であることがより好ましく、例えば0.01%未満、検出限界以下であってもよい。
第1有機化合物は金属原子を含まないことが好ましい。例えば、第1有機化合物として、炭素原子、水素原子、窒素原子、酸素原子および硫黄原子からなる群より選択される原子からなる化合物を選択することができる。例えば、第1有機化合物として、炭素原子、水素原子、窒素原子および酸素原子からなる群より選択される原子からなる化合物を選択することができる。例えば、第1有機化合物として、炭素原子、水素原子および窒素原子からなる化合物を選択することができる。
以下に、第1有機化合物として用いることができる好ましい化合物を挙げる。
本発明の有機エレクトロルミネッセンス素子の発光層に用いる第2有機化合物は、第1有機化合物よりもLUMOのエネルギーが低くて、第3有機化合物よりもLUMOのエネルギーが高い遅延蛍光材料である。第2有機化合物は、第1有機化合物よりもLUMOのエネルギーが低くて、第3有機化合物よりもLUMOのエネルギーが高く、なおかつ、第1有機化合物よりも小さくて、第3有機化合物よりも大きな最低励起一重項エネルギーを有する遅延蛍光材料であることが好ましい。本発明における「遅延蛍光材料」とは、励起状態において、励起三重項状態から励起一重項状態への逆項間交差を生じ、その励起一重項状態から基底状態へ戻る際に蛍光(遅延蛍光)を放射する有機化合物である。本発明では、蛍光寿命測定システム(浜松ホトニクス社製ストリークカメラシステム等)により発光寿命を測定したとき、発光寿命が100ns(ナノ秒)以上の蛍光が観測されるものを遅延蛍光材料と言う。第2有機化合物は遅延蛍光を放射しうる材料であるが、本発明の有機エレクトロルミネッセンス素子に用いたときに第2有機化合物に由来する遅延蛍光を放射することは必須とされない。第2有機化合物からの発光は、本発明の有機エレクトロルミネッセンス素子からの発光の10%未満であることが好ましく、例えば1%未満、0.1%未満、0.01%未満、検出限界以下であってもよい。
本発明の有機エレクトロルミネッセンス素子において、第2有機化合物は、励起一重項状態の第1有機化合物からエネルギーを受け取って励起一重項状態に遷移する。また、第2有機化合物は、励起三重項状態の第1有機化合物からエネルギーを受け取って励起三重項状態に遷移してもよい。第2有機化合物は励起一重項エネルギーと励起三重項エネルギーの差(ΔEST)が小さいことから、励起三重項状態の第2有機化合物は励起一重項状態の第2有機化合物へ逆項間交差しやすい。これらの経路により生じた励起一重項状態の第2有機化合物は、第3有機化合物へエネルギーを与えて第3有機化合物を励起一重項状態に遷移させる。
ΔESTが小さければ、熱エネルギーの吸収によって励起一重項状態から励起三重項状態に逆項間交差しやすいため、第2有機化合物は熱活性化型の遅延蛍光材料として機能する。熱活性化型の遅延蛍光材料は、デバイスが発する熱を吸収して励起三重項状態から励起一重項へ比較的容易に逆項間交差し、その励起三重項エネルギーを効率よく発光に寄与させることができる。
(1)最低励起一重項エネルギー(ES1)
測定対象化合物の薄膜もしくはトルエン溶液(濃度10-5mol/L)を調製して試料とする。常温(300K)でこの試料の蛍光スペクトルを測定する。蛍光スペクトルは、縦軸を発光、横軸を波長とする。この発光スペクトルの短波側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値 λedge[nm]を求める。この波長値を次に示す換算式でエネルギー値に換算した値をES1とする。
換算式:ES1[eV]=1239.85/λedge
後述の実施例における発光スペクトルの測定は、励起光源にLED光源(Thorlabs社製、M300L4)を用いて検出器(浜松ホトニクス社製、PMA-12マルチチャンネル分光器 C10027-01)により行った。
(2)最低励起三重項エネルギー(ET1)
最低励起一重項エネルギー(ES1)の測定で用いたのと同じ試料を、液体窒素によって77[K]に冷却し、励起光(300nm)を燐光測定用試料に照射し、検出器を用いて燐光を測定する。励起光照射後から100ミリ秒以降の発光を燐光スペクトルとする。この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を求める。この波長値を次に示す換算式でエネルギー値に換算した値をET1とする。
換算式:ET1[eV]=1239.85/λedge
燐光スペクトルの短波長側の立ち上がりに対する接線は以下のように引く。燐光スペクトルの短波長側から、スペクトルの極大値のうち、最も短波長側の極大値までスペクトル曲線上を移動する際に、長波長側に向けて曲線上の各点における接線を考える。この接線は、曲線が立ち上がるにつれ(つまり縦軸が増加するにつれ)、傾きが増加する。この傾きの値が極大値をとる点において引いた接線を、当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
なお、スペクトルの最大ピーク強度の10%以下のピーク強度をもつ極大点は、上述の最も短波長側の極大値には含めず、最も短波長側の極大値に最も近い、傾きの値が極大値をとる点において引いた接線を当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
一般式(1)で表される化合物の中で特に好ましい化合物は、下記一般式(2)で表される化合物である。
一般式(2)
本発明の好ましい一態様では、X1~X5はいずれもC-CNではない。すなわち、ベンゼン環に1~2つのシアノ基と少なくとも1つのドナー性基が結合した構造を有する化合物である。本発明の別の好ましい一態様では、X2だけがC-CNを表し、X1、X3~X5はC-CNではない。すなわち、イソフタロニトリルのベンゼン環に少なくとも1つのドナー性基が結合した構造を有する化合物である。本発明の別の一態様では、X3だけがC-CNを表し、X1、X2、X4、X5はC-CNではない。すなわち、テレフタロニトリルのベンゼン環に少なくとも1つのドナー性基が結合した構造を有する化合物である。
ここで、「ハメットのσp値」は、L.P.ハメットにより提唱されたものであり、パラ置換ベンゼン誘導体の反応速度または平衡に及ぼす置換基の影響を定量化したものである。具体的には、パラ置換ベンゼン誘導体における置換基と反応速度定数または平衡定数の間に成立する下記式:
log(k/k0) = ρσp
または
log(K/K0) = ρσp
における置換基に特有な定数(σp)である。上式において、kは置換基を持たないベンゼン誘導体の速度定数、k0は置換基で置換されたベンゼン誘導体の速度定数、Kは置換基を持たないベンゼン誘導体の平衡定数、K0は置換基で置換されたベンゼン誘導体の平衡定数、ρは反応の種類と条件によって決まる反応定数を表す。本発明における「ハメットのσp値」に関する説明と各置換基の数値については、Hansch,C.et.al.,Chem.Rev.,91,165-195(1991)のσp値に関する記載を参照することができる。
アクセプター性基の具体例として、シアノ基や、後述する一般式(12)~(14)におけるAとして好ましいアクセプター性基を参照することができる。また、ドナー性基の具体例として、後述する一般式(12)~(14)におけるDとして好ましいドナー性基を参照することができる。
X1~X5のうちの隣り合う2つがC-Rを表すとき、2つのRは互いに結合して環状構造を形成していてもよい。互いに結合して形成する環状構造は芳香環であっても脂肪環であってもよく、またヘテロ原子を含むものであってもよく、さらに環状構造は2環以上の縮合環であってもよい。ここでいうヘテロ原子としては、窒素原子、酸素原子および硫黄原子からなる群より選択されるものであることが好ましい。形成される環状構造の例として、ベンゼン環、ナフタレン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ピロール環、イミダゾール環、ピラゾール環、イミダゾリン環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、シクロヘキサジエン環、シクロヘキセン環、シクロペンタエン環、シクロヘプタトリエン環、シクロヘプタジエン環、シクロヘプタエン環、フラン環、チオフェン環、ナフチリジン環、キノキサリン環、キノリン環などを挙げることができる。例えばフェナントレン環やトリフェニレン環のように多数の環が縮合した環を形成してもよい。
本明細書において「アルキル基」は、直鎖状、分枝状、環状のいずれであってもよい。また、直鎖部分と環状部分と分枝部分のうちの2種以上が混在していてもよい。アルキル基の炭素数は、例えば1以上、2以上、4以上とすることができる。また、炭素数は30以下、20以下、10以下、6以下、4以下とすることができる。アルキル基の具体例として、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、n-ヘキシル基、イソヘキシル基、2-エチルヘキシル基、n-ヘプチル基、イソヘプチル基、n-オクチル基、イソオクチル基、n-ノニル基、イソノニル基、n-デカニル基、イソデカニル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基を挙げることができる。置換基たるアルキル基は、さらにアリール基で置換されていてもよい。
「アルケニル基」は、直鎖状、分枝状、環状のいずれであってもよい。また、直鎖部分と環状部分と分枝部分のうちの2種以上が混在していてもよい。アルケニル基の炭素数は、例えば2以上、4以上とすることができる。また、炭素数は30以下、20以下、10以下、6以下、4以下とすることができる。アルケニル基の具体例として、エテニル基、n-プロペニル基、イソプロペニル基、n-ブテニル基、イソブテニル基、n-ペンテニル基、イソペンテニル基、n-ヘキセニル基、イソヘキセニル基、2-エチルヘキセニル基を挙げることができる。置換基たるアルケニル基は、さらに置換基で置換されていてもよい。
「アリール基」および「ヘテロアリール基」は、単環であってもよいし、2つ以上の環が縮合した縮合環であってもよい。縮合環である場合、縮合している環の数は2~6であることが好ましく、例えば2~4の中から選択することができる。環の具体例として、ベンゼン環、ピリジン環、ピリミジン環、トリアジン環、ナフタレン環、アントラセン環、フェナントレン環、トリフェニレン環、キノリン環、ピラジン環、キノキサリン環、ナフチリジン環を挙げることができる。アリール基またはヘテロアリール基の具体例として、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、2-ピリジル基、3-ピリジル基、4-ピリジル基を挙げることができる。「アリーレン基」および「ヘテロアリール基」は、アリール基およびヘテロアリール基の説明における価数を1から2へ読み替えたものとすることができる。
置換基は、水素原子に置換しうる1価の基を意味しており、縮合するものを含む概念ではない。置換基の説明と好ましい範囲については、後述の一般式(7)の置換基の説明と好ましい範囲を参照することができる。
一般式(5a)~(5f)において、R41~R110は各々独立に水素原子または置換基を表す。R41とR42、R42とR43、R43とR44、R44とR45、R45とR46、R46とR47、R47とR48、R51とR52、R52とR53、R53とR54、R54とR55、R55とR56、R56とR57、R57とR58、R58とR59、R59とR60、R61とR62、R62とR63、R63とR64、R65とR66、R66とR67、R67とR68、R68とR69、R69とR70、R72とR73、R73とR74、R74とR75、R75とR76、R76とR77、R77とR78、R78とR79、R79とR80、R81とR82、R82とR83、R83とR84、R84とR85、R86とR87、R87とR88、R88とR89、R89とR90、R91とR92、R93とR94、R94とR95、R95とR96、R96とR97、R97とR98、R99とR100、R101とR102、R102とR103、R103とR104、R104とR105、R105とR106、R107とR108、R108とR109、R109とR110は、互いに結合して環状構造を形成していてもよい。互いに結合して形成する環状構造は芳香環であっても脂肪環であってもよく、またヘテロ原子を含むものであってもよく、さらに環状構造は2環以上の縮合環であってもよい。ここでいうヘテロ原子としては、窒素原子、酸素原子および硫黄原子からなる群より選択されるものであることが好ましい。形成される環状構造の例として、ベンゼン環、ナフタレン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ピロール環、イミダゾール環、ピラゾール環、イミダゾリン環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、シクロヘキサジエン環、シクロヘキセン環、シクロペンタエン環、シクロヘプタトリエン環、シクロヘプタジエン環、シクロヘプタエン環、フラン環、チオフェン環、ナフチリジン環、キノキサリン環、キノリン環などを挙げることができる。例えばフェナントレン環やトリフェニレン環のように多数の環が縮合した環を形成してもよい。一般式(6)で表される基に含まれる環の数は3~5の範囲内から選択してもよく、5~7の範囲内から選択してもよい。一般式(5a)~(5f)で表される基に含まれる環の数は5~7の範囲内から選択してもよく、5であってもよい。
R41~R110が採りうる置換基として、上記の置換基群Bの基を挙げることができ、好ましくは炭素数1~10の無置換のアルキル基、または炭素数1~10の無置換のアルキル基で置換されていてもよい炭素数6~10のアリール基である。本発明の好ましい一態様では、R41~R110は水素原子または炭素数1~10の無置換のアルキル基である。本発明の好ましい一態様では、R41~R110は水素原子または炭素数6~10の無置換のアリール基である。本発明の好ましい一態様では、R41~R110はすべてが水素原子である。
一般式(5a)~(5f)におけるR41~R110が結合している炭素原子(環骨格構成炭素原子)は、各々独立に窒素原子に置換されていてもよい。すなわち、一般式(5a)~(5f)におけるC-R41~C-R110は、各々独立にNに置換されていてもよい。窒素原子に置換されている数は、一般式(5a)~(5f)で表される基の中で0~4つであることが好ましく、1~2つであることがより好ましい。本発明の一態様では、窒素原子に置換されている数は0である。また、2つ以上が窒素原子に置換されている場合は、1つの環中に置換されている窒素原子の数は1つであることが好ましい。
一般式(5a)~(5f)において、X1~X6は、酸素原子、硫黄原子またはN-Rを表す。本発明の一態様では、X1~X6は酸素原子である。本発明の一態様では、X1~X6は硫黄原子である。本発明の一態様では、X1~X6はN-Rである。Rは水素原子または置換基を表し、置換基であることが好ましい。置換基としては、上記置換基群Aから選択される置換基を例示することができる。例えば、無置換のフェニル基や、アルキル基やアリール基からなる群より選択される1つの基または2つ以上を組み合わせた基で置換されているフェニル基を好ましく採用することができる。
一般式(5a)~(5f)において、*は結合位置を表す。
一般式(7)
ここでいう置換アミノ基は、置換もしくは無置換のジアリールアミノ基であることが好ましく、置換もしくは無置換のジアリールアミノ基を構成する2つのアリール基は互いに連結していてもよい。連結は、単結合でなされていてよいし(その場合はカルバゾ-ル環が形成される)、-O-、-S-、-N(R6)-、-C(R7)(R8)-、-Si(R9)(R10)-などの連結基でなされていてもよい。ここで、R6~R10は水素原子、重水素原子または置換基を表し、R7とR8、R9とR10は、それぞれ互いに連結して環状構造を形成してもよい。
置換アミノ基はR1~R5のいずれであってもよく、例えばR1とR2、R1とR3、R1とR4、R1とR5、R2とR3、R2とR4、R1とR2とR3、R1とR2とR4、R1とR2とR5、R1とR3とR4、R1とR3とR5、R2とR3とR4、R1とR2とR3とR4、R1とR2とR3とR5、R1とR2とR4とR5、R1とR2とR3とR4とR5を置換アミノ基とすること等ができる。シアノ基もR1~R5のいずれであってもよく、例えばR1、R2、R3、R1とR2、R1とR3、R1とR4、R1とR5、R2とR3、R2とR4、R1とR2とR3、R1とR2とR4、R1とR2とR5、R1とR3とR4、R1とR3とR5、R2とR3とR4をシアノ基とすること等ができる。
シアノ基でも置換アミノ基でもないR1~R5は、水素原子、重水素原子または置換基を表す。ここでいう置換基の例として、ヒドロキシル基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、アルキル基(例えば炭素数1~40)、アルコキシ基(例えば炭素数1~40)、アルキルチオ基(例えば炭素数1~40)、アリール基(例えば炭素数6~30)、アリールオキシ基(例えば炭素数6~30)、アリールチオ基(例えば炭素数6~30)、ヘテロアリール基(例えば環骨格構成原子数5~30)、ヘテロアリールオキシ基(例えば環骨格構成原子数5~30)、ヘテロアリールチオ基(例えば環骨格構成原子数5~30)、アシル基(例えば炭素数1~40)、アルケニル基(例えば炭素数1~40)、アルキニル基(例えば炭素数1~40)、アルコキシカルボニル基(例えば炭素数1~40)、アリールオキシカルボニル基(例えば炭素数1~40)、ヘテロアリールオキシカルボニル基(例えば炭素数1~40)、シリル基(例えば炭素数1~40のトリアルキルシリル基)、ニトロ基、ここに列挙した基がさらにここに列挙した1以上の基で置換された基からなる置換基群Aを挙げることができる。上記ジアリールアミノ基のアリール基が置換されているときの置換基の好ましい例としても、上記の置換基群Aの置換基を挙げることができ、さらにシアノ基と置換アミノ基も挙げることができる。
一般式(7)に包含される化合物群と化合物の具体例については、本明細書の一部としてここに引用するWO2013/154064号公報の段落0008~0048、WO2015/080183号公報の段落0009~0030、WO2015/129715号公報の段落0006~0019、特開2017-119663号公報の段落0013~0025、特開2017-119664号公報の段落0013~0026を参照することができる。
一般式(8)
一般式(8)で表される化合物の中でも、特に一般式(9)で表される化合物が有用である。
一般式(9)
一般式(9)に包含される化合物群と化合物の具体例については、本明細書の一部としてここに引用するWO2013/081088号公報の段落0020~0062や、Appl.Phys.Let,98,083302(2011)に記載の化合物を参照することができる。
一般式(11)
一般式(12)
一般式(12)~(15)におけるDとして好ましいドナー性基の具体例を以下に挙げる。以下の具体例において、*は結合位置を表し、「D」は重水素原子を表す。以下の具体例において、水素原子は例えばアルキル基で置換されていてもよい。また、置換もしくは無置換のベンゼン環がさらに縮合していてもよい。
一般式(15a)の水素原子の一部または全部は重水素原子で置換されていてもよい。例えば、トリアジニル基に結合している2つのフェニル基の水素原子の一部または全部が重水素原子で置換されていてもよい。また、2つのカルバゾリル基に結合している水素原子の一部または全部が重水素原子で置換されていてもよい。また、R209~R213が重水素原子であってもよい。
遅延蛍光材料として、WO2013/154064号公報の段落0008~0048および0095~0133、WO2013/011954号公報の段落0007~0047および0073~0085、WO2013/011955号公報の段落0007~0033および0059~0066、WO2013/081088号公報の段落0008~0071および0118~0133、特開2013-256490号公報の段落0009~0046および0093~0134、特開2013-116975号公報の段落0008~0020および0038~0040、WO2013/133359号公報の段落0007~0032および0079~0084、WO2013/161437号公報の段落0008~0054および0101~0121、特開2014-9352号公報の段落0007~0041および0060~0069、特開2014-9224号公報の段落0008~0048および0067~0076、特開2017-119663号公報の段落0013~0025、特開2017-119664号公報の段落0013~0026、特開2017-222623号公報の段落0012~0025、特開2017-226838号公報の段落0010~0050、特開2018-100411号公報の段落0012~0043、WO2018/047853号公報の段落0016~0044に記載される一般式に包含される化合物、特に例示化合物であって、遅延蛍光を放射するものを挙げることができる。また、特開2013-253121号公報、WO2013/133359号公報、WO2014/034535号公報、WO2014/115743号公報、WO2014/122895号公報、WO2014/126200号公報、WO2014/136758号公報、WO2014/133121号公報、WO2014/136860号公報、WO2014/196585号公報、WO2014/189122号公報、WO2014/168101号公報、WO2015/008580号公報、WO2014/203840号公報、WO2015/002213号公報、WO2015/016200号公報、WO2015/019725号公報、WO2015/072470号公報、WO2015/108049号公報、WO2015/080182号公報、WO2015/072537号公報、WO2015/080183号公報、特開2015-129240号公報、WO2015/129714号公報、WO2015/129715号公報、WO2015/133501号公報、WO2015/136880号公報、WO2015/137244号公報、WO2015/137202号公報、WO2015/137136号公報、WO2015/146541号公報、WO2015/159541号公報に記載される発光材料であって、遅延蛍光を放射するものを採用することもできる。なお、この段落に記載される上記の公報は、本明細書の一部としてここに引用している。
本発明の有機エレクトロルミネッセンス素子の発光層に用いる第3有機化合物は、蛍光を放射する化合物であって、第1有機化合物や第2有機化合物よりもLUMOのエネルギーが低い化合物である。第3有機化合物は、蛍光を放射する化合物であって、第1有機化合物や第2有機化合物よりもLUMOのエネルギーが低く、なおかつ、第1有機化合物や第2有機化合物よりも小さな最低励起一重項エネルギーを有する化合物であることが好ましい。本発明の有機エレクトロルミネッセンス素子では、発光層における第3有機化合物の配向値が-0.3以下である。そして、本発明の有機エレクトロルミネッセンス素子では、第3有機化合物に由来する蛍光を放射する。第3有機化合物からの発光は通常は遅延蛍光を含む。素子からの発光の最大成分は第3有機化合物からの蛍光である。すなわち、本発明の有機エレクトロルミネッセンス素子からの発光のうち、第3有機化合物からの蛍光の発光量が最大である。
本発明の好ましい態様では、第3有機化合物は、励起一重項状態の第1有機化合物、励起一重項状態の第2有機化合物、励起三重項状態から逆項間交差して励起一重項状態になった第2有機化合物からエネルギーを受け取って励起一重項状態に遷移する。また本発明のより好ましい態様では、第3有機化合物は、励起一重項状態の第2有機化合物と、励起三重項状態から逆項間交差して励起一重項状態になった第2有機化合物からエネルギーを受け取って励起一重項状態に遷移する。生じた第3有機化合物の励起一重項状態は、その後基底状態に戻るときに蛍光を放射する。
第3有機化合物としては、所定の条件を満たす蛍光材料(蛍光発光性の化合物)であれば特に制限なく用いることができる。ここで、「蛍光材料」とは、蛍光寿命測定システム(浜松ホトニクス社製ストリークカメラシステム等)により発光寿命を測定したとき、発光寿命が100ns(ナノ秒)未満の蛍光が観測されるものを言う。第3有機化合物からの発光には遅延蛍光や燐光が含まれていても構わないが、第3有機化合物からの発光の最大成分は蛍光である。本発明の一態様では、有機エレクトロルミネッセンス素子は燐光を放射しないか、燐光の放射量は蛍光の1%以下である。
本発明では、第3有機化合物として用いることができる化合物の最大発光波長は特に制限されない。このため、可視領域(380~780nm)に最大発光波長を有する発光材料や赤外領域(780nm~1mm)に最大発光波長を有する発光材料や紫外領域(例えば280~380nm)に最大発光波長を有する化合物などを適宜選択して使用することが可能である。好ましいのは、可視領域に最大発光波長を有する蛍光材料である。例えば、380~780nmの領域内における最大発光波長が380~570nmの範囲内にある発光材料を選択して用いたり、最大発光波長が570~650nmの範囲内にある発光材料を選択して用いたり、最大発光波長が650~700nmの範囲内にある発光材料を選択して用いたり、最大発光波長が700~780nmの範囲内にある発光材料を選択して用いたりしてもよい。
本発明の好ましい態様では、第2有機化合物の発光波長領域と第3有機化合物の吸収波長領域との間に重なりがあるように、各化合物を選択して組み合わせる。特に、第2有機化合物の発光スペクトルの短波長側のエッジと、第3有機化合物の吸収スペクトルの長波側のエッジが重なっていることが好ましい。
第3有機化合物はホウ素原子以外の金属原子を含まないことが好ましい。例えば、第3有機化合物はホウ素原子とフッ素原子をともに含む化合物であってもよい。また、ホウ素原子を含むがフッ素原子を含まない化合物であってもよい。また、金属原子をまったく含まないものであってもよい。例えば、第3有機化合物として、炭素原子、水素原子、重水素原子、窒素原子、酸素原子、硫黄原子、フッ素原子およびホウ素原子からなる群より選択される原子からなる化合物を選択することができる。例えば、第3有機化合物として、炭素原子、水素原子、重水素原子、窒素原子、酸素原子、フッ素原子およびホウ素原子からなる群より選択される原子からなる化合物を選択することができる。例えば、第3有機化合物として、炭素原子、水素原子、重水素原子、窒素原子、酸素原子、硫黄原子およびホウ素原子からなる群より選択される原子からなる化合物を選択することができる。例えば、第3有機化合物として、炭素原子、水素原子、重水素原子、窒素原子およびホウ素原子からなる群より選択される原子からなる化合物を選択することができる。例えば、第3有機化合物として、炭素原子、水素原子、重水素原子、窒素原子、酸素原子および硫黄原子からなる群より選択される原子からなる化合物を選択することができる。例えば、第3有機化合物として、炭素原子、水素原子、重水素原子、窒素原子および酸素原子からなる群より選択される原子からなる化合物を選択することができる。例えば、第3有機化合物として、炭素原子および水素原子からなる化合物を選択することができる。
本発明の好ましい一態様では、第3有機化合物として下記一般式(16)で表される化合物を用いる。
一般式(16)
R1とR2、R2とR3、R3とR4、R4とR5、R5とR6、R6とR7、R7とR8、R8とR9、R9とR10、R10とR11、R11とR12、R13とR14、R14とR15、R15とR16、R16とR17、R17とR18、R18とR19、R19とR20、R20とR21、R21とR22、R22とR23、R23とR24、R24とR25、R25とR26は、互いに結合して環状構造を形成していてもよい。
R7とR8が結合して形成する環状構造は、環骨格構成原子としてホウ素原子と4つの炭素原子を含む。R17とR18が結合して形成する環状構造は、X1がホウ素原子であるとき、環骨格構成原子としてホウ素原子と4つの炭素原子を含む。X1が窒素原子であるとき、環状構造はピロール環に限定される。R21とR22が結合して形成する環状構造は、X2がホウ素原子であるとき、環骨格構成原子としてホウ素原子と4つの炭素原子を含む。X2が窒素原子であるとき、環状構造はピロール環に限定される。R7とR8、R17とR18、R21とR22が互いに結合してホウ素原子を含む環状構造を形成するとき、その環状構造は5~7員環であることが好ましく、5または6員環であることがより好ましく、6員環であることがさらに好ましい。R7とR8、R17とR18、R21とR22が互いに結合するときは、互いに結合して単結合、-O-、-S-、-N(R27)-、-C(R28)(R29)-、-Si(R30)(R31)-、-B(R32)-、-CO-、-CS-、を形成することが好ましく、-O-、-S-または-N(R27)-を形成することがより好ましく、-N(R27)-を形成することがさらに好ましい。ここで、R27~R32は、各々独立に水素原子、重水素原子または置換基を表す。置換基としては、後述の置換基群A~Eのいずれかから選択される基を採用してもよいが、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基であることが好ましく、特にR27は置換もしくは無置換のアリール基であることが好ましい。R27~R32が置換基であるとき、R7とR8が互いに結合して形成する環におけるR27~R32はR6およびR9の少なくとも一方と結合してさらに環状構造を形成してもよく、R17とR18が互いに結合して形成する環におけるR27~R32はR16およびR19の少なくとも一方と結合してさらに環状構造を形成してもよく、R21とR22が互いに結合して形成する環におけるR27~R32はR20およびR23の少なくとも一方と結合してさらに環状構造を形成してもよい。本発明の一態様では、R7とR8、R17とR18、R21とR22のうちの1組だけが互いに結合している。本発明の一態様では、R7とR8、R17とR18、R21とR22のうちの2組だけが互いに結合している。本発明の一態様では、R7とR8、R17とR18、R21とR22のすべてが互いに結合している。
R1~R26が採りうる好ましい置換基は、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基であり、例えば置換基は置換もしくは無置換のアリール基であってもよいし、例えば置換基は置換もしくは無置換のアルキル基であってもよい。ここでいうアルキル基、アリール基、ヘテロアリール基の置換基も置換基群A~Eのいずれかから選択される基を採用することができるが、好ましくはアルキル基、アリール基およびヘテロアリール基からなる群より選択される1以上の基であり、より好ましくは置換基群Eの基であり、無置換であってもよい。本発明の好ましい一態様では、R1~R6の少なくとも1つは置換基であり、好ましくは置換基群Eの基である。例えばR1~R6の少なくとも1つが置換基であり、好ましくは置換基群Eの基である。例えば、R5およびR6の少なくとも1つが置換基であり、好ましくは置換基群Eの基である。本発明の好ましい一態様では、R3およびR6の少なくとも一方が置換基であり、より好ましくは両方が置換基であり、好ましくは置換基群Eの基である。本発明の好ましい一態様では、X1が窒素原子であるとき、R15およびR20の少なくとも一方が置換基であり、より好ましくは両方が置換基であり、好ましくは置換基群Eの基である。このとき、R16とR17は互いに結合して単結合を形成している。本発明の好ましい一態様では、X2が窒素原子であるとき、R19およびR24の少なくとも一方が置換基であり、より好ましくは両方が置換基であり、好ましくは置換基群Eの基である。このとき、R21とR22は互いに結合して単結合を形成している。本発明の一態様では、R8およびR12の少なくとも一方が置換基であり、好ましくは両方が置換基である。本発明の一態様では、R8、R10およびR12が置換基である。R8~R12の置換基としては、無置換のアルキル基が好ましい。X1がホウ素原子であるとき、R13およびR17の少なくとも一方が置換基であり、好ましくは両方が置換基である。本発明の一態様では、X1がホウ素原子であるとき、R13、R15およびR17が置換基である。X1がホウ素原子であるとき、R13~R17の置換基としては、無置換のアルキル基が好ましい。X2がホウ素原子であるとき、R22およびR26の少なくとも一方が置換基であり、好ましくは両方が置換基である。本発明の一態様では、X2がホウ素原子であるとき、R22、R24およびR26が置換基である。X2がホウ素原子であるとき、R22~R26の置換基としては、無置換のアルキル基が好ましい。
A1およびA2が採りうる好ましい置換基は、アクセプター性基である。アクセプター性基は、ハメットのσp値が正の基である。ここで、「ハメットのσp値」は、L.P.ハメットにより提唱されたものであり、パラ置換ベンゼン誘導体の反応速度または平衡に及ぼす置換基の影響を定量化したものである。具体的には、パラ置換ベンゼン誘導体における置換基と反応速度定数または平衡定数の間に成立する下記式:
log(k/k0) = ρσp
または
log(K/K0) = ρσp
における置換基に特有な定数(σp)である。上式において、k0は置換基を持たないベンゼン誘導体の速度定数、kは置換基で置換されたベンゼン誘導体の速度定数、K0は置換基を持たないベンゼン誘導体の平衡定数、Kは置換基で置換されたベンゼン誘導体の平衡定数、ρは反応の種類と条件によって決まる反応定数を表す。本発明における「ハメットのσp値」に関する説明と各置換基の数値については、Hansch,C.et.al.,Chem.Rev.,91,165-195(1991)のσp値に関する記載を参照することができる。
A1およびA2が採りうるアクセプター性基は、ハメットのσp値が0.2より大きい基であることがより好ましい。ハメットのσp値が0.2より大きい基として、シアノ基、少なくともシアノ基で置換されているアリール基、フッ素原子を含む基、環骨格構成原子として窒素原子を含む置換もしくは無置換のヘテロアリール基を挙げることができる。ここでいう少なくともシアノ基で置換されているアリール基は、シアノ基以外の置換基(例えばアルキル基やアリール基)で置換されていてもよいが、シアノ基だけで置換されているアリール基であってもよい。少なくともシアノ基で置換されているアリール基は、少なくともシアノ基で置換されているフェニル基であることが好ましい。シアノ基の置換数は1または2であることが好ましく、例えば1であってもよく、2であってもよい。フッ素原子を含む基は、フッ素原子、フッ化アルキル基、フッ素原子またはフッ化アルキル基で少なくとも置換されたアリール基を挙げることができる。フッ化アルキル基は、パーフルオロアルキル基であることが好ましく、炭素原子数は1~6であることが好ましく、1~3であることがより好ましい。また、環骨格構成原子として窒素原子を含むヘテロアリール基は、単環であってもよいし、2つ以上の環が縮合した縮合環であってもよい。縮合環である場合、縮合した後の環の数は2~6であることが好ましく、例えば2~4の中から選択したり、2としたりすることができる。ヘテロアリール基を構成する環の具体例として、ピリジン環、ピリミジン環、ピラジン環、トリアジン環、キノリン環、イソキノリン環、キナゾリン環、キノキサリン環、キナゾリン環やキノキサリン環以外のナフチリジン環を挙げることができる。ヘテロアリール基を構成する環は、重水素原子や置換基で置換されていてもよく、置換基としては例えば、アルキル基、アリール基およびヘテロアリール基からなる群より選択される1つの基または2つ以上で構成される基を挙げることができる。A1およびA2が採りうるアクセプター性基として特に好ましいのはシアノ基である。
本発明の一態様では、A1およびA2は、各々独立に水素原子または重水素原子である。本発明の一態様では、A1およびA2の少なくとも一方はアクセプター性基である。本発明の一態様では、A1およびA2の少なくとも一方はアクセプター性基である。本発明の一態様では、A1およびA2の両方がアクセプター性基である。本発明の一態様では、A1およびA2の両方がアクセプター性基である。本発明の一態様では、A1およびA2がシアノ基である。本発明の一態様では、A1およびA2がハロゲン原子であり、例えば臭素原子である。
本発明の一態様では、n1~n4は各々独立に0~2の整数を表す。本発明の好ましい一態様では、n1~n4の少なくとも1つは1以上であり、好ましくはn1およびn2の少なくとも1つは1以上であり、n3およびn4の少なくとも1つは1以上である。本発明の一態様では、n1およびn3が各々独立に1または2であり、n2およびn4が0である。本発明の一態様ではn2およびn4が各々独立に1または2であり、n1およびn3が0である。本発明の一態様では、n1~n4は各々独立に1または2である。本発明の一態様では、n1とn3は等しく、n2とn4は等しい。本発明の一態様では、n1とn3は1であり、n2とn4は0である。本発明の一態様では、n1とn3は0であり、n2とn4は1である。本発明の一態様では、n1~n4はいずれも1である。Ar1~Ar4の結合位置は、カルバゾール環の3,6位の少なくとも一つであってもよいし、2,7位の少なくとも一つであってもよいし、1,8位の少なくとも一つであってもよいし、4,5位の少なくとも一つであってもよい。Ar1~Ar4の結合位置は、カルバゾール環の3,6位の両方であってもよいし、2,7位の両方であってもよいし、1,8位の両方であってもよいし、4,5位の両方であってもよい。例えば、3,6位の少なくとも一つを好ましく選択することができ、あるいは、3,6位の両方をさらに好ましく選択することができる。本発明の好ましい一態様では、Ar1~Ar4はすべて同一の基である。本発明の好ましい一態様では、Ar1~Ar4は各々独立に置換もしくは無置換のアリール基であり、より好ましくは置換もしくは無置換のフェニル基またはナフチル基であり、さらに好ましくは置換もしくは無置換のフェニル基である。置換基としては後述の置換基群A~Eのいずれかから選択される基を挙げることができるが、無置換のフェニル基も好ましい。Ar1~Ar4の好ましい具体例として、フェニル基、o-ビフェニル基、m-ビフェニル基、p-ビフェニル基、ターフェニル基を挙げることができる。
本発明の一態様では、m1およびm2は各々独立に0である。本発明の一態様では、m1およびm2は各々独立に1~5のいずれかの整数である。本発明の一態様では、m1とm2は等しい。本発明の一態様では、R41およびR42は炭素数1~6のアルキル基であり、例えば炭素数1~3のアルキル基の中から選択したり、メチル基を選択したりすることができる。アルキル基の置換位置は、ホウ素原子に結合している炭素原子を1位として、2位のみ、3位のみ、4位のみ、3位と5位、2位と4位、2位と6位、2位と4位と6位などを例示することができ、少なくとも2位であることが好ましく、少なくとも2位と6位であることがより好ましい。
A1およびA2の説明と好ましい範囲については、一般式(16)の対応する記載を参照することができる。
本発明の一態様では、n9~n14は各々独立に0~2の整数を表す。本発明の一態様では、n9~n14の少なくとも1つは1以上であり、例えば、n9およびn12を1以上としたり、n10およびn13を1以上としたりすることができる。本発明の好ましい一態様では、n9、n10、n12、n13の少なくとも1つは1以上である。本発明の一態様では、n9およびn12が各々独立に1または2であり、n10、n11、n13、n14が0である。本発明の一態様ではn10およびn13が各々独立に1または2であり、n9、n11、n12、n14が0である。本発明の一態様では、n9およびn12が各々独立に1または2であり、n10およびn13が各々独立に1または2であり、n11およびn14が0である。本発明の一態様では、n9~n14はいずれも1である。Ar9~Ar14の結合位置は、カルバゾール環の3,6位としたり、その他の位置としたりすることができる。本発明の好ましい一態様では、Ar9~Ar14はすべて同一の基である。Ar9~Ar14の好ましい基については、Ar1~Ar4の対応する記載を参照することができる。A1およびA2の説明と好ましい範囲については、一般式(16)の対応する記載を参照することができる。
Z1~Z4は、各々独立に酸素原子または硫黄原子を表す。Z1とZ2は同じであり、Z3とZ4は同じであることが好ましいが、それぞれ異なっていてもよい。本発明の一態様ではZ1~Z4は酸素原子である。このとき、ベンゾフランのフラン環が、(19a)および(19b)におけるカルバゾール部分構造を構成するベンゼン環に縮合している。縮合しているフラン環の向きは制限されない。本発明の一態様ではZ1~Z4は硫黄原子である。このとき、ベンゾチオフェンのチオフェン環が、(19a)および(19b)におけるカルバゾール部分構造を構成するベンゼン環に縮合している。縮合しているチオフェン環の向きは制限されない。
骨格(19a)および(19b)における各水素原子は、重水素原子または置換基に置換されていてもよい。また、隣接する水素原子とともに連結基に置換されて環状構造を形成していてもよい。詳細については、一般式(16)の対応するR1~R26、A1、A2の記載を参照することができる。本発明の一態様では、骨格(19a)および(19b)における各水素原子は、隣接する水素原子とともに連結基に置換されて環状構造を形成していない。
一般式(19a)
本発明の一態様では、n51とn52は同じ数である。例えば、n51とn52は0であってもよく、n51とn52は1であってもよい。本発明の一態様では、m51とm52は同じ数である。本発明の一態様では、m51とm52は0~3の整数である。例えば、m51とm52は0であってもよく、m51とm52は1であってもよく、m51とm52は2であってもよく、m51とm52は3であってもよい。Ar51、Ar52、R51、R52、A1、A2の好ましい基については、一般式(16a)のAr1~Ar4、R41~R42、A1、A2の対応する記載を参照することができる。
本発明の一態様では、n55とn56は0~2の整数である。例えば、n55とn56は0であってもよく、n55とn56は1であってもよい。本発明の一態様では、m51とm52は同じ数である。m55とm56の詳細については、一般式(19a)のm51とm52の記載を参照することができる。Ar55、Ar56、R55、R56、A1、A2の好ましい基については、一般式(16a)のAr1、Ar3、R41、R42、A1、A2の対応する記載を参照することができる。
本発明の一態様では、n71~n74は0~2の整数である。本発明の一態様では、n71とn73は同じ数であり、n72とn74は同じ数である。n71~n74が同じ数でもよい。例えば、n71~n74は0であってもよい。n71~n74はすべてが1であってもよい。また、例えば
、n71とn73は0であってもよく、n72とn74は1であってもよい。Ar71~Ar74、A1、A2の好ましい基については、一般式(16a)のAr1~Ar4、A1、A2の対応する記載を参照することができる。
本発明の一態様では、n79およびn80は0~2の整数である。本発明の一態様では、n79とn80は同じ数であり、例えばいずれも0であってもよいし、いずれも1であってもよい。本発明の一態様では、m71およびm72は0~2の整数である。本発明の一態様では、m71およびm72は同じ数であり、例えばいずれも0であってもよいし、いずれも1であってもよい。Ar79、Ar80、R71、R72、A1、A2の好ましい基については、一般式(16a)のAr1、Ar3、R41、R42、A1、A2の対応する記載を参照することができる。
m73、m74、n81、n82の詳しい説明については、一般式(23a)のm71、m72、n79、n80の記載を参照することができる。Ar81、Ar82、R73、R74、A1、A2の好ましい基については、一般式(16a)のAr1、Ar3、R41、R42、A1、A2の対応する記載を参照することができる。
骨格(25)
本発明の一態様では、n91~n94は0~2の整数である。本発明の一態様では、n91とn93は同じ数であり、n92とn94は同じ数である。n91~n94はすべてが同じ数であってもよく、例えばいずれも0であってもよいし、いずれも1であってもよい。Ar91~Ar94の好ましい基については、一般式(16a)のAr1~Ar4の対応する記載を参照することができる。本発明の一態様では、α環とγ環は同じ置換基を有しているか、同じ縮合構造を有しており、β環とδ環は同じ置換基を有しているか、同じ縮合構造を有している。本発明の一態様では、β環とδ環がともに置換もしくは無置換のアリール基で置換されているか、置換されていてもよいベンゼン環が縮合しているか、置換もしくは無置換のベンゾフランのフラン環または置換もしくは無置換のチオフェンのチオフェン環が縮合している。本発明の一態様では、α環とγ環がともに置換もしくは無置換のアリール基で置換されているか、置換されていてもよいベンゼン環が縮合しているか、置換もしくは無置換のベンゾフランのフラン環または置換もしくは無置換のチオフェンのチオフェン環が縮合している。本発明の一態様では、α環、β環、γ環、δ環のすべてが、置換もしくは無置換のアリール基で置換されているか、置換されていてもよいベンゼン環が縮合しているか、置換もしくは無置換のベンゾフランのフラン環または置換もしくは無置換のチオフェンのチオフェン環が縮合している。A1およびA2の説明と好ましい範囲については、一般式(16)の対応する記載を参照することができる。
以下において、A1とA2がアクセプター性基である化合物の具体例を挙げる。本発明で用いることができるA1とA2がアクセプター性基である化合物は、下記の具体例により限定的に解釈されることはない。以下の具体例は、A1とA2がともに「A」である構造を有しており、その「A」を個別に特定することにより各化合物の構造を特定している。
以下に非対称骨格を有する化合物の具体例を挙げる。本発明で用いることができる非対称骨格を有する化合物や非対称構造を有する化合物は、下記の具体例により限定的に解釈されることはない。Xを含む具体例については、分子内のすべてのXが酸素原子である化合物と、分子内のすべてのXが硫黄原子である化合物がそれぞれ開示されているものとする。分子内のXの一部が酸素原子でその他が硫黄原子である化合物も採用することができる。
一般式(16)で表される化合物は、分子量にかかわらず塗布法で成膜してもよい。塗布法を用いれば、分子量が比較的大きな化合物であっても成膜することが可能である。一般式(16)で表される化合物は有機溶媒に溶解しやすいという利点がある。このため、一般式(16)で表される化合物は塗布法を適用しやすいうえ、精製して純度を高めやすい。
例えば、一般式(16)で表される構造中にあらかじめ重合性基を存在させておいて、その重合性基を重合させることによって得られる重合体を、発光材料として用いることが考えられる。具体的には、一般式(16)で表される構造のいずれかに重合性官能基を含むモノマーを用意して、これを単独で重合させるか、他のモノマーとともに共重合させることにより、繰り返し単位を有する重合体を得て、その重合体を発光材料として用いることが考えられる。あるいは、一般式(16)で表される化合物どうしをカップリングさせることにより、二量体や三量体を得て、それらを発光材料として用いることも考えられる。
R101、R102、R103およびR104は、各々独立に置換基を表す。好ましくは、炭素数1~6の置換もしくは無置換のアルキル基、炭素数1~6の置換もしくは無置換のアルコキシ基、ハロゲン原子であり、より好ましくは炭素数1~3の無置換のアルキル基、炭素数1~3の無置換のアルコキシ基、フッ素原子、塩素原子であり、さらに好ましくは炭素数1~3の無置換のアルキル基、炭素数1~3の無置換のアルコキシ基である。
L1およびL2で表される連結基は、Qを構成する一般式(16)で表される構造のいずれかの位置に結合することができる。1つのQに対して連結基が2つ以上連結して架橋構造や網目構造を形成していてもよい。
「アルケニル基」は、直鎖状、分枝状、環状のいずれであってもよい。また、直鎖部分と環状部分と分枝部分のうちの2種以上が混在していてもよい。アルケニル基の炭素数は、例えば2以上、4以上とすることができる。また、炭素数は30以下、20以下、10以下、6以下、4以下とすることができる。アルケニル基の具体例として、エテニル基、n-プロペニル基、イソプロペニル基、n-ブテニル基、イソブテニル基、n-ペンテニル基、イソペンテニル基、n-ヘキセニル基、イソヘキセニル基、2-エチルヘキセニル基を挙げることができる。置換基たるアルケニル基は、さらに置換基で置換されていてもよい。
「アリール基」および「ヘテロアリール基」は、単環であってもよいし、2つ以上の環が縮合した縮合環であってもよい。縮合環である場合、縮合している環の数は2~6であることが好ましく、例えば2~4の中から選択することができる。環の具体例として、ベンゼン環、ピリジン環、ピリミジン環、トリアジン環、ナフタレン環、アントラセン環、フェナントレン環、トリフェニレン環、キノリン環、ピラジン環、キノキサリン環、ナフチリジン環を挙げることができ、これらが縮合した環であってもよい。アリール基またはヘテロアリール基の具体例として、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、2-ピリジル基、3-ピリジル基、4-ピリジル基を挙げることができる。アリール基の環骨格構成原子数は6~40であることが好ましく、6~20であることがより好ましく、6~14の範囲内で選択したり、6~10の範囲内で選択したりしてもよい。ヘテロアリール基の環骨格構成原子数は4~40であることが好ましく、5~20であることがより好ましく、5~14の範囲内で選択したり、5~10の範囲内で選択したりしてもよい。「アリーレン基」および「ヘテロアリール基」は、アリール基およびヘテロアリール基の説明における価数を1から2へ読み替えたものとすることができる。
本明細書において「置換基群B」とは、アルキル基(例えば炭素数1~40)、アルコキシ基(例えば炭素数1~40)、アリール基(例えば炭素数6~30)、アリールオキシ基(例えば炭素数6~30)、ヘテロアリール基(例えば環骨格構成原子数5~30)、ヘテロアリールオキシ基(例えば環骨格構成原子数5~30)、ジアリールアミノアミノ基(例えば炭素原子数0~20)からなる群より選択される1つの基または2つ以上を組み合わせた基を意味する。
本明細書において「置換基群C」とは、アルキル基(例えば炭素数1~20)、アリール基(例えば炭素数6~22)、ヘテロアリール基(例えば環骨格構成原子数5~20)、ジアリールアミノ基(例えば炭素原子数12~20)からなる群より選択される1つの基または2つ以上を組み合わせた基を意味する。
本明細書において「置換基群D」とは、アルキル基(例えば炭素数1~20)、アリール基(例えば炭素数6~22)およびヘテロアリール基(例えば環骨格構成原子数5~20)からなる群より選択される1つの基または2つ以上を組み合わせた基を意味する。
本明細書において「置換基群E」とは、アルキル基(例えば炭素数1~20)およびアリール基(例えば炭素数6~22)からなる群より選択される1つの基または2つ以上を組み合わせた基を意味する。
本明細書において「置換基」や「置換もしくは無置換の」と記載されている場合の置換基は、例えば置換基群Aの中から選択してもよいし、置換基群Bの中から選択してもよいし、置換基群Cの中から選択してもよいし、置換基群Dの中から選択してもよいし、置換基群Eの中から選択してもよい。
一般式(28)
一般式(29)
一般式(29)で表される基は、一般式(28)のR1~R7の1つであってもよいし、2つであってもよいし、3つであってもよい。また、少なくとも4つとしてもよく、例えば4つまたは5つとすることができる。本発明の好ましい一態様では、R1~R7のうちの1つが一般式(29)で表される基である。本発明の好ましい一態様では、少なくともR1、R3、R5、R7が一般式(29)で表される基である。本発明の好ましい一態様では、R1、R3、R4、R5、R7だけが一般式(29)で表される基である。本発明の好ましい一態様では、R1、R3、R4、R5、R7が一般式(29)で表される基であり、R2およびR4が水素原子、重水素原子、無置換のアルキル基(例えば炭素数1~10)、または無置換のアリール基(例えば炭素数6~14)である。本発明の一態様では、R1~R7のすべてが一般式(29)で表される基である。
本発明の好ましい一態様では、R1とR7が同一である。本発明の好ましい一態様では、R3とR5が同一である。本発明の好ましい一態様では、R2とR6が同一である。本発明の好ましい一態様では、R1とR7が同一であり、R3とR5が同一であり、なおかつ、R1とR3は互いに異なる。本発明の好ましい一態様では、R1、R3、R5、R7が同一である。本発明の好ましい一態様では、R1とR4とR7が同一であり、R3やR5とは異なる。本発明の好ましい一態様では、R3とR4とR5が同一であり、R1やR7とは異なる。本発明の好ましい一態様では、R1、R3、R5、R7は、いずれもR4とは異なる。
本発明の好ましい一態様では、一般式(29)のR13だけが置換基であり、R11、R12、R14、R15は水素原子である。本発明の好ましい一態様では、一般式(29)のR11だけが置換基であり、R12、R13、R14、R15は水素原子である。本発明の好ましい一態様では、一般式(29)のR11とR13だけが置換基であり、R12、R14、R15は水素原子である。
一般式(28)のR1~R7の中には、一般式(29)のR11~R15がすべて水素原子である基(すなわちフェニル基)が含まれていてもよい。例えば、R2、R4、R6はフェニル基であってもよい。
本発明の一態様では、一般式(28)のR1~R9に存在するハメットのσp値が-0.2未満の置換基の数が3つである化合物を採用したり、あるいは4つである化合物を採用したりすることができる。より好ましくは、一般式(28)のR1~R7に存在するハメットのσp値が-0.2未満の置換基の数が3つ以上であることが好ましく、例えば3つである化合物を採用したり、あるいは4つである化合物を採用したりすることができる。このとき、R8とR9にはハメットのσp値が-0.2未満の置換基が存在しなくてもよい。さらに好ましくは、一般式(28)のR1、R3、R4、R5、R7に存在するハメットのσp値が-0.2未満の置換基の数は3つ以上であることが好ましく、例えば3つである化合物を採用したり、あるいは4つである化合物を採用したりすることができる。このとき、R2、R6、R8、R9にはハメットのσp値が-0.2未満の置換基が存在しなくてもよい。本発明の好ましい一態様では、R1、R4、R7にそれぞれハメットのσp値が-0.2未満の置換基が存在する。
本発明の有機エレクトロルミネッセンス素子の発光層は、条件(a)および(b)を満たす第1有機化合物と第2有機化合物と第3有機化合物を含む。本発明の好ましい態様では、第2有機化合物として化合物T132を用い、第3有機化合物として化合物F101~F128からなる群より選択される化合物を用いる。発光層は、第1有機化合物と第2有機化合物と第3有機化合物以外に、電荷やエネルギーの授受を行う化合物やホウ素以外の金属元素を含まない構成にすることができる。また発光層は、炭素原子、水素原子、重水素原子、窒素原子、ホウ素原子、酸素原子および硫黄原子からなる群より選択される原子からなる化合物だけで構成することもできる。例えば、発光層は、炭素原子、水素原子、重水素原子、窒素原子、ホウ素原子および酸素原子からなる群より選択される原子からなる化合物だけで構成することができる。例えば、発光層は、炭素原子、水素原子、重水素原子、窒素原子、ホウ素原子および硫黄原子からなる群より選択される原子からなる化合物だけで構成することができる。例えば、発光層は、炭素原子、水素原子、重水素原子、窒素原子およびホウ素原子からなる群より選択される原子からなる化合物だけで構成することができる。例えば、発光層は、炭素原子、水素原子、重水素原子、窒素原子、酸素原子および硫黄原子からなる群より選択される原子からなる化合物だけで構成することができる。例えば、発光層は、炭素原子、水素原子、重水素原子および窒素原子からなる群より選択される原子からなる化合物だけで構成することができる。発光層は、炭素原子、水素原子、窒素原子および酸素原子からなる群より選択される原子から構成される第1有機化合物と、炭素原子、水素原子、重水素原子、窒素原子、酸素原子および硫黄原子からなる群より選択される原子から構成される第2有機化合物と、炭素原子、水素原子、重水素原子、窒素原子、ホウ素原子、酸素原子および硫黄原子からなる群より選択される原子から構成される第3有機化合物を含むものであってもよい。また、発光層は、炭素原子、水素原子、窒素原子および酸素原子からなる群より選択される原子から構成される第1有機化合物と、炭素原子、水素原子、重水素原子および窒素原子からなる群より選択される原子から構成される第2有機化合物と、炭素原子、水素原子、重水素原子、窒素原子およびホウ素原子からなる群より選択される原子から構成される第3有機化合物を含むものであってもよい。
発光層は、第1有機化合物、第2有機化合物および第3有機化合物を共蒸着することにより形成してもよいし、第1有機化合物、第2有機化合物および第3有機化合物を溶解させた溶液を用いて塗布法により形成してもよい。共蒸着により発光層を形成するときには、第1有機化合物、第2有機化合物および第3有機化合物のうちの2つ以上をあらかじめ混合してるつぼ等に入れて蒸着源とし、その蒸着源を用いて共蒸着により発光層を形成してもよい。例えば、第1有機化合物および第2有機化合物をあらかじめ混合して1つの蒸着源を作成しておき、その蒸着源と第3有機化合物の蒸着源を用いて共蒸着することにより発光層を形成してもよい。
いくつかの実施形態では、本発明の有機エレクトロルミネッセンス素子は基材により保持され、当該基材は特に限定されず、有機エレクトロルミネッセンス素子で一般的に用いられる、例えばガラス、透明プラスチック、クォーツおよびシリコンにより形成されたいずれかの材料を用いればよい。
いくつかの実施形態では、有機エレクトロルミネッセンス装置の陽極は、金属、合金、導電性化合物またはそれらの組み合わせから製造される。いくつかの実施形態では、前記の金属、合金または導電性化合物は高い仕事関数(4eV以上)を有する。いくつかの実施形態では、前記金属はAuである。いくつかの実施形態では、導電性の透明材料は、CuI、酸化インジウム・スズ(ITO)、SnO2およびZnOから選択される。いくつかの実施形態では、IDIXO(In2O3-ZnO)などの、透明な導電性フィルムを形成できるアモルファス材料を使用する。いくつかの実施形態では、前記陽極は薄膜である。いくつかの実施形態では、前記薄膜は蒸着またはスパッタリングにより作製される。いくつかの実施形態では、前記フィルムはフォトリソグラフィー方法によりパターン化される。いくつかの実施形態では、パターンが高精度である必要がない(例えば約100μm以上)場合、当該パターンは、電極材料への蒸着またはスパッタリングに好適な形状のマスクを用いて形成してもよい。いくつかの実施形態では、有機導電性化合物などのコーティング材料を塗布しうるとき、プリント法やコーティング法などの湿式フィルム形成方法が用いられる。いくつかの実施形態では、放射光が陽極を通過するとき、陽極は10%超の透過度を有し、当該陽極は、単位面積あたり数百オーム以下のシート抵抗を有する。いくつかの実施形態では、陽極の厚みは10~1,000nmである。いくつかの実施形態では、陽極の厚みは10~200nmである。いくつかの実施形態では、陽極の厚みは用いる材料に応じて変動する。
いくつかの実施形態では、前記陰極は、低い仕事関数を有する金属(4eV以下)(電子注入金属と称される)、合金、導電性化合物またはその組み合わせなどの電極材料で作製される。いくつかの実施形態では、前記電極材料は、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム-銅混合物、マグネシウム-銀混合物、マグネシウム-アルミニウム混合物、マグネシウム-インジウム混合物、アルミニウム-酸化アルミニウム(Al2O3)混合物、インジウム、リチウム-アルミニウム混合物および希土類元素から選択される。いくつかの実施形態では、電子注入金属と、電子注入金属より高い仕事関数を有する安定な金属である第2の金属との混合物が用いられる。いくつかの実施形態では、前記混合物は、マグネシウム-銀混合物、マグネシウム-アルミニウム混合物、マグネシウム-インジウム混合物、アルミニウム-酸化アルミニウム(Al2O3)混合物、リチウム-アルミニウム混合物およびアルミニウムから選択される。いくつかの実施形態では、前記混合物は電子注入特性および酸化に対する耐性を向上させる。いくつかの実施形態では、陰極は、蒸着またはスパッタリングにより電極材料を薄膜として形成させることによって製造される。いくつかの実施形態では、前記陰極は単位面積当たり数百オーム以下のシート抵抗を有する。いくつかの実施形態では、前記陰極の厚は10nm~5μmである。いくつかの実施形態では、前記陰極の厚は50~200nmである。いくつかの実施形態では、放射光を透過させるため、有機エレクトロルミネッセンス素子の陽極および陰極のいずれか1つは透明または半透明である。いくつかの実施形態では、透明または半透明のエレクトロルミネッセンス素子は光放射輝度を向上させる。
いくつかの実施形態では、前記陰極を、前記陽極に関して前述した導電性の透明な材料で形成されることにより、透明または半透明の陰極が形成される。いくつかの実施形態では、素子は陽極と陰極とを含むが、いずれも透明または半透明である。
注入層は、電極と有機層との間の層である。いくつかの実施形態では、前記注入層は駆動電圧を減少させ、光放射輝度を増強する。いくつかの実施形態では、前記注入層は、正孔注入層と電子注入層とを含む。前記注入層は、陽極と発光層または正孔輸送層との間、並びに陰極と発光層または電子輸送層との間に配置することがきる。いくつかの実施形態では、注入層が存在する。いくつかの実施形態では、注入層が存在しない。
以下に、正孔注入材料として用いることができる好ましい化合物例を挙げる。
障壁層は、発光層に存在する電荷(電子または正孔)および/または励起子が、発光層の外側に拡散することを阻止できる層である。いくつかの実施形態では、電子障壁層は、発光層と正孔輸送層との間に存在し、電子が発光層を通過して正孔輸送層へ至ることを阻止する。いくつかの実施形態では、正孔障壁層は、発光層と電子輸送層との間に存在し、正孔が発光層を通過して電子輸送層へ至ることを阻止する。いくつかの実施形態では、障壁層は、励起子が発光層の外側に拡散することを阻止する。いくつかの実施形態では、電子障壁層および正孔障壁層は励起子障壁層を構成する。本明細書で用いる用語「電子障壁層」または「励起子障壁層」には、電子障壁層の、および励起子障壁層の機能の両方を有する層が含まれる。
正孔障壁層は、電子輸送層として機能する。いくつかの実施形態では、電子の輸送の間、正孔障壁層は正孔が電子輸送層に至ることを阻止する。いくつかの実施形態では、正孔障壁層は、発光層における電子と正孔との再結合の確率を高める。正孔障壁層に用いる材料は、電子輸送層について前述したのと同じ材料であってもよい。
以下に、正孔障壁層に用いることができる好ましい化合物例を挙げる。
電子障壁層は、正孔を輸送する。いくつかの実施形態では、正孔の輸送の間、電子障壁層は電子が正孔輸送層に至ることを阻止する。いくつかの実施形態では、電子障壁層は、発光層における電子と正孔との再結合の確率を高める。電子障壁層に用いる材料は、正孔輸送層について前述したのと同じ材料であってもよい。
以下に電子障壁材料として用いることができる好ましい化合物の具体例を挙げる。
励起子障壁層は、発光層における正孔と電子との再結合を通じて生じた励起子が電荷輸送層まで拡散することを阻止する。いくつかの実施形態では、励起子障壁層は、発光層における励起子の有効な閉じ込め(confinement)を可能にする。いくつかの実施形態では、装置の光放射効率が向上する。いくつかの実施形態では、励起子障壁層は、陽極の側と陰極の側のいずれかで、およびその両側の発光層に隣接する。いくつかの実施形態では、励起子障壁層が陽極側に存在するとき、当該層は、正孔輸送層と発光層との間に存在し、当該発光層に隣接してもよい。いくつかの実施形態では、励起子障壁層が陰極側に存在するとき、当該層は、発光層と陰極との間に存在し、当該発光層に隣接してもよい。いくつかの実施形態では、正孔注入層、電子障壁層または同様の層は、陽極と、陽極側の発光層に隣接する励起子障壁層との間に存在する。いくつかの実施形態では、正孔注入層、電子障壁層、正孔障壁層または同様の層は、陰極と、陰極側の発光層に隣接する励起子障壁層との間に存在する。いくつかの実施形態では、励起子障壁層は、励起一重項エネルギーと励起三重項エネルギーを含み、その少なくとも1つが、それぞれ、発光材料の励起一重項エネルギーと励起三重項エネルギーより高い。
正孔輸送層は、正孔輸送材料を含む。いくつかの実施形態では、正孔輸送層は単層である。いくつかの実施形態では、正孔輸送層は複数の層を有する。
いくつかの実施形態では、正孔輸送材料は、正孔の注入または輸送特性および電子の障壁特性のうちの1つの特性を有する。いくつかの実施形態では、正孔輸送材料は有機材料である。いくつかの実施形態では、正孔輸送材料は無機材料である。本発明で使用できる公知の正孔輸送材料の例としては、限定されないが、トリアゾール誘導体、オキサジアゾール誘導剤、イミダゾール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリアリールアルカン誘導剤、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリルアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導剤、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリンコポリマーおよび導電性ポリマーオリゴマー(特にチオフェンオリゴマー)、またはその組合せが挙げられる。いくつかの実施形態では、正孔輸送材料はポルフィリン化合物、芳香族三級アミン化合物およびスチリルアミン化合物から選択される。いくつかの実施形態では、正孔輸送材料は芳香族三級アミン化合物である。以下に正孔輸送材料として用いることができる好ましい化合物の具体例を挙げる。
電子輸送層は、電子輸送材料を含む。いくつかの実施形態では、電子輸送層は単層である。いくつかの実施形態では、電子輸送層は複数の層を有する。
いくつかの実施形態では、電子輸送材料は、陰極から注入された電子を発光層に輸送する機能さえあればよい。いくつかの実施形態では、電子輸送材料はまた、正孔障壁材料としても機能する。本発明で使用できる電子輸送層の例としては、限定されないが、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フルオレニリデンメタン誘導体、アントラキノジメタン、アントロン誘導体、オキサジアゾール誘導体、アゾール誘導体、アジン誘導体またはその組合せ、またはそのポリマーが挙げられる。いくつかの実施形態では、電子輸送材料はチアジアゾール誘導剤またはキノキサリン誘導体である。いくつかの実施形態では、電子輸送材料はポリマー材料である。以下に電子輸送材料として用いることができる好ましい化合物の具体例を挙げる。
いくつかの実施形態では、発光層はデバイス中に組み込まれる。例えば、デバイスには、OLEDバルブ、OLEDランプ、テレビ用ディスプレイ、コンピューター用モニター、携帯電話およびタブレットが含まれるが、これらに限定されない。
いくつかの実施形態では、電子デバイスは、陽極、陰極、および当該陽極と当該陰極との間の発光層を含む少なくとも1つの有機層を有するOLEDを含む。
いくつかの実施形態では、本願明細書に記載の構成物は、OLEDまたは光電子デバイスなどの、様々な感光性または光活性化デバイスに組み込まれうる。いくつかの実施形態では、前記構成物はデバイス内の電荷移動またはエネルギー移動の促進に、および/または正孔輸送材料として有用でありうる。前記デバイスとしては、例えば有機発光ダイオード(OLED)、有機集積回線(OIC)、有機電界効果トランジスタ(O-FET)、有機薄膜トランジスタ(O-TFT)、有機発光トランジスタ(O-LET)、有機太陽電池(O-SC)、有機光学検出装置、有機光受容体、有機磁場クエンチ(field-quench)装置(O-FQD)、発光燃料電池(LEC)または有機レーザダイオード(O-レーザー)が挙げられる。
いくつかの実施形態では、電子デバイスは、陽極、陰極、当該陽極と当該陰極との間の発光層を含む少なくとも1つの有機層を含むOLEDを含む。
いくつかの実施形態では、デバイスは色彩の異なるOLEDを含む。いくつかの実施形態では、デバイスはOLEDの組合せを含むアレイを含む。いくつかの実施形態では、OLEDの前記組合せは、3色の組合せ(例えばRGB)である。いくつかの実施形態では、OLEDの前記組合せは、赤色でも緑色でも青色でもない色(例えばオレンジ色および黄緑色)の組合せである。いくつかの実施形態では、OLEDの前記組合せは、2色、4色またはそれ以上の色の組合せである。
いくつかの実施形態では、デバイスは、
取り付け面を有する第1面とそれと反対の第2面とを有し、少なくとも1つの開口部を画定する回路基板と、
前記取り付け面上の少なくとも1つのOLEDであって、当該少なくとも1つのOLEDが、陽極、陰極、および当該陽極と当該陰極との間の発光層を含む少なくとも1つの有機層を含む、発光する構成を有する少なくとも1つのOLEDと、
回路基板用のハウジングと、
前記ハウジングの端部に配置された少なくとも1つのコネクターであって、前記ハウジングおよび前記コネクターが照明設備への取付けに適するパッケージを画定する、少なくとも1つのコネクターと、を備えるOLEDライトである。
いくつかの実施形態では、前記OLEDライトは、複数の方向に光が放射されるように回路基板に取り付けられた複数のOLEDを有する。いくつかの実施形態では、第1方向に発せられた一部の光は偏光されて第2方向に放射される。いくつかの実施形態では、反射器を用いて第1方向に発せられた光を偏光する。
いくつかの実施形態では、本発明の発光層はスクリーンまたはディスプレイにおいて使用できる。いくつかの実施形態では、本発明に係る化合物は、限定されないが真空蒸発、堆積、蒸着または化学蒸着(CVD)などの工程を用いて基材上へ堆積させる。いくつかの実施形態では、前記基材は、独特のアスペクト比のピクセルを提供する2面エッチングにおいて有用なフォトプレート構造である。前記スクリーン(またマスクとも呼ばれる)は、OLEDディスプレイの製造工程で用いられる。対応するアートワークパターンの設計により、垂直方向ではピクセルの間の非常に急な狭いタイバーの、並びに水平方向では大きな広範囲の斜角開口部の配置を可能にする。これにより、TFTバックプレーン上への化学蒸着を最適化しつつ、高解像度ディスプレイに必要とされるピクセルの微細なパターン構成が可能となる。
ピクセルの内部パターニングにより、水平および垂直方向での様々なアスペクト比の三次元ピクセル開口部を構成することが可能となる。更に、ピクセル領域中の画像化された「ストライプ」またはハーフトーン円の使用は、これらの特定のパターンをアンダーカットし基材から除くまで、特定の領域におけるエッチングが保護される。その時、全てのピクセル領域は同様のエッチング速度で処理されるが、その深さはハーフトーンパターンにより変化する。ハーフトーンパターンのサイズおよび間隔を変更することにより、ピクセル内での保護率が様々異なるエッチングが可能となり、急な垂直斜角を形成するのに必要な局在化された深いエッチングが可能となる。
蒸着マスク用の好ましい材料はインバーである。インバーは、製鉄所で長い薄型シート状に冷延された金属合金である。インバーは、ニッケルマスクとしてスピンマンドレル上へ電着することができない。蒸着用マスク内に開口領域を形成するための適切かつ低コストの方法は、湿式化学エッチングによる方法である。
いくつかの実施形態では、スクリーンまたはディスプレイパターンは、基材上のピクセルマトリックスである。いくつかの実施形態では、スクリーンまたはディスプレイパターンは、リソグラフィー(例えばフォトリソグラフィーおよびeビームリソグラフィー)を使用して加工される。いくつかの実施形態では、スクリーンまたはディスプレイパターンは、湿式化学エッチングを使用して加工される。更なる実施形態では、スクリーンまたはディスプレイパターンは、プラズマエッチングを使用して加工される。
OLEDディスプレイは、一般的には、大型のマザーパネルを形成し、次に当該マザーパネルをセルパネル単位で切断することによって製造される。通常は、マザーパネル上の各セルパネルは、ベース基材上に、活性層とソース/ドレイン電極とを有する薄膜トランジスタ(TFT)を形成し、前記TFTに平坦化フィルムを塗布し、ピクセル電極、発光層、対電極およびカプセル化層、を順に経時的に形成し、前記マザーパネルから切断することにより形成される。
OLEDディスプレイは、一般的には、大型のマザーパネルを形成し、次に当該マザーパネルをセルパネル単位で切断することによって製造される。通常は、マザーパネル上の各セルパネルは、ベース基材上に、活性層とソース/ドレイン電極とを有する薄膜トランジスタ(TFT)を形成し、前記TFTに平坦化フィルムを塗布し、ピクセル電極、発光層、対電極およびカプセル化層、を順に経時的に形成し、前記マザーパネルから切断することにより形成される。
マザーパネルのベース基材上に障壁層を形成する工程と、
前記障壁層上に、セルパネル単位で複数のディスプレイユニットを形成する工程と、
前記セルパネルのディスプレイユニットのそれぞれの上にカプセル化層を形成する工程と、
前記セルパネル間のインタフェース部に有機フィルムを塗布する工程と、を含む。
いくつかの実施形態では、障壁層は、例えばSiNxで形成された無機フィルムであり、障壁層の端部はポリイミドまたはアクリルで形成された有機フィルムで被覆される。いくつかの実施形態では、有機フィルムは、マザーパネルがセルパネル単位で軟らかく切断されるように補助する。
いくつかの実施形態では、薄膜トランジスタ(TFT)層は、発光層と、ゲート電極と、ソース/ドレイン電極と、を有する。複数のディスプレイユニットの各々は、薄膜トランジスタ(TFT)層と、TFT層上に形成された平坦化フィルムと、平坦化フィルム上に形成された発光ユニットと、を有してもよく、前記インタフェース部に塗布された有機フィルムは、前記平坦化フィルムの材料と同じ材料で形成され、前記平坦化フィルムの形成と同時に形成される。いくつかの実施形態では、前記発光ユニットは、不動態化層と、その間の平坦化フィルムと、発光ユニットを被覆し保護するカプセル化層と、によりTFT層と連結される。前記製造方法のいくつかの実施形態では、前記有機フィルムは、ディスプレイユニットにもカプセル化層にも連結されない。
いくつかの実施形態では、前記不動態化層は、TFT層の被覆のためにTFT層上に配置された有機フィルムである。いくつかの実施形態では、前記平坦化フィルムは、不動態化層上に形成された有機フィルムである。いくつかの実施形態では、前記平坦化フィルムは、障壁層の端部に形成された有機フィルムと同様、ポリイミドまたはアクリルで形成される。いくつかの実施形態では、OLEDディスプレイの製造の際、前記平坦化フィルムおよび有機フィルムは同時に形成される。いくつかの実施形態では、前記有機フィルムは、障壁層の端部に形成されてもよく、それにより、当該有機フィルムの一部が直接ベース基材と接触し、当該有機フィルムの残りの部分が、障壁層の端部を囲みつつ、障壁層と接触する。
いくつかの実施形態では、TFT層を通じてピクセル電極に電圧が印加されるとき、ピクセル電極と対電極との間に適切な電圧が形成され、それにより有機発光層が光を放射し、それにより画像が形成される。以下、TFT層と発光ユニットとを有する画像形成ユニットを、ディスプレイユニットと称する。
いくつかの実施形態では、ディスプレイユニットを被覆し、外部の水分の浸透を防止するカプセル化層は、有機フィルムと無機フィルムとが交互に積層する薄膜状のカプセル化構造に形成されてもよい。いくつかの実施形態では、前記カプセル化層は、複数の薄膜が積層した薄膜状カプセル化構造を有する。いくつかの実施形態では、インタフェース部に塗布される有機フィルムは、複数のディスプレイユニットの各々と間隔を置いて配置される。いくつかの実施形態では、前記有機フィルムは、一部の有機フィルムが直接ベース基材と接触し、有機フィルムの残りの部分が障壁層の端部を囲む一方で障壁層と接触する態様で形成される。
いくつかの実施形態では、障壁層は、キャリア基材の反対側のベース基材の表面に形成される。一実施形態では、前記障壁層は、各セルパネルのサイズに従いパターン化される。例えば、ベース基材がマザーパネルの全ての表面上に形成される一方で、障壁層が各セルパネルのサイズに従い形成され、それにより、セルパネルの障壁層の間のインタフェース部に溝が形成される。各セルパネルは、前記溝に沿って切断できる。
いくつかの実施形態では、マザーパネルは、セルパネル単位で切断される。いくつかの実施形態では、マザーパネルは、カッターを用いてセルパネル間のインタフェース部に沿って切断される。いくつかの実施形態では、マザーパネルが沿って切断されるインタフェース部の溝が有機フィルムで被覆されているため、切断の間、当該有機フィルムが衝撃を吸収する。いくつかの実施形態では、切断の間、障壁層でひびが生じるのを防止できる。
いくつかの実施形態では、前記方法は製品の不良率を減少させ、その品質を安定させる。
他の態様は、ベース基材上に形成された障壁層と、障壁層上に形成されたディスプレイユニットと、ディスプレイユニット上に形成されたカプセル化層と、障壁層の端部に塗布された有機フィルムと、を有するOLEDディスプレイである。
膜厚50nmのインジウム・スズ酸化物(ITO)からなる陽極が形成された厚さ2mmのガラス基材上に、各薄膜を真空蒸着法にて、真空度1×10-6Paで積層した。まず、ITO上にHATCNを5nmの厚さに蒸着して正孔注入層を形成し、その上にNPDを60nmの厚さに蒸着して正孔輸送層を形成した。続いて、EB1を5nmの厚さに蒸着して電子ブロック層を形成した。次に、表2または表3に示す組成となるように、第1有機化合物と第2有機化合物と第3有機化合物を異なる蒸着源から共蒸着し、40nmの厚さの発光層を形成した。次に、HB1を10nmの厚さに蒸着して正孔ブロック層を形成し、続いて、ET1を30nmの厚さに蒸着して電子輸送層を形成した。さらに、Liqを2nmの厚さに蒸着して電子注入層を形成し、次いでアルミニウム(Al)を100nmの厚さに蒸着することにより陰極を形成した。これによって、有機エレクトロルミネッセンス素子を作製した。ここで作製した素子は、いずれも式(a)を満たし、発光の最大成分が第3有機化合物からの蛍光であることが確認された。
発光層を形成する際、第3有機化合物の蒸着源を用いずに、第1有機化合物と第2有機化合物の共蒸着により、表2に示す組成の発光層を形成したこと以外は、実施例1と同様にして有機エレクトロルミネッセンス素子を作製した。
実施例1~6、比較例1~10で作製した各素子について、発光層の組成と、外部量子効率EQEおよび発光極大波長の測定結果を表2に示す。発光層の組成のうち、実施例1~4、比較例5~7、9、10の第3有機化合物の組成比は、第1有機化合物と第2有機化合物の全重量に対する割合(重量%)で表し、その他の有機化合物の組成比は、発光層を構成する有機化合物の全重量に対する割合(重量%)で表した。また、表2中、「-」は第3有機化合物を添加していないことを表す。
Claims (11)
- 前記発光層における前記第3有機化合物の濃度が0.3重量%より大きい、請求項1に記載の有機エレクトロルミネッセンス素子。
- 前記第3有機化合物は、多重共鳴効果を示すホウ素原子と窒素原子を含み、構成環数が4つ以上である縮合環構造を有する化合物である、請求項1または2に記載の有機エレクトロルミネッセンス素子。
- 前記第3有機化合物は、ホウ素原子と窒素原子を含む複素6員環に、窒素原子を共有するピロール環および2つのベンゼン環が縮合した構造を有する化合物である、請求項1~3のいずれか1項に記載の有機エレクトロルミネッセンス素子。
- 前記第3有機化合物は、下記一般式(16)で表される化合物である、請求項1~4のいずれか1項に記載の有機エレクトロルミネッセンス素子。
一般式(16)
- 前記発光層における前記第2有機化合物の濃度が25重量%以上である、請求項1~5のいずれか1項に記載の有機エレクトロルミネッセンス素子。
- 前記第2有機化合物が、ベンゼン環に1~2つのシアノ基と少なくとも1つのドナー性基が結合した構造を有する、請求項1~6のいずれか1項に記載の有機エレクトロルミネッセンス素子。
- 前記ドナー性基が、カルバゾール-9-イル基を構成するベンゼン環に置換もしくは無置換のベンゾフラン環が縮合した構造を有する、請求項7に記載の有機エレクトロルミネッセンス素子。
- 前記ドナー性基が、置換もしくは無置換の5H-ベンゾフロ[3,2-c]カルバゾール-5-イル基である、請求項8に記載の有機エレクトロルミネッセンス素子。
- 前記ベンゼン環に前記ドナー性基が3つ以上結合している、請求項7~9のいずれか1項に記載の有機エレクトロルミネッセンス素子。
- 前記第1有機化合物、前記第2有機化合物および前記第3有機化合物が下記(a1)を満たしている、請求項1~10のいずれか1項に記載の有機エレクトロルミネッセンス素子。
ELUMO(1)> ELUMO(2)> ELUMO(3) 式(a1)
[ここで、
ELUMO(1)は、前記第1有機化合物のLUMOのエネルギー
ELUMO(2)は、前記第2有機化合物のLUMOのエネルギー
ELUMO(3)は、前記第3有機化合物のLUMOのエネルギー
Sは、前記発光層における前記第3有機化合物の配向値を表す。]
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023529615A JPWO2022270113A1 (ja) | 2021-06-23 | 2022-03-30 | |
US18/573,055 US20240324263A1 (en) | 2021-06-23 | 2022-03-30 | Organic electroluminescence device |
KR1020237044678A KR20240025546A (ko) | 2021-06-23 | 2022-03-30 | 유기 일렉트로 루미네선스 소자 |
EP22828032.7A EP4361158A4 (en) | 2021-06-23 | 2022-03-30 | ORGANIC ELECTROLUMINESCENT ELEMENT |
CN202280044187.8A CN117561806A (zh) | 2021-06-23 | 2022-03-30 | 有机电致发光元件 |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021103702 | 2021-06-23 | ||
JP2021-103702 | 2021-06-23 | ||
JP2021151805 | 2021-09-17 | ||
JP2021-151805 | 2021-09-17 | ||
JP2021-188860 | 2021-11-19 | ||
JP2021188860 | 2021-11-19 | ||
JP2021-204983 | 2021-12-17 | ||
JP2021204983 | 2021-12-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022270113A1 true WO2022270113A1 (ja) | 2022-12-29 |
Family
ID=84545566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/015888 WO2022270113A1 (ja) | 2021-06-23 | 2022-03-30 | 有機エレクトロルミネッセンス素子 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240324263A1 (ja) |
EP (1) | EP4361158A4 (ja) |
JP (1) | JPWO2022270113A1 (ja) |
KR (1) | KR20240025546A (ja) |
WO (1) | WO2022270113A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023171688A1 (ja) * | 2022-03-08 | 2023-09-14 | 出光興産株式会社 | 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器 |
Citations (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013081088A1 (ja) | 2011-12-02 | 2013-06-06 | 国立大学法人九州大学 | 有機発光素子ならびにそれに用いる遅延蛍光材料および化合物 |
WO2013154064A1 (ja) | 2012-04-09 | 2013-10-17 | 国立大学法人九州大学 | 有機発光素子ならびにそれに用いる発光材料および化合物 |
WO2014203840A1 (ja) | 2013-06-21 | 2014-12-24 | 国立大学法人九州大学 | 赤色発光材料、有機発光素子および化合物 |
WO2015002213A1 (ja) | 2013-07-03 | 2015-01-08 | 国立大学法人九州大学 | 発光材料、遅延蛍光体、有機発光素子および化合物 |
WO2015016200A1 (ja) | 2013-08-01 | 2015-02-05 | 国立大学法人九州大学 | 化合物、発光材料および有機発光素子 |
WO2015019725A1 (ja) | 2013-08-09 | 2015-02-12 | 国立大学法人九州大学 | 有機金属錯体、発光材料、遅延蛍光体および有機発光素子 |
WO2015022974A1 (ja) | 2013-08-14 | 2015-02-19 | 国立大学法人九州大学 | 有機エレクトロルミネッセンス素子 |
WO2015072470A1 (ja) | 2013-11-12 | 2015-05-21 | 国立大学法人九州大学 | 発光材料、並びに、これを用いた遅延蛍光体および有機発光素子 |
WO2015072537A1 (ja) | 2013-11-18 | 2015-05-21 | 国立大学法人九州大学 | 発光材料、有機発光素子および化合物 |
WO2015080183A1 (ja) | 2013-11-28 | 2015-06-04 | 国立大学法人九州大学 | 発光材料、有機発光素子および化合物 |
WO2015080182A1 (ja) | 2013-11-28 | 2015-06-04 | 国立大学法人九州大学 | 発光材料、有機発光素子および化合物 |
JP2015129240A (ja) | 2014-01-08 | 2015-07-16 | 国立大学法人九州大学 | 発光材料、有機発光素子および化合物 |
WO2015108049A1 (ja) | 2014-01-17 | 2015-07-23 | 国立大学法人九州大学 | 発光材料、有機発光素子および化合物 |
WO2015129714A1 (ja) | 2014-02-28 | 2015-09-03 | 国立大学法人九州大学 | 発光材料、有機発光素子および化合物 |
WO2015129715A1 (ja) | 2014-02-28 | 2015-09-03 | 国立大学法人九州大学 | 発光材料、有機発光素子および化合物 |
WO2015133501A1 (ja) | 2014-03-07 | 2015-09-11 | 国立大学法人九州大学 | 発光材料、有機発光素子および化合物 |
WO2015137136A1 (ja) | 2014-03-12 | 2015-09-17 | 国立大学法人九州大学 | 発光材料及びそれを用いた有機el素子 |
WO2015137202A1 (ja) | 2014-03-11 | 2015-09-17 | 国立大学法人九州大学 | 有機発光素子、ホスト材料、発光材料および化合物 |
WO2015136880A1 (ja) | 2014-03-11 | 2015-09-17 | 保土谷化学工業株式会社 | アザフルオレン環構造を有するスピロ化合物、発光材料および有機エレクトロルミネッセンス素子 |
WO2015137244A1 (ja) | 2014-03-11 | 2015-09-17 | 国立大学法人九州大学 | 発光材料、有機発光素子および化合物 |
WO2015146541A1 (ja) | 2014-03-27 | 2015-10-01 | 国立大学法人九州大学 | 発光材料、有機発光素子および化合物 |
WO2015159541A1 (ja) | 2014-04-18 | 2015-10-22 | 保土谷化学工業株式会社 | テトラアザトリフェニレン環構造を有する化合物、発光材料および有機エレクトロルミネッセンス素子 |
JP2017119663A (ja) | 2015-12-28 | 2017-07-06 | 株式会社Kyulux | 化合物、発光材料および有機発光素子 |
JP2017119664A (ja) | 2015-12-28 | 2017-07-06 | 株式会社Kyulux | 化合物、発光材料および有機発光素子 |
WO2018212169A1 (ja) * | 2017-05-16 | 2018-11-22 | 学校法人関西学院 | 多環芳香族化合物 |
WO2019111971A1 (ja) | 2017-12-06 | 2019-06-13 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子及び新規化合物 |
WO2020039930A1 (ja) * | 2018-08-23 | 2020-02-27 | 国立大学法人九州大学 | 有機発光素子、組成物および膜 |
WO2020040298A1 (ja) * | 2018-08-23 | 2020-02-27 | 学校法人関西学院 | 有機電界発光素子、表示装置、照明装置、発光層形成用組成物、および化合物 |
JP2020132636A (ja) * | 2019-02-13 | 2020-08-31 | 学校法人関西学院 | 多環芳香族化合物およびその多量体 |
JP2020203875A (ja) * | 2019-06-13 | 2020-12-24 | 学校法人関西学院 | 多環芳香族化合物 |
WO2021015177A1 (ja) | 2019-07-24 | 2021-01-28 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子及び電子機器 |
US20210119145A1 (en) * | 2019-10-18 | 2021-04-22 | Lg Display Co., Ltd. | Organic light emitting diode and organic light emitting device including the same |
WO2021245221A1 (en) * | 2020-06-05 | 2021-12-09 | Cynora Gmbh | Organic molecules for optoelectronic devices |
WO2022025248A1 (ja) * | 2020-07-31 | 2022-02-03 | 株式会社Kyulux | 化合物、発光材料および発光素子 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102495778B1 (ko) * | 2013-06-26 | 2023-02-06 | 이데미쓰 고산 가부시키가이샤 | 화합물, 유기 일렉트로 루미네선스 소자용 재료, 유기 일렉트로 루미네선스 소자, 및 전자 기기 |
CN110872316B (zh) * | 2019-11-29 | 2021-09-17 | 清华大学 | 一种新型化合物及其应用及采用该化合物的有机电致发光器件 |
-
2022
- 2022-03-30 US US18/573,055 patent/US20240324263A1/en active Pending
- 2022-03-30 EP EP22828032.7A patent/EP4361158A4/en active Pending
- 2022-03-30 WO PCT/JP2022/015888 patent/WO2022270113A1/ja active Application Filing
- 2022-03-30 JP JP2023529615A patent/JPWO2022270113A1/ja active Pending
- 2022-03-30 KR KR1020237044678A patent/KR20240025546A/ko unknown
Patent Citations (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013081088A1 (ja) | 2011-12-02 | 2013-06-06 | 国立大学法人九州大学 | 有機発光素子ならびにそれに用いる遅延蛍光材料および化合物 |
WO2013154064A1 (ja) | 2012-04-09 | 2013-10-17 | 国立大学法人九州大学 | 有機発光素子ならびにそれに用いる発光材料および化合物 |
WO2014203840A1 (ja) | 2013-06-21 | 2014-12-24 | 国立大学法人九州大学 | 赤色発光材料、有機発光素子および化合物 |
WO2015002213A1 (ja) | 2013-07-03 | 2015-01-08 | 国立大学法人九州大学 | 発光材料、遅延蛍光体、有機発光素子および化合物 |
WO2015016200A1 (ja) | 2013-08-01 | 2015-02-05 | 国立大学法人九州大学 | 化合物、発光材料および有機発光素子 |
WO2015019725A1 (ja) | 2013-08-09 | 2015-02-12 | 国立大学法人九州大学 | 有機金属錯体、発光材料、遅延蛍光体および有機発光素子 |
JP2015179809A (ja) | 2013-08-14 | 2015-10-08 | 国立大学法人九州大学 | 有機エレクトロルミネッセンス素子 |
WO2015022974A1 (ja) | 2013-08-14 | 2015-02-19 | 国立大学法人九州大学 | 有機エレクトロルミネッセンス素子 |
WO2015072470A1 (ja) | 2013-11-12 | 2015-05-21 | 国立大学法人九州大学 | 発光材料、並びに、これを用いた遅延蛍光体および有機発光素子 |
WO2015072537A1 (ja) | 2013-11-18 | 2015-05-21 | 国立大学法人九州大学 | 発光材料、有機発光素子および化合物 |
WO2015080182A1 (ja) | 2013-11-28 | 2015-06-04 | 国立大学法人九州大学 | 発光材料、有機発光素子および化合物 |
WO2015080183A1 (ja) | 2013-11-28 | 2015-06-04 | 国立大学法人九州大学 | 発光材料、有機発光素子および化合物 |
JP2015129240A (ja) | 2014-01-08 | 2015-07-16 | 国立大学法人九州大学 | 発光材料、有機発光素子および化合物 |
WO2015108049A1 (ja) | 2014-01-17 | 2015-07-23 | 国立大学法人九州大学 | 発光材料、有機発光素子および化合物 |
WO2015129714A1 (ja) | 2014-02-28 | 2015-09-03 | 国立大学法人九州大学 | 発光材料、有機発光素子および化合物 |
WO2015129715A1 (ja) | 2014-02-28 | 2015-09-03 | 国立大学法人九州大学 | 発光材料、有機発光素子および化合物 |
WO2015133501A1 (ja) | 2014-03-07 | 2015-09-11 | 国立大学法人九州大学 | 発光材料、有機発光素子および化合物 |
WO2015137202A1 (ja) | 2014-03-11 | 2015-09-17 | 国立大学法人九州大学 | 有機発光素子、ホスト材料、発光材料および化合物 |
WO2015136880A1 (ja) | 2014-03-11 | 2015-09-17 | 保土谷化学工業株式会社 | アザフルオレン環構造を有するスピロ化合物、発光材料および有機エレクトロルミネッセンス素子 |
WO2015137244A1 (ja) | 2014-03-11 | 2015-09-17 | 国立大学法人九州大学 | 発光材料、有機発光素子および化合物 |
WO2015137136A1 (ja) | 2014-03-12 | 2015-09-17 | 国立大学法人九州大学 | 発光材料及びそれを用いた有機el素子 |
WO2015146541A1 (ja) | 2014-03-27 | 2015-10-01 | 国立大学法人九州大学 | 発光材料、有機発光素子および化合物 |
WO2015159541A1 (ja) | 2014-04-18 | 2015-10-22 | 保土谷化学工業株式会社 | テトラアザトリフェニレン環構造を有する化合物、発光材料および有機エレクトロルミネッセンス素子 |
JP2017119663A (ja) | 2015-12-28 | 2017-07-06 | 株式会社Kyulux | 化合物、発光材料および有機発光素子 |
JP2017119664A (ja) | 2015-12-28 | 2017-07-06 | 株式会社Kyulux | 化合物、発光材料および有機発光素子 |
WO2018212169A1 (ja) * | 2017-05-16 | 2018-11-22 | 学校法人関西学院 | 多環芳香族化合物 |
WO2019111971A1 (ja) | 2017-12-06 | 2019-06-13 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子及び新規化合物 |
WO2020039930A1 (ja) * | 2018-08-23 | 2020-02-27 | 国立大学法人九州大学 | 有機発光素子、組成物および膜 |
WO2020040298A1 (ja) * | 2018-08-23 | 2020-02-27 | 学校法人関西学院 | 有機電界発光素子、表示装置、照明装置、発光層形成用組成物、および化合物 |
JP2020132636A (ja) * | 2019-02-13 | 2020-08-31 | 学校法人関西学院 | 多環芳香族化合物およびその多量体 |
JP2020203875A (ja) * | 2019-06-13 | 2020-12-24 | 学校法人関西学院 | 多環芳香族化合物 |
WO2021015177A1 (ja) | 2019-07-24 | 2021-01-28 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子及び電子機器 |
US20210119145A1 (en) * | 2019-10-18 | 2021-04-22 | Lg Display Co., Ltd. | Organic light emitting diode and organic light emitting device including the same |
WO2021245221A1 (en) * | 2020-06-05 | 2021-12-09 | Cynora Gmbh | Organic molecules for optoelectronic devices |
WO2022025248A1 (ja) * | 2020-07-31 | 2022-02-03 | 株式会社Kyulux | 化合物、発光材料および発光素子 |
Non-Patent Citations (3)
Title |
---|
HANSCH, C., CHEM. REV., vol. 91, 1991, pages 165 - 195 |
SCIENTIFIC REPORTS, vol. 7, 2017, pages 8405 |
See also references of EP4361158A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023171688A1 (ja) * | 2022-03-08 | 2023-09-14 | 出光興産株式会社 | 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器 |
Also Published As
Publication number | Publication date |
---|---|
EP4361158A1 (en) | 2024-05-01 |
EP4361158A4 (en) | 2024-10-16 |
US20240324263A1 (en) | 2024-09-26 |
JPWO2022270113A1 (ja) | 2022-12-29 |
KR20240025546A (ko) | 2024-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2024041803A (ja) | 有機発光素子 | |
WO2023282224A1 (ja) | 有機発光素子およびその設計方法 | |
KR20230035234A (ko) | 유기 발광 소자 | |
WO2022270113A1 (ja) | 有機エレクトロルミネッセンス素子 | |
WO2023167273A1 (ja) | 有機発光素子、遅延蛍光材料の評価方法、遅延蛍光材料の設計方法、有機発光素子の設計方法、およびプログラム | |
WO2022168825A1 (ja) | 有機エレクトロルミネッセンス素子、発光組成物の設計方法およびプログラム | |
JP7152805B1 (ja) | 化合物、組成物、ホスト材料、電子障壁材料および有機発光素子 | |
KR20230035534A (ko) | 유기 발광 소자 | |
WO2022270591A1 (ja) | 化合物、組成物、ホスト材料、電子障壁材料および有機発光素子 | |
WO2022264857A1 (ja) | 有機発光素子およびその製造方法 | |
JP7222159B2 (ja) | 化合物、発光材料および有機発光素子 | |
WO2023276918A1 (ja) | 化合物、電子障壁材料、有機半導体素子および化合物 | |
WO2023167271A1 (ja) | 有機発光素子、遅延蛍光材料の評価方法、遅延蛍光材料の設計方法、有機発光素子の設計方法、およびプログラム | |
JP7461095B1 (ja) | 有機発光素子、その設計方法およびプログラム | |
WO2022249750A1 (ja) | トップエミッション方式の有機エレクトロルミネッセンス素子およびその設計方法 | |
WO2023167272A1 (ja) | 有機発光素子、遅延蛍光材料の評価方法、遅延蛍光材料の設計方法、有機発光素子の設計方法、およびプログラム | |
WO2022244503A1 (ja) | 有機発光素子 | |
WO2022230574A1 (ja) | 電荷輸送材料、組成物および有機発光素子 | |
WO2023120062A1 (ja) | 電子障壁材料および有機半導体素子 | |
WO2022270592A1 (ja) | 電子障壁材料、有機半導体素子および化合物 | |
CN117561806A (zh) | 有机电致发光元件 | |
WO2022270600A1 (ja) | 有機発光素子および膜 | |
WO2022270602A1 (ja) | 有機発光素子および膜 | |
CN117546634A (zh) | 电子阻挡材料、有机半导体元件及化合物 | |
CN117546630A (zh) | 有机发光元件及膜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22828032 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023529615 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18573055 Country of ref document: US Ref document number: 202280044187.8 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022828032 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022828032 Country of ref document: EP Effective date: 20240123 |