[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022270354A1 - 化合物、発光材料および有機発光素子 - Google Patents

化合物、発光材料および有機発光素子 Download PDF

Info

Publication number
WO2022270354A1
WO2022270354A1 PCT/JP2022/023781 JP2022023781W WO2022270354A1 WO 2022270354 A1 WO2022270354 A1 WO 2022270354A1 JP 2022023781 W JP2022023781 W JP 2022023781W WO 2022270354 A1 WO2022270354 A1 WO 2022270354A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
general formula
substituted
atom
Prior art date
Application number
PCT/JP2022/023781
Other languages
English (en)
French (fr)
Inventor
貴弘 柏▲崎▼
ヨン ジュ ジョ
光伯 榎本
香織 藤澤
桃子 森尾
亜衣子 後藤
京 森本
夕佳 児玉
幸誠 金原
清昌 末石
寛晃 小澤
Original Assignee
株式会社Kyulux
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kyulux filed Critical 株式会社Kyulux
Priority to EP22828271.1A priority Critical patent/EP4361160A1/en
Priority to JP2023530341A priority patent/JPWO2022270354A1/ja
Priority to KR1020237044672A priority patent/KR20240023051A/ko
Priority to CN202280043652.6A priority patent/CN117651705A/zh
Priority to TW111123189A priority patent/TW202317551A/zh
Priority to TW111123192A priority patent/TW202313931A/zh
Priority to PCT/JP2022/025150 priority patent/WO2022270591A1/ja
Priority to CN202280043806.1A priority patent/CN117545753A/zh
Priority to JP2023530125A priority patent/JPWO2022270592A1/ja
Priority to PCT/JP2022/025151 priority patent/WO2022270592A1/ja
Priority to JP2023530124A priority patent/JPWO2022270591A1/ja
Priority to CN202280044336.0A priority patent/CN117546634A/zh
Publication of WO2022270354A1 publication Critical patent/WO2022270354A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • H10K50/121OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants for assisting energy transfer, e.g. sensitization
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons

Definitions

  • the present invention relates to compounds having good luminescence properties.
  • the present invention also relates to a light-emitting material and an organic light-emitting device using the compound.
  • Non-Patent Document 1 compounds exhibiting multiple resonance effects such as 5,9-Diphenyl-5H,9H-[1,4]benzazaborino[2,3,4-kl]phenazaborine (DABNA-1) It is described that heat-activated delayed fluorescence due to the reverse intersystem crossing process is exhibited by using , and light emission with a narrow half-value width and high color purity is realized. Such luminescence is useful in display-oriented applications because high luminous efficiency can be achieved.
  • DABNA-1 5,9-Diphenyl-5H,9H-[1,4]benzazaborino[2,3,4-kl]phenazaborine
  • Non-Patent Documents 1 and 2 describe that by modifying DABNA-1, energy levels such as the highest transcribed molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) are adjusted, and also contribute to light emission. It is described that the fluorescence emission process and the reverse intersystem crossover process are promoted to improve the electroluminescence quantum efficiency.
  • HOMO highest transcribed molecular orbital
  • LUMO lowest unoccupied molecular orbital
  • the present inventors found that among compounds exhibiting a multiple resonance effect, those having a specific structure have excellent luminescence properties.
  • the present invention has been proposed based on such findings, and has the following configurations.
  • a compound represented by the following general formula (1) [1] A compound represented by the following general formula (1).
  • General formula (1) [In the general formula (1), one of X 1 and X 2 is a nitrogen atom, and the other is a boron atom.
  • R 1 to R 26 , A 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 4 and R 5 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 8 and R 9 , R 9 and R10 , R10 and R11 , R11 and R12 , R13 and R14 , R14 and R15 , R15 and R16 , R16 and R17 , R17 and R18 , R18 and R 19 , R 19 and R 20 , R 20 and R 21 , R 21 and R 22 , R 22 and R 23 , R 23 and R 24 , R 24 and R 25 , R 25 and R 26 are bonded together to form a cyclic It may form a structure.
  • X 1 is a nitrogen atom
  • R 7 and R 8 and R 21 and R 22 are bonded through the nitrogen atom to form a 6-membered ring
  • R 17 and R 18 are bonded together to form a single bond at least one of R 1 to R 6 is a substituted or unsubstituted aryl group, or R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 4 and R 5 , R5 and R6 are bonded to each other to form an aromatic ring or heteroaromatic ring.
  • X 1 is a boron atom
  • X 2 is a nitrogen atom
  • R 7 and R 8 and R 17 and R 18 are bonded to each other to form a cyclic structure containing a boron atom
  • the cyclic structure is It is a 5- to 7-membered ring, and in the case of a 6-membered ring, R 7 and R 8 , R 17 and R 18 are bonded to each other to form -B(R 32 )-, -CO-, -CS- or -N( R 27 )—.
  • R27 represents a hydrogen atom, a deuterium atom or a substituent.
  • R 8 and R 12 are alkyl groups with 2 or more carbon atoms, preferably alkyl groups with 3 or more carbon atoms, more preferably alkyl groups with 3 to 8 carbon atoms, and still more preferably 3 or 4 alkyl groups.
  • Ar 1 to Ar 4 each independently represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group.
  • R 41 and R 42 each independently represent a substituted or unsubstituted alkyl group.
  • n1 and n3 each independently represent an integer of 0 to 4
  • n2 and n4 each independently represent an integer of 0 to 3
  • a 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent. At least one of n1 to n4 is 1 or more, and m1 and m2 are each independently preferably an integer of 1 to 5.
  • a 1 and A 2 are each independently a group having a Hammett's ⁇ p value of greater than 0.2.
  • [16] A membrane containing the compound according to any one of [1] to [14].
  • An organic semiconductor device comprising the compound according to any one of [1] to [14].
  • [18] An organic light emitting device comprising the compound according to any one of [1] to [14].
  • the organic light-emitting device according to [18] which has a light-emitting layer containing a host material, a delayed fluorescence material, and the compound, and the compound emits the largest amount of light among the materials contained in the device. .
  • the compound of the present invention exhibits excellent luminescence properties.
  • the compound of the present invention is useful as a material for organic light-emitting devices.
  • substituted means an atom or group of atoms other than a hydrogen atom and a deuterium atom.
  • substituted or unsubstituted means that hydrogen atoms may be replaced with deuterium atoms or substituents.
  • one of X 1 and X 2 is a nitrogen atom and the other is a boron atom.
  • X 1 is a nitrogen atom and X 2 is a boron atom.
  • R 17 and R 18 combine with each other to form a single bond to form a pyrrole ring.
  • X 1 is a boron atom and X 2 is a nitrogen atom.
  • R 21 and R 22 combine with each other to form a single bond to form a pyrrole ring.
  • R 1 to R 26 , A 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 4 and R 5 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 8 and R 9 , R 9 and R10 , R10 and R11 , R11 and R12 , R13 and R14 , R14 and R15 , R15 and R16 , R16 and R17 , R17 and R18 , R18 and R 19 , R 19 and R 20 , R 20 and R 21 , R 21 and R 22 , R 22 and R 23 , R 23 and R 24 , R 24 and R 25 , R 25 and R 26 are bonded together to form a cyclic It may form a structure.
  • the cyclic structure formed by combining R 7 and R 8 contains a boron atom and 4 carbon atoms as ring skeleton-constituting atoms.
  • the cyclic structure formed by combining R 17 and R 18 contains a boron atom and 4 carbon atoms as ring skeleton constituent atoms when X 1 is a boron atom.
  • X 1 is a nitrogen atom
  • the cyclic structure is limited to pyrrole rings.
  • the cyclic structure formed by combining R 21 and R 22 contains a boron atom and 4 carbon atoms as ring skeleton constituent atoms when X 2 is a boron atom.
  • the cyclic structure is limited to pyrrole rings.
  • R 7 and R 8 , R 17 and R 18 , R 21 and R 22 are bonded together to form a cyclic structure containing a boron atom, the cyclic structure is preferably a 5- to 7-membered ring.
  • a 6-membered ring is more preferred, and a 6-membered ring is even more preferred.
  • R 7 and R 8 , R 17 and R 18 , R 21 and R 22 are bonded to each other, they are bonded to form a single bond, —O—, —S—, —N(R 27 )—, —C( R 28 )(R 29 )—, —Si(R 30 )(R 31 )—, —B(R 32 )—, —CO—, —CS—, are preferably formed, and —O—, —S It is more preferred to form - or -N(R 27 )-, and more preferred to form -N(R 27 )-.
  • R 27 to R 32 each independently represent a hydrogen atom, a deuterium atom or a substituent.
  • R 27 is particularly preferably a substituted or unsubstituted aryl group.
  • R 27 to R 32 in the ring formed by combining R 17 and R 18 may combine with at least one of R 16 and R 19 to further form a cyclic structure
  • R 21 and R R 27 to R 32 in the ring formed by combining 22 with each other may further combine with at least one of R 20 and R 23 to form a cyclic structure.
  • only one pair of R 7 and R 8 , R 17 and R 18 , R 21 and R 22 are bound together.
  • only two pairs of R 7 and R 8 , R 17 and R 18 , R 21 and R 22 are attached to each other.
  • all of R 7 and R 8 , R 17 and R 18 , R 21 and R 22 are bonded together.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 4 and R 5 , R 5 and R 6 , R 6 and R 7 , R 8 and R 9 , R 9 and R 10 , R 10 and R 11 , R 11 and R 12 , R 13 and R 14 , R 14 and R 15 , R 15 and R 16 , R 16 and R 17 , R 18 and R 19 , R 19 and R 20 , R 20 and R 21 , R 22 and R 23 , R 23 and R 24 , R 24 and R 25 , and R 25 and R 26 may be bonded to each other to form a cyclic structure, which may be an aromatic ring or an aliphatic ring, It may also contain a heteroatom, and may be condensed with one or more other rings.
  • heteroatoms referred to here are preferably those selected from the group consisting of nitrogen atoms, oxygen atoms and sulfur atoms.
  • cyclic structures formed include benzene ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, pyrrole ring, imidazole ring, pyrazole ring, triazole ring, imidazoline ring, furan ring, thiophene ring, oxazole ring, and isoxazole ring.
  • the cyclic structure is a substituted or unsubstituted benzene ring (the ring may be further condensed), for example, a benzene ring optionally substituted with an alkyl group or an aryl group. .
  • the cyclic structure is a substituted or unsubstituted heteroaromatic ring, preferably a furan ring of benzofuran or a thiophene ring of benzothiophene.
  • any one of 1 to 4 can be selected, and 1 can be selected, 2 can be selected, 3 or 4 can be selected.
  • a pair selected from R 1 and R 2 , R 2 and R 3 , R 3 and R 4 are bonded together to form a cyclic structure.
  • R 5 and R 6 are linked together to form a cyclic structure.
  • a pair selected from R 9 and R 10 , R 10 and R 11 , and R 11 and R 12 are bonded together to form a cyclic structure.
  • both R 1 and R 2 and R 13 and R 14 are bonded together to form a cyclic structure.
  • a pair selected from R 1 and R 2 , R 2 and R 3 , R 3 and R 4 are bonded to each other to form a cyclic structure, and R 5 and R 6 are bonded to each other to form a ring structure.
  • both R 5 and R 6 and R 19 and R 20 are bonded together to form a cyclic structure.
  • R 1 to R 26 that are not bonded to adjacent R n are hydrogen atoms, deuterium atoms or substituents.
  • substituents a group selected from any of Substituent Groups A to E described later can be employed.
  • Preferred substituents that R 1 to R 26 can take are a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, for example, the substituent is a substituted or unsubstituted aryl groups and, for example, substituents may be substituted or unsubstituted alkyl groups.
  • the substituents of the alkyl group, aryl group, and heteroaryl group referred to herein can also adopt a group selected from any one of the substituent groups A to E, but preferably an alkyl group, an aryl group, and a heteroaryl group. It is one or more groups selected from the group consisting of, more preferably a group of substituent group E, which may be unsubstituted.
  • at least one of R 1 to R 6 is a substituent, preferably a group of substituents E.
  • at least one of R 2 to R 6 is a substituent, preferably a group of substituent group E.
  • At least one of R 5 and R 6 is a substituent, preferably a group of substituent group E.
  • at least one of R 3 and R 6 is a substituent, more preferably both are substituents, preferably a group of substituents E.
  • when X 1 is a nitrogen atom at least one of R 15 and R 20 is a substituent, more preferably both are substituents, preferably a group of substituent group E be. At this time, R17 and R18 are bonded to each other to form a single bond.
  • R19 and R24 are substituents, more preferably both are substituents, preferably a group of substituent group E be.
  • R 21 and R 22 are bonded together to form a single bond.
  • at least one of R 8 and R 12 is a substituent, preferably both are substituents.
  • R 8 , R 10 and R 12 are substituents. Unsubstituted alkyl groups are preferred as substituents for R 8 to R 12 .
  • R 8 and R 12 are alkyl groups with 2 or more carbon atoms (preferably alkyl groups with 3 or more carbon atoms, more preferably alkyl groups with 3 to 8 carbon atoms, still more preferably alkyl groups with 3 or 4 carbon atoms). In some cases, the orientation becomes high when formed into a film, which is preferable.
  • R 8 and R 12 are substituents (preferably an alkyl group, more preferably an alkyl group having 2 or more carbon atoms, more preferably an alkyl group having 3 or more carbon atoms, still more preferably an alkyl group having 3 to 8 carbon atoms.
  • R 1 to R 6 is a substituent (preferably a group of substituent group E).
  • R 13 and R 17 are substituents when X 1 is a boron atom.
  • R 13 , R 15 and R 17 are substituents when X 1 is a boron atom.
  • the substituents of R 13 to R 17 are preferably unsubstituted alkyl groups.
  • X2 is a boron atom
  • at least one of R22 and R26 is a substituent, preferably both are substituents.
  • R 22 , R 24 and R 26 are substituents when X 2 is a boron atom.
  • the substituents of R 22 to R 26 are preferably unsubstituted alkyl groups.
  • Specific examples of the boron atom represented by B in the general formula (1) and the groups bonded to the boron atom represented by X 1 or X 2 are shown below.
  • the groups bonded to boron atoms that can be employed in the present invention are not limitedly interpreted by the following specific examples.
  • CH3 is omitted from the methyl group. * represents a binding position.
  • R 1 to R 26 in formula (1) Specific examples of R 1 to R 26 in formula (1) are given below.
  • R 1 to R 7 and R 13 to R 21 when X 1 is a nitrogen atom, and R 18 to R 26 when X 2 is a nitrogen atom are preferably Z1 to Z9, and R 8 to R 12 and X 1 Z1 to Z7 are preferred as R 22 to R 26 when is a nitrogen atom, and R 13 to R 17 when X 2 is a nitrogen atom.
  • the groups bonded to boron atoms that can be employed in the present invention are not limitedly interpreted by the following specific examples.
  • D represents a deuterium atom. * represents a binding position.
  • a 1 and A 2 are hydrogen atoms, deuterium atoms or substituents.
  • substituent a group selected from any of Substituent Groups A to E described later can be employed.
  • a 1 and A 2 are each independently a hydrogen atom or a deuterium atom.
  • a 1 and A 2 are hydrogen atoms.
  • a 1 and A 2 are deuterium atoms.
  • One of A 1 and A 2 may be a substituent.
  • a 1 and A 2 may each independently be a substituent.
  • a preferred substituent that A 1 and A 2 can take is an acceptor group.
  • the acceptor group is a group having a positive Hammett ⁇ p value.
  • k 0 is the rate constant of the benzene derivative without a substituent
  • k is the rate constant of the benzene derivative substituted with a substituent
  • K 0 is the equilibrium constant of the benzene derivative without the substituent
  • K is the substituent
  • the equilibrium constant of the benzene derivative substituted with ⁇ represents the reaction constant determined by the type and conditions of the reaction.
  • the acceptor group that A 1 and A 2 can take is more preferably a group having a Hammett's ⁇ p value of greater than 0.2.
  • Groups having a Hammett's ⁇ p value of greater than 0.2 include a cyano group, an aryl group substituted with at least a cyano group, a group containing a fluorine atom, and a substituted or unsubstituted heteroaryl group containing a nitrogen atom as a ring skeleton-constituting atom. can be mentioned.
  • the aryl group substituted with at least a cyano group here may be substituted with a substituent other than a cyano group (for example, an alkyl group or an aryl group), but it is an aryl group substituted only with a cyano group.
  • the aryl group substituted with at least a cyano group is preferably a phenyl group substituted with at least a cyano group.
  • the number of substituents of the cyano group is preferably 1 or 2, and may be 1 or 2, for example.
  • the group containing a fluorine atom includes a fluorine atom, a fluorinated alkyl group, and an aryl group substituted with at least a fluorine atom or a fluorinated alkyl group.
  • the fluorinated alkyl group is preferably a perfluoroalkyl group and preferably has 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms.
  • a heteroaryl group containing a nitrogen atom as a ring skeleton-constituting atom may be a monocyclic ring or a condensed ring in which two or more rings are condensed.
  • the number of rings after condensed is preferably 2 to 6, and can be selected from 2 to 4, or can be 2, for example.
  • Specific examples of the ring constituting the heteroaryl group include pyridine ring, pyrimidine ring, pyrazine ring, triazine ring, quinoline ring, isoquinoline ring, quinazoline ring, quinoxaline ring, naphthyridine ring other than quinazoline ring and quinoxaline ring. .
  • the ring constituting the heteroaryl group may be substituted with a deuterium atom or a substituent, and the substituent is, for example, one or two groups selected from the group consisting of alkyl groups, aryl groups and heteroaryl groups Groups formed by combining two or more groups can be mentioned.
  • a cyano group is particularly preferred as an acceptor group that A 1 and A 2 can take.
  • at least one of A 1 and A 2 is an acceptor group.
  • only one of A 1 and A 2 is an acceptor group.
  • both A 1 and A 2 are the same acceptor group.
  • a 1 and A 2 are different acceptor groups.
  • a 1 and A 2 are cyano groups.
  • a 1 and A 2 are halogen atoms, for example bromine atoms.
  • acceptor group that can be employed in the present invention
  • the acceptor group that can be used in the present invention is not limitedly interpreted by the following specific examples.
  • the methyl group omits the indication of CH3 . Therefore, for example, A15 indicates a group containing two 4-methylphenyl groups.
  • "D" represents a deuterium atom. * represents a binding position.
  • X 1 is a nitrogen atom
  • R 7 and R 8 are bonded via a nitrogen atom to form a 6-membered ring
  • R 21 and R 22 are bonded via a nitrogen atom to form a 6-membered ring.
  • R 17 and R 18 are joined together to form a single bond
  • at least one of R 1 to R 6 is a substituted or unsubstituted aryl group, or R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 4 and R 5 , R 5 and R 6 are bonded to each other to form an aromatic ring (optionally condensed substituted or unsubstituted benzene ring) or heteroaromatic It forms a ring (preferably a furan ring of optionally condensed substituted or unsubstituted benzofuran, or a thiophene ring of optionally condensed substituted or unsubstituted benzothiophene).
  • X 1 is a boron atom
  • X 2 is a nitrogen atom
  • R 7 and R 8 and R 17 and R 18 are bonded to each other to form a cyclic structure containing a boron atom
  • the cyclic structure is It is a 5- to 7-membered ring, and in the case of a 6-membered ring, R 7 and R 8 , R 17 and R 18 are bonded to each other to form -B(R 32 )-, -CO-, -CS- or -N( R 27 )—.
  • R27 preferably represents a hydrogen atom, a deuterium atom or a substituent.
  • Each hydrogen atom in skeletons (1a) and (1b) may be substituted with a deuterium atom or a substituent. In addition, it may be substituted with a linking group together with adjacent hydrogen atoms to form a cyclic structure.
  • R 1 to R 26 , A 1 and A 2 in general formula (1) compounds in which phenyl groups bonded to boron atoms in skeletons (1a) and (1b) are both substituted with mesityl groups, 2,6-diisopropylphenyl groups or 2,4,6-triisopropylphenyl groups; can be exemplified.
  • each hydrogen atom in skeletons (1a) and (1b) is not substituted with a linking group together with an adjacent hydrogen atom to form a cyclic structure.
  • Ar 1 to Ar 4 each independently represent a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, or a substituted or unsubstituted alkyl group, for example, a substituted or unsubstituted An aryl group can be preferably chosen.
  • R 41 and R 42 each independently represent a substituted or unsubstituted alkyl group.
  • n1 and m2 each independently represent an integer of 0 to 5; n1 and n3 each independently represent an integer of 0 to 4; n2 and n4 each independently represent an integer of 0 to 3; A 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent. At least one of n1 to n4 is 1 or more, and m1 and m2 are each independently preferably an integer of 1 to 5. In one aspect of the present invention, each of n1-n4 independently represents an integer of 0-2.
  • n1 to n4 is 1 or more, preferably at least one of n1 and n2 is 1 or more, and at least one of n3 and n4 is 1 or more.
  • n1 and n3 are each independently 1 or 2, and n2 and n4 are 0.
  • n2 and n4 are each independently 1 or 2
  • n1 and n3 are 0.
  • n1-n4 are each independently 1 or 2.
  • n1 and n3 are equal and n2 and n4 are equal.
  • n1 and n3 are 1 and n2 and n4 are 0. In one aspect of the invention, n1 and n3 are 0 and n2 and n4 are 1. In one aspect of the present invention, n1 to n4 are all 1.
  • the bonding positions of Ar 1 to Ar 4 may be at least one of the 3- and 6-positions of the carbazole ring, at least one of the 2- and 7-positions, or at least one of the 1- and 8-positions. It may be one or at least one of the 4th and 5th positions.
  • the bonding positions of Ar 1 to Ar 4 may be both 3 and 6 positions, both 2 and 7 positions, or both 1 and 8 positions of the carbazole ring. and may be both 4th and 5th.
  • positions 3 and 6 can be preferably selected, or both positions 3 and 6 can be more preferably selected.
  • Ar 1 to Ar 4 are all the same group.
  • Ar 1 to Ar 4 are each independently a substituted or unsubstituted aryl group, more preferably a substituted or unsubstituted phenyl group or naphthyl group, still more preferably a substituted or unsubstituted is the phenyl group of Examples of the substituent include a group selected from any one of Substituent Groups A to E described below, but an unsubstituted phenyl group is also preferred.
  • Ar 1 to Ar 4 include a phenyl group, an o-biphenyl group, an m-biphenyl group, a p-biphenyl group and a terphenyl group.
  • m1 and m2 are each independently 0.
  • m1 and m2 are each independently an integer from 1 to 5.
  • m1 and m2 are equal.
  • R 41 and R 42 are alkyl groups having 1 to 6 carbon atoms, and can be selected, for example, from alkyl groups having 1 to 3 carbon atoms or methyl groups. .
  • substitution positions of the alkyl group are 2-position only, 3-position only, 4-position only, 3-position and 5-position, 2-position and 4-position, 2-position and 6-position with the carbon atom bonded to the boron atom as 1-position. , 2-position, 4-position and 6-position, etc., preferably at least 2-position, more preferably at least 2-position and 6-position.
  • a 1 and A 2 reference can be made to the corresponding description of general formula (1).
  • Ar 5 to Ar 8 each independently represent a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, or a substituted or unsubstituted alkyl group, for example, a substituted or unsubstituted An aryl group can be preferably chosen.
  • R43 and R44 each independently represent a substituted or unsubstituted alkyl group.
  • n5 and n8 each independently represent an integer of 0 to 3; n5 and n7 each independently represent an integer of 0 to 4; A 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
  • m2, n1 to n4, A 1 and A 2 can be referred to.
  • At least one of n5 to n8 is 1 or more, and m3 and m4 are each independently preferably an integer of 1 to 5.
  • the compound of the present invention has, for example, the following skeleton (2a) when X 1 is a nitrogen atom, and X When 2 is a nitrogen atom, it has, for example, the following skeleton (2b). Ph is a phenyl group. Skeleton (2a)
  • Each hydrogen atom in skeletons (2a) and (2b) may be substituted with a deuterium atom or a substituent. In addition, it may be substituted with a linking group together with adjacent hydrogen atoms to form a cyclic structure.
  • R 1 to R 26 , A 1 and A 2 in general formula (1) At least one hydrogen atom of the benzene ring constituting the carbazole partial structure contained in skeleton (2a) is substituted with a substituted or unsubstituted aryl group.
  • each hydrogen atom in skeletons (2a) and (2b) is not substituted with a linking group together with an adjacent hydrogen atom to form a cyclic structure.
  • Ar 9 to Ar 14 each independently represent a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, or a substituted or unsubstituted alkyl group, for example, a substituted or unsubstituted
  • An aryl group can be preferably chosen.
  • n9, n11, n12 and n14 each independently represent an integer of 0 to 4;
  • n10 and n13 each independently represent an integer of 0 to 2; However, at least one of n9, n10, n12, and n13 is 1 or more.
  • a 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
  • each of n9-n14 independently represents an integer of 0-2. In one aspect of the present invention, at least one of n9 to n14 is 1 or more.
  • n9 and n12 can be 1 or more, and n10 and n13 can be 1 or more. In a preferred embodiment of the present invention, at least one of n9, n10, n12 and n13 is 1 or more.
  • n9 and n12 are each independently 1 or 2
  • n10, n11, n13 and n14 are 0.
  • n10 and n13 are each independently 1 or 2
  • n9, n11, n12 and n14 are 0.
  • n9 and n12 are each independently 1 or 2
  • n10 and n13 are each independently 1 or 2
  • n11 and n14 are 0.
  • n9-n14 are all 1.
  • the binding positions of Ar 9 to Ar 14 can be the 3,6 positions of the carbazole ring or other positions.
  • Ar 9 to Ar 14 are all the same group.
  • Ar 15 to Ar 20 each independently represent a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, or a substituted or unsubstituted alkyl group, for example, a substituted or unsubstituted
  • An aryl group can be preferably chosen.
  • n15, n17, n18 and n20 each independently represent an integer of 0 to 4;
  • n16 and n19 each independently represent an integer of 0 to 2;
  • a 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
  • the compound of the present invention has, for example, the following skeleton (3a) when X 1 is a nitrogen atom, and X 2 is a nitrogen atom, it has, for example, the following skeleton (3b).
  • Each hydrogen atom in skeletons (3a) and (3b) may be substituted with a deuterium atom or a substituent. In addition, it may be substituted with a linking group together with adjacent hydrogen atoms to form a cyclic structure.
  • R 1 to R 26 , A 1 and A 2 in general formula (1) each hydrogen atom in skeletons (3a) and (3b) is not substituted with a linking group together with an adjacent hydrogen atom to form a cyclic structure.
  • Ar 21 to Ar 26 each independently represent a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, or a substituted or unsubstituted alkyl group, for example, a substituted or unsubstituted
  • An aryl group can be preferably chosen.
  • n21, n23, n24 and n26 each independently represent an integer of 0 to 4; n22 and n25 each independently represent an integer of 0 to 2;
  • a 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
  • Ar 9 to Ar 14 , n9 to n14, A 1 and A 2 in formula (2a) can be referred to.
  • Ar 27 to Ar 32 each independently represent a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, or a substituted or unsubstituted alkyl group, for example, a substituted or unsubstituted
  • An aryl group can be preferably chosen.
  • n27, n29, n30 and n32 each independently represent an integer of 0 to 4;
  • n28 and n31 each independently represent an integer of 0 to 2;
  • a 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
  • a compound is selected in which two benzene rings constituting the carbazole partial structure present in general formula (1) are condensed with another ring.
  • a compound in which a benfuran ring is condensed, a compound in which a benzothiophene ring is condensed, and a compound in which a benzene ring is condensed can be particularly preferably selected. Compounds in which these rings are condensed will be described below with specific examples.
  • Preferred examples include compounds in which a benzofuran ring or a benzothiophene ring is condensed with a benzene ring to which a boron atom is not directly bonded, of the two benzene rings constituting the carbazole partial structure present in general formula (1).
  • Examples of such compounds include compounds having the following skeleton (4a) and compounds having the following skeleton (4b).
  • Y 1 to Y 4 each independently represent two hydrogen atoms, a single bond or N(R 27 ).
  • the two hydrogen atoms here indicate a state in which two benzene rings bonded to the boron atom are not connected to each other.
  • Y 1 and Y 2 are preferably the same, and Y 3 and Y 4 are preferably the same, but they may be different.
  • Y 1 -Y 4 are single bonds.
  • Y 1 -Y 4 are N(R 27 ).
  • R27 represents a hydrogen atom, a deuterium atom or a substituent.
  • Z 1 to Z 4 each independently represent an oxygen atom or a sulfur atom.
  • Z 1 and Z 2 are preferably the same, and Z 3 and Z 4 are preferably the same, but they may be different.
  • Z 1 -Z 4 are oxygen atoms.
  • the furan ring of benzofuran is fused to the benzene ring that constitutes the carbazole partial structure in (4a) and (4b).
  • the orientation of the condensed furan ring is not restricted.
  • Z 1 -Z 4 are sulfur atoms.
  • the thiophene ring of benzothiophene is fused to the benzene ring that constitutes the carbazole partial structure in (4a) and (4b).
  • the orientation of the fused thiophene rings is not restricted.
  • Each hydrogen atom in skeletons (4a) and (4b) may be substituted with a deuterium atom or a substituent. In addition, it may be substituted with a linking group together with adjacent hydrogen atoms to form a cyclic structure.
  • R 1 to R 26 , A 1 and A 2 in general formula (1) each hydrogen atom in skeletons (4a) and (4b) is not substituted with a linking group together with an adjacent hydrogen atom to form a cyclic structure.
  • Ar 51 and Ar 52 each independently represent a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, or a substituted or unsubstituted alkyl group, such as a substituted or unsubstituted can be preferably selected.
  • R51 and R52 each independently represent a substituted or unsubstituted alkyl group.
  • m51 and m52 each independently represent an integer of 0 to 4; n51 and n52 each independently represent an integer of 0 to 2; Y 1 to Y 4 each independently represent two hydrogen atoms, a single bond or N(R 27 ).
  • R27 represents a hydrogen atom, a deuterium atom or a substituent.
  • Z 1 to Z 4 each independently represent an oxygen atom or a sulfur atom.
  • a 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
  • n51 and n52 are the same number.
  • n51 and n52 may be 0, and n51 and n52 may be 1.
  • m51 and m52 are the same number.
  • m51 and m52 are integers from 0-3.
  • m51 and m52 may be 0, m51 and m52 may be 1, m51 and m52 may be 2, and m51 and m52 may be 3.
  • Preferred groups for Ar 51 , Ar 52 , R 51 , R 52 , A 1 and A 2 are the corresponding descriptions for Ar 1 to Ar 4 , R 41 to R 42 , A 1 and A 2 in general formula (1a) can be referred to.
  • Ar 53 and Ar 54 each independently represent a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, or a substituted or unsubstituted alkyl group, for example, a substituted or unsubstituted An aryl group can be preferably chosen.
  • R53 and R54 each independently represent a substituted or unsubstituted alkyl group.
  • m53 and m54 each independently represent an integer of 0 to 4; n53 and n54 each independently represents an integer of 0 to 2; Y 3 and Y 4 each independently represent two hydrogen atoms, a single bond or N(R 27 ).
  • R27 represents a hydrogen atom, a deuterium atom or a substituent.
  • Z3 and Z4 each independently represent an oxygen atom or a sulfur atom.
  • a 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
  • Ar 53 , Ar 54 , R 53 , R 54 , m53, m54, n53, n54, A 1 and A 2 refer to Ar 51 , Ar 52 , R 51 , R 52 , m51, The descriptions of m52, n51, n52, A 1 and A 2 can be referred to.
  • the compound represented by the general formula (4b) is not limited to the following specific examples.
  • compounds in which all Xs in the molecule are oxygen atoms and compounds in which all Xs in the molecule are sulfur atoms are disclosed, respectively.
  • a compound in which a part of X in the molecule is an oxygen atom and the rest is a sulfur atom can also be used.
  • a compound in which a benzofuran ring or a benzothiophene ring is condensed with a benzene ring to which a boron atom is directly bonded, of the two benzene rings constituting the carbazole partial structure present in general formula (1) can be preferably mentioned.
  • Examples of such compounds include compounds having the following skeleton (5a) and compounds having the following skeleton (5b).
  • Y 5 to Y 8 each independently represent two hydrogen atoms, a single bond or N(R 27 ).
  • Z 5 to Z 8 each independently represent an oxygen atom or a sulfur atom.
  • each hydrogen atom in skeletons (5a) and (5b) is not substituted with a linking group together with an adjacent hydrogen atom to form a cyclic structure.
  • Ar 55 and Ar 56 each independently represent a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, or a substituted or unsubstituted alkyl group, for example, a substituted or unsubstituted An aryl group can be preferably chosen.
  • R55 and R56 each independently represent a substituted or unsubstituted alkyl group.
  • m55 and m56 each independently represents an integer of 0 to 4;
  • n55 and n56 each independently represent an integer of 0 to 4;
  • Y 5 and Y 6 each independently represent two hydrogen atoms, a single bond or N(R 27 ).
  • R27 represents a hydrogen atom, a deuterium atom or a substituent.
  • Z5 and Z6 each independently represent an oxygen atom or a sulfur atom.
  • a 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
  • n55 and n56 are integers from 0-2.
  • n55 and n56 may be 0 and n55 and n56 may be 1.
  • m51 and m52 are the same number. For details of m55 and m56, the description of m51 and m52 in general formula (4a) can be referred to.
  • Ar 57 and Ar 58 each independently represent a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, or a substituted or unsubstituted alkyl group, for example, a substituted or unsubstituted An aryl group can be preferably chosen.
  • R57 and R58 each independently represent a substituted or unsubstituted alkyl group.
  • m57 and m58 each independently represent an integer of 0 to 4; n57 and n58 each independently represent an integer of 0 to 4; Y7 and Y8 each independently represent two hydrogen atoms, a single bond or N( R27 ).
  • R27 represents a hydrogen atom, a deuterium atom or a substituent.
  • Z7 and Z8 each independently represent an oxygen atom or a sulfur atom.
  • a 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
  • Ar 57 , Ar 58 , R 57 , R 58 , m57, m58, n57, n58, A 1 and A 2 refer to Ar 55 , Ar 56 , R 55 , R 56 , m55, The descriptions of m56, n55, n56, A 1 and A 2 can be referred to.
  • a compound in which a benzofuran ring or a benzothiophene ring is condensed to both of the two benzene rings constituting the carbazole partial structure present in general formula (1) can be preferably mentioned.
  • Examples of such compounds include compounds having the following skeleton (6a) and compounds having the following skeleton (6b).
  • Y 9 to Y 12 each independently represent two hydrogen atoms, a single bond or N(R 27 ).
  • Z 9 to Z 16 each independently represent an oxygen atom or a sulfur atom.
  • Z 9 to Z 16 are preferably the same, but may be different.
  • Z 9 -Z 16 are oxygen atoms.
  • Z 9 -Z 16 are sulfur atoms.
  • each hydrogen atom in skeletons (6a) and (6b) is not substituted with a linking group together with an adjacent hydrogen atom to form a cyclic structure.
  • R 59 and R 60 each independently represent a substituted or unsubstituted alkyl group.
  • m59 and m60 each independently represents an integer of 0 to 4;
  • Y9 and Y10 each independently represent two hydrogen atoms, a single bond or N( R27 ).
  • R27 represents a hydrogen atom, a deuterium atom or a substituent.
  • Z 9 to Z 12 each independently represent an oxygen atom or a sulfur atom.
  • a 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
  • the compound represented by formula (6a) is not limited to the following specific examples.
  • compounds in which all Xs in the molecule are oxygen atoms and compounds in which all Xs in the molecule are sulfur atoms are disclosed, respectively.
  • a compound in which a part of X in the molecule is an oxygen atom and the rest is a sulfur atom can also be employed.
  • R 61 and R 62 each independently represent a substituted or unsubstituted alkyl group.
  • m61 and m60 each independently represents an integer of 0 to 4;
  • Y 11 and Y 12 each independently represent two hydrogen atoms, a single bond or N(R 27 ).
  • R27 represents a hydrogen atom, a deuterium atom or a substituent.
  • Z 13 to Z 16 each independently represent an oxygen atom or a sulfur atom.
  • a 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
  • the compound represented by the general formula (6b) is not limited to the following specific examples.
  • compounds in which all Xs in the molecule are oxygen atoms and compounds in which all Xs in the molecule are sulfur atoms are disclosed, respectively.
  • a compound in which a part of X in the molecule is an oxygen atom and the rest is a sulfur atom can also be employed.
  • a compound in which a benzene ring is condensed with a benzene ring to which a boron atom is not directly bonded can be preferably mentioned.
  • examples of such compounds include compounds having the following skeleton (7a) and compounds having the following skeleton (7b).
  • Y 21 to Y 24 each independently represent two hydrogen atoms, a single bond or N(R 27 ).
  • Y 21 to Y 24 the descriptions of Y 1 to Y 4 in skeletons (4a) and (4b) can be referred to.
  • each hydrogen atom in skeletons (7a) and (7b) is not substituted with a linking group together with an adjacent hydrogen atom to form a cyclic structure.
  • Ar 71 to Ar 74 each independently represent a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, or a substituted or unsubstituted alkyl group, for example, a substituted or unsubstituted
  • An aryl group can be preferably chosen.
  • n71 and n73 each independently represents an integer of 0 to 2;
  • n72 and n74 each independently represents an integer of 0 to 4;
  • Y 21 and Y 22 each independently represent two hydrogen atoms, a single bond or N(R 27 ).
  • R27 represents a hydrogen atom, a deuterium atom or a substituent.
  • a 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
  • n71-n74 are integers from 0-2.
  • n71 and n73 are the same number
  • n72 and n74 are the same number.
  • n71 to n74 may be the same number.
  • n71-n74 may be zero.
  • All of n71 to n74 may be 1.
  • n71 and n73 may be 0, and n72 and n74 may be 1, for example.
  • the corresponding descriptions of Ar 1 to Ar 4 , A 1 and A 2 in general formula (1a) can be referred to.
  • Ar 75 to Ar 78 each independently represent a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, or a substituted or unsubstituted alkyl group, for example, a substituted or unsubstituted
  • An aryl group can be preferably chosen.
  • n75 and n77 each independently represent an integer of 0 to 2;
  • n76 and n78 each independently represents an integer of 0 to 4;
  • Y 23 and Y 24 each independently represent two hydrogen atoms, a single bond or N(R 27 ).
  • R27 represents a hydrogen atom, a deuterium atom or a substituent.
  • n75 to n78 the description of n71 to n74 in general formula (7a) can be referred to.
  • the description of n71 to n74 in general formula (7a) can be referred to.
  • the description of Ar 75 to Ar 78 the corresponding descriptions of Ar 1 to Ar 4 in general formula (1a) can be referred to.
  • a compound in which a benzene ring is condensed with a benzene ring to which a boron atom is directly bonded can be preferably mentioned.
  • examples of such compounds include compounds having the following skeleton (8a) and compounds having the following skeleton (8b).
  • Y 25 to Y 28 each independently represent two hydrogen atoms, a single bond or N(R 27 ).
  • Y 25 -Y 28 For details of Y 25 -Y 28 , reference can be made to the corresponding descriptions of skeletons (4a) and (4b).
  • each hydrogen atom in skeletons (8a) and (8b) is not substituted with a linking group together with an adjacent hydrogen atom to form a cyclic structure.
  • Ar 79 and Ar 80 each independently represent a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, or a substituted or unsubstituted alkyl group, for example, a substituted or unsubstituted An aryl group can be preferably chosen.
  • R71 and R72 each independently represent a substituted or unsubstituted alkyl group.
  • m71 and m72 each independently represents an integer of 0 to 4;
  • n79 and n80 each independently represent an integer of 0 to 4;
  • Y 25 and Y 26 each independently represent two hydrogen atoms, a single bond or N(R 27 ).
  • R27 represents a hydrogen atom, a deuterium atom or a substituent.
  • a 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
  • n79 and n80 are integers from 0-2. In one aspect of the present invention, n79 and n80 are the same number, for example both may be 0 or both may be 1.
  • m71 and m72 are integers from 0-2. In one aspect of the invention, m71 and m72 are the same number, for example both may be 0 or both may be 1.
  • Ar 81 and Ar 82 each independently represent a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, or a substituted or unsubstituted alkyl group, for example, a substituted or unsubstituted An aryl group can be preferably chosen.
  • R73 and R74 each independently represent a substituted or unsubstituted alkyl group.
  • m73 and m74 each independently represents an integer of 0 to 4;
  • n81 and n82 each independently represents an integer of 0 to 4;
  • Y 27 and Y 28 each independently represent two hydrogen atoms, a single bond or N(R 27 ).
  • R27 represents a hydrogen atom, a deuterium atom or a substituent.
  • a 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
  • m73, m74, n81 and n82 the description of m71, m72, n79 and n80 in general formula (8a) can be referred to.
  • Ar 81 , Ar 82 , R 73 , R 74 , A 1 and A 2 corresponding descriptions of Ar 1 , Ar 3 , R 41 , R 42 , A 1 and A 2 in general formula (1a) can be referred to.
  • a compound in which benzene rings are condensed to both of the two benzene rings constituting the carbazole partial structure present in general formula (1) can be preferably mentioned.
  • Examples of such compounds include compounds having the following skeleton (9a) and compounds having the following skeleton (9b).
  • Y 29 to Y 32 each independently represent two hydrogen atoms, a single bond or N(R 27 ).
  • Y 29 -Y 32 For details of Y 29 -Y 32 , reference can be made to the corresponding descriptions of skeletons (4a) and (4b).
  • each hydrogen atom in skeletons (9a) and (9b) is not substituted with a linking group together with an adjacent hydrogen atom to form a cyclic structure.
  • R 75 and R 76 each independently represent a substituted or unsubstituted alkyl group.
  • m75 and m76 each independently represents an integer of 0 to 4;
  • Y 29 and Y 30 each independently represent two hydrogen atoms, a single bond or N(R 27 ).
  • R27 represents a hydrogen atom, a deuterium atom or a substituent.
  • a 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
  • the descriptions of R 71 , R 72 , m71, m72, A 1 and A 2 in general formula (8a) can be referred to.
  • R 77 and R 78 each independently represent a substituted or unsubstituted alkyl group.
  • m77 and m78 each independently represent an integer of 0 to 4;
  • Y 31 and Y 32 each independently represent two hydrogen atoms, a single bond or N(R 27 ).
  • R27 represents a hydrogen atom, a deuterium atom or a substituent.
  • a 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
  • the description of R 71 , R 72 , m71, m72, A 1 and A 2 in general formula (8a) can be referred to.
  • Each hydrogen atom in skeleton (10) may be replaced by a deuterium atom or a substituent. In addition, it may be substituted with a linking group together with an adjacent hydrogen atom to form a cyclic structure.
  • a deuterium atom or a substituent may be substituted with a linking group together with an adjacent hydrogen atom to form a cyclic structure.
  • R 1 to R 26 A 1 and A 2 in general formula (1).
  • At least one hydrogen atom of the benzene ring constituting the carbazole partial structure contained in skeleton (10) is substituted with a substituted or unsubstituted aryl group.
  • each hydrogen atom in skeleton (10) is not substituted with a linking group together with an adjacent hydrogen atom to form a cyclic structure.
  • Ar 91 to Ar 94 each independently represent a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, or a substituted or unsubstituted alkyl group, for example, a substituted or unsubstituted
  • An aryl group can be preferably chosen.
  • n91 and n93 each independently represent an integer of 0-4, and n92 and n94 each independently represent an integer of 0-3.
  • ⁇ ring, ⁇ ring, ⁇ ring, and ⁇ ring may be substituted, and at least one ring is substituted with a substituted or unsubstituted aryl group, or optionally substituted benzene ring is condensed or the furan ring of substituted or unsubstituted benzofuran or the thiophene ring of substituted or unsubstituted thiophene are condensed.
  • a 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
  • n91-n94 are integers from 0-2.
  • n91 and n93 are the same number, and n92 and n94 are the same number. All of n91 to n94 may be the same number, for example, all may be 0 or all may be 1.
  • Ar 91 to Ar 94 the corresponding descriptions of Ar 1 to Ar 4 in general formula (1a) can be referred to.
  • the ⁇ and ⁇ rings have the same substituents or have the same condensed structure, and the ⁇ and ⁇ rings have the same substituents or have the same condensed structure. have.
  • both the ⁇ ring and the ⁇ ring are substituted with a substituted or unsubstituted aryl group, an optionally substituted benzene ring is condensed, or a substituted or unsubstituted furan ring of benzofuran Alternatively, the thiophene rings of substituted or unsubstituted thiophene are condensed.
  • both the ⁇ ring and the ⁇ ring are substituted with a substituted or unsubstituted aryl group, an optionally substituted benzene ring is condensed, or a substituted or unsubstituted furan ring of benzofuran Alternatively, the thiophene rings of substituted or unsubstituted thiophene are condensed.
  • all of the ⁇ ring, ⁇ ring, ⁇ ring, and ⁇ ring are substituted with a substituted or unsubstituted aryl group, or condensed with an optionally substituted benzene ring, or substituted
  • the furan ring of unsubstituted benzofuran or the thiophene ring of substituted or unsubstituted thiophene is condensed.
  • a 1 and A 2 reference can be made to the corresponding description of general formula (1).
  • the compound represented by the general formula (1) may have an asymmetric skeleton.
  • it may be a compound having an asymmetric skeleton such as the following skeleton (11a) or the following skeleton (11b).
  • Z17 and Z18 each independently represent an oxygen atom or a sulfur atom.
  • each hydrogen atom in skeletons (11a) and (11b) is not substituted with a linking group together with an adjacent hydrogen atom to form a cyclic structure.
  • Ar 83 to Ar 85 each independently represent a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, or a substituted or unsubstituted alkyl group, for example, a substituted or unsubstituted An aryl group can be preferably chosen.
  • R83 and R84 each independently represent a substituted or unsubstituted alkyl group.
  • Z17 represents an oxygen atom or a sulfur atom.
  • m83 and m84 each independently represents an integer of 0 to 5; n83 represents an integer of 0 to 4, and n84 and n85 each independently represents an integer of 0 to 3.
  • Ar 83 to Ar 85 , R 83 , R 84 , m83, m84 and n83 to n85 refer to Ar 1 , Ar 2 , Ar 4 , R 41 , R 42 , m1 in general formula (1a) , m2, n1, n2, and n4.
  • Ar 86 to Ar 88 each independently represent a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, or a substituted or unsubstituted alkyl group, for example, a substituted or unsubstituted An aryl group can be preferably chosen.
  • R86 and R87 each independently represent a substituted or unsubstituted alkyl group.
  • Z18 represents an oxygen atom or a sulfur atom.
  • m86 and m87 each independently represents an integer of 0 to 5; n86 represents an integer of 0 to 4, and n87 and n88 each independently represents an integer of 0 to 3.
  • Ar 86 to Ar 88 , R 86 , R 87 , m86, m87, n86 to n88 refer to Ar 1 , Ar 2 , Ar 4 , R 41 , R 42 , m1 , m2, n1, n2, and n4.
  • the compound represented by the general formula (11b) is not limitedly interpreted by the following specific examples.
  • a compound in which all Xs in the molecule are oxygen atoms and a compound in which all Xs in the molecule are sulfur atoms are disclosed.
  • a compound in which a part of X in the molecule is an oxygen atom and the rest is a sulfur atom can also be used.
  • a compound in which R 5 is a donor group can be preferably employed as the compound represented by the general formula (1).
  • a compound in which R5 is a donor group tends to have a high molar absorption coefficient and high luminous efficiency. For example , it exhibits superior luminescence properties compared to compounds in which R3 is a donor group.
  • R3 is not a donor group.
  • R 5 is a donor group, or neither of them is a donor group (particularly a donor group with a ⁇ p value of ⁇ 0.2 or less).
  • the donor group is a group having a negative Hammett ⁇ p value.
  • the ⁇ p value of the donor group of R 5 is preferably ⁇ 0.2 or less, may be ⁇ 0.4 or less, or may be ⁇ 0.6 or less, for example.
  • Preferred donor groups include substituted amino groups, preferably substituted or unsubstituted diarylamino groups.
  • the aryl group may be a monocyclic ring or a condensed ring in which two or more rings are condensed. In the case of condensed rings, the number of rings after condensed is preferably 2 to 6, and can be selected from 2 to 4, or can be 2, for example.
  • Two aryl groups constituting a diarylamino group may be the same or different. Also, two aryl groups may be linked by a single bond or a linking group.
  • a substituted or unsubstituted diphenylamino group is preferable as the substituted or unsubstituted diarylamino group.
  • a substituted or unsubstituted carbazol-9-yl group in which two phenyl groups are bonded by a single bond may be employed, or a substituted or unsubstituted diphenylamino group in which two phenyl groups are not bonded by a single bond. may be adopted.
  • any one of R 1 to R 7 in general formula (1) is a substituted amino group, at least R 5 is preferably a substituted amino group, more preferably only R 5 is a substituted amino group. In one aspect of the invention , R3 is not a substituted amino group.
  • R 16 or R 19 is preferably a donor group, more preferably R 19 is a donor group.
  • all of the other R 1 to R 26 may be, for example, hydrogen atoms or deuterium atoms, and for example, at least one of R 3 , R 6 , R 15 and R 20 may be a substituent (preferably substituted or an unsubstituted alkyl group, or a substituted or unsubstituted aryl group), and others may be hydrogen atoms or deuterium atoms.
  • R 20 or R 23 is preferably a donor group, more preferably R 20 is a donor group.
  • all of the other R 1 to R 26 may be, for example, hydrogen atoms or deuterium atoms, and for example, at least one of R 3 , R 6 , R 19 and R 24 may be a substituent (preferably substituted or an unsubstituted alkyl group, or a substituted or unsubstituted aryl group), and others may be hydrogen atoms or deuterium atoms.
  • R 5 is a donor group
  • compounds represented by the following general formula (12a) and compounds represented by the following general formula (12b) can be exemplified.
  • Ar 1 to Ar 8 each independently represent a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, or a substituted or unsubstituted alkyl group;
  • a substituted or unsubstituted alkyl group can be preferably selected, and a substituted or unsubstituted aryl group can be preferably selected.
  • R5 represents a donor group.
  • R 41 to R 44 each independently represent a substituted or unsubstituted alkyl group.
  • n1 to m4 each independently represent an integer of 0 to 5; n1, n3, n5 and n7 each independently represent an integer of 0-4, n4 and n8 represent an integer of 0-3, and n2' and n6' represent an integer of 0-2.
  • a 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
  • Ar 1 bonded to adjacent carbon atoms, Ar 3 bonded to adjacent carbon atoms, Ar 5 bonded to adjacent carbon atoms, and Ar 5 bonded to adjacent carbon atoms Ar 7 may be bonded to each other to form a cyclic structure, preferably benzofuran (condensed with furan ring) or benzothiophene (condensed with thiophene ring).
  • each compound is defined by identifying R, Ar and X in formulas F1-F56 in the table.
  • R is selected from A to D listed below
  • Ar is selected from a to d listed below
  • X is selected from ⁇ to ⁇ .
  • a compound of 1 is a compound having a structure in which R is A and Ar is a in Formula F1.
  • the skeletons (1a) to (12b) are skeletons to which other rings are not further condensed. In one aspect of the present invention, the skeletons (1a) to (12b) are skeletons to which other rings may be further condensed.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 4 and R 5 , R 5 and R 6 , R 6 and R 7 , R 8 and R9 , R9 and R10 , R10 and R11 , R11 and R12 , R13 and R14 , R14 and R15 , R15 and R16 , R16 and R17 , R18 and R19 , R 19 and R 20 , R 20 and R 21 , R 22 and R 23 , R 23 and R 24 , R 24 and R 25 , R 25 and R 26 are linked to each other to form a ring structure. be able to.
  • a 1 and A 2 in general formula (1) are acceptor groups.
  • examples thereof include compounds having acceptor groups at positions A 1 and A 2 and having any of skeletons (1a) to (12b).
  • the description and specific examples of the acceptor group the description and specific examples of the acceptor groups of A 1 and A 2 in formula (1) above can be referred to.
  • Specific examples of compounds in which A 1 and A 2 are acceptor groups are given below.
  • the compounds in which A 1 and A 2 are acceptor groups that can be used in the present invention are not limited to the following specific examples.
  • the following specific examples have a structure in which both A 1 and A 2 are "A", and the structure of each compound is specified by individually specifying "A".
  • a compound having a rotationally symmetric structure is selected as the compound represented by General Formula (1).
  • a compound having an axisymmetric structure is selected as the compound represented by General Formula (1).
  • a compound having an asymmetric structure is selected as the compound represented by general formula (1).
  • Specific examples of compounds having an asymmetric skeleton are given below.
  • the compound having an asymmetric skeleton and the compound having an asymmetric structure that can be used in the present invention are not limited to the following specific examples.
  • compounds in which all Xs in the molecule are oxygen atoms and compounds in which all Xs in the molecule are sulfur atoms are disclosed, respectively.
  • a compound in which a part of X in the molecule is an oxygen atom and the rest is a sulfur atom can also be employed.
  • R 3 in general formula (1) is not a diarylamino group (two aryl groups constituting the diarylamino group may be bonded to each other).
  • R3 in general formula ( 1 ) is a hydrogen atom, a deuterium atom or an acceptor group (not a donor group).
  • at least one of n1 to n4 in general formula (1a) is 1 or more.
  • at least one of m1 and m2 in general formula (1a) is 1 or more.
  • At least one of n1 to n4 in general formula (1a) is 1 or more, and at least one of m1 and m2 in general formula (1a) is 1 or more.
  • at least one of n5 to n8 in general formula (1b) is 1 or more.
  • at least one of m3 and m4 in general formula (1b) is 1 or more.
  • at least one of n5 to n8 in general formula (1b) is 1 or more, and at least one of m3 and m4 in general formula (1a) is 1 or more.
  • R 41 and R 42 and at least one of R 43 and R 44 are deuterium atoms;
  • An optionally substituted alkyl group is preferred, for example, all of R 41 to R 44 are alkyl groups optionally substituted with deuterium atoms.
  • at least one of n1 to n4 is 1 or more and at least one of n5 to n8 is 1 or more, at least one of Ar 1 to Ar 4 and at least one of Ar 5 to Ar 8 is deuterium It is preferably an aryl group which may be substituted with an atom or an alkyl group.
  • Ar 1 to Ar 8 are aryl groups which may be substituted with a deuterium atom or an alkyl group.
  • R 1 in general formula (1) is a boron atom and R 8 , R 10 , R 12 , R 13 , R 15 and R 17 are alkyl groups (or methyl groups)
  • R 1 At least one of to R 7 , R 18 to R 20 and R 23 to R 26 is a substituent, preferably a group of substituent group E, which may be substituted with, for example, a deuterium atom or an alkyl group. It is an aryl group.
  • R 1 At least one of to R 7 , R 13 to R 16 and R 19 to R 21 is a substituent, preferably a group of substituent group E, and may be substituted with, for example, a deuterium atom or an alkyl group. It is an aryl group.
  • X 1 in general formula (1) is a boron atom, any one set of R 8 and R 9 , R 9 and R 10 , and R 15 and R 16 , R 16 and R 17 when any one pair is bonded to each other to form an aromatic ring (or benzene ring), at least one of R 1 to R 7 , R 18 to R 20 and R 23 to R 26 is a substituent,
  • a group of substituent group E is preferable, for example, an aryl group optionally substituted with a deuterium atom or an alkyl group.
  • X 2 in general formula (1) is a boron atom, any one set of R 8 and R 9 , R 9 and R 10 , and R 22 and R 23 , R 23 and R 24 when any one pair is bonded to each other to form an aromatic ring (or benzene ring), at least one of R 1 to R 7 , R 13 to R 16 and R 19 to R 21 is a substituent;
  • a group of substituent group E is preferable, for example, an aryl group optionally substituted with a deuterium atom or an alkyl group.
  • R 9 and R 11 in general formula (1) are neither a cyano group nor an alkyl group.
  • R 9 and R 11 are hydrogen atoms, deuterium atoms, or substituents other than cyano and alkyl groups.
  • R 9 and R 11 in general formula (1) are neither a cyano group nor a tert-butyl group.
  • at least one of R 8 to R 12 in general formula (1) is a substituent.
  • R 3 in general formula (1) is neither a substituted amino group nor an aryl group.
  • R 3 in general formula (1) is neither a substituted amino group nor a phenyl group.
  • R 3 in general formula (1) is not a dimethylamino group, diphenylamino group or phenyl group.
  • at least one of R 1 to R 26 in general formula (1) is a substituent, more preferably at least one of R 1 to R 26 is an alkyl group, for example 1 to 4 alkyl groups.
  • the molecular weight of the compound represented by the general formula (1) is, for example, 1500 or less when the organic layer containing the compound represented by the general formula (1) is intended to be formed by a vapor deposition method and used. It is preferably 1,200 or less, more preferably 1,000 or less, and even more preferably 900 or less.
  • the lower limit of the molecular weight is the molecular weight of the smallest compound in the group of compounds represented by general formula (1). Preferably it is 624 or more.
  • the compound represented by general formula (1) may be formed into a film by a coating method regardless of its molecular weight. If a coating method is used, it is possible to form a film even with a compound having a relatively large molecular weight.
  • the compound represented by general formula (1) has the advantage of being easily dissolved in an organic solvent. Therefore, the compound represented by the general formula (1) can be easily applied to the coating method, and can be easily purified to increase its purity.
  • the compound represented by the general formula (1) has high orientation in the film.
  • at least one of R 1 to R 7 and R 13 to R 26 in general formula (1) is a substituent, preferably R 1 to R 7 , R 14 to R 16 , R 19 , R 20 , R 23 to When at least one of R 26 is a substituent, more preferably a group of substituent group E (for example, an aryl group optionally substituted with a deuterium atom or an alkyl group), the orientation in the film is particularly expensive.
  • substituent group E for example, an aryl group optionally substituted with a deuterium atom or an alkyl group
  • Such high orientation is preferably exhibited in a film containing the compound represented by the general formula (1) together with the host material. Moreover, such high orientation is preferably exhibited in a film containing a host material, a delayed fluorescence material functioning as an assist dopant, and a compound represented by general formula (1).
  • an organic light-emitting device with high luminous efficiency can be provided.
  • Orientation can be evaluated by an orientation value (S value). A larger negative value (a smaller value) means a higher orientation.
  • the orientation value (S value) is from Scientific Reports 2017, 7, 8405.
  • the orientation value of the compound represented by general formula (1) in the film of the present invention is preferably less than ⁇ 0.25, more preferably less than ⁇ 0.30, and less than ⁇ 0.35. is more preferred, and less than -0.40 is particularly preferred.
  • a compound containing a plurality of structures represented by general formula (1) in its molecule as a light-emitting material.
  • a polymerizable group is preliminarily present in the structure represented by the general formula (1), and a polymer obtained by polymerizing the polymerizable group is used as the light-emitting material.
  • a monomer containing a polymerizable functional group in any of the structures represented by the general formula (1) is prepared, and polymerizing it alone or copolymerizing it with other monomers, it is repeated. It is conceivable to obtain a polymer having units and use the polymer as a light-emitting material. Alternatively, it is conceivable to obtain a dimer or a trimer by coupling the compounds represented by the general formula (1) and use them as a light-emitting material.
  • An example of a polymer having a repeating unit containing a structure represented by general formula (1) is a polymer containing a structure represented by the following general formula.
  • Q represents a group containing a structure represented by general formula (1)
  • L 1 and L 2 represent linking groups.
  • the number of carbon atoms in the linking group is preferably 0-20, more preferably 1-15, still more preferably 2-10.
  • the linking group preferably has a structure represented by -X 11 -L 11 -.
  • X 11 represents an oxygen atom or a sulfur atom, preferably an oxygen atom.
  • L 11 represents a linking group, preferably a substituted or unsubstituted alkylene group or a substituted or unsubstituted arylene group, a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted A phenylene group is more preferred.
  • R 101 , R 102 , R 103 and R 104 each independently represent a substituent. Preferred are substituted or unsubstituted alkyl groups having 1 to 6 carbon atoms, substituted or unsubstituted alkoxy groups having 1 to 6 carbon atoms, and halogen atoms, more preferably unsubstituted alkyl groups having 1 to 3 carbon atoms.
  • linking groups represented by L 1 and L 2 can be bonded to any position of the structure representing Q and represented by general formula (1). Two or more linking groups may be linked to one Q to form a crosslinked structure or network structure.
  • a polymer having a repeating unit containing these formulas is obtained by introducing a hydroxy group at any position of the structure represented by the general formula (1), and using it as a linker, reacting the following compound to obtain a polymerizable group.
  • the polymer containing the structure represented by general formula (1) in the molecule may be a polymer consisting only of repeating units having the structure represented by general formula (1), or may have other structures. It may be a polymer containing a repeating unit having Moreover, the repeating unit having the structure represented by the general formula (1) contained in the polymer may be of a single type, or may be of two or more types. Examples of repeating units having no structure represented by general formula (1) include those derived from monomers used in ordinary copolymerization. Examples thereof include repeating units derived from monomers having ethylenically unsaturated bonds such as ethylene and styrene.
  • the compound represented by general formula (1) preferably does not contain a metal atom.
  • a boron atom is not contained in the metal atom here.
  • a compound consisting of atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms, oxygen atoms, sulfur atoms and boron atoms can be selected. can be done.
  • a compound consisting of atoms selected from the group consisting of carbon, hydrogen, deuterium, nitrogen, oxygen and boron atoms can be selected.
  • a compound consisting of atoms selected from the group consisting of carbon, hydrogen, deuterium, nitrogen, sulfur and boron atoms can be selected.
  • a compound consisting of atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms and boron atoms can be selected.
  • a compound consisting of atoms selected from the group consisting of carbon atoms, hydrogen atoms, nitrogen atoms, oxygen atoms, sulfur atoms and boron atoms can be selected.
  • the "alkyl group” may be linear, branched, or cyclic. Moreover, two or more of the linear portion, the cyclic portion and the branched portion may be mixed.
  • the number of carbon atoms in the alkyl group can be, for example, 1 or more, 2 or more, or 4 or more. Also, the number of carbon atoms can be 30 or less, 20 or less, 10 or less, 6 or less, or 4 or less.
  • alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, n-hexyl group, isohexyl group, 2-ethylhexyl group, n-heptyl group, isoheptyl group, n-octyl group, isooctyl group, n-nonyl group, isononyl group, n-decanyl group, isodecanyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group.
  • alkyl group as a substituent may be further substituted with an aryl group.
  • An "alkenyl group” may be linear, branched, or cyclic. Moreover, two or more of the linear portion, the cyclic portion and the branched portion may be mixed.
  • the number of carbon atoms in the alkenyl group can be, for example, 2 or more and 4 or more. Also, the number of carbon atoms can be 30 or less, 20 or less, 10 or less, 6 or less, or 4 or less.
  • alkenyl groups include ethenyl, n-propenyl, isopropenyl, n-butenyl, isobutenyl, n-pentenyl, isopentenyl, n-hexenyl, isohexenyl, and 2-ethylhexenyl groups. can be mentioned.
  • the alkenyl group as a substituent may be further substituted with a substituent.
  • the “aryl group” and “heteroaryl group” may be monocyclic or condensed rings in which two or more rings are condensed. In the case of condensed rings, the number of condensed rings is preferably 2 to 6, and can be selected from 2 to 4, for example.
  • rings include benzene ring, pyridine ring, pyrimidine ring, triazine ring, naphthalene ring, anthracene ring, phenanthrene ring, triphenylene ring, quinoline ring, pyrazine ring, quinoxaline ring, and naphthyridine ring, which are condensed. It may be a circular ring.
  • aryl or heteroaryl groups include phenyl, 1-naphthyl, 2-naphthyl, 1-anthracenyl, 2-anthracenyl, 9-anthracenyl, 2-pyridyl, 3-pyridyl, 4 -pyridyl group.
  • the number of atoms constituting the ring skeleton of the aryl group is preferably 6 to 40, more preferably 6 to 20, selected within the range of 6 to 14, or selected within the range of 6 to 10.
  • the number of atoms constituting the ring skeleton of the heteroaryl group is preferably 4 to 40, more preferably 5 to 20, selected within the range of 5 to 14, or selected within the range of 5 to 10. You may "Arylene group” and "heteroaryl group” can be read by changing the valence number from 1 to 2 in the description of the aryl group and heteroaryl group.
  • substituted group A refers to a hydroxyl group, a halogen atom (e.g., fluorine atom, chlorine atom, bromine atom, iodine atom), an alkyl group (e.g., 1 to 40 carbon atoms), an alkoxy group (e.g., 1 to 40), alkylthio groups (eg, 1 to 40 carbon atoms), aryl groups (eg, 6 to 30 carbon atoms), aryloxy groups (eg, 6 to 30 carbon atoms), arylthio groups (eg, 6 to 30 carbon atoms), Heteroaryl group (eg, 5 to 30 ring atoms), heteroaryloxy group (eg, 5 to 30 ring atoms), heteroarylthio group (eg, 5 to 30 ring atoms), acyl group ( For example, 1 to 40 carbon atoms), alkenyl groups (eg, 1 to 40 carbon atoms), alkenyl groups (eg, 1 to 40
  • substituted group B means an alkyl group (eg, 1 to 40 carbon atoms), an alkoxy group (eg, 1 to 40 carbon atoms), an aryl group (eg, 6 to 30 carbon atoms), an aryloxy group (eg for example, 6 to 30 carbon atoms), heteroaryl groups (eg, 5 to 30 ring atoms), heteroaryloxy groups (eg, 5 to 30 ring atoms), diarylaminoamino groups (eg, 0 to 30 carbon atoms).
  • 20) is one group selected from the group consisting of 20) or a group formed by combining two or more groups.
  • substituted group C refers to an alkyl group (eg, 1 to 20 carbon atoms), an aryl group (eg, 6 to 22 carbon atoms), a heteroaryl group (eg, 5 to 20 ring skeleton atoms), It means one group selected from the group consisting of diarylamino groups (eg, 12 to 20 carbon atoms) or a group formed by combining two or more groups.
  • substituted group D refers to an alkyl group (eg, 1 to 20 carbon atoms), an aryl group (eg, 6 to 22 carbon atoms) and a heteroaryl group (eg, 5 to 20 ring skeleton atoms).
  • substituted group E refers to one group selected from the group consisting of an alkyl group (eg, 1 to 20 carbon atoms) and an aryl group (eg, 6 to 22 carbon atoms), or a combination of two or more means a group formed by
  • substituent when described as "substituent” or “substituted or unsubstituted” may be selected from, for example, substituent group A, or selected from substituent group B. may be selected from Substituent Group C, may be selected from Substituent Group D, or may be selected from Substituent Group E.
  • the compound represented by general formula (1) is a luminescent material. In one embodiment, the compound represented by general formula (1) is a compound capable of emitting delayed fluorescence. In certain embodiments of the present disclosure, the compound represented by general formula (1), when excited by thermal or electronic means, is in the UV region, blue, green, yellow, orange, red regions of the visible spectrum. (eg, about 420 nm to about 500 nm, about 500 nm to about 600 nm, or about 600 nm to about 700 nm) or can emit light in the near-infrared region.
  • compounds represented by general formula (1) when excited by thermal or electronic means, exhibit a red or orange region of the visible spectrum (e.g., about 620 nm to about 780 nm, about 650 nm). In certain embodiments of the present disclosure, compounds represented by general formula (1), when excited by thermal or electronic means, exhibit an orange or yellow region of the visible spectrum (eg, about 570 nm to about 620 nm, about 590 nm, about 570 nm). In certain embodiments of the present disclosure, the compound represented by general formula (1) is in the green region of the visible spectrum (eg, about 490 nm to about 575 nm, about 510 nm) when excited by thermal or electronic means. Can emit light.
  • the compound represented by general formula (1) is in the blue region of the visible spectrum (eg, about 400 nm to about 490 nm, about 475 nm) when excited by thermal or electronic means Can emit light.
  • compounds of general formula (1) are capable of emitting light in the ultraviolet spectral region (eg, 280-400 nm) when excited by thermal or electronic means.
  • compounds of general formula (1) are capable of emitting light in the infrared spectral region (eg, 780 nm-2 ⁇ m) when excited by thermal or electronic means.
  • an organic semiconductor device using the compound represented by general formula (1) can be produced.
  • CMOS complementary metal oxide semiconductor
  • the compound represented by formula (1) can be used to fabricate organic optical devices such as organic electroluminescence devices and solid-state imaging devices (for example, CMOS image sensors).
  • Electronic properties of small molecule chemical substance libraries can be calculated using known ab initio quantum chemical calculations.
  • the Hartree-Fock equations using time-dependent density functional theory with 6-31G* as the basis and a family of functions known as Becke's three-parameter, Lee-Yang-Parr hybrid functionals (TD-DFT/B3LYP/6-31G*) can be analyzed to screen for molecular fragments (parts) with HOMO above a certain threshold and LUMO below a certain threshold.
  • the donor moiety (“D”) can be selected when there is a HOMO energy (eg, ionization potential) of ⁇ 6.5 eV or higher.
  • acceptor moieties can be selected when there is a LUMO energy (eg, electron affinity) of ⁇ 0.5 eV or less.
  • the bridging moiety (“B”) is, for example, a strongly conjugated system that can tightly constrain the acceptor and donor moieties to specific conformations, thereby allowing overlap between the ⁇ -conjugated systems of the donor and acceptor moieties. to prevent
  • compound libraries are screened using one or more of the following properties. 1. Emission around a specific wavelength2. Calculated triplet states above a particular energy level;3. ⁇ EST values below a specified value;4. quantum yield above a specified value;5. HOMO level6.
  • the difference between the lowest singlet excited state and the lowest triplet excited state at 77 K is less than about 0.5 eV, less than about 0.4 eV, less than about 0.3 eV, less than about 0.2 eV or less than about 0.1 eV.
  • the ⁇ EST value is less than about 0.09 eV, less than about 0.08 eV, less than about 0.07 eV, less than about 0.06 eV, less than about 0.05 eV, less than about 0.04 eV, less than about 0.03 eV. , less than about 0.02 eV or less than about 0.01 eV.
  • the compound represented by general formula (1) comprises more than 25% of , about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95% or more.
  • the compound represented by general formula (1) is a novel compound.
  • the compound represented by general formula (1) can be synthesized by combining known reactions. For example, it can be synthesized by using a ring closure reaction or by using a substitution reaction.
  • a compound represented by general formula (1) is combined with, dispersed with, covalently bonded with, coated with, supported with, or associated with the compound 1 Used with one or more materials (eg, small molecules, polymers, metals, metal complexes, etc.) to form a solid film or layer.
  • a compound represented by general formula (1) can be combined with an electroactive material to form a film.
  • compounds of general formula (1) may be combined with hole-transporting polymers.
  • a compound of general formula (1) may be combined with an electron transport polymer.
  • compounds of general formula (1) may be combined with hole-transporting and electron-transporting polymers.
  • compounds of general formula (1) may be combined with copolymers having both hole-transporting and electron-transporting moieties.
  • electrons and/or holes formed in the solid film or layer can interact with the compound represented by general formula (1).
  • the film containing the compound represented by general formula (1) of the present invention can be formed by a wet process.
  • a solution of a composition containing a compound of the invention is applied to the surface and a film is formed after removal of the solvent.
  • wet processes include spin coating, slit coating, inkjet (spray), gravure printing, offset printing, and flexographic printing, but are not limited to these.
  • suitable organic solvents are selected and used that are capable of dissolving compositions containing the compounds of the present invention.
  • compounds included in the composition can be introduced with substituents (eg, alkyl groups) that increase their solubility in organic solvents.
  • films comprising compounds of the invention can be formed in a dry process.
  • the dry process can be vacuum deposition, but is not limited to this.
  • the compounds forming the film may be co-deposited from separate deposition sources, or may be co-deposited from a single deposition source in which the compounds are mixed.
  • a single vapor deposition source a mixed powder obtained by mixing powders of compounds may be used, a compression molding obtained by compressing the mixed powder may be used, or each compound may be heated, melted, and cooled. Mixtures may also be used.
  • the composition ratio of the plurality of compounds contained in the vapor deposition source is reduced by performing co-deposition under conditions in which the vapor deposition rates (weight reduction rates) of the plurality of compounds contained in the single vapor deposition source match or substantially match.
  • the temperature at which each of the co-deposited compounds has the same weight loss rate can be identified and used as the temperature during co-deposition.
  • the compound represented by formula (1) is useful as a material for organic light-emitting devices. In particular, it is preferably used for organic light-emitting diodes and the like.
  • Organic Light Emitting Diode One aspect of the present invention relates to use of the compound represented by general formula (1) of the present invention as a light-emitting material for an organic light-emitting device.
  • the compound represented by general formula (1) of the present invention can be effectively used as a light-emitting material in the light-emitting layer of an organic light-emitting device.
  • the compound represented by general formula (1) contains delayed fluorescence that emits delayed fluorescence (delayed phosphor).
  • the present invention provides a delayed phosphor having a structure represented by general formula (1).
  • the present invention relates to the use of compounds represented by general formula (1) as delayed phosphors.
  • the present invention provides that the compound represented by general formula (1) can be used as a host material and can be used with one or more luminescent materials, wherein the luminescent material is a fluorescent material, It may be a phosphorescent material or a delayed fluorescence material (TADF).
  • the compound represented by general formula (1) can also be used as a hole transport material.
  • the compound represented by general formula (1) can be used as an electron transport material.
  • the present invention relates to a method for producing delayed fluorescence from a compound represented by general formula (1).
  • an organic light-emitting device containing a compound as a light-emitting material emits delayed fluorescence and exhibits high light emission efficiency.
  • the emissive layer comprises a compound represented by general formula (1), and the compound represented by general formula (1) is oriented parallel to the substrate.
  • the substrate is a film-forming surface.
  • the orientation of the compounds of general formula (1) with respect to the film-forming surface affects or dictates the direction of propagation of light emitted by the aligning compounds.
  • aligning the propagation direction of light emitted by compounds represented by general formula (1) improves light extraction efficiency from the emissive layer.
  • the organic light emitting device includes an emissive layer.
  • the light-emitting layer contains a compound represented by general formula (1) as a light-emitting material.
  • the organic light emitting device is an organic photoluminescent device (organic PL device).
  • the organic light-emitting device is an organic electroluminescent device (organic EL device).
  • the compound represented by general formula (1) assists (as a so-called assist dopant) the light emission of other light-emitting materials contained in the light-emitting layer.
  • the compound represented by general formula (1) contained in the light-emitting layer is at its lowest excited singlet energy level and is at the lowest excited singlet energy level of the host material contained in the light-emitting layer. It is contained between the lowest excited singlet energy levels of other light-emitting materials contained in the light-emitting layer.
  • the organic photoluminescent device includes at least one emissive layer.
  • an organic electroluminescent device includes at least an anode, a cathode, and an organic layer between said anode and said cathode.
  • the organic layers include at least the emissive layer. In some embodiments, the organic layers include only the emissive layer. In some embodiments, the organic layers include one or more organic layers in addition to the emissive layer. Examples of organic layers include hole transport layers, hole injection layers, electron blocking layers, hole blocking layers, electron injection layers, electron transport layers and exciton blocking layers. In some embodiments, the hole transport layer may be a hole injection transport layer with hole injection functionality, and the electron transport layer may be an electron injection transport layer with electron injection functionality. An example of an organic electroluminescence device is shown in FIG.
  • the emissive layer is the layer in which holes and electrons injected from the anode and cathode, respectively, recombine to form excitons.
  • the layer emits light.
  • only emissive materials are used as emissive layers.
  • the emissive layer includes an emissive material and a host material.
  • the luminescent material is a compound represented by general formula (1). In one embodiment, singlet and triplet excitons generated in the luminescent material are confined within the luminescent material to improve the light emission efficiency of the organic electroluminescent and organic photoluminescent devices.
  • a host material is used in addition to the emissive material in the emissive layer.
  • the host material is an organic compound.
  • the organic compound has excited singlet energies and excited triplet energies, at least one of which is higher than those of the light-emitting materials of the present invention.
  • the singlet and triplet excitons generated in the luminescent material of the invention are confined within the molecules of the luminescent material of the invention. In certain embodiments, singlet and triplet excitons are sufficiently confined to improve light emission efficiency.
  • singlet and triplet excitons are not sufficiently confined, although high light emission efficiency can still be obtained, i.e., host materials that can achieve high light emission efficiency are particularly limited. can be used in the present invention without
  • light emission occurs in the emissive material in the emissive layer of the device of the invention.
  • emitted light includes both fluorescence and delayed fluorescence.
  • the emitted light includes emitted light from the host material.
  • the emitted light consists of emitted light from the host material.
  • the emitted light includes emitted light from the compound represented by general formula (1) and emitted light from the host material.
  • a TADF molecule and a host material are used.
  • TADF is an assisting dopant and has a lower excited singlet energy than the host material in the emissive layer and a higher excited singlet energy than the emissive material in the emissive layer.
  • the compound represented by formula (1) When the compound represented by formula (1) is used as the assist dopant, various compounds can be employed as the luminescent material (preferably fluorescent material).
  • the luminescent materials include anthracene derivatives, tetracene derivatives, naphthacene derivatives, pyrene derivatives, perylene derivatives, chrysene derivatives, rubrene derivatives, coumarin derivatives, pyran derivatives, stilbene derivatives, fluorene derivatives, anthryl derivatives, pyrromethene derivatives, terphenyl derivatives.
  • terphenylene derivatives fluoranthene derivatives, amine derivatives, quinacridone derivatives, oxadiazole derivatives, malononitrile derivatives, pyran derivatives, carbazole derivatives, julolidine derivatives, thiazole derivatives, derivatives containing metals (Al, Zn), and the like.
  • These exemplified skeletons may or may not have a substituent. Also, these exemplary skeletons may be combined. Examples of light-emitting materials that can be used in combination with the assist dopant having the structure represented by formula (1) are given below.
  • the amount of the compound of the present invention as the light-emitting material contained in the light-emitting layer is 0.1% by weight or more. In one embodiment, when a host material is used, the amount of the compound of the present invention as the light-emitting material contained in the light-emitting layer is 1% or more by weight. In one embodiment, when a host material is used, the amount of the compound of the present invention as the light-emitting material contained in the light-emitting layer is 50% by weight or less. In one embodiment, when a host material is used, the amount of the compound of the present invention as the light-emitting material contained in the light-emitting layer is 20% by weight or less.
  • the amount of the compound of the invention as the light-emitting material contained in the light-emitting layer is 10% by weight or less.
  • the host material of the emissive layer is an organic compound with hole-transporting and electron-transporting functionality.
  • the host material of the emissive layer is an organic compound that prevents the wavelength of emitted light from increasing.
  • the host material of the emissive layer is an organic compound with a high glass transition temperature.
  • the host material is selected from the group consisting of:
  • the emissive layer comprises two or more structurally different TADF molecules.
  • the light-emitting layer can be made to contain three kinds of materials in which the excited singlet energy level is higher in the order of the host material, the first TADF molecule, and the second TADF molecule.
  • the difference ⁇ EST between the lowest excited singlet energy level and the lowest excited triplet energy level at 77K is preferably 0.3 eV or less, and 0.25 eV or less.
  • the concentration of the first TADF molecules in the light-emitting layer is higher than the concentration of the second TADF molecules.
  • the concentration of the host material in the light-emitting layer is preferably higher than the concentration of the second TADF molecules.
  • the concentration of the first TADF molecules in the light-emitting layer may be greater than, less than, or the same as the concentration of the host material.
  • the composition within the emissive layer may be 10-70% by weight of the host material, 10-80% by weight of the first TADF molecule, and 0.1-30% by weight of the second TADF molecule. In some embodiments, the composition within the emissive layer may be 20-45% by weight of the host material, 50-75% by weight of the first TADF molecule, and 5-20% by weight of the second TADF molecule.
  • the emissive layer can include three structurally different TADF molecules.
  • the compound of the present invention can be any of a plurality of TADF compounds contained in the emissive layer.
  • the emissive layer can be composed of materials selected from the group consisting of host materials, assisting dopants, and emissive materials.
  • the emissive layer does not contain metallic elements.
  • the emissive layer can be composed of a material consisting only of atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms, oxygen atoms and sulfur atoms.
  • the light-emitting layer can be composed of a material composed only of atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms and oxygen atoms.
  • the light-emitting layer can be composed of a material composed only of atoms selected from the group consisting of carbon atoms, hydrogen atoms, nitrogen atoms and oxygen atoms.
  • the TADF material may be a known delayed fluorescence material.
  • Preferred delayed fluorescence materials include paragraphs 0008 to 0048 and 0095 to 0133 of WO2013/154064, paragraphs 0007 to 0047 and 0073 to 0085 of WO2013/011954, and paragraphs 0007 to 0033 and 0059 to 0066 of WO2013/011955.
  • the organic electroluminescent device of the present invention is held by a substrate, which is not particularly limited and commonly used in organic electroluminescent devices such as glass, transparent plastic, quartz and silicon. Any material formed by
  • the anode of the organic electroluminescent device is made from metals, alloys, conductive compounds, or combinations thereof.
  • the metal, alloy or conductive compound has a high work function (greater than 4 eV).
  • the metal is Au.
  • the conductive transparent material is selected from CuI, indium tin oxide ( ITO), SnO2 and ZnO. Some embodiments use amorphous materials that can form transparent conductive films, such as IDIXO (In 2 O 3 —ZnO).
  • the anode is a thin film. In some embodiments, the thin film is made by evaporation or sputtering.
  • the film is patterned by photolithographic methods. In some embodiments, if the pattern does not need to be highly precise (eg, about 100 ⁇ m or greater), the pattern may be formed using a mask with a shape suitable for evaporation or sputtering of the electrode material. In some embodiments, wet film forming methods such as printing and coating methods are used when coating materials such as organic conductive compounds can be applied.
  • the anode has a transmittance of greater than 10% when emitted light passes through the anode, and the anode has a sheet resistance of several hundred ohms per unit area or less. In some embodiments, the thickness of the anode is 10-1,000 nm. In some embodiments, the thickness of the anode is 10-200 nm. In some embodiments, the thickness of the anode varies depending on the materials used.
  • the cathode is made of electrode materials such as metals with a low work function (4 eV or less) (referred to as electron-injecting metals), alloys, conductive compounds, or combinations thereof.
  • the electrode material is sodium, sodium-potassium alloys, magnesium, lithium, magnesium-copper mixtures, magnesium-silver mixtures, magnesium-aluminum mixtures, magnesium-indium mixtures, aluminum - aluminum oxide (Al2 O 3 ) mixtures, indium, lithium-aluminum mixtures and rare earth elements.
  • a mixture of an electron-injecting metal and a second metal that is a stable metal with a higher work function than the electron-injecting metal is used.
  • the mixture is selected from magnesium-silver mixtures, magnesium-aluminum mixtures, magnesium-indium mixtures, aluminum-aluminum oxide (Al 2 O 3 ) mixtures, lithium-aluminum mixtures and aluminum. In some embodiments, the mixture improves electron injection properties and resistance to oxidation.
  • the cathode is manufactured by depositing or sputtering the electrode material as a thin film. In some embodiments, the cathode has a sheet resistance of no more than several hundred ohms per unit area. In some embodiments, the thickness of said cathode is between 10 nm and 5 ⁇ m. In some embodiments, the thickness of the cathode is 50-200 nm.
  • either one of the anode and cathode of the organic electroluminescent device is transparent or translucent to allow transmission of emitted light.
  • transparent or translucent electroluminescent elements enhance light radiance.
  • the cathode is formed of a conductive transparent material as described above for the anode, thereby forming a transparent or translucent cathode.
  • the device includes an anode and a cathode, both transparent or translucent.
  • the injection layer is the layer between the electrode and the organic layer. In some embodiments, the injection layer reduces drive voltage and enhances light radiance. In some embodiments, the injection layer comprises a hole injection layer and an electron injection layer. The injection layer can be placed between the anode and the light-emitting layer or hole-transporting layer and between the cathode and the light-emitting layer or electron-transporting layer. In some embodiments, an injection layer is present. In some embodiments, there is no injection layer. Preferred examples of compounds that can be used as the hole injection material are given below.
  • a barrier layer is a layer that can prevent charges (electrons or holes) and/or excitons present in the light-emitting layer from diffusing out of the light-emitting layer.
  • an electron blocking layer is between the light-emitting layer and the hole-transporting layer to block electrons from passing through the light-emitting layer to the hole-transporting layer.
  • a hole blocking layer is between the emissive layer and the electron transport layer and blocks holes from passing through the emissive layer to the electron transport layer.
  • the barrier layer prevents excitons from diffusing out of the emissive layer.
  • the electron blocking layer and the hole blocking layer constitute an exciton blocking layer.
  • the terms "electron blocking layer” or "exciton blocking layer” include layers that have the functionality of both an electron blocking layer and an exciton blocking layer.
  • Hole blocking layer functions as an electron transport layer. In some embodiments, the hole blocking layer blocks holes from reaching the electron transport layer during electron transport. In some embodiments, the hole blocking layer increases the probability of recombination of electrons and holes in the emissive layer.
  • the materials used for the hole blocking layer can be the same materials as described above for the electron transport layer. Preferred examples of compounds that can be used in the hole blocking layer are given below.
  • Electron barrier layer The electron blocking layer transports holes. In some embodiments, the electron blocking layer prevents electrons from reaching the hole transport layer during hole transport. In some embodiments, the electron blocking layer increases the probability of recombination of electrons and holes in the emissive layer.
  • the materials used for the electron blocking layer may be the same materials as described above for the hole transport layer. Specific examples of preferred compounds that can be used as the electron barrier material are given below.
  • Exciton barrier layer The exciton blocking layer prevents excitons generated through recombination of holes and electrons in the light emitting layer from diffusing to the charge transport layer. In some embodiments, the exciton blocking layer allows effective confinement of excitons in the emissive layer. In some embodiments, the light emission efficiency of the device is improved. In some embodiments, the exciton blocking layer is adjacent to the emissive layer on either the anode side or the cathode side, and on both sides thereof. In some embodiments, when an exciton blocking layer is present on the anode side, it may be present between and adjacent to the hole-transporting layer and the light-emitting layer.
  • an exciton blocking layer when an exciton blocking layer is present on the cathode side, it may be between and adjacent to the emissive layer and the cathode. In some embodiments, a hole-injection layer, electron-blocking layer, or similar layer is present between the anode and an exciton-blocking layer adjacent to the light-emitting layer on the anode side. In some embodiments, a hole injection layer, electron blocking layer, hole blocking layer, or similar layer is present between the cathode and an exciton blocking layer adjacent to the emissive layer on the cathode side. In some embodiments, the exciton blocking layer comprises an excited singlet energy and an excited triplet energy, at least one of which is higher than the excited singlet energy and triplet energy, respectively, of the emissive material.
  • the hole transport layer comprises a hole transport material.
  • the hole transport layer is a single layer.
  • the hole transport layer has multiple layers.
  • the hole transport material has one property of a hole injection or transport property and an electron barrier property.
  • the hole transport material is an organic material.
  • the hole transport material is an inorganic material. Examples of known hole transport materials that can be used in the present invention include, but are not limited to, triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolones.
  • the hole transport material is selected from porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds. In some embodiments, the hole transport material is an aromatic tertiary amine compound. Specific examples of preferred compounds that can be used as the hole-transporting material are given below.
  • the electron transport layer includes an electron transport material.
  • the electron transport layer is a single layer.
  • the electron transport layer has multiple layers.
  • the electron-transporting material need only function to transport electrons injected from the cathode to the emissive layer.
  • the electron transport material also functions as a hole blocking material.
  • electron-transporting layers examples include, but are not limited to, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidene methane derivatives, anthraquinodimethanes, anthrone derivatives, oxazide Azole derivatives, azole derivatives, azine derivatives or combinations thereof, or polymers thereof.
  • the electron transport material is a thiadiazole derivative or a quinoxaline derivative.
  • the electron transport material is a polymeric material. Specific examples of preferred compounds that can be used as the electron-transporting material are given below.
  • examples of preferred compounds as materials that can be added to each organic layer are given.
  • it may be added as a stabilizing material.
  • Preferred materials that can be used in organic electroluminescence elements are specifically exemplified, but materials that can be used in the present invention are not limitedly interpreted by the following exemplified compounds. Moreover, even compounds exemplified as materials having specific functions can be used as materials having other functions.
  • the emissive layer is incorporated into the device.
  • devices include, but are not limited to, OLED bulbs, OLED lamps, television displays, computer monitors, mobile phones and tablets.
  • an electronic device includes an OLED having at least one organic layer including an anode, a cathode, and a light-emitting layer between the anode and the cathode.
  • compositions described herein can be incorporated into various photosensitive or photoactivated devices, such as OLEDs or optoelectronic devices.
  • the composition may be useful in facilitating charge or energy transfer within a device and/or as a hole transport material.
  • OLEDs organic light emitting diodes
  • OICs organic integrated circuits
  • O-FETs organic field effect transistors
  • O-TFTs organic thin film transistors
  • O-LETs organic light emitting transistors
  • O-SC organic solar cells.
  • O-SC organic optical detectors
  • O-FQD organic field-quench devices
  • LOC luminescent fuel cells
  • O-lasers organic laser diodes
  • an electronic device includes an OLED including at least one organic layer including an anode, a cathode, and a light-emitting layer between the anode and the cathode.
  • the device includes OLEDs of different colors.
  • the device includes an array including combinations of OLEDs.
  • said combination of OLEDs is a combination of three colors (eg RGB).
  • the combination of OLEDs is a combination of colors other than red, green, and blue (eg, orange and yellow-green).
  • said combination of OLEDs is a combination of two, four or more colors.
  • the device a circuit board having a first side with a mounting surface and a second opposite side and defining at least one opening; at least one OLED on the mounting surface, wherein the at least one OLED is configured to emit light, wherein the at least one OLED includes at least one organic layer including an anode, a cathode, and a light-emitting layer between the anode and the cathode; at least one OLED comprising a housing for the circuit board; at least one connector located at an end of said housing, said housing and said connector defining a package suitable for attachment to a lighting fixture.
  • the OLED light comprises multiple OLEDs mounted on a circuit board such that light is emitted in multiple directions. In some embodiments, some light emitted in the first direction is polarized and emitted in the second direction. In some embodiments, a reflector is used to polarize light emitted in the first direction.
  • the emissive layers of the invention can be used in screens or displays.
  • the compounds of the present invention are deposited onto a substrate using processes such as, but not limited to, vacuum evaporation, deposition, evaporation or chemical vapor deposition (CVD).
  • the substrate is a photoplate structure useful in two-sided etching to provide unique aspect ratio pixels.
  • Said screens also called masks
  • the corresponding artwork pattern design allows placement of very steep narrow tie-bars between pixels in the vertical direction as well as large and wide beveled openings in the horizontal direction.
  • the internal patterning of the pixels makes it possible to construct three-dimensional pixel openings with various aspect ratios in the horizontal and vertical directions. Further, the use of imaged "stripes" or halftone circles in pixel areas protects etching in specific areas until these specific patterns are undercut and removed from the substrate. All pixel areas are then treated with a similar etch rate, but their depth varies with the halftone pattern. Varying the size and spacing of the halftone patterns allows etching with varying degrees of protection within the pixel, allowing for the localized deep etching necessary to form steep vertical bevels. . A preferred material for the evaporation mask is Invar.
  • Invar is a metal alloy that is cold rolled into long thin sheets in steel mills. Invar cannot be electrodeposited onto a spin mandrel as a nickel mask.
  • a suitable and low-cost method for forming the open areas in the deposition mask is by wet chemical etching.
  • the screen or display pattern is a matrix of pixels on a substrate.
  • screen or display patterns are fabricated using lithography (eg, photolithography and e-beam lithography).
  • the screen or display pattern is processed using wet chemical etching.
  • the screen or display pattern is fabricated using plasma etching.
  • An OLED display is generally manufactured by forming a large mother panel and then cutting the mother panel into cell panels.
  • each cell panel on a mother panel is formed by forming a thin film transistor (TFT) having an active layer and source/drain electrodes on a base substrate, coating the TFT with a planarizing film, pixel electrodes, and a light emitting layer. , a counter electrode and an encapsulation layer, are sequentially formed and cut from the mother panel.
  • TFT thin film transistor
  • An OLED display is generally manufactured by forming a large mother panel and then cutting the mother panel into cell panels.
  • each cell panel on a mother panel is formed by forming a thin film transistor (TFT) having an active layer and source/drain electrodes on a base substrate, coating the TFT with a planarizing film, pixel electrodes, and a light emitting layer. , a counter electrode and an encapsulation layer, are sequentially formed and cut from the mother panel.
  • TFT thin film transistor
  • an organic light emitting diode (OLED) display comprising: forming a barrier layer on the base substrate of the mother panel; forming a plurality of display units on the barrier layer in cell panel units; forming an encapsulation layer over each of the display units of the cell panel; and applying an organic film to the interfaces between the cell panels.
  • the barrier layer is an inorganic film, eg, made of SiNx, and the edges of the barrier layer are covered with an organic film, made of polyimide or acrylic.
  • the organic film helps the mother panel to be softly cut into cell panels.
  • a thin film transistor (TFT) layer has an emissive layer, a gate electrode, and source/drain electrodes.
  • Each of the plurality of display units may have a thin film transistor (TFT) layer, a planarization film formed on the TFT layer, and a light emitting unit formed on the planarization film, and The applied organic film is made of the same material as that of the planarizing film, and is formed at the same time as the planarizing film is formed.
  • the light-emitting unit is coupled with the TFT layer by a passivation layer, a planarizing film therebetween, and an encapsulation layer that covers and protects the light-emitting unit.
  • the organic film is not connected to the display unit or encapsulation layer.
  • each of the organic film and the planarizing film may include one of polyimide and acrylic.
  • the barrier layer may be an inorganic film.
  • the base substrate may be formed of polyimide.
  • the method further includes attaching a carrier substrate made of a glass material to another surface of a base substrate made of polyimide before forming a barrier layer on the other surface of the base substrate; separating the carrier substrate from the base substrate prior to cutting along the interface.
  • the OLED display is a flexible display.
  • the passivation layer is an organic film placed on the TFT layer to cover the TFT layer.
  • the planarizing film is an organic film formed over a passivation layer.
  • the planarizing film is formed of polyimide or acrylic, as is the organic film formed on the edge of the barrier layer. In some embodiments, the planarizing film and the organic film are formed simultaneously during the manufacture of an OLED display. In some embodiments, the organic film may be formed on the edge of the barrier layer such that a portion of the organic film is in direct contact with the base substrate and a remaining portion of the organic film is , in contact with the barrier layer while surrounding the edges of the barrier layer.
  • the emissive layer comprises a pixel electrode, a counter electrode, and an organic emissive layer disposed between the pixel electrode and the counter electrode.
  • the pixel electrodes are connected to source/drain electrodes of the TFT layer.
  • a suitable voltage is formed between the pixel electrode and the counter electrode, causing the organic light-emitting layer to emit light, thereby displaying an image. is formed.
  • An image forming unit having a TFT layer and a light emitting unit is hereinafter referred to as a display unit.
  • the encapsulation layer that covers the display unit and prevents the penetration of external moisture may be formed into a thin encapsulation structure in which organic films and inorganic films are alternately laminated.
  • the encapsulation layer has a thin film-like encapsulation structure in which multiple thin films are stacked.
  • the organic film applied to the interface portion is spaced apart from each of the plurality of display units.
  • the organic film is formed such that a portion of the organic film is in direct contact with the base substrate and a remaining portion of the organic film is in contact with the barrier layer while surrounding the edges of the barrier layer. be done.
  • the OLED display is flexible and uses a flexible base substrate made of polyimide.
  • the base substrate is formed on a carrier substrate made of glass material, and then the carrier substrate is separated.
  • a barrier layer is formed on the surface of the base substrate opposite the carrier substrate.
  • the barrier layer is patterned according to the size of each cell panel. For example, a base substrate is formed on all surfaces of a mother panel, while barrier layers are formed according to the size of each cell panel, thereby forming grooves at the interfaces between the barrier layers of the cell panels. Each cell panel can be cut along the groove.
  • the manufacturing method further comprises cutting along the interface, wherein a groove is formed in the barrier layer, at least a portion of the organic film is formed with the groove, and the groove is Does not penetrate the base substrate.
  • a TFT layer of each cell panel is formed, and a passivation layer, which is an inorganic film, and a planarization film, which is an organic film, are placed on and cover the TFT layer.
  • the planarizing film eg made of polyimide or acrylic
  • the interface grooves are covered with an organic film, eg made of polyimide or acrylic. This prevents cracking by having the organic film absorb the impact that occurs when each cell panel is cut along the groove at the interface.
  • the grooves at the interfaces between the barrier layers are coated with an organic film to absorb shocks that might otherwise be transmitted to the barrier layers, so that each cell panel is softly cut and the barrier layers It may prevent cracks from forming.
  • the organic film covering the groove of the interface and the planarizing film are spaced apart from each other. For example, when the organic film and the planarizing film are connected to each other as a single layer, external moisture may enter the display unit through the planarizing film and the portion where the organic film remains. The organic film and planarizing film are spaced from each other such that the organic film is spaced from the display unit.
  • the display unit is formed by forming a light emitting unit and an encapsulating layer is placed over the display unit to cover the display unit.
  • the carrier substrate carrying the base substrate is separated from the base substrate.
  • the carrier substrate separates from the base substrate due to the difference in coefficient of thermal expansion between the carrier substrate and the base substrate.
  • the mother panel is cut into cell panels.
  • the mother panel is cut along the interfaces between the cell panels using a cutter.
  • the interface groove along which the mother panel is cut is coated with an organic film so that the organic film absorbs impact during cutting.
  • the barrier layer can be prevented from cracking during cutting.
  • the method reduces the reject rate of the product and stabilizes its quality.
  • Another embodiment includes a barrier layer formed on a base substrate, a display unit formed on the barrier layer, an encapsulation layer formed on the display unit, and an organic layer applied to the edges of the barrier layer.
  • An OLED display comprising a film.
  • a compound represented by the following general formula (1) A compound represented by the following general formula (1).
  • General formula (1) one of X 1 and X 2 is a nitrogen atom, and the other is a boron atom.
  • R 1 to R 26 , A 1 and A 2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 4 and R 5 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 8 and R 9 , R 9 and R10 , R10 and R11 , R11 and R12 , R13 and R14 , R14 and R15 , R15 and R16 , R16 and R17 , R17 and R18 , R18 and R 19 , R 19 and R 20 , R 20 and R 21 , R 21 and R 22 , R 22 and R 23 , R 23 and R 24 , R 24 and R 25 , R 25 and R 26 are bonded together to form a cyclic It may form a structure.
  • each hydrogen atom in skeletons (1a) and (1b) may be substituted with a deuterium atom or a substituent, or may be substituted with a linking group together with an adjacent hydrogen atom to form a cyclic structure. . ] [3] The compound according to [1], wherein the compound has the following skeleton (2a) or skeleton (2b). [Each hydrogen atom in skeletons (2a) and (2b) may be substituted with a deuterium atom or a substituent, or may be substituted with a linking group together with an adjacent hydrogen atom to form a cyclic structure. . ] [4] The compound according to [1], wherein the compound has the following skeleton (3a) or skeleton (3b).
  • each hydrogen atom in skeletons (3a) and (3b) may be substituted with a deuterium atom or a substituent, or may be substituted with a linking group together with an adjacent hydrogen atom to form a cyclic structure. . ]
  • Y 1 to Y 4 each independently represent two hydrogen atoms, a single bond or N(R 27 )
  • Z 1 to Z 4 each independently represent an oxygen atom or represents a sulfur atom
  • R27 represents a hydrogen atom, a deuterium atom or a substituent.
  • Each hydrogen atom in skeletons (4a) and (4b) may be substituted with a deuterium atom or a substituent, or substituted with a linking group together with an adjacent hydrogen atom to form a cyclic structure.
  • [6] The compound according to [1], wherein the compound has the following skeleton (5a) or skeleton (5b).
  • Y 5 to Y 8 each independently represent two hydrogen atoms, a single bond or N(R 27 )
  • Z 5 to Z 8 each independently represent an oxygen atom or represents a sulfur atom
  • R27 represents a hydrogen atom, a deuterium atom or a substituent.
  • Each hydrogen atom in skeletons (5a) and (5b) may be substituted with a deuterium atom or a substituent, or substituted with a linking group together with an adjacent hydrogen atom to form a cyclic structure.
  • Y 9 to Y 12 each independently represent two hydrogen atoms, a single bond or N(R 27 )
  • Z 9 to Z 16 each independently represent an oxygen atom or represents a sulfur atom
  • R27 represents a hydrogen atom, a deuterium atom or a substituent.
  • Each hydrogen atom in skeletons (6a) and (6b) may be substituted with a deuterium atom or a substituent, or substituted with a linking group together with an adjacent hydrogen atom to form a cyclic structure.
  • [8] The compound according to [1], wherein the compound has the following skeleton (7a) or skeleton (7b).
  • Y 21 to Y 24 each independently represent two hydrogen atoms, a single bond or N(R 27 ), where R 27 represents a hydrogen atom, a deuterium atom or a substituent; show.
  • Each hydrogen atom in skeletons (7a) and (7b) may be substituted with a deuterium atom or a substituent, or substituted with a linking group together with an adjacent hydrogen atom to form a cyclic structure.
  • skeleton (8a) or skeleton (8b) The compound according to [1], wherein the compound has the following skeleton (8a) or skeleton (8b).
  • Y 25 to Y 28 each independently represent two hydrogen atoms, a single bond or N(R 27 ), where R 27 represents a hydrogen atom, a deuterium atom or a substituent; show.
  • Each hydrogen atom in skeletons (8a) and (8b) may be substituted with a deuterium atom or a substituent, or substituted with a linking group together with an adjacent hydrogen atom to form a cyclic structure.
  • Y 29 to Y 32 each independently represent two hydrogen atoms, a single bond or N(R 27 ), where R 27 represents a hydrogen atom, a deuterium atom or a substituent; show.
  • Each hydrogen atom in skeletons (9a) and (9b) may be substituted with a deuterium atom or a substituent, or substituted with a linking group together with an adjacent hydrogen atom to form a cyclic structure.
  • skeleton (10) Each hydrogen atom in skeleton (10) may be substituted with a deuterium atom or a substituent, or may be substituted with a linking group together with an adjacent hydrogen atom to form a cyclic structure.
  • An organic light emitting device comprising the compound according to any one of [1] to [14].
  • the layer containing the compound also contains a delayed fluorescence material in addition to the host material, and the lowest excited singlet energy of the delayed fluorescence material is lower than the host material and higher than the compound according to [19].
  • Organic light-emitting device [21] The organic light-emitting device according to [18], wherein the device has a layer containing the compound, and the layer also contains a light-emitting material having a structure different from that of the compound.
  • the features of the present invention will be more specifically described below with reference to Synthesis Examples and Examples.
  • the materials, processing details, processing procedures, etc. described below can be changed as appropriate without departing from the gist of the present invention. Therefore, the scope of the present invention should not be construed to be limited by the specific examples shown below.
  • the emission characteristics were evaluated using a source meter (manufactured by Keithley: 2400 series), a semiconductor parameter analyzer (manufactured by Agilent Technologies: E5273A), an optical power meter measuring device (manufactured by Newport: 1930C), and an optical spectrometer.
  • carbazole (7.69 g, 46.0 mmol) was added to an N,N-dimethylformamide solution (160 mL) of sodium hydride (1.16 g, 29.0 mmol) and stirred at room temperature for 30 minutes.
  • ,5-dibromo-1,4-difluorobenzene (5.00 g, 18.4 mmol) was added and stirred at 60° C. for 16 hours. The mixture was returned to room temperature, water was added, and the precipitated solid was filtered.
  • n-butyllithium (1.6 mol/L hexane solution, 4.5 mL, 7.19 mmol) was added to a toluene solution (100 mL) of Intermediate A (1.00 g, 1.80 mmol) at -30°C. and stirred at room temperature for 1 hour.
  • the reaction mixture was cooled to ⁇ 30° C., boron tribromide (0.991 g, 3.96 mmol) was added, and the mixture was stirred at room temperature for 30 minutes.
  • 1,2,2,6,6-Pentamethylpiperidine (0.558 g, 3.60 mmol) was added to the reaction mixture and stirred at 120° C. for 17 hours.
  • n-butyl lithium (1.6 mol/L hexane solution, 2.9 mL, 4.60 mmol) was added to a toluene solution (300 mL) of Intermediate B (1.00 g, 1.15 mmol) at -30°C. and stirred at room temperature for 1 hour.
  • the reaction mixture was cooled to ⁇ 30° C., boron tribromide (0.633 g, 2.53 mmol) was added, and the mixture was stirred at room temperature for 30 minutes.
  • 1,2,2,6,6-Pentamethylpiperidine (0.357 g, 2.30 mmol) was added to the reaction mixture and stirred at 120° C. for 17 hours.
  • reaction mixture was cooled to room temperature, 2-mesitylmagnesium bromide (1.0 mol/L tetrahydrofuran solution, 3.4 mL, 3.40 mmol) was added and stirred at room temperature for 4 hours.
  • the obtained reaction mixture was filtered through a silica pad (toluene), and the solvent of the filtrate was distilled off. Ethyl acetate was added to the resulting viscous body and the precipitate was filtered to obtain Compound 2 (0.0710 g, 0.0732 mmol, yield 6%) as an orange solid.
  • reaction mixture was returned to room temperature, 2,4,6-triisopropylmagnesium bromide-lithium chloride complex (1.0 mol/L tetrahydrofuran solution, 17.7 mL, 17.7 mmol) was added, and the mixture was stirred at 120° C. for 4 hours.
  • Example 1 Preparation of thin film and evaluation of luminescence
  • compound 2 and mCBP were vapor-deposited from different vapor deposition sources at a vacuum degree of less than 1 ⁇ 10 -3 Pa by a vacuum vapor deposition method.
  • a thin film with a concentration of 0.5% by weight was formed with a thickness of 100 nm.
  • Thin films were obtained in the same manner using compounds 1, 7, 8, 9 and 11 instead of compound 2.
  • PLQY photoluminescence quantum yield
  • Example 2 Preparation of thin film and evaluation of orientation On a quartz substrate, Host 1, delayed fluorescence material 1 and compound 6 are vapor-deposited from different vapor deposition sources under conditions of a degree of vacuum of less than 1 ⁇ 10 -3 Pa by vacuum vapor deposition. Then, a thin film having a Host 1 concentration of 64.5% by weight, a delayed fluorescence material 1 concentration of 35.0% by weight, and a Compound 6 concentration of 0.5% by weight was formed with a thickness of 100 nm. Thin films were obtained in the same manner using compounds 2, 3, 7, 8, 10 and 11 instead of compound 6.
  • Host 1, delayed fluorescence material 2, and compound 6 were vapor-deposited from different vapor deposition sources on a quartz substrate by a vacuum vapor deposition method at a degree of vacuum of less than 1 ⁇ 10 ⁇ 3 Pa, and the concentration of Host 1 was 64. 5% by weight, the concentration of the delayed fluorescence material 2 was 35.0% by weight, and the concentration of the compound 6 was 0.5% by weight to form a thin film with a thickness of 100 nm. A thin film was obtained in the same manner using compound 1 instead of compound 6.
  • Host 1, delayed fluorescence material 2, and compound 6 were vapor-deposited from different vapor deposition sources on a quartz substrate by a vacuum vapor deposition method at a degree of vacuum of less than 1 ⁇ 10 ⁇ 3 Pa, and the concentration of Host 1 was A thin film with a thickness of 100 nm was formed with a concentration of 54.5% by weight, a concentration of delayed fluorescence material 2 of 45.0% by weight, and a concentration of compound 6 of 0.5% by weight. Thin films were obtained in the same manner using compounds 1, 7, 8 and 10 instead of compound 6.
  • Host 1, delayed fluorescence material 3, and compound 6 were vapor-deposited from different vapor deposition sources on a quartz substrate by a vacuum vapor deposition method at a degree of vacuum of less than 1 ⁇ 10 ⁇ 3 Pa, and the concentration of Host 1 was A thin film with a thickness of 100 nm was formed with a concentration of 54.2% by weight, a concentration of delayed fluorescence material 3 of 45.0% by weight, and a concentration of compound 6 of 0.8% by weight. Each thin film was obtained in the same manner using compounds 1, 3 and 11 instead of compound 6.
  • the following table shows the results of measuring the orientation value (S value) of the compound represented by the general formula (1) for each thin film produced. When compounds 2, 3, 6, 7, 8, 10 and 11 were used, particularly good orientation was exhibited.
  • Example 3 Preparation and evaluation of organic electroluminescence device
  • ITO indium tin oxide
  • NPD was formed thereon to a thickness of 30 nm
  • EBL1 was formed to a thickness of 10 nm.
  • Host 1, delayed fluorescence material 3, and compound 2 were co-evaporated from different evaporation sources to form a light-emitting layer with a thickness of 40 nm.
  • the contents of Host 1, delayed fluorescence material 3, and compound 2 were 54.2% by weight, 45.0% by weight, and 0.8% by weight, respectively.
  • Liq and SF3-TRZ were co-deposited from different vapor deposition sources to form a layer with a thickness of 30 nm.
  • the contents of Liq and SF3-TRZ in this layer were 30% and 70% by weight, respectively.
  • Liq was formed to a thickness of 2 nm, and then aluminum (Al) was vapor-deposited to a thickness of 100 nm to form a cathode, thereby forming an organic electroluminescence device.
  • Each organic electroluminescence device was produced in the same manner using compounds 1, 6, 11, 13 and 15 instead of compound 2. Further, the organic electroluminescent material of Comparative Example 1 was repeated in the same manner, except that a light-emitting layer composed of Host 1 (55% by weight) and delayed fluorescence material 3 (45% by weight) was formed without using Compound 2. A luminescence device was fabricated. When electricity was applied to each organic electroluminescence element, light emission was observed from any element. In the device using the compound represented by the general formula (1), the amount of light emitted from the compound represented by the general formula (1) was the largest among the materials contained in the light-emitting layer. The external quantum efficiency (EQE) of each organic electroluminescence device was measured at 6.3 mA/cm 2 .
  • Example 4 Preparation and evaluation of an organic electroluminescence device with a different delayed fluorescence material
  • the delayed fluorescence material 1 was used, and the composition of the light emitting layer was Host 1, delayed fluorescence material 1, The content of Compound 2 was adjusted to 64.5% by weight, 45.0% by weight and 0.5% by weight in that order.
  • An organic electroluminescence device was produced in the same manner as in Example 3 except for the above. Each organic electroluminescence device was produced in the same manner using compounds 5, 6, and 7 instead of compound 2, respectively.
  • the organic electroluminescent material of Comparative Example 2 was repeated in the same manner, except that a light-emitting layer composed of Host 1 (65% by weight) and delayed fluorescence material 3 (35% by weight) was formed without using Compound 2.
  • a luminescence device was fabricated. When electricity was applied to each organic electroluminescence element, light emission was observed from any element. In the device using the compound represented by the general formula (1), the amount of light emitted from the compound represented by the general formula (1) was the largest among the materials contained in the light-emitting layer.
  • the external quantum efficiency (EQE) of each organic electroluminescence device was measured at 6.3 mA/cm 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

下記構造の化合物は優れた発光特性を有する。X1、X2は一方がNで他方がBであり、R1~R26、A1、A2はHか置換基である。

Description

化合物、発光材料および有機発光素子
 本発明は、良好な発光特性を有する化合物に関する。また本発明は、その化合物を用いた発光材料および有機発光素子にも関する。
 有機発光ダイオード(OLED)などの有機発光素子の発光効率を高める研究が盛んに行われている。
 例えば、非特許文献1には、5,9-Diphenyl-5H,9H-[1,4]benzazaborino[2,3,4-kl]phenazaborine (DABNA-1)のように多重共鳴効果を発現する化合物を用いることにより、逆系間交差過程による熱活性型遅延蛍光を発現し、半値幅が狭くて色純度が高い発光を実現したことが記載されている。このような発光は、高い発光効率を達成することができることから、ディスプレイを志向した用途において有用である。
 また、非特許文献1および2には、DABNA-1を修飾することによって、最高被遷移分子軌道(HOMO)および最低空分子軌道(LUMO)などのエネルギー準位を調整し、また発光へと寄与する蛍光放射過程や逆系間交差過程を促進して、エレクトロルミネッセンス量子効率を改善したことが記載されている。
Adv. Mater. 2016, 28, 2777-2781 Angew. Chem. Int. Ed. 2018, 57, 11316-11320
 このように多重共鳴効果を発現する化合物に関する研究が種々行われているが、その構造と発光特性の関係については未知な点も多い。実用性のある発光素子を製造するためには、少しでも発光特性が優れた材料を提供することが必要とされている。
 そこで、本発明者らは、多重共鳴効果を発現する化合物の誘導体と発光特性の関係を検討して、優れた発光特性を示す構造を一般化することを目的として鋭意検討を進めた。
 鋭意検討を進めた結果、本発明者らは、多重共鳴効果を発現する化合物の中でも特定の構造を有するものが優れた発光特性を有することを見いだした。本発明は、このような知見に基づいて提案されたものであり、以下の構成を有する。
[1] 下記一般式(1)で表される化合物。
一般式(1) 
Figure JPOXMLDOC01-appb-C000005
[一般式(1)において、XおよびXは、一方が窒素原子であり、他方がホウ素原子である。R~R26、A、Aは、各々独立に水素原子、重水素原子または置換基を表す。RとR、RとR、RとR、RとR、RとR、RとR、RとR、RとR、RとR10、R10とR11、R11とR12、R13とR14、R14とR15、R15とR16、R16とR17、R17とR18、R18とR19、R19とR20、R20とR21、R21とR22、R22とR23、R23とR24、R24とR25、R25とR26は、互いに結合して環状構造を形成していてもよい。ただし、Xが窒素原子であるとき、R17とR18は互いに結合して単結合となりピロール環を形成し、Xが窒素原子であるとき、R21とR22は互いに結合して単結合となりピロール環を形成する。ただし、Xが窒素原子であって、RとRおよびR21とR22が窒素原子を介して結合して6員環を形成し、R17とR18が互いに結合して単結合を形成しているとき、R~Rの少なくとも1つは置換もしくは無置換のアリール基であるか、RとR、RとR、RとR、RとR、RとRのいずれかが互いに結合して芳香環または複素芳香環を形成している。また、Xがホウ素原子で、Xが窒素原子であり、RとR、R17とR18が互いに結合してホウ素原子を含む環状構造を形成している場合、その環状構造は5~7員環であり、6員環である場合はRとR、R17とR18が互いに結合して-B(R32)-、-CO-、-CS-または-N(R27)-を形成している。R27は水素原子、重水素原子または置換基を表す。]
[2] Xが窒素原子であり、Xがホウ素原子である、[1]に記載の化合物。
[3] RとR、RとR、RとR、RとR、RとR、RとR、RとR、RとR10、R10とR11、R11とR12、R13とR14、R14とR15、R15とR16、R16とR17、R18とR19、R19とR20、R20とR21、R22とR23、R23とR24、R24とR25、R25とR26のうちの1~6組は、互いに結合して新たにベンゾフラン環またはベンゾチオフェン環を形成している、[1]または[2]に記載の化合物。
[4] RおよびRの少なくとも一方が置換基である、[1]~[3]のいずれか1つに記載の化合物。
[5] RおよびRがともに置換基である、[1]~[3]のいずれか1つに記載の化合物。
[6] RおよびRが表す置換基が、アルキル基およびアリール基からなる群より選択される1つの基または2つ以上を組み合わせて形成される基である、[4]または[5]に記載の化合物。
[7] RおよびR12がともに置換基である、[1]~[6]のいずれか1つに記載の化合物。特に、RおよびR12が炭素数2以上のアルキル基、好ましくは3以上のアルキル基、より好ましくは炭素数3~8のアルキル基、さらに好ましくは3または4のアルキル基である化合物。
[8] 下記一般式(1a)で表される、[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000006
[一般式(1a)において、Ar~Arは各々独立に置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基を表す。R41およびR42は、各々独立に置換もしくは無置換のアルキル基を表す。m1およびm2は各々独立に0~5の整数を表し、n1およびn3は各々独立に0~4の整数を表し、n2およびn4は各々独立に0~3の整数を表す。A、Aは、各々独立に水素原子、重水素原子または置換基を表す。n1~n4の少なくとも1つは1以上であり、m1およびm2は各々独立に1~5のいずれかの整数であることが好ましい。]
[9] AおよびAが、各々独立にハメットのσp値が0.2よりも大きい基である、[1]~[8]のいずれか1つに記載の化合物。
[10] AおよびAがともにシアノ基である、[9]に記載の化合物。
[11] AおよびAがともにハロゲン原子である、[9]に記載の化合物。
[12] 回転対称構造を有する、[1]~[11]のいずれか1つに記載の化合物。
[13] 下記のいずれかの構造を有する、[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000007
[14] 下記のいずれかの構造を有する化合物。
Figure JPOXMLDOC01-appb-C000008
[15] [1]~[14]のいずれか1つに記載の化合物からなる発光材料。
[16] [1]~[14]のいずれか1つに記載の化合物を含む膜。
[17] [1]~[14]のいずれか1つに記載の化合物を含む有機半導体素子。
[18] [1]~[14]のいずれか1つに記載の化合物を含む有機発光素子。
[19] ホスト材料と遅延蛍光材料と前記化合物を含む発光層を有しており、素子に含まれる材料のうち、前記化合物からの発光量が最大である、[18]に記載の有機発光素子。
[20] 遅延蛍光を放射する、[18]または[19]に記載の有機発光素子。
 本発明の化合物は、優れた発光特性を示す。本発明の化合物は有機発光素子の材料として有用である。
有機エレクトロルミネッセンス素子の層構成例を示す概略断面図である。
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。また、本発明に用いられる化合物の分子内に存在する水素原子の一部または全部は重水素原子(H、デューテリウムD)に置換することができる。本明細書の化学構造式では、水素原子はHと表示しているか、その表示を省略している。例えばベンゼン環の環骨格構成炭素原子に結合する原子の表示が省略されているとき、表示が省略されている箇所ではHが環骨格構成炭素原子に結合しているものとする。本明細書にて「置換基」という用語は、水素原子および重水素原子以外の原子または原子団を意味する。一方、「置換もしくは無置換の」という用語は、水素原子が重水素原子または置換基で置換されていてもよいことを意味する。
[一般式(1)で表される化合物]
 下記一般式(1)で表される化合物について説明する。
一般式(1)
Figure JPOXMLDOC01-appb-C000009
 一般式(1)において、XおよびXは、一方が窒素原子であり、他方がホウ素原子である。本発明の一態様では、Xが窒素原子であり、Xがホウ素原子である。このとき、R17とR18は互いに結合して単結合となりピロール環を形成する。本発明の別の一態様では、Xがホウ素原子であり、Xが窒素原子である。このとき、R21とR22は互いに結合して単結合となりピロール環を形成する。
 一般式(1)において、R~R26、A、Aは、各々独立に水素原子、重水素原子または置換基を表す。
 RとR、RとR、RとR、RとR、RとR、RとR、RとR、RとR、RとR10、R10とR11、R11とR12、R13とR14、R14とR15、R15とR16、R16とR17、R17とR18、R18とR19、R19とR20、R20とR21、R21とR22、R22とR23、R23とR24、R24とR25、R25とR26は、互いに結合して環状構造を形成していてもよい。
 RとRが結合して形成する環状構造は、環骨格構成原子としてホウ素原子と4つの炭素原子を含む。R17とR18が結合して形成する環状構造は、Xがホウ素原子であるとき、環骨格構成原子としてホウ素原子と4つの炭素原子を含む。Xが窒素原子であるとき、環状構造はピロール環に限定される。R21とR22が結合して形成する環状構造は、Xがホウ素原子であるとき、環骨格構成原子としてホウ素原子と4つの炭素原子を含む。Xが窒素原子であるとき、環状構造はピロール環に限定される。RとR、R17とR18、R21とR22が互いに結合してホウ素原子を含む環状構造を形成するとき、その環状構造は5~7員環であることが好ましく、5または6員環であることがより好ましく、6員環であることがさらに好ましい。RとR、R17とR18、R21とR22が互いに結合するときは、互いに結合して単結合、-O-、-S-、-N(R27)-、-C(R28)(R29)-、-Si(R30)(R31)-、-B(R32)-、-CO-、-CS-、を形成することが好ましく、-O-、-S-または-N(R27)-を形成することがより好ましく、-N(R27)-を形成することがさらに好ましい。ここで、R27~R32は、各々独立に水素原子、重水素原子または置換基を表す。置換基としては、後述の置換基群A~Eのいずれかから選択される基を採用してもよいが、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基であることが好ましく、特にR27は置換もしくは無置換のアリール基であることが好ましい。R27~R32が置換基であるとき、RとRが互いに結合して形成する環におけるR27~R32はRおよびRの少なくとも一方と結合してさらに環状構造を形成してもよく、R17とR18が互いに結合して形成する環におけるR27~R32はR16およびR19の少なくとも一方と結合してさらに環状構造を形成してもよく、R21とR22が互いに結合して形成する環におけるR27~R32はR20およびR23の少なくとも一方と結合してさらに環状構造を形成してもよい。本発明の一態様では、RとR、R17とR18、R21とR22のうちの1組だけが互いに結合している。本発明の一態様では、RとR、R17とR18、R21とR22のうちの2組だけが互いに結合している。本発明の一態様では、RとR、R17とR18、R21とR22のすべてが互いに結合している。
 RとR、RとR、RとR、RとR、RとR、RとR、RとR、RとR10、R10とR11、R11とR12、R13とR14、R14とR15、R15とR16、R16とR17、R18とR19、R19とR20、R20とR21、R22とR23、R23とR24、R24とR25、R25とR26が互いに結合して形成する環状構造は、芳香環であっても脂肪環であってもよく、またヘテロ原子を含むものであってもよく、さらに他の環が1環以上縮合していてもよい。ここでいうヘテロ原子としては、窒素原子、酸素原子および硫黄原子からなる群より選択されるものであることが好ましい。形成される環状構造の例として、ベンゼン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ピロール環、イミダゾール環、ピラゾール環、トリアゾール環、イミダゾリン環、フラン環、チオフェン環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、シクロヘキサジエン環、シクロヘキセン環、シクロペンテン環、シクロヘプタトリエン環、シクロヘプタジエン環、シクロヘプテン環、およびこれらの環からなる群より選択される1つ以上の環がさらに縮合した環を挙げることができる。本発明の好ましい一態様では、環状構造は置換もしくは無置換のベンゼン環(さらに環が縮合していてもよい)であり、例えば、アルキル基またはアリール基で置換されていてもよいベンゼン環である。本発明の好ましい一態様では、環状構造は置換もしくは無置換の複素芳香環であり、好ましくはベンゾフランのフラン環、ベンゾチオフェンのチオフェン環である。RとR、RとR、RとR、RとR、RとR、RとR、RとR、RとR10、R10とR11、R11とR12、R13とR14、R14とR15、R15とR16、R16とR17、R18とR19、R19とR20、R20とR21、R22とR23、R23とR24、R24とR25、R25とR26のうち、互いに結合して環状構造を形成している組み合わせの数は0であってもよいし、例えば1~6のいずれかであってもよい。例えば1~4のいずれかであってもよく、1を選択したり、2を選択したり、3または4を選択したりすることができる。本発明の一態様では、RとR、RとR、RとRから選択される1組が互いに結合して環状構造を形成している。本発明の一態様では、RとRが互いに結合して環状構造を形成している。本発明の一態様では、RとR10、R10とR11、R11とR12から選択される1組が互いに結合して環状構造を形成している。本発明の一態様では、RとR、R13とR14がいずれも互いに結合して環状構造を形成している。本発明の一態様では、RとR、RとR、RとRから選択される1組が互いに結合して環状構造を形成しており、なおかつ、RとRが互いに結合して環状構造を形成している。本発明の一態様では、RとR、R19とR20がいずれも互いに結合して環状構造を形成している。
 隣接するR(n=1~26)と互いに結合していないR~R26は、水素原子、重水素原子または置換基である。置換基としては、後述の置換基群A~Eのいずれかから選択される基を採用することができる。
 R~R26が採りうる好ましい置換基は、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基であり、例えば置換基は置換もしくは無置換のアリール基であってもよいし、例えば置換基は置換もしくは無置換のアルキル基であってもよい。ここでいうアルキル基、アリール基、ヘテロアリール基の置換基も置換基群A~Eのいずれかから選択される基を採用することができるが、好ましくはアルキル基、アリール基およびヘテロアリール基からなる群より選択される1以上の基であり、より好ましくは置換基群Eの基であり、無置換であってもよい。本発明の好ましい一態様では、R~Rの少なくとも1つは置換基であり、好ましくは置換基群Eの基である。例えばR~Rの少なくとも1つが置換基であり、好ましくは置換基群Eの基である。例えば、RおよびRの少なくとも1つが置換基であり、好ましくは置換基群Eの基である。本発明の好ましい一態様では、RおよびRの少なくとも一方が置換基であり、より好ましくは両方が置換基であり、好ましくは置換基群Eの基である。本発明の好ましい一態様では、Xが窒素原子であるとき、R15およびR20の少なくとも一方が置換基であり、より好ましくは両方が置換基であり、好ましくは置換基群Eの基である。このとき、R17とR18は互いに結合して単結合を形成している。本発明の好ましい一態様では、Xが窒素原子であるとき、R19およびR24の少なくとも一方が置換基であり、より好ましくは両方が置換基であり、好ましくは置換基群Eの基である。このとき、R21とR22は互いに結合して単結合を形成している。本発明の一態様では、RおよびR12の少なくとも一方が置換基であり、好ましくは両方が置換基である。本発明の一態様では、R、R10およびR12が置換基である。R~R12の置換基としては、無置換のアルキル基が好ましい。特に、RおよびR12が炭素数2以上のアルキル基(好ましくは炭素数3以上のアルキル基、より好ましくは炭素数3~8のアルキル基、さらに好ましくは3または4のアルキル基)であるとき、膜にしたときに配向性が高くなり好ましい。中でも、RおよびR12が置換基(好ましくはアルキル基、より好ましくは炭素数2以上のアルキル基、さらに好ましくは炭素数3以上のアルキル基、さらにより好ましくは炭素数3~8のアルキル基、特に好ましくは3または4のアルキル基)であって、なおかつ、R~Rの少なくとも1つは置換基(好ましくは置換基群Eの基)である場合が特に好ましい。Xがホウ素原子であるとき、R13およびR17の少なくとも一方が置換基であり、好ましくは両方が置換基である。本発明の一態様では、Xがホウ素原子であるとき、R13、R15およびR17が置換基である。Xがホウ素原子であるとき、R13~R17の置換基としては、無置換のアルキル基が好ましい。Xがホウ素原子であるとき、R22およびR26の少なくとも一方が置換基であり、好ましくは両方が置換基である。本発明の一態様では、Xがホウ素原子であるとき、R22、R24およびR26が置換基である。Xがホウ素原子であるとき、R22~R26の置換基としては、無置換のアルキル基が好ましい。一般式(1)中にBと表示されるホウ素原子や、XまたはXが表すホウ素原子に結合する基の具体例を以下に挙げる。ただし、本発明で採用することができるホウ素原子に結合する基は、以下の具体例により限定的に解釈されることはない。なお、本明細書中ではメチル基はCHの表示を省略している。*は結合位置を表す。
Figure JPOXMLDOC01-appb-C000010
 以下において、一般式(1)のR~R26の具体例を挙げる。R~R、Xが窒素原子であるときのR13~R21、Xが窒素原子であるときのR18~R26としてZ1~Z9が好ましく、R~R12、Xが窒素原子であるときのR22~R26、Xが窒素原子であるときのR13~R17としてZ1~Z7が好ましい。ただし、本発明で採用することができるホウ素原子に結合する基は、以下の具体例により限定的に解釈されることはない。Dは重水素原子を表す。*は結合位置を表す。
Figure JPOXMLDOC01-appb-C000011
 AおよびAは、水素原子、重水素原子または置換基である。置換基としては、後述の置換基群A~Eのいずれかから選択される基を採用することができる。
 本発明の好ましい一態様では、AおよびAは、各々独立に水素原子または重水素原子である。例えば、AおよびAは水素原子である。例えば、AおよびAは重水素原子である。
 AおよびAの一方は置換基であってもよい。また、AおよびAは各々独立に置換基であってもよい。AおよびAが採りうる好ましい置換基は、アクセプター性基である。アクセプター性基は、ハメットのσp値が正の基である。ここで、「ハメットのσp値」は、L.P.ハメットにより提唱されたものであり、パラ置換ベンゼン誘導体の反応速度または平衡に及ぼす置換基の影響を定量化したものである。具体的には、パラ置換ベンゼン誘導体における置換基と反応速度定数または平衡定数の間に成立する下記式:
      log(k/k0) = ρσp
または
      log(K/K0) = ρσp
における置換基に特有な定数(σp)である。上式において、k0は置換基を持たないベンゼン誘導体の速度定数、kは置換基で置換されたベンゼン誘導体の速度定数、K0は置換基を持たないベンゼン誘導体の平衡定数、Kは置換基で置換されたベンゼン誘導体の平衡定数、ρは反応の種類と条件によって決まる反応定数を表す。本発明における「ハメットのσp値」に関する説明と各置換基の数値については、Hansch,C.et.al.,Chem.Rev.,91,165-195(1991)のσp値に関する記載を参照することができる。
 AおよびAが採りうるアクセプター性基は、ハメットのσp値が0.2より大きい基であることがより好ましい。ハメットのσp値が0.2より大きい基として、シアノ基、少なくともシアノ基で置換されているアリール基、フッ素原子を含む基、環骨格構成原子として窒素原子を含む置換もしくは無置換のヘテロアリール基を挙げることができる。ここでいう少なくともシアノ基で置換されているアリール基は、シアノ基以外の置換基(例えばアルキル基やアリール基)で置換されていてもよいが、シアノ基だけで置換されているアリール基であってもよい。少なくともシアノ基で置換されているアリール基は、少なくともシアノ基で置換されているフェニル基であることが好ましい。シアノ基の置換数は1または2であることが好ましく、例えば1であってもよく、2であってもよい。フッ素原子を含む基は、フッ素原子、フッ化アルキル基、フッ素原子またはフッ化アルキル基で少なくとも置換されたアリール基を挙げることができる。フッ化アルキル基は、パーフルオロアルキル基であることが好ましく、炭素原子数は1~6であることが好ましく、1~3であることがより好ましい。また、環骨格構成原子として窒素原子を含むヘテロアリール基は、単環であってもよいし、2つ以上の環が縮合した縮合環であってもよい。縮合環である場合、縮合した後の環の数は2~6であることが好ましく、例えば2~4の中から選択したり、2としたりすることができる。ヘテロアリール基を構成する環の具体例として、ピリジン環、ピリミジン環、ピラジン環、トリアジン環、キノリン環、イソキノリン環、キナゾリン環、キノキサリン環、キナゾリン環やキノキサリン環以外のナフチリジン環を挙げることができる。ヘテロアリール基を構成する環は、重水素原子や置換基で置換されていてもよく、置換基としては例えば、アルキル基、アリール基およびヘテロアリール基からなる群より選択される1つの基または2つ以上を組み合わせて形成される基を挙げることができる。AおよびAが採りうるアクセプター性基として特に好ましいのはシアノ基である。
 本発明の一態様では、AおよびAの少なくとも一方はアクセプター性基である。本発明の一態様では、AおよびAの一方だけがアクセプター性基である。本発明の一態様では、AおよびAの両方が同じアクセプター性基である。本発明の一態様では、AおよびAが互いに異なるアクセプター性基である。本発明の一態様では、AおよびAがシアノ基である。本発明の一態様では、AおよびAがハロゲン原子であり、例えば臭素原子である。
 以下において、本発明で採用することができるアクセプター性基の具体例を示す。ただし、本発明において用いることができるアクセプター性基は以下の具体例によって限定的に解釈されることはない。本明細書中ではメチル基はCHの表示を省略している。このため、例えばA15であれば、4-メチルフェニル基が2つ含まれる基を示している。また「D」は重水素原子を表す。*は結合位置を表す。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 なお、Xが窒素原子であって、RとRが窒素原子を介して結合して6員環を形成し、R21とR22が窒素原子を介して結合して6員環を形成し、R17とR18が互いに結合して単結合を形成しているとき、R~Rの少なくとも1つは置換もしくは無置換のアリール基であるか、RとR、RとR、RとR、RとR、RとRのいずれかが互いに結合して芳香環(縮合していてもよい置換もしくは無置換のベンゼン環)または複素芳香環(好ましくは縮合していてもよい置換もしくは無置換のベンゾフランのフラン環、縮合していてもよい置換もしくは無置換のベンゾチオフェンのチオフェン環)を形成している。
 また、Xがホウ素原子で、Xが窒素原子であり、RとR、R17とR18が互いに結合してホウ素原子を含む環状構造を形成している場合、その環状構造は5~7員環であり、6員環である場合はRとR、R17とR18が互いに結合して-B(R32)-、-CO-、-CS-または-N(R27)-を形成している。R27は水素原子、重水素原子または置換基を表すことが好ましい。
 一般式(1)のXが窒素原子であるとき、本発明の化合物は下記の骨格(1a)を有する。一般式(1)のXが窒素原子であるとき、本発明の化合物は下記の骨格(1b)を有する。
Figure JPOXMLDOC01-appb-C000014
 骨格(1a)および(1b)における各水素原子は、重水素原子または置換基に置換されていてもよい。また、隣接する水素原子とともに連結基に置換されて環状構造を形成していてもよい。詳細については、一般式(1)の対応するR~R26、A、Aの記載を参照することができる。骨格(1a)および(1b)においてホウ素原子に結合しているフェニル基がいずれもメシチル基、2,6-ジイソプロピルフェニル基または2,4,6-トリイソプロピルフェニル基に置換されている化合物などを例示することができる。本発明の一態様では、骨格(1a)および(1b)における各水素原子は、隣接する水素原子とともに連結基に置換されて環状構造を形成していない。
 骨格(1a)を有する化合物の好ましい一群として、下記一般式(1a)で表される化合物を例示することができる。
一般式(1a)
Figure JPOXMLDOC01-appb-C000015
 一般式(1a)において、Ar~Arは各々独立に置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、または置換もしくは無置換のアルキル基を表し、例えば置換もしくは無置換のアリール基を好ましく選択することができる。R41およびR42は、各々独立に置換もしくは無置換のアルキル基を表す。m1およびm2は各々独立に0~5の整数を表し、n1およびn3は各々独立に0~4の整数を表し、n2およびn4は各々独立に0~3の整数を表す。A、Aは、各々独立に水素原子、重水素原子または置換基を表す。n1~n4の少なくとも1つは1以上であり、m1およびm2は各々独立に1~5のいずれかの整数であることが好ましい。
 本発明の一態様では、n1~n4は各々独立に0~2の整数を表す。本発明の好ましい一態様では、n1~n4の少なくとも1つは1以上であり、好ましくはn1およびn2の少なくとも1つは1以上であり、n3およびn4の少なくとも1つは1以上である。本発明の一態様では、n1およびn3が各々独立に1または2であり、n2およびn4が0である。本発明の一態様ではn2およびn4が各々独立に1または2であり、n1およびn3が0である。本発明の一態様では、n1~n4は各々独立に1または2である。本発明の一態様では、n1とn3は等しく、n2とn4は等しい。本発明の一態様では、n1とn3は1であり、n2とn4は0である。本発明の一態様では、n1とn3は0であり、n2とn4は1である。本発明の一態様では、n1~n4はいずれも1である。Ar~Arの結合位置は、カルバゾール環の3,6位の少なくとも一つであってもよいし、2,7位の少なくとも一つであってもよいし、1,8位の少なくとも一つであってもよいし、4,5位の少なくとも一つであってもよい。Ar~Arの結合位置は、カルバゾール環の3,6位の両方であってもよいし、2,7位の両方であってもよいし、1,8位の両方であってもよいし、4,5位の両方であってもよい。例えば、3,6位の少なくとも一つを好ましく選択することができ、あるいは、3,6位の両方をさらに好ましく選択することができる。本発明の好ましい一態様では、Ar~Arはすべて同一の基である。本発明の好ましい一態様では、Ar~Arは各々独立に置換もしくは無置換のアリール基であり、より好ましくは置換もしくは無置換のフェニル基またはナフチル基であり、さらに好ましくは置換もしくは無置換のフェニル基である。置換基としては後述の置換基群A~Eのいずれかから選択される基を挙げることができるが、無置換のフェニル基も好ましい。Ar~Arの好ましい具体例として、フェニル基、o-ビフェニル基、m-ビフェニル基、p-ビフェニル基、ターフェニル基を挙げることができる。
 本発明の一態様では、m1およびm2は各々独立に0である。本発明の一態様では、m1およびm2は各々独立に1~5のいずれかの整数である。本発明の一態様では、m1とm2は等しい。本発明の一態様では、R41およびR42は炭素数1~6のアルキル基であり、例えば炭素数1~3のアルキル基の中から選択したり、メチル基を選択したりすることができる。アルキル基の置換位置は、ホウ素原子に結合している炭素原子を1位として、2位のみ、3位のみ、4位のみ、3位と5位、2位と4位、2位と6位、2位と4位と6位などを例示することができ、少なくとも2位であることが好ましく、少なくとも2位と6位であることがより好ましい。
 AおよびAの説明と好ましい範囲については、一般式(1)の対応する記載を参照することができる。
 以下において、一般式(1a)で表される化合物の具体例を挙げる。本発明で用いることができる一般式(1a)の化合物は、下記の一群の具体例により限定的に解釈されることはない。例えば好ましい一群として、下記の4段目中央の化合物と下記の8段目中央の化合物を除く、残りの化合物からなる群を挙げることができる。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 以下において、一般式(1a)で表される化合物の別の一群の具体例を挙げる。本発明で用いることができる一般式(1a)の化合物は、下記の一群の具体例により限定的に解釈されることはない。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
 骨格(1b)を有する化合物の好ましい一群として、下記一般式(1b)で表される化合物を例示することができる。
一般式(1b)
Figure JPOXMLDOC01-appb-C000028
 一般式(1b)において、Ar~Arは各々独立に置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、または置換もしくは無置換のアルキル基を表し、例えば置換もしくは無置換のアリール基を好ましく選択することができる。R43およびR44は、各々独立に置換もしくは無置換のアルキル基を表す。m3およびm4は各々独立に0~5の整数を表し、n6およびn8は各々独立に0~3の整数を表し、n5およびn7は各々独立に0~4の整数を表す。A、Aは、各々独立に水素原子、重水素原子または置換基を表す。Ar~Ar、R43およびR44、m3およびm4、n5~n8、A、Aの詳細については、一般式(1a)のAr~Ar、R41およびR42、m1およびm2、n1~n4、A、Aの記載を参照することができる。n5~n8の少なくとも1つは1以上であり、m3およびm4は各々独立に1~5のいずれかの整数であることが好ましい。
 以下において、一般式(1b)で表される化合物の具体例を挙げる。本発明で用いることができる一般式(1b)の化合物は、下記の具体例により限定的に解釈されることはない。
Figure JPOXMLDOC01-appb-C000029
 一般式(1)のRとRが互いに結合してN-Phを形成するとき、本発明の化合物はXが窒素原子であるときに例えば下記の骨格(2a)を有し、Xが窒素原子であるときに例えば下記の骨格(2b)を有する。Phはフェニル基である。
骨格(2a)
Figure JPOXMLDOC01-appb-C000030
 骨格(2a)および(2b)における各水素原子は、重水素原子または置換基に置換されていてもよい。また、隣接する水素原子とともに連結基に置換されて環状構造を形成していてもよい。詳細については、一般式(1)の対応するR~R26、A、Aの記載を参照することができる。骨格(2a)に含まれているカルバゾール部分構造を構成するベンゼン環の少なくとも1つの水素原子は、置換もしくは無置換のアリール基で置換されている。本発明の一態様では、骨格(2a)および(2b)における各水素原子は、隣接する水素原子とともに連結基に置換されて環状構造を形成していない。
 骨格(2a)を有する化合物の好ましい一群として、下記一般式(2a)で表される化合物を例示することができる。
一般式(2a)
Figure JPOXMLDOC01-appb-C000031
 一般式(2a)において、Ar~Ar14は各々独立に置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、または置換もしくは無置換のアルキル基を表し、例えば置換もしくは無置換のアリール基を好ましく選択することができる。n9、n11、n12、n14は各々独立に0~4の整数を表し、n10およびn13は各々独立に0~2の整数を表す。ただし、n9、n10、n12、n13のうちの少なくとも1つは1以上である。A、Aは、各々独立に水素原子、重水素原子または置換基を表す。
 本発明の一態様では、n9~n14は各々独立に0~2の整数を表す。本発明の一態様では、n9~n14の少なくとも1つは1以上であり、例えば、n9およびn12を1以上としたり、n10およびn13を1以上としたりすることができる。本発明の好ましい一態様では、n9、n10、n12、n13の少なくとも1つは1以上である。本発明の一態様では、n9およびn12が各々独立に1または2であり、n10、n11、n13、n14が0である。本発明の一態様ではn10およびn13が各々独立に1または2であり、n9、n11、n12、n14が0である。本発明の一態様では、n9およびn12が各々独立に1または2であり、n10およびn13が各々独立に1または2であり、n11およびn14が0である。本発明の一態様では、n9~n14はいずれも1である。Ar~Ar14の結合位置は、カルバゾール環の3,6位としたり、その他の位置としたりすることができる。本発明の好ましい一態様では、Ar~Ar14はすべて同一の基である。Ar~Ar14の好ましい基については、Ar~Arの対応する記載を参照することができる。AおよびAの説明と好ましい範囲については、一般式(1)の対応する記載を参照することができる。
 以下において、一般式(2a)で表される化合物の具体例を挙げる。本発明で用いることができる一般式(2a)の化合物は、下記の具体例により限定的に解釈されることはない。
Figure JPOXMLDOC01-appb-C000032
 骨格(2b)を有する化合物の好ましい一群として、下記一般式(2b)で表される化合物を例示することができる。
一般式(2b)
Figure JPOXMLDOC01-appb-C000033
 一般式(2b)において、Ar15~Ar20は各々独立に置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、または置換もしくは無置換のアルキル基を表し、例えば置換もしくは無置換のアリール基を好ましく選択することができる。n15、n17、n18、n20は各々独立に0~4の整数を表し、n16およびn19は各々独立に0~2の整数を表す。A、Aは、各々独立に水素原子、重水素原子または置換基を表す。Ar15~Ar20、n15~n20、A、Aの詳細については、一般式(2a)のAr~Ar14、n9~n14、A、Aの記載を順に参照することができる。
 以下において、一般式(2b)で表される化合物の具体例を挙げる。本発明で用いることができる一般式(2b)の化合物は、下記の具体例により限定的に解釈されることはない。
Figure JPOXMLDOC01-appb-C000034
 一般式(1)のRとRが互いに結合して単結合を形成するとき、本発明の化合物はXが窒素原子であるときに例えば下記の骨格(3a)を有し、Xが窒素原子であるときに例えば下記の骨格(3b)を有する。
Figure JPOXMLDOC01-appb-C000035
 骨格(3a)および(3b)における各水素原子は、重水素原子または置換基に置換されていてもよい。また、隣接する水素原子とともに連結基に置換されて環状構造を形成していてもよい。詳細については、一般式(1)の対応するR~R26、A、Aの記載を参照することができる。本発明の一態様では、骨格(3a)および(3b)における各水素原子は、隣接する水素原子とともに連結基に置換されて環状構造を形成していない。
 骨格(3a)を有する化合物の好ましい一群として、下記一般式(3a)で表される化合物を例示することができる。
一般式(3a)
Figure JPOXMLDOC01-appb-C000036
 一般式(3a)において、Ar21~Ar26は各々独立に置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、または置換もしくは無置換のアルキル基を表し、例えば置換もしくは無置換のアリール基を好ましく選択することができる。n21、n23、n24、n26は各々独立に0~4の整数を表し、n22およびn25は各々独立に0~2の整数を表す。A、Aは、各々独立に水素原子、重水素原子または置換基を表す。Ar21~Ar25、n21~n25の詳細については、一般式(2a)のAr~Ar14、n9~n14、A、Aの記載を参照することができる。
 以下において、一般式(3a)で表される化合物の具体例を挙げる。本発明で用いることができる一般式(3a)の化合物は、下記の具体例により限定的に解釈されることはない。
Figure JPOXMLDOC01-appb-C000037
 骨格(3b)を有する化合物の好ましい一群として、下記一般式(3b)で表される化合物を例示することができる。
一般式(3b)
Figure JPOXMLDOC01-appb-C000038
 一般式(3b)において、Ar27~Ar32は各々独立に置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、または置換もしくは無置換のアルキル基を表し、例えば置換もしくは無置換のアリール基を好ましく選択することができる。n27、n29、n30、n32は各々独立に0~4の整数を表し、n28およびn31は各々独立に0~2の整数を表す。A、Aは、各々独立に水素原子、重水素原子または置換基を表す。Ar27~Ar32、n27~n32、A、Aの詳細については、一般式(2b)のAr15~Ar20、n15~n20、A、Aの記載を順に参照することができる。
 以下において、一般式(3b)で表される化合物の具体例を挙げる。本発明で用いることができる一般式(3b)の化合物は、下記の具体例により限定的に解釈されることはない。
Figure JPOXMLDOC01-appb-C000039
 本発明の好ましい一態様では、一般式(1)に存在するカルバゾール部分構造を構成する2つのベンゼン環に他の環が縮合している化合物を選択する。中でも、ベンフラン環が縮合した化合物、ベンゾチオフェン環が縮合した化合物、ベンゼン環が縮合した化合物を特に好ましく選択することができる。以下において、これらの環が縮合した化合物について具体例を挙げながら説明する。
 一般式(1)に存在するカルバゾール部分構造を構成する2つのベンゼン環のうちホウ素原子が直接結合していないベンゼン環に、ベンゾフラン環またはベンゾチオフェン環が縮合した化合物を好ましく挙げることができる。そのような化合物の例として、下記の骨格(4a)を有する化合物と、下記の骨格(4b)を有する化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000040
 骨格(4a)および(4b)において、Y~Yは、各々独立に水素原子2個、単結合またはN(R27)を表す。ここでいう水素原子2個は、ホウ素原子に結合している2つのベンゼン環が互いに連結していない状態を示している。YとYは同じであり、YとYは同じであることが好ましいが、それぞれ異なっていてもよい。本発明の一態様では、Y~Yは単結合である。本発明の一態様では、Y~YはN(R27)である。R27は、水素原子、重水素原子または置換基を表す。
~Zは、各々独立に酸素原子または硫黄原子を表す。ZとZは同じであり、ZとZは同じであることが好ましいが、それぞれ異なっていてもよい。本発明の一態様ではZ~Zは酸素原子である。このとき、ベンゾフランのフラン環が、(4a)および(4b)におけるカルバゾール部分構造を構成するベンゼン環に縮合している。縮合しているフラン環の向きは制限されない。本発明の一態様ではZ~Zは硫黄原子である。このとき、ベンゾチオフェンのチオフェン環が、(4a)および(4b)におけるカルバゾール部分構造を構成するベンゼン環に縮合している。縮合しているチオフェン環の向きは制限されない。
 骨格(4a)および(4b)における各水素原子は、重水素原子または置換基に置換されていてもよい。また、隣接する水素原子とともに連結基に置換されて環状構造を形成していてもよい。詳細については、一般式(1)の対応するR~R26、A、Aの記載を参照することができる。本発明の一態様では、骨格(4a)および(4b)における各水素原子は、隣接する水素原子とともに連結基に置換されて環状構造を形成していない。
 骨格(4a)を有する化合物の好ましい一群として、下記一般式(4a)で表される化合物を例示することができる。具体例中のXは酸素原子または硫黄原子であり、Xが酸素原子である化合物とXが硫黄原子である化合物がそれぞれ開示されているものとする。以降の他の一般式で表される化合物の具体例中のXも同じ意味を表す。
一般式(4a)
Figure JPOXMLDOC01-appb-C000041
 一般式(4a)において、Ar51およびAr52は各々独立に置換もしくは無置換のアリール基、、置換もしくは無置換のヘテロアリール基、または置換もしくは無置換のアルキル基を表し、例えば置換もしくは無置換のアリール基を好ましく選択することができる。R51およびR52は各々独立に置換もしくは無置換のアルキル基を表す。m51およびm52は各々独立に0~4の整数を表す。n51およびn52は各々独立に0~2の整数を表す。Y~Yは、各々独立に水素原子2個、単結合またはN(R27)を表す。R27は、水素原子、重水素原子または置換基を表す。Z~Zは、各々独立に酸素原子または硫黄原子を表す。A、Aは、各々独立に水素原子、重水素原子または置換基を表す。
 本発明の一態様では、n51とn52は同じ数である。例えば、n51とn52は0であってもよく、n51とn52は1であってもよい。本発明の一態様では、m51とm52は同じ数である。本発明の一態様では、m51とm52は0~3の整数である。例えば、m51とm52は0であってもよく、m51とm52は1であってもよく、m51とm52は2であってもよく、m51とm52は3であってもよい。Ar51、Ar52、R51、R52、A、Aの好ましい基については、一般式(1a)のAr~Ar、R41~R42、A、Aの対応する記載を参照することができる。
 以下において、一般式(4a)で表される化合物の具体例を挙げる。本発明で用いることができる一般式(4a)の化合物は、下記の一群の具体例により限定的に解釈されることはない。Xを含む具体例については、分子内のすべてのXが酸素原子である化合物と、分子内のすべてのXが硫黄原子である化合物がそれぞれ開示されているものとする。分子内のXの一部が酸素原子でその他が硫黄原子である化合物も採用することができる。
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
 以下において、一般式(4a)で表される化合物の別の一群の具体例を挙げる。本発明で用いることができる一般式(4a)の化合物は、下記の一群の具体例により限定的に解釈されることはない。
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
 骨格(4b)を有する化合物の好ましい一群として、下記一般式(4b)で表される化合物を例示することができる。
一般式(4b)
Figure JPOXMLDOC01-appb-C000050
 一般式(4b)において、Ar53およびAr54は各々独立に置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、または置換もしくは無置換のアルキル基を表し、例えば置換もしくは無置換のアリール基を好ましく選択することができる。R53およびR54は各々独立に置換もしくは無置換のアルキル基を表す。m53およびm54は各々独立に0~4の整数を表す。n53およびn54は各々独立に0~2の整数を表す。YおよびYは、各々独立に水素原子2個、単結合またはN(R27)を表す。R27は、水素原子、重水素原子または置換基を表す。ZおよびZは、各々独立に酸素原子または硫黄原子を表す。A、Aは、各々独立に水素原子、重水素原子または置換基を表す。Ar53、Ar54、R53、R54、m53、m54、n53、n54、A、Aの詳細については、一般式(4a)のAr51、Ar52、R51、R52、m51、m52、n51、n52、A、Aの記載を参照することができる。
 以下において、一般式(4b)で表される化合物の具体例を挙げる。本発明で用いることができる一般式(4b)の化合物は、下記の具体例により限定的に解釈されることはない。Xを含む具体例については、分子内のすべてのXが酸素原子である化合物と、分子内のすべてのXが硫黄原子である化合物がそれぞれ開示されているものとする。分子内のXの一部が酸素原子でその他が硫黄原子である化合物も採用することができる。
Figure JPOXMLDOC01-appb-C000051
 一般式(1)に存在するカルバゾール部分構造を構成する2つのベンゼン環のうちホウ素原子が直接結合しているベンゼン環に、ベンゾフラン環またはベンゾチオフェン環が縮合した化合物を好ましく挙げることができる。そのような化合物の例として、下記の骨格(5a)を有する化合物と、下記の骨格(5b)を有する化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000052
 骨格(5a)および(5b)において、Y~Yは、各々独立に水素原子2個、単結合またはN(R27)を表す。Z~Zは、各々独立に酸素原子または硫黄原子を表す。Y~Y、Z~Zの詳細については、骨格(4a)および(4b)の対応する記載を参照することができる。本発明の一態様では、骨格(5a)および(5b)における各水素原子は、隣接する水素原子とともに連結基に置換されて環状構造を形成していない。
 骨格(5a)を有する化合物の好ましい一群として、下記一般式(5a)で表される化合物を例示することができる。
一般式(5a)
Figure JPOXMLDOC01-appb-C000053
 一般式(5a)において、Ar55およびAr56は各々独立に置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、または置換もしくは無置換のアルキル基を表し、例えば置換もしくは無置換のアリール基を好ましく選択することができる。R55およびR56は各々独立に置換もしくは無置換のアルキル基を表す。m55およびm56は各々独立に0~4の整数を表す。n55およびn56は各々独立に0~4の整数を表す。YおよびYは、各々独立に水素原子2個、単結合またはN(R27)を表す。R27は、水素原子、重水素原子または置換基を表す。ZおよびZは、各々独立に酸素原子または硫黄原子を表す。A、Aは、各々独立に水素原子、重水素原子または置換基を表す。
 本発明の一態様では、n55とn56は0~2の整数である。例えば、n55とn56は0であってもよく、n55とn56は1であってもよい。本発明の一態様では、m51とm52は同じ数である。m55とm56の詳細については、一般式(4a)のm51とm52の記載を参照することができる。Ar55、Ar56、R55、R56、A、Aの好ましい基については、一般式(1a)のAr、Ar、R41、R42、A、Aの対応する記載を参照することができる。
 以下において、一般式(5a)で表される化合物の具体例を挙げる。本発明で用いることができる一般式(5a)の化合物は、下記の一群の具体例により限定的に解釈されることはない。Xを含む具体例については、分子内のすべてのXが酸素原子である化合物と、分子内のすべてのXが硫黄原子である化合物がそれぞれ開示されているものとする。分子内のXの一部が酸素原子でその他が硫黄原子である化合物も採用することができる。
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
 以下において、一般式(5a)で表される化合物の別の一群の具体例を挙げる。本発明で用いることができる一般式(5a)の化合物は、下記の一群の具体例により限定的に解釈されることはない。
Figure JPOXMLDOC01-appb-C000059
 骨格(5b)を有する化合物の好ましい一群として、下記一般式(5b)で表される化合物を例示することができる。
一般式(5b)
Figure JPOXMLDOC01-appb-C000060
 一般式(5b)において、Ar57およびAr58は各々独立に置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、または置換もしくは無置換のアルキル基を表し、例えば置換もしくは無置換のアリール基を好ましく選択することができる。R57およびR58は各々独立に置換もしくは無置換のアルキル基を表す。m57およびm58は各々独立に0~4の整数を表す。n57およびn58は各々独立に0~4の整数を表す。YおよびYは、各々独立に水素原子2個、単結合またはN(R27)を表す。R27は、水素原子、重水素原子または置換基を表す。ZおよびZは、各々独立に酸素原子または硫黄原子を表す。A、Aは、各々独立に水素原子、重水素原子または置換基を表す。Ar57、Ar58、R57、R58、m57、m58、n57、n58、A、Aの詳細については、一般式(5a)のAr55、Ar56、R55、R56、m55、m56、n55、n56、A、Aの記載を参照することができる。
 以下において、一般式(5b)で表される化合物の具体例を挙げる。本発明で用いることができる一般式(5b)の化合物は、下記の一群の具体例により限定的に解釈されることはない。Xを含む具体例については、分子内のすべてのXが酸素原子である化合物と、分子内のすべてのXが硫黄原子である化合物がそれぞれ開示されているものとする。分子内のXの一部が酸素原子でその他が硫黄原子である化合物も採用することができる。
Figure JPOXMLDOC01-appb-C000061
 以下において、一般式(5b)で表される化合物の別の一群の具体例を挙げる。本発明で用いることができる一般式(5b)の化合物は、下記の一群の具体例により限定的に解釈されることはない。
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
 一般式(1)に存在するカルバゾール部分構造を構成する2つのベンゼン環の両方に、ベンゾフラン環またはベンゾチオフェン環が縮合した化合物を好ましく挙げることができる。そのような化合物の例として、下記の骨格(6a)を有する化合物と、下記の骨格(6b)を有する化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000064
 骨格(6a)および(6b)において、Y~Y12は、各々独立に水素原子2個、単結合またはN(R27)を表す。Z~Z16は、各々独立に酸素原子または硫黄原子を表す。Z~Z16は同一であることが好ましいが、異なっていても構わない。本発明の一態様では、Z~Z16は酸素原子である。本発明の一態様では、Z~Z16は硫黄原子である。Y~Y12の詳細については、骨格(4a)および(4b)の対応する記載を参照することができる。本発明の一態様では、骨格(6a)および(6b)における各水素原子は、隣接する水素原子とともに連結基に置換されて環状構造を形成していない。
 骨格(6a)を有する化合物の好ましい一群として、下記一般式(6a)で表される化合物を例示することができる。
一般式(6a)
Figure JPOXMLDOC01-appb-C000065
 一般式(6a)において、R59およびR60は各々独立に置換もしくは無置換のアルキル基を表す。m59およびm60は各々独立に0~4の整数を表す。YおよびY10は、各々独立に水素原子2個、単結合またはN(R27)を表す。R27は、水素原子、重水素原子または置換基を表す。Z~Z12は、各々独立に酸素原子または硫黄原子を表す。A、Aは、各々独立に水素原子、重水素原子または置換基を表す。R59、R60、m59、m60、Z~Z12、A、Aの詳細については、一般式(5a)のR55、R56、m55、m56、A、Aと、骨格(6a)におけるZ~Z12の記載を参照することができる。
 以下において、一般式(6a)で表される化合物の具体例を挙げる。本発明で用いることができる一般式(6a)の化合物は、下記の具体例により限定的に解釈されることはない。Xを含む具体例については、分子内のすべてのXが酸素原子である化合物と、分子内のすべてのXが硫黄原子である化合物がそれぞれ開示されているものとする。分子内のXの一部が酸素原子でその他が硫黄原子である化合物も採用することができる。
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
 骨格(6b)を有する化合物の好ましい一群として、下記一般式(6b)で表される化合物を例示することができる。
一般式(6b)
Figure JPOXMLDOC01-appb-C000071
 一般式(6b)において、R61およびR62は各々独立に置換もしくは無置換のアルキル基を表す。m61およびm60は各々独立に0~4の整数を表す。Y11およびY12は、各々独立に水素原子2個、単結合またはN(R27)を表す。R27は、水素原子、重水素原子または置換基を表す。Z13~Z16は、各々独立に酸素原子または硫黄原子を表す。A、Aは、各々独立に水素原子、重水素原子または置換基を表す。R61、R62、m61、m62、Z13~Z16、A、Aの詳細については、一般式(6a)のR59、R60、m59、m60、A、Aと、骨格(6b)におけるZ13~Z16の記載を参照することができる。
 以下において、一般式(6b)で表される化合物の具体例を挙げる。本発明で用いることができる一般式(6b)の化合物は、下記の具体例により限定的に解釈されることはない。Xを含む具体例については、分子内のすべてのXが酸素原子である化合物と、分子内のすべてのXが硫黄原子である化合物がそれぞれ開示されているものとする。分子内のXの一部が酸素原子でその他が硫黄原子である化合物も採用することができる。
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
 一般式(1)に存在するカルバゾール部分構造を構成する2つのベンゼン環のうちホウ素原子が直接結合していないベンゼン環に、ベンゼン環が縮合した化合物を好ましく挙げることができる。そのような化合物の例として、下記の骨格(7a)を有する化合物と、下記の骨格(7b)を有する化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000075
 骨格(7a)および(7b)において、Y21~Y24は、各々独立に水素原子2個、単結合またはN(R27)を表す。Y21~Y24の詳細については、骨格(4a)および(4b)のY~Yの記載を参照することができる。本発明の一態様では、骨格(7a)および(7b)における各水素原子は、隣接する水素原子とともに連結基に置換されて環状構造を形成していない。
 骨格(7a)を有する化合物の好ましい一群として、下記一般式(7a)で表される化合物を例示することができる。
一般式(7a)
Figure JPOXMLDOC01-appb-C000076
 一般式(7a)において、Ar71~Ar74は各々独立に置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、または置換もしくは無置換のアルキル基を表し、例えば置換もしくは無置換のアリール基を好ましく選択することができる。n71およびn73は各々独立に0~2の整数を表す。n72およびn74は各々独立に0~4の整数を表す。Y21およびY22は、各々独立に水素原子2個、単結合またはN(R27)を表す。R27は、水素原子、重水素原子または置換基を表す。A、Aは、各々独立に水素原子、重水素原子または置換基を表す。
 本発明の一態様では、n71~n74は0~2の整数である。本発明の一態様では、n71とn73は同じ数であり、n72とn74は同じ数である。n71~n74が同じ数でもよい。例えば、n71~n74は0であってもよい。n71~n74はすべてが1であってもよい。また、例えば
、n71とn73は0であってもよく、n72とn74は1であってもよい。Ar71~Ar74、A、Aの好ましい基については、一般式(1a)のAr~Ar、A、Aの対応する記載を参照することができる。
 以下において、一般式(7a)で表される化合物の具体例を挙げる。本発明で用いることができる一般式(7a)の化合物は、下記の具体例により限定的に解釈されることはない。
Figure JPOXMLDOC01-appb-C000077
 骨格(7b)を有する化合物の好ましい一群として、下記一般式(7b)で表される化合物を例示することができる。
一般式(7b)
Figure JPOXMLDOC01-appb-C000078
 一般式(7b)において、Ar75~Ar78は各々独立に置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、または置換もしくは無置換のアルキル基を表し、例えば置換もしくは無置換のアリール基を好ましく選択することができる。n75およびn77は各々独立に0~2の整数を表す。n76およびn78は各々独立に0~4の整数を表す。Y23およびY24は、各々独立に水素原子2個、単結合またはN(R27)を表す。R27は、水素原子、重水素原子または置換基を表す。n75~n78の詳しい説明については、順に、一般式(7a)のn71~n74の記載を参照することができる。Ar75~Ar78の好ましい基については、一般式(1a)のAr~Arの対応する記載を参照することができる。
 以下において、一般式(7b)で表される化合物の具体例を挙げる。本発明で用いることができる一般式(7b)の化合物は、下記の具体例により限定的に解釈されることはない。
Figure JPOXMLDOC01-appb-C000079
 一般式(1)に存在するカルバゾール部分構造を構成する2つのベンゼン環のうちホウ素原子が直接結合しているベンゼン環に、ベンゼン環が縮合した化合物を好ましく挙げることができる。そのような化合物の例として、下記の骨格(8a)を有する化合物と、下記の骨格(8b)を有する化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000080
 骨格(8a)および(8b)において、Y25~Y28は、各々独立に水素原子2個、単結合またはN(R27)を表す。Y25~Y28の詳細については、骨格(4a)および(4b)の対応する記載を参照することができる。本発明の一態様では、骨格(8a)および(8b)における各水素原子は、隣接する水素原子とともに連結基に置換されて環状構造を形成していない。
 骨格(8a)を有する化合物の好ましい一群として、下記一般式(8a)で表される化合物を例示することができる。
一般式(8a)
Figure JPOXMLDOC01-appb-C000081
 一般式(8a)において、Ar79およびAr80は各々独立に置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、または置換もしくは無置換のアルキル基を表し、例えば置換もしくは無置換のアリール基を好ましく選択することができる。R71およびR72は各々独立に置換もしくは無置換のアルキル基を表す。m71およびm72は各々独立に0~4の整数を表す。n79およびn80は各々独立に0~4の整数を表す。Y25およびY26は、各々独立に水素原子2個、単結合またはN(R27)を表す。R27は、水素原子、重水素原子または置換基を表す。A、Aは、各々独立に水素原子、重水素原子または置換基を表す。
 本発明の一態様では、n79およびn80は0~2の整数である。本発明の一態様では、n79とn80は同じ数であり、例えばいずれも0であってもよいし、いずれも1であってもよい。本発明の一態様では、m71およびm72は0~2の整数である。本発明の一態様では、m71およびm72は同じ数であり、例えばいずれも0であってもよいし、いずれも1であってもよい。Ar79、Ar80、R71、R72、A、Aの好ましい基については、一般式(1a)のAr、Ar、R41、R42、A、Aの対応する記載を参照することができる。
 以下において、一般式(8a)で表される化合物の具体例を挙げる。本発明で用いることができる一般式(8a)の化合物は、下記の具体例により限定的に解釈されることはない。
Figure JPOXMLDOC01-appb-C000082
 骨格(8b)を有する化合物の好ましい一群として、下記一般式(8b)で表される化合物を例示することができる。
一般式(8b)
Figure JPOXMLDOC01-appb-C000083
 一般式(8b)において、Ar81およびAr82は各々独立に置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、または置換もしくは無置換のアルキル基を表し、例えば置換もしくは無置換のアリール基を好ましく選択することができる。R73およびR74は各々独立に置換もしくは無置換のアルキル基を表す。m73およびm74は各々独立に0~4の整数を表す。n81およびn82は各々独立に0~4の整数を表す。Y27およびY28は、各々独立に水素原子2個、単結合またはN(R27)を表す。R27は、水素原子、重水素原子または置換基を表す。A、Aは、各々独立に水素原子、重水素原子または置換基を表す。
 m73、m74、n81、n82の詳しい説明については、一般式(8a)のm71、m72、n79、n80の記載を参照することができる。Ar81、Ar82、R73、R74、A、Aの好ましい基については、一般式(1a)のAr、Ar、R41、R42、A、Aの対応する記載を参照することができる。
 以下において、一般式(8b)で表される化合物の具体例を挙げる。本発明で用いることができる一般式(8b)の化合物は、下記の具体例により限定的に解釈されることはない。
Figure JPOXMLDOC01-appb-C000084
 一般式(1)に存在するカルバゾール部分構造を構成する2つのベンゼン環の両方に、ベンゼン環が縮合した化合物を好ましく挙げることができる。そのような化合物の例として、下記の骨格(9a)を有する化合物と、下記の骨格(9b)を有する化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000085
 骨格(9a)および(9b)において、Y29~Y32は、各々独立に水素原子2個、単結合またはN(R27)を表す。Y29~Y32の詳細については、骨格(4a)および(4b)の対応する記載を参照することができる。本発明の一態様では、骨格(9a)および(9b)における各水素原子は、隣接する水素原子とともに連結基に置換されて環状構造を形成していない。
 骨格(9a)を有する化合物の好ましい一群として、下記一般式(9a)で表される化合物を例示することができる。
一般式(9a)
Figure JPOXMLDOC01-appb-C000086
 一般式(9a)において、R75およびR76は各々独立に置換もしくは無置換のアルキル基を表す。m75およびm76は各々独立に0~4の整数を表す。Y29およびY30は、各々独立に水素原子2個、単結合またはN(R27)を表す。R27は、水素原子、重水素原子または置換基を表す。A、Aは、各々独立に水素原子、重水素原子または置換基を表す。R75、R76、m75、m76、A、Aの詳細については、一般式(8a)のR71、R72、m71、m72、A、Aの記載を参照することができる。
 以下において、一般式(9a)で表される化合物の具体例を挙げる。本発明で用いることができる一般式(9a)の化合物は、下記の具体例により限定的に解釈されることはない。
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
 骨格(9b)を有する化合物の好ましい一群として、下記一般式(9b)で表される化合物を例示することができる。
一般式(9b)
Figure JPOXMLDOC01-appb-C000089
 一般式(9b)において、R77およびR78は各々独立に置換もしくは無置換のアルキル基を表す。m77およびm78は各々独立に0~4の整数を表す。Y31およびY32は、各々独立に水素原子2個、単結合またはN(R27)を表す。R27は、水素原子、重水素原子または置換基を表す。A、Aは、各々独立に水素原子、重水素原子または置換基を表す。R77、R78、m77、m78、A、Aの詳細については、一般式(8a)のR71、R72、m71、m72、A、Aの記載を参照することができる。
 以下において、一般式(9b)で表される化合物の具体例を挙げる。本発明で用いることができる一般式(9b)の化合物は、下記の具体例により限定的に解釈されることはない。
Figure JPOXMLDOC01-appb-C000090
 一般式(1)で表される化合物としては、分子内に4つ以上のカルバゾール部分構造を含む化合物も好ましい。そのような化合物の例として、下記の骨格(10)を有する化合物を例示することができる。
骨格(10)
Figure JPOXMLDOC01-appb-C000091
 骨格(10)における各水素原子は、重水素原子または置換基に置換されていてもよい。また、隣接する水素原子とともに連結基に置換されて環状構造を形成していてもよい。詳細については、一般式(1)の対応するR~R26、A、Aの記載を参照することができる。骨格(10)に含まれているカルバゾール部分構造を構成するベンゼン環の少なくとも1つの水素原子は、置換もしくは無置換のアリール基で置換されている。本発明の一態様では、骨格(10)における各水素原子は、隣接する水素原子とともに連結基に置換されて環状構造を形成していない。
 骨格(10)を有する化合物の好ましい一群として、下記一般式(10)で表される化合物を例示することができる。
一般式(10)
Figure JPOXMLDOC01-appb-C000092
 一般式(10)において、Ar91~Ar94は各々独立に置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、または置換もしくは無置換のアルキル基を表し、例えば置換もしくは無置換のアリール基を好ましく選択することができる。n91およびn93は各々独立に0~4の整数を表し、n92およびn94は各々独立に0~3の整数を表す。α環、β環、γ環、δ環は置換されていてもよく、少なくとも1つの環は、置換もしくは無置換のアリール基で置換されているか、置換されていてもよいベンゼン環が縮合しているか、置換もしくは無置換のベンゾフランのフラン環または置換もしくは無置換のチオフェンのチオフェン環が縮合している。A、Aは、各々独立に水素原子、重水素原子または置換基を表す。
 本発明の一態様では、n91~n94は0~2の整数である。本発明の一態様では、n91とn93は同じ数であり、n92とn94は同じ数である。n91~n94はすべてが同じ数であってもよく、例えばいずれも0であってもよいし、いずれも1であってもよい。Ar91~Ar94の好ましい基については、一般式(1a)のAr~Arの対応する記載を参照することができる。本発明の一態様では、α環とγ環は同じ置換基を有しているか、同じ縮合構造を有しており、β環とδ環は同じ置換基を有しているか、同じ縮合構造を有している。本発明の一態様では、β環とδ環がともに置換もしくは無置換のアリール基で置換されているか、置換されていてもよいベンゼン環が縮合しているか、置換もしくは無置換のベンゾフランのフラン環または置換もしくは無置換のチオフェンのチオフェン環が縮合している。本発明の一態様では、α環とγ環がともに置換もしくは無置換のアリール基で置換されているか、置換されていてもよいベンゼン環が縮合しているか、置換もしくは無置換のベンゾフランのフラン環または置換もしくは無置換のチオフェンのチオフェン環が縮合している。本発明の一態様では、α環、β環、γ環、δ環のすべてが、置換もしくは無置換のアリール基で置換されているか、置換されていてもよいベンゼン環が縮合しているか、置換もしくは無置換のベンゾフランのフラン環または置換もしくは無置換のチオフェンのチオフェン環が縮合している。AおよびAの説明と好ましい範囲については、一般式(1)の対応する記載を参照することができる。
 以下において、一般式(10)で表される化合物の具体例を挙げる。本発明で用いることができる一般式(10)の化合物は、下記の具体例により限定的に解釈されることはない。
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
 一般式(1)で表される化合物は、骨格が対称性を有していないものであってもよい。例えば、下記骨格(11a)や下記骨格(11b)のような非対称骨格を有する化合物であってもよい。
Figure JPOXMLDOC01-appb-C000096
 骨格(11a)および(11b)において、Z17およびZ18は、各々独立に酸素原子または硫黄原子を表す。本発明の一態様では、骨格(11a)および(11b)における各水素原子は、隣接する水素原子とともに連結基に置換されて環状構造を形成していない。
 骨格(11a)を有する化合物の好ましい一群として、下記一般式(11a)で表される化合物を例示することができる。
一般式(11a)
Figure JPOXMLDOC01-appb-C000097
 一般式(11a)において、Ar83~Ar85は各々独立に置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、または置換もしくは無置換のアルキル基を表し、例えば置換もしくは無置換のアリール基を好ましく選択することができる。R83およびR84は各々独立に置換もしくは無置換のアルキル基を表す。Z17は酸素原子または硫黄原子を表す。m83およびm84は各々独立に0~5の整数を表す。n83は0~4の整数を表し、n84およびn85は各々独立に0~3の整数を表す。
 Ar83~Ar85、R83、R84、m83、m84、n83~n85の詳しい説明と好ましい範囲については、一般式(1a)のAr、Ar、Ar、R41、R42、m1、m2、n1、n2、n4の記載を参照することができる。
 以下において、一般式(11a)で表される化合物の具体例を挙げる。本発明で用いることができる一般式(11a)の化合物は、下記の具体例により限定的に解釈されることはない。以下の具体例においては、分子内のすべてのXが酸素原子である化合物と、分子内のすべてのXが硫黄原子である化合物がそれぞれ開示されているものとする。分子内のXの一部が酸素原子でその他が硫黄原子である化合物も採用することができる。
Figure JPOXMLDOC01-appb-C000098
 骨格(11b)を有する化合物の好ましい一群として、下記一般式(11b)で表される化合物を例示することができる。
一般式(11b)
Figure JPOXMLDOC01-appb-C000099
 一般式(11b)において、Ar86~Ar88は各々独立に置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、または置換もしくは無置換のアルキル基を表し、例えば置換もしくは無置換のアリール基を好ましく選択することができる。R86およびR87は各々独立に置換もしくは無置換のアルキル基を表す。Z18は酸素原子または硫黄原子を表す。m86およびm87は各々独立に0~5の整数を表す。n86は0~4の整数を表し、n87およびn88は各々独立に0~3の整数を表す。
 Ar86~Ar88、R86、R87、m86、m87、n86~n88の詳しい説明と好ましい範囲については、一般式(1a)のAr、Ar、Ar、R41、R42、m1、m2、n1、n2、n4の記載を参照することができる。
 以下において、一般式(11b)で表される化合物の具体例を挙げる。本発明で用いることができる一般式(11b)の化合物は、下記の具体例により限定的に解釈されることはない。以下の具体例においては、分子内のすべてのXが酸素原子である化合物と、分子内のすべてのXが硫黄原子である化合物がそれぞれ開示されているものとする。分子内のXの一部が酸素原子でその他が硫黄原子である化合物も採用することができる。
Figure JPOXMLDOC01-appb-C000100
 一般式(1)で表される化合物として、Rがドナー性基である化合物を好ましく採用することができる。Rがドナー性基である化合物は、モル吸光係数が高くて、発光効率が高い傾向にある。例えば、Rがドナー性基である化合物に比べて優れた発光特性を示す。本発明の好ましい一態様では、Rはドナー性基ではない。本発明の好ましい一態様では、R~Rの中ではRだけがドナー性基であるか、いずれもドナー性基(特にσp値が-0.2以下のドナー性基)ではない。ドナー性基は、ハメットのσp値が負の基である。Rのドナー性基は、σp値が-0.2以下であることが好ましく、例えば-0.4以下であってもよく、例えば-0.6以下であってもよい。好ましいドナー性基として、置換アミノ基を挙げることができ、好ましくは置換もしくは無置換のジアリールアミノ基である。アリール基は、単環であってもよいし、2つ以上の環が縮合した縮合環であってもよい。縮合環である場合、縮合した後の環の数は2~6であることが好ましく、例えば2~4の中から選択したり、2としたりすることができる。ジアリールアミノ基を構成する2つのアリール基は同一であっても異なっていてもよい。また、2つのアリール基は単結合または連結基で連結されていてもよい。置換もしくは無置換のジアリールアミノ基として好ましいのは、置換もしくは無置換のジフェニルアミノ基である。2つのフェニル基が単結合により結合した置換もしくは無置換のカルバゾール-9-イル基を採用してもよいし、2つのフェニル基が単結合により結合していない置換もしくは無置換のジフェニルアミノ基を採用してもよい。一般式(1)のR~Rのいずれかが置換アミノ基であるとき、少なくともRが置換アミノ基であることが好ましく、Rだけが置換アミノ基であることがより好ましい。本発明の一態様では、Rは置換アミノ基ではない。
 Rがドナー性基であって、Xが窒素原子であるとき、R16またはR19がドナー性基であることが好ましく、R19がドナー性基であることがより好ましい。このとき、その他のR~R26は例えばすべてが水素原子または重水素原子であってもよいし、例えばR、R、R15、R20の少なくとも一つが置換基(好ましくは置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基)でその他が水素原子または重水素原子であってもよい。
 Rがドナー性基であって、Xがホウ素原子であるとき、R20またはR23がドナー性基であることが好ましく、R20がドナー性基であることがより好ましい。このとき、その他のR~R26は例えばすべてが水素原子または重水素原子であってもよいし、例えばR、R、R19、R24の少なくとも一つが置換基(好ましくは置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基)でその他が水素原子または重水素原子であってもよい。
 Rがドナー性基である化合物の好ましい一群として、下記一般式(12a)で表される化合物と下記一般式(12b)で表される化合物を例示することができる。
一般式(12a)
Figure JPOXMLDOC01-appb-C000101
 一般式(12a)および一般式(12b)において、Ar~Arは各々独立に置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、または置換もしくは無置換のアルキル基を表し、例えば置換もしくは無置換のアルキル基を好ましく選択したり、置換もしくは無置換のアリール基を好ましく選択したりすることができる。Rはドナー性基を表す。R41~R44は、各々独立に置換もしくは無置換のアルキル基を表す。m1~m4は各々独立に0~5の整数を表す。n1、n3、n5、n7は各々独立に0~4の整数を表し、n4およびn8は0~3の整数を表し、n2’およびn6’は0~2の整数を表す。A、Aは、各々独立に水素原子、重水素原子または置換基を表す。Ar~Ar、R41~R44、m1~m4、n1、n3~n5、n7、n8、A、Aの詳細については、一般式(1a)および一般式(1b)の対応する記載を参照することができる。ただし、隣り合う炭素原子に結合しているArどうし、隣り合う炭素原子に結合しているArどうし、隣り合う炭素原子に結合しているArどうし、隣り合う炭素原子に結合しているArどうしは、互いに結合して環状構造を形成していてもよく、好ましくはベンゾフラン(フラン環で縮合)またはベンゾチオフェン(チオフェン環で縮合)を形成していてもよい。
 以下において、一般式(12a)および一般式(12b)で表される化合物の具体例を挙げる。ただし、本発明で用いることができる一般式(12a)および一般式(12b)の化合物は、下記の具体例により限定的に解釈されることはない。以下の具体例では、式F1~F56中のRとArとXを表の中で特定することにより各化合物の構造を規定している。Rは後掲のA~Dの中から選択し、Arは後掲のa~dの中から選択し、Xはα~γの中から選択する。例えば表中のNo.1の化合物は、式F1において、RがAであり、Arがaである構造を有する化合物である。
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-T000108
Figure JPOXMLDOC01-appb-T000109
Figure JPOXMLDOC01-appb-T000110
Figure JPOXMLDOC01-appb-T000111
Figure JPOXMLDOC01-appb-T000112
Figure JPOXMLDOC01-appb-T000113
Figure JPOXMLDOC01-appb-T000114
Figure JPOXMLDOC01-appb-T000115
Figure JPOXMLDOC01-appb-T000116
Figure JPOXMLDOC01-appb-C000117
 本発明の一態様では、上記骨格(1a)~(12b)は、他の環がさらに縮合していない骨格である。本発明の一態様では、上記骨格(1a)~(12b)は、他の環がさらに縮合していてもよい骨格である。ここでいう他の環については、上記のRとR、RとR、RとR、RとR、RとR、RとR、RとR、RとR10、R10とR11、R11とR12、R13とR14、R14とR15、R15とR16、R16とR17、R18とR19、R19とR20、R20とR21、R22とR23、R23とR24、R24とR25、R25とR26が互いに結合して形成する環状構造の記載を参照することができる。
 本発明の一態様では、一般式(1)のAとAがアクセプター性基である。例えば、AとAの位置がアクセプター性基であり、骨格(1a)~(12b)のいずれかを有する化合物を挙げることができる。アクセプター性基の説明と具体例については、上記の一般式(1)のAとAのアクセプター性基の説明と具体例を参照することができる。
 以下において、AとAがアクセプター性基である化合物の具体例を挙げる。本発明で用いることができるAとAがアクセプター性基である化合物は、下記の具体例により限定的に解釈されることはない。以下の具体例は、AとAがともに「A」である構造を有しており、その「A」を個別に特定することにより各化合物の構造を特定している。
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000134
 本発明の一態様では、一般式(1)で表される化合物として回転対称構造を有する化合物を選択する。本発明の一態様では、一般式(1)で表される化合物として線対称構造を有する化合物を選択する。本発明の一態様では、一般式(1)で表される化合物として非対称構造を有する化合物を選択する。
 以下に非対称骨格を有する化合物の具体例を挙げる。本発明で用いることができる非対称骨格を有する化合物や非対称構造を有する化合物は、下記の具体例により限定的に解釈されることはない。Xを含む具体例については、分子内のすべてのXが酸素原子である化合物と、分子内のすべてのXが硫黄原子である化合物がそれぞれ開示されているものとする。分子内のXの一部が酸素原子でその他が硫黄原子である化合物も採用することができる。
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000138
 以下に、対称骨格を有しているが、置換基が非対称に結合しているために非対称構造を有する化合物の具体例を挙げる。本発明で用いることができる非対称構造を有する化合物は、下記の具体例により限定的に解釈されることはない。
Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000140
 本発明の一態様では、一般式(1)のRはジアリールアミノ基(ジアリールアミノ基を構成する2つのアリール基は互いに結合していてもよい)ではない。本発明の好ましい一態様では、一般式(1)のRは水素原子、重水素原子またはアクセプター性基である(ドナー性基ではない)。
 本発明の一態様では、一般式(1a)のn1~n4の少なくとも1つが1以上である。本発明の好ましい一態様では、一般式(1a)のm1およびm2の少なくとも1つが1以上である。本発明さらに好ましい一態様では、一般式(1a)のn1~n4の少なくとも1つが1以上であり、なおかつ、一般式(1a)のm1およびm2の少なくとも1つが1以上である。
 本発明の一態様では、一般式(1b)のn5~n8の少なくとも1つが1以上である。本発明の好ましい一態様では、一般式(1b)のm3およびm4の少なくとも1つが1以上である。本発明のさらに好ましい一態様では、一般式(1b)のn5~n8の少なくとも1つが1以上であり、なおかつ、一般式(1a)のm3およびm4の少なくとも1つが1以上である。
 上記のm1およびm2の少なくとも1つが1以上であり、m3およびm4の少なくとも1つが1以上であるとき、R41とR42の少なくとも1つとR43とR44の少なくとも1つは重水素原子で置換されていてもよいアルキル基であることが好ましく、例えばR41~R44のすべてが重水素原子で置換されていてもよいアルキル基である。上記のn1~n4の少なくとも1つが1以上であであり、n5~n8の少なくとも1つが1以上であるとき、Ar~Arの少なくとも1つとAr~Arの少なくとも1つは重水素原子やアルキル基で置換されていてもよいアリール基であることが好ましく、例えばAr~Arのすべてが重水素原子やアルキル基で置換されていてもよいアリール基である。
 本発明の一態様では、一般式(1)のXがホウ素原子でR、R10、R12、R13、R15、R17がアルキル基(またはメチル基)であるとき、R~R、R18~R20、R23~R26の少なくとも1つは置換基であり、好ましくは置換基群Eの基であり、例えば重水素原子やアルキル基で置換されていてもよいアリール基である。本発明の一態様では、一般式(1)のXがホウ素原子でR、R10、R12、R22、R24、R26がアルキル基(またはメチル基)であるとき、R~R、R13~R16、R19~R21の少なくとも1つは置換基であり、好ましくは置換基群Eの基であり、例えば重水素原子やアルキル基で置換されていてもよいアリール基である。
 本発明の一態様では、一般式(1)のXがホウ素原子で、RとR、RとR10のいずれか1組と、R15とR16、R16とR17のいずれか1組が互いに結合して芳香環(またはベンゼン環)を形成しているとき、R~R、R18~R20、R23~R26の少なくとも1つは置換基であり、好ましくは置換基群Eの基であり、例えば重水素原子やアルキル基で置換されていてもよいアリール基である。本発明の一態様では、一般式(1)のXがホウ素原子で、RとR、RとR10のいずれか1組と、R22とR23、R23とR24のいずれか1組が互いに結合して芳香環(またはベンゼン環)を形成しているとき、R~R、R13~R16、R19~R21の少なくとも1つは置換基であり、好ましくは置換基群Eの基であり、例えば重水素原子やアルキル基で置換されていてもよいアリール基である。
 本発明の一態様では、一般式(1)のRおよびR11は、シアノ基でもアルキル基でもない。すなわち、RとR11は、水素原子、重水素原子、または、シアノ基とアルキル基以外の置換基である。本発明の一態様では、一般式(1)のRおよびR11は、シアノ基でもtert-ブチル基でもない。
 本発明の好ましい一態様では、一般式(1)のR~R12の少なくとも1つは置換基である。
 本発明の一態様では、一般式(1)のRは、置換アミノ基やアリール基ではない。本発明の一態様では、一般式(1)のRは、置換アミノ基やフェニル基ではない。本発明の一態様では、一般式(1)のRは、ジメチルアミノ基、ジフェニルアミノ基、フェニル基ではない。
 本発明の好ましい一態様では、一般式(1)のR~R26の少なくとも1つは置換基であり、より好ましくはR~R26の少なくとも1つはアルキル基であり、例えば炭素数1~4のアルキル基である。
 一般式(1)で表される化合物の分子量は、例えば一般式(1)で表される化合物を含む有機層を蒸着法により製膜して利用することを意図する場合には、1500以下であることが好ましく、1200以下であることがより好ましく、1000以下であることがさらに好ましく、900以下であることがさらにより好ましい。分子量の下限値は、一般式(1)で表される化合物群の最小化合物の分子量である。好ましくは624以上である。
 一般式(1)で表される化合物は、分子量にかかわらず塗布法で成膜してもよい。塗布法を用いれば、分子量が比較的大きな化合物であっても成膜することが可能である。一般式(1)で表される化合物は有機溶媒に溶解しやすいという利点がある。このため、一般式(1)で表される化合物は塗布法を適用しやすいうえ、精製して純度を高めやすい。
 一般式(1)で表される化合物は、膜中における配向性が高い。特に一般式(1)のR~R、R13~R26の少なくとも1つが置換基であり、好ましくはR~R、R14~R16、R19、R20、R23~R26の少なくとも1つが置換基であり、さらに好ましくは置換基群Eの基(例えば重水素原子やアルキル基で置換されていてもよいアリール基)であるときに、膜中における配向性が特に高い。このような高い配向性は、ホスト材料とともに一般式(1)で表される化合物を含む膜において好ましく発現する。また、このような高い配向性は、ホスト材料と、アシストドーパントとして機能する遅延蛍光材料とともに一般式(1)で表される化合物を含む膜において好ましく発現する。このような高い配向性を示す化合物を用いれば、発光効率が高い有機発光素子を提供することができる。配向性は、配向値(S値)にて評価することができる。負の値が大きいほど(数値が小さいほど)配向性が高いことを意味する。配向値(S値)は、Scientific Reports 2017, 7, 8405に記載される方法により決定することができる。本発明の膜における一般式(1)で表される化合物の配向値は-0.25未満であることが好ましく、-0.30未満であることがより好ましく、-0.35未満であることがさらに好ましく、-0.40未満であることが特に好ましい。
 本発明を応用して、分子内に一般式(1)で表される構造を複数個含む化合物を、発光材料として用いることも考えられる。
 例えば、一般式(1)で表される構造中にあらかじめ重合性基を存在させておいて、その重合性基を重合させることによって得られる重合体を、発光材料として用いることが考えられる。具体的には、一般式(1)で表される構造のいずれかに重合性官能基を含むモノマーを用意して、これを単独で重合させるか、他のモノマーとともに共重合させることにより、繰り返し単位を有する重合体を得て、その重合体を発光材料として用いることが考えられる。あるいは、一般式(1)で表される化合物どうしをカップリングさせることにより、二量体や三量体を得て、それらを発光材料として用いることも考えられる。
 一般式(1)で表される構造を含む繰り返し単位を有する重合体の例として、下記一般式で表される構造を含む重合体を挙げることができる。
Figure JPOXMLDOC01-appb-C000141
 上記一般式において、Qは一般式(1)で表される構造を含む基を表し、LおよびLは連結基を表す。連結基の炭素数は、好ましくは0~20であり、より好ましくは1~15であり、さらに好ましくは2~10である。連結基は-X11-L11-で表される構造を有するものであることが好ましい。ここで、X11は酸素原子または硫黄原子を表し、酸素原子であることが好ましい。L11は連結基を表し、置換もしくは無置換のアルキレン基、または置換もしくは無置換のアリーレン基であることが好ましく、炭素数1~10の置換もしくは無置換のアルキレン基、または置換もしくは無置換のフェニレン基であることがより好ましい。
 R101、R102、R103およびR104は、各々独立に置換基を表す。好ましくは、炭素数1~6の置換もしくは無置換のアルキル基、炭素数1~6の置換もしくは無置換のアルコキシ基、ハロゲン原子であり、より好ましくは炭素数1~3の無置換のアルキル基、炭素数1~3の無置換のアルコキシ基、フッ素原子、塩素原子であり、さらに好ましくは炭素数1~3の無置換のアルキル基、炭素数1~3の無置換のアルコキシ基である。
 LおよびLで表される連結基は、Qを構成する一般式(1)で表される構造のいずれかの位置に結合することができる。1つのQに対して連結基が2つ以上連結して架橋構造や網目構造を形成していてもよい。
 繰り返し単位の具体的な構造例として、下記式で表される構造を挙げることができる。
Figure JPOXMLDOC01-appb-C000142
 これらの式を含む繰り返し単位を有する重合体は、一般式(1)で表される構造のいずれかの位置にヒドロキシ基を導入しておき、それをリンカーとして下記化合物を反応させて重合性基を導入し、その重合性基を重合させることにより合成することができる。
Figure JPOXMLDOC01-appb-C000143
 分子内に一般式(1)で表される構造を含む重合体は、一般式(1)で表される構造を有する繰り返し単位のみからなる重合体であってもよいし、それ以外の構造を有する繰り返し単位を含む重合体であってもよい。また、重合体の中に含まれる一般式(1)で表される構造を有する繰り返し単位は、単一種であってもよいし、2種以上であってもよい。一般式(1)で表される構造を有さない繰り返し単位としては、通常の共重合に用いられるモノマーから誘導されるものを挙げることができる。例えば、エチレン、スチレンなどのエチレン性不飽和結合を有するモノマーから誘導される繰り返し単位を挙げることができる。
 一般式(1)で表される化合物は、金属原子を含まないことが好ましい。ここでいう金属原子にはホウ素原子は含まれない。例えば、一般式(1)で表される化合物として、炭素原子、水素原子、重水素原子、窒素原子、酸素原子、硫黄原子およびホウ素原子からなる群より選択される原子からなる化合物を選択することができる。例えば、一般式(1)で表される化合物として、炭素原子、水素原子、重水素原子、窒素原子、酸素原子およびホウ素原子からなる群より選択される原子からなる化合物を選択することができる。例えば、一般式(1)で表される化合物として、炭素原子、水素原子、重水素原子、窒素原子、硫黄原子およびホウ素原子からなる群より選択される原子からなる化合物を選択することができる。例えば、一般式(1)で表される化合物として、炭素原子、水素原子、重水素原子、窒素原子およびホウ素原子からなる群より選択される原子からなる化合物を選択することができる。例えば、一般式(1)で表される化合物として、炭素原子、水素原子、窒素原子、酸素原子、硫黄原子およびホウ素原子からなる群より選択される原子からなる化合物を選択することができる。
 本明細書において「アルキル基」は、直鎖状、分枝状、環状のいずれであってもよい。また、直鎖部分と環状部分と分枝部分のうちの2種以上が混在していてもよい。アルキル基の炭素数は、例えば1以上、2以上、4以上とすることができる。また、炭素数は30以下、20以下、10以下、6以下、4以下とすることができる。アルキル基の具体例として、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、n-ヘキシル基、イソヘキシル基、2-エチルヘキシル基、n-ヘプチル基、イソヘプチル基、n-オクチル基、イソオクチル基、n-ノニル基、イソノニル基、n-デカニル基、イソデカニル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基を挙げることができる。置換基たるアルキル基は、さらにアリール基で置換されていてもよい。
 「アルケニル基」は、直鎖状、分枝状、環状のいずれであってもよい。また、直鎖部分と環状部分と分枝部分のうちの2種以上が混在していてもよい。アルケニル基の炭素数は、例えば2以上、4以上とすることができる。また、炭素数は30以下、20以下、10以下、6以下、4以下とすることができる。アルケニル基の具体例として、エテニル基、n-プロペニル基、イソプロペニル基、n-ブテニル基、イソブテニル基、n-ペンテニル基、イソペンテニル基、n-ヘキセニル基、イソヘキセニル基、2-エチルヘキセニル基を挙げることができる。置換基たるアルケニル基は、さらに置換基で置換されていてもよい。
 「アリール基」および「ヘテロアリール基」は、単環であってもよいし、2つ以上の環が縮合した縮合環であってもよい。縮合環である場合、縮合している環の数は2~6であることが好ましく、例えば2~4の中から選択することができる。環の具体例として、ベンゼン環、ピリジン環、ピリミジン環、トリアジン環、ナフタレン環、アントラセン環、フェナントレン環、トリフェニレン環、キノリン環、ピラジン環、キノキサリン環、ナフチリジン環を挙げることができ、これらが縮合した環であってもよい。アリール基またはヘテロアリール基の具体例として、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、2-ピリジル基、3-ピリジル基、4-ピリジル基を挙げることができる。アリール基の環骨格構成原子数は6~40であることが好ましく、6~20であることがより好ましく、6~14の範囲内で選択したり、6~10の範囲内で選択したりしてもよい。ヘテロアリール基の環骨格構成原子数は4~40であることが好ましく、5~20であることがより好ましく、5~14の範囲内で選択したり、5~10の範囲内で選択したりしてもよい。「アリーレン基」および「ヘテロアリール基」は、アリール基およびヘテロアリール基の説明における価数を1から2へ読み替えたものとすることができる。
 本明細書において「置換基群A」とは、ヒドロキシル基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、アルキル基(例えば炭素数1~40)、アルコキシ基(例えば炭素数1~40)、アルキルチオ基(例えば炭素数1~40)、アリール基(例えば炭素数6~30)、アリールオキシ基(例えば炭素数6~30)、アリールチオ基(例えば炭素数6~30)、ヘテロアリール基(例えば環骨格構成原子数5~30)、ヘテロアリールオキシ基(例えば環骨格構成原子数5~30)、ヘテロアリールチオ基(例えば環骨格構成原子数5~30)、アシル基(例えば炭素数1~40)、アルケニル基(例えば炭素数1~40)、アルキニル基(例えば炭素数1~40)、アルコキシカルボニル基(例えば炭素数1~40)、アリールオキシカルボニル基(例えば炭素数1~40)、ヘテロアリールオキシカルボニル基(例えば炭素数1~40)、シリル基(例えば炭素数1~40のトリアルキルシリル基)およびニトロ基からなる群より選択される1つの基または2つ以上を組み合わせて形成される基を意味する。
 本明細書において「置換基群B」とは、アルキル基(例えば炭素数1~40)、アルコキシ基(例えば炭素数1~40)、アリール基(例えば炭素数6~30)、アリールオキシ基(例えば炭素数6~30)、ヘテロアリール基(例えば環骨格構成原子数5~30)、ヘテロアリールオキシ基(例えば環骨格構成原子数5~30)、ジアリールアミノアミノ基(例えば炭素原子数0~20)からなる群より選択される1つの基または2つ以上を組み合わせて形成される基を意味する。
 本明細書において「置換基群C」とは、アルキル基(例えば炭素数1~20)、アリール基(例えば炭素数6~22)、ヘテロアリール基(例えば環骨格構成原子数5~20)、ジアリールアミノ基(例えば炭素原子数12~20)からなる群より選択される1つの基または2つ以上を組み合わせて形成される基を意味する。
 本明細書において「置換基群D」とは、アルキル基(例えば炭素数1~20)、アリール基(例えば炭素数6~22)およびヘテロアリール基(例えば環骨格構成原子数5~20)からなる群より選択される1つの基または2つ以上を組み合わせて形成される基を意味する。
 本明細書において「置換基群E」とは、アルキル基(例えば炭素数1~20)およびアリール基(例えば炭素数6~22)からなる群より選択される1つの基または2つ以上を組み合わせて形成される基を意味する。
 本明細書において「置換基」や「置換もしくは無置換の」と記載されている場合の置換基は、例えば置換基群Aの中から選択してもよいし、置換基群Bの中から選択してもよいし、置換基群Cの中から選択してもよいし、置換基群Dの中から選択してもよいし、置換基群Eの中から選択してもよい。
 ある実施形態では、一般式(1)で表される化合物は発光材料である。
 ある実施形態では、一般式(1)で表される化合物は、遅延蛍光を発することができる化合物である。
 本開示のある実施形態では、一般式(1)で表される化合物は、熱的または電子的手段で励起されるとき、UV領域、可視スペクトルのうち青色、緑色、黄色、オレンジ色、赤色領域(例えば約420nm~約500nm、約500nm~約600nmまたは約600nm~約700nm)または近赤外線領域で光を発することができる。
 本開示のある実施形態では、一般式(1)で表される化合物は、熱的または電子的手段で励起されるとき、可視スペクトルのうち赤色またはオレンジ色領域(例えば約620nm~約780nm、約650nm)で光を発することができる。
 本開示のある実施形態では、一般式(1)で表される化合物は、熱的または電子的手段で励起されるとき、可視スペクトルのうちオレンジ色または黄色領域(例えば約570nm~約620nm、約590nm、約570nm)で光を発することができる。
 本開示のある実施形態では、一般式(1)で表される化合物は、熱的または電子的手段で励起されるとき、可視スペクトルのうち緑色領域(例えば約490nm~約575nm、約510nm)で光を発することができる。
 本開示のある実施形態では、一般式(1)で表される化合物は、熱的または電子的手段で励起されるとき、可視スペクトルのうち青色領域(例えば約400nm~約490nm、約475nm)で光を発することができる。
 本開示のある実施形態では、一般式(1)で表される化合物は、熱的または電子的手段で励起されるとき、紫外スペクトル領域(例えば280~400nm)で光を発することができる。
 本開示のある実施形態では、一般式(1)で表される化合物は、熱的または電子的手段で励起されるとき、赤外スペクトル領域(例えば780nm~2μm)で光を発することができる。
 本開示のある実施形態では、一般式(1)で表される化合物を用いた有機半導体素子を作製することができる。例えば、一般式(1)で表される化合物を用いたCMOS(相補型金属酸化膜半導体)などを作製することができる。本開示のある実施形態では、一般式(1)で表される化合物を用いて有機エレクトロルミネッセンス素子や固体撮像素子(例えばCMOSイメージセンサー)などの有機光素子を作製することができる。
 小分子の化学物質ライブラリの電子的特性は、公知のab initioによる量子化学計算を用いて算出することができる。例えば、基底として、6-31G*、およびベッケの3パラメータ、Lee-Yang-Parrハイブリッド汎関数として知られている関数群を用いた時間依存的な密度汎関数理論を使用してHartree-Fock方程式(TD-DFT/B3LYP/6-31G*)を解析し、特定の閾値以上のHOMOおよび特定の閾値以下のLUMOを有する分子断片(部分)をスクリーニングすることができる。
 それにより、例えば-6.5eV以上のHOMOエネルギー(例えばイオン化ポテンシャル)があるときは、供与体部分(「D」)が選抜できる。また例えば、-0.5eV以下のLUMOエネルギー(例えば電子親和力)があるときは、受容体部分(「A」)が選抜できる。ブリッジ部分(「B」)は、例えば受容体と供与体部分を特異的な立体構成に厳しく制限できる強い共役系であることにより、供与体および受容体部分のπ共役系間の重複が生じるのを防止する。
 ある実施形態では、化合物ライブラリは、以下の特性のうちの1つ以上を用いて選別される。
1.特定の波長付近における発光
2.算出された、特定のエネルギー準位より上の三重項状態
3.特定値より下のΔEST
4.特定値より上の量子収率
5.HOMO準位
6.LUMO準位
 ある実施形態では、77Kにおける最低の一重項励起状態と最低の三重項励起状態との差(ΔEST)は、約0.5eV未満、約0.4eV未満、約0.3eV未満、約0.2eV未満または約0.1eV未満である。ある実施形態ではΔEST値は、約0.09eV未満、約0.08eV未満、約0.07eV未満、約0.06eV未満、約0.05eV未満、約0.04eV未満、約0.03eV未満、約0.02eV未満または約0.01eV未満である。
 ある実施形態では、一般式(1)で表される化合物は、25%超の、例えば約30%、約35%、約40%、約45%、約50%、約55%、約60%、約65%、約70%、約75%、約80%、約85%、約90%、約95%またはそれ以上の量子収率を示す。
[一般式(1)で表される化合物の合成方法]
 一般式(1)で表される化合物は、新規化合物である。
 一般式(1)で表される化合物は、既知の反応を組み合わせることによって合成することができる。例えば、閉環反応を利用したり、置換反応を利用したりすることにより合成することができる。
[一般式(1)で表される化合物を用いた構成物]
 ある実施形態では、一般式(1)で表される化合物と組み合わせ、同化合物を分散させ、同化合物と共有結合し、同化合物をコーティングし、同化合物を担持し、あるいは同化合物と会合する1つ以上の材料(例えば小分子、ポリマー、金属、金属錯体等)と共に用い、固体状のフィルムまたは層を形成させる。例えば、一般式(1)で表される化合物を電気活性材料と組み合わせてフィルムを形成することができる。いくつかの場合、一般式(1)で表される化合物を正孔輸送ポリマーと組み合わせてもよい。いくつかの場合、一般式(1)で表される化合物を電子輸送ポリマーと組み合わせてもよい。いくつかの場合、一般式(1)で表される化合物を正孔輸送ポリマーおよび電子輸送ポリマーと組み合わせてもよい。いくつかの場合、一般式(1)で表される化合物を、正孔輸送部と電子輸送部との両方を有するコポリマーと組み合わせてもよい。以上のような実施形態により、固体状のフィルムまたは層内に形成される電子および/または正孔を、一般式(1)で表される化合物と相互作用させることができる。
[フィルムの形成]
 ある実施形態では、本発明の一般式(1)で表される化合物を含むフィルムは、湿式工程で形成することができる。湿式工程では、本発明の化合物を含む組成物を溶解した溶液を面に塗布し、溶媒の除去後にフィルムを形成する。湿式工程として、スピンコート法、スリットコート法、インクジェット法(スプレー法)、グラビア印刷法、オフセット印刷法、フレキソ印刷法を挙げることができるが、これらに限定されるものではない。湿式工程では、本発明の化合物を含む組成物を溶解することができる適切な有機溶媒を選択して用いる。ある実施形態では、組成物に含まれる化合物に、有機溶媒に対する溶解性を上げる置換基(例えばアルキル基)を導入することができる。
 ある実施形態では、本発明の化合物を含むフィルムは、乾式工程で形成することができる。ある実施形態では、乾式工程として真空蒸着法を採用することができる、これに限定されるものではない。真空蒸着法を採用する場合は、フィルムを構成する化合物を個別の蒸着源から共蒸着させてもよいし、化合物を混合した単一の蒸着源から共蒸着させてもよい。単一の蒸着源を用いる場合は、化合物の粉末を混合した混合粉を用いてもよいし、その混合粉を圧縮した圧縮成形体を用いてもよいし、各化合物を加熱溶融して冷却した混合物を用いてもよい。ある実施形態では、単一の蒸着源に含まれる複数の化合物の蒸着速度(重量減少速度)が一致ないしほぼ一致する条件で共蒸着を行うことにより、蒸着源に含まれる複数の化合物の組成比に対応する組成比のフィルムを形成することができる。形成されるフィルムの組成比と同じ組成比で複数の化合物を混合して蒸着源とすれば、所望の組成比を有するフィルムを簡便に形成することができる。ある実施形態では、共蒸着される各化合物が同じ重量減少率になる温度を特定して、その温度を共蒸着時の温度として採用することができる。
[一般式(1)で表される化合物の使用の例]
 一般式(1)で表される化合物は、有機発光素子の材料として有用である。特に有機発光ダイオード等に好ましく用いられる。
有機発光ダイオード:
 本発明の一態様は、有機発光素子の発光材料としての、本発明の一般式(1)で表される化合物の使用に関する。ある実施形態では、本発明の一般式(1)で表される化合物は、有機発光素子の発光層における発光材料として効果的に使用できる。ある実施形態では、一般式(1)で表される化合物は、遅延蛍光を発する遅延蛍光(遅延蛍光体)を含む。ある実施形態では、本発明は一般式(1)で表される構造を有する遅延蛍光体を提供する。ある実施形態では、本発明は遅延蛍光体としての一般式(1)で表される化合物の使用に関する。ある実施形態では、本発明は一般式(1)で表される化合物は、ホスト材料として使用することができ、かつ、1つ以上の発光材料と共に使用することができ、発光材料は蛍光材料、燐光材料または遅延蛍光材料(TADF)でよい。ある実施形態では、一般式(1)で表される化合物は、正孔輸送材料として使用することもできる。ある実施形態では、一般式(1)で表される化合物は、電子輸送材料として使用することができる。ある実施形態では、本発明は一般式(1)で表される化合物から遅延蛍光を生じさせる方法に関する。ある実施形態では、化合物を発光材料として含む有機発光素子は、遅延蛍光を発し、高い光放射効率を示す。
 ある実施形態では、発光層は一般式(1)で表される化合物を含み、一般式(1)で表される化合物は、基材と平行に配向される。ある実施形態では、基材はフィルム形成表面である。ある実施形態では、フィルム形成表面に対する一般式(1)で表される化合物の配向は、整列させる化合物によって発せられる光の伝播方向に影響を与えるか、あるいは、当該方向を決定づける。ある実施形態では、一般式(1)で表される化合物によって発される光の伝播方向を整列させることで、発光層からの光抽出効率が改善される。
 本発明の一態様は、有機発光素子に関する。ある実施形態では、有機発光素子は発光層を含む。ある実施形態では、発光層は発光材料として一般式(1)で表される化合物を含む。ある実施形態では、有機発光素子は有機光ルミネッセンス素子(有機PL素子)である。ある実施形態では、有機発光素子は、有機エレクトロルミネッセンス素子(有機EL素子)である。ある実施形態では、一般式(1)で表される化合物は、発光層に含まれる他の発光材料の光放射を(いわゆるアシストドーパントとして)補助する。ある実施形態では、発光層に含まれる一般式(1)で表される化合物は、その最低の励起一重項エネルギー準位にあり、発光層に含まれるホスト材料の最低励起一重項エネルギー準位と発光層に含まれる他の発光材料の最低励起一重項エネルギー準位との間に含まれる。
 ある実施形態では、有機光ルミネッセンス素子は、少なくとも1つの発光層を含む。ある実施形態では、有機エレクトロルミネッセンス素子は、少なくとも陽極、陰極、および前記陽極と前記陰極との間の有機層を含む。ある実施形態では、有機層は、少なくとも発光層を含む。ある実施形態では、有機層は、発光層のみを含む。ある実施形態では、有機層は、発光層に加えて1つ以上の有機層を含む。有機層の例としては、正孔輸送層、正孔注入層、電子障壁層、正孔障壁層、電子注入層、電子輸送層および励起子障壁層が挙げられる。ある実施形態では、正孔輸送層は、正孔注入機能を有する正孔注入輸送層であってもよく、電子輸送層は、電子注入機能を有する電子注入輸送層であってもよい。有機エレクトロルミネッセンス素子の例を図1に示す。
発光層:
 ある実施形態では、発光層は、陽極および陰極からそれぞれ注入された正孔および電子が再結合して励起子を形成する層である。ある実施形態では、層は光を発する。
 ある実施形態では、発光材料のみが発光層として用いられる。ある実施形態では、発光層は発光材料とホスト材料とを含む。ある実施形態では、発光材料は、一般式(1)で表される化合物である。ある実施形態では、有機エレクトロルミネッセンス素子および有機光ルミネッセンス素子の光放射効率を向上させるため、発光材料において発生する一重項励起子および三重項励起子を、発光材料内に閉じ込める。ある実施形態では、発光層中に発光材料に加えてホスト材料を用いる。ある実施形態では、ホスト材料は有機化合物である。ある実施形態では、有機化合物は励起一重項エネルギーおよび励起三重項エネルギーを有し、その少なくとも1つは、本発明の発光材料のそれらよりも高い。ある実施形態では、本発明の発光材料中で発生する一重項励起子および三重項励起子は、本発明の発光材料の分子中に閉じ込められる。ある実施形態では、一重項および三重項の励起子は、光放射効率を向上させるために十分に閉じ込められる。ある実施形態では、高い光放射効率が未だ得られるにもかかわらず、一重項励起子および三重項励起子は十分に閉じ込められず、すなわち、高い光放射効率を達成できるホスト材料は、特に限定されることなく本発明で使用されうる。ある実施形態では、本発明の素子の発光層中の発光材料において、光放射が生じる。ある実施形態では、放射光は蛍光および遅延蛍光の両方を含む。ある実施形態では、放射光は、ホスト材料からの放射光を含む。ある実施形態では、放射光は、ホスト材料からの放射光からなる。ある実施形態では、放射光は、一般式(1)で表される化合物からの放射光と、ホスト材料からの放射光とを含む。ある実施形態では、TADF分子とホスト材料とが用いられる。ある実施形態では、TADFはアシストドーパントであり、発光層中のホスト材料よりも励起一重項エネルギーが低く、発光層中の発光材料よりも励起一重項エネルギーが高い。
 一般式(1)で表される化合物をアシストドーパントとして用いるとき、発光材料(好ましくは蛍光材料)として様々な化合物を採用することが可能である。そのような発光材料としては、アントラセン誘導体、テトラセン誘導体、ナフタセン誘導体、ピレン誘導体、ペリレン誘導体、クリセン誘導体、ルブレン誘導体、クマリン誘導体、ピラン誘導体、スチルベン誘導体、フルオレン誘導体、アントリル誘導体、ピロメテン誘導体、ターフェニル誘導体、ターフェニレン誘導体、フルオランテン誘導体、アミン誘導体、キナクリドン誘導体、オキサジアゾール誘導体、マロノニトリル誘導体、ピラン誘導体、カルバゾール誘導体、ジュロリジン誘導体、チアゾール誘導体、金属(Al,Zn)を有する誘導体等を用いることが可能である。これらの例示骨格には置換基を有してもよいし、置換基を有していなくてもよい。また、これらの例示骨格どうしを組み合わせてもよい。
 以下において、一般式(1)で表される構造を有するアシストドーパントと組み合わせて用いることができる発光材料を例示する。
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000147
 上記の例示化合物の全水素原子を重水素原子に置換した化合物もホスト材料として用いることができる。また、上記例示化合物のうちカルバゾール-9-イル基を含むものについては、そのカルバゾール-9-イル基の全水素原子を重水素原子に置換した化合物もホスト材料として用いることができる。
 また、WO2015/022974号公報の段落0220~0239に記載の化合物も、一般式(1)で表される構造を有するアシストドーパントとともに用いる発光材料として、特に好ましく採用することができる。
 ある実施形態では、ホスト材料を用いるとき、発光層に含まれる発光材料としての本発明の化合物の量は、0.1重量%以上である。ある実施形態では、ホスト材料を用いるとき、発光層に含まれる発光材料としての本発明の化合物の量は、1重量%以上である。ある実施形態では、ホスト材料を用いるとき、発光層に含まれる発光材料としての本発明の化合物の量は、50重量%以下である。ある実施形態では、ホスト材料を用いるとき、発光層に含まれる発光材料としての本発明の化合物の量は、20重量%以下である。ある実施形態では、ホスト材料を用いるとき、発光層に含まれる発光材料としての本発明の化合物の量は、10重量%以下である。
 ある実施形態では、発光層のホスト材料は、正孔輸送機能および電子輸送機能を有する有機化合物である。ある実施形態では、発光層のホスト材料は、放射光の波長が増加することを防止する有機化合物である。ある実施形態では、発光層のホスト材料は、高いガラス転移温度を有する有機化合物である。
 いくつかの実施形態では、ホスト材料は以下からなる群から選択される: 
Figure JPOXMLDOC01-appb-C000148
Figure JPOXMLDOC01-appb-C000149
 ある実施形態では、発光層は2種類以上の構造が異なるTADF分子を含む。例えば、励起一重項エネルギー準位がホスト材料、第1TADF分子、第2TADF分子の順に高い、これら3種の材料を含む発光層とすることができる。このとき、第1TADF分子と第2TADF分子は、ともに最低励起一重項エネルギー準位と77Kの最低励起三重項エネルギー準位の差ΔESTが0.3eV以下であることが好ましく、0.25eV以下であることがより好ましく、0.2eV以下であることがより好ましく、0.15eV以下であることがより好ましく、0.1eV以下であることがさらに好ましく、0.07eV以下であることがさらにより好ましく、0.05eV以下であることがさらにまた好ましく、0.03eV以下であることがさらになお好ましく、0.01eV以下であることが特に好ましい。発光層における第1TADF分子の濃度は、第2TADF分子の濃度よりも大きいことが好ましい。また、発光層におけるホスト材料の濃度は、第2TADF分子の濃度よりも大きいことが好ましい。発光層における第1TADF分子の濃度は、ホスト材料の濃度よりも大きくてもよいし、小さくてもよいし、同じであってもよい。ある実施形態では、発光層内の組成を、ホスト材料を10~70重量%、第1TADF分子を10~80重量%、第2TADF分子を0.1~30重量%としてもよい。ある実施形態では、発光層内の組成を、ホスト材料を20~45重量%、第1TADF分子を50~75重量%、第2TADF分子を5~20重量%としてもよい。ある実施形態では、第1TADF分子とホスト材料の共蒸着膜(この共蒸着膜における第1TADF分子の濃度=A重量%)の光励起による発光量子収率φPL1(A)と、第2TADF分子とホスト材料の共蒸着膜(この共蒸着膜における第2TADF分子の濃度=A重量%)の光励起による発光量子収率φPL2(A)が、φPL1(A)>φPL2(A)の関係式を満たす。ある実施形態では、第2TADF分子とホスト材料の共蒸着膜(この共蒸着膜における第2TADF分子の濃度=B重量%)の光励起による発光量子収率φPL2(B)と、第2TADF分子の単独膜の光励起による発光量子収率φPL2(100)が、φPL2(B)>φPL2(100)の関係式を満たす。ある実施形態では、発光層は3種類の構造が異なるTADF分子を含むことができる。本発明の化合物は、発光層に含まれる複数のTADF化合物のいずれであってもよい。
 ある実施形態では、発光層は、ホスト材料、アシストドーパント、および発光材料からからなる群より選択される材料で構成することができる。ある実施形態では、発光層は金属元素を含まない。ある実施形態では、発光層は炭素原子、水素原子、重水素原子、窒素原子、酸素原子および硫黄原子からなる群より選択される原子のみから構成される材料で構成することができる。あるいは、発光層は、炭素原子、水素原子、重水素原子、窒素原子および酸素原子からなる群より選択される原子のみから構成される材料で構成することもできる。あるいは、発光層は、炭素原子、水素原子、窒素原子および酸素原子からなる群より選択される原子のみから構成される材料で構成することもできる。
 発光層が本発明の化合物以外のTADF材料を含むとき、そのTADF材料は公知の遅延蛍光材料であってよい。好ましい遅延蛍光材料として、WO2013/154064号公報の段落0008~0048および0095~0133、WO2013/011954号公報の段落0007~0047および0073~0085、WO2013/011955号公報の段落0007~0033および0059~0066、WO2013/081088号公報の段落0008~0071および0118~0133、特開2013-256490号公報の段落0009~0046および0093~0134、特開2013-116975号公報の段落0008~0020および0038~0040、WO2013/133359号公報の段落0007~0032および0079~0084、WO2013/161437号公報の段落0008~0054および0101~0121、特開2014-9352号公報の段落0007~0041および0060~0069、特開2014-9224号公報の段落0008~0048および0067~0076、特開2017-119663号公報の段落0013~0025、特開2017-119664号公報の段落0013~0026、特開2017-222623号公報の段落0012~0025、特開2017-226838号公報の段落0010~0050、特開2018-100411号公報の段落0012~0043、WO2018/047853号公報の段落0016~0044に記載される一般式に包含される化合物、特に例示化合物であって、遅延蛍光を放射しうるものが含まれる。また、ここでは、特開2013-253121号公報、WO2013/133359号公報、WO2014/034535号公報、WO2014/115743号公報、WO2014/122895号公報、WO2014/126200号公報、WO2014/136758号公報、WO2014/133121号公報、WO2014/136860号公報、WO2014/196585号公報、WO2014/189122号公報、WO2014/168101号公報、WO2015/008580号公報、WO2014/203840号公報、WO2015/002213号公報、WO2015/016200号公報、WO2015/019725号公報、WO2015/072470号公報、WO2015/108049号公報、WO2015/080182号公報、WO2015/072537号公報、WO2015/080183号公報、特開2015-129240号公報、WO2015/129714号公報、WO2015/129715号公報、WO2015/133501号公報、WO2015/136880号公報、WO2015/137244号公報、WO2015/137202号公報、WO2015/137136号公報、WO2015/146541号公報、WO2015/159541号公報に記載される発光材料であって、遅延蛍光を放射しうるものを好ましく採用することができる。なお、この段落に記載される上記の公報は、本明細書の一部としてここに引用する。
 以下において、有機エレクトロルミネッセンス素子の各部材および発光層以外の各層について説明する。
基材:
 いくつかの実施形態では、本発明の有機エレクトロルミネッセンス素子は基材により保持され、当該基材は特に限定されず、有機エレクトロルミネッセンス素子で一般的に用いられる、例えばガラス、透明プラスチック、クォーツおよびシリコンにより形成されたいずれかの材料を用いればよい。
陽極:
 いくつかの実施形態では、有機エレクトロルミネッセンス装置の陽極は、金属、合金、導電性化合物またはそれらの組み合わせから製造される。いくつかの実施形態では、前記の金属、合金または導電性化合物は高い仕事関数(4eV以上)を有する。いくつかの実施形態では、前記金属はAuである。いくつかの実施形態では、導電性の透明材料は、CuI、酸化インジウム・スズ(ITO)、SnOおよびZnOから選択される。いくつかの実施形態では、IDIXO(In-ZnO)などの、透明な導電性フィルムを形成できるアモルファス材料を使用する。いくつかの実施形態では、前記陽極は薄膜である。いくつかの実施形態では、前記薄膜は蒸着またはスパッタリングにより作製される。いくつかの実施形態では、前記フィルムはフォトリソグラフィー方法によりパターン化される。いくつかの実施形態では、パターンが高精度である必要がない(例えば約100μm以上)場合、当該パターンは、電極材料への蒸着またはスパッタリングに好適な形状のマスクを用いて形成してもよい。いくつかの実施形態では、有機導電性化合物などのコーティング材料を塗布しうるとき、プリント法やコーティング法などの湿式フィルム形成方法が用いられる。いくつかの実施形態では、放射光が陽極を通過するとき、陽極は10%超の透過度を有し、当該陽極は、単位面積あたり数百オーム以下のシート抵抗を有する。いくつかの実施形態では、陽極の厚みは10~1,000nmである。いくつかの実施形態では、陽極の厚みは10~200nmである。いくつかの実施形態では、陽極の厚みは用いる材料に応じて変動する。
陰極:
 いくつかの実施形態では、前記陰極は、低い仕事関数を有する金属(4eV以下)(電子注入金属と称される)、合金、導電性化合物またはその組み合わせなどの電極材料で作製される。いくつかの実施形態では、前記電極材料は、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム-銅混合物、マグネシウム-銀混合物、マグネシウム-アルミニウム混合物、マグネシウム-インジウム混合物、アルミニウム-酸化アルミニウム(Al)混合物、インジウム、リチウム-アルミニウム混合物および希土類元素から選択される。いくつかの実施形態では、電子注入金属と、電子注入金属より高い仕事関数を有する安定な金属である第2の金属との混合物が用いられる。いくつかの実施形態では、前記混合物は、マグネシウム-銀混合物、マグネシウム-アルミニウム混合物、マグネシウム-インジウム混合物、アルミニウム-酸化アルミニウム(Al)混合物、リチウム-アルミニウム混合物およびアルミニウムから選択される。いくつかの実施形態では、前記混合物は電子注入特性および酸化に対する耐性を向上させる。いくつかの実施形態では、陰極は、蒸着またはスパッタリングにより電極材料を薄膜として形成させることによって製造される。いくつかの実施形態では、前記陰極は単位面積当たり数百オーム以下のシート抵抗を有する。いくつかの実施形態では、前記陰極の厚は10nm~5μmである。いくつかの実施形態では、前記陰極の厚は50~200nmである。いくつかの実施形態では、放射光を透過させるため、有機エレクトロルミネッセンス素子の陽極および陰極のいずれか1つは透明または半透明である。いくつかの実施形態では、透明または半透明のエレクトロルミネッセンス素子は光放射輝度を向上させる。
 いくつかの実施形態では、前記陰極を、前記陽極に関して前述した導電性の透明な材料で形成されることにより、透明または半透明の陰極が形成される。いくつかの実施形態では、素子は陽極と陰極とを含むが、いずれも透明または半透明である。
注入層:
 注入層は、電極と有機層との間の層である。いくつかの実施形態では、前記注入層は駆動電圧を減少させ、光放射輝度を増強する。いくつかの実施形態では、前記注入層は、正孔注入層と電子注入層とを含む。前記注入層は、陽極と発光層または正孔輸送層との間、並びに陰極と発光層または電子輸送層との間に配置することがきる。いくつかの実施形態では、注入層が存在する。いくつかの実施形態では、注入層が存在しない。
 以下に、正孔注入材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000150
 次に、電子注入材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000151
障壁層:
 障壁層は、発光層に存在する電荷(電子または正孔)および/または励起子が、発光層の外側に拡散することを阻止できる層である。いくつかの実施形態では、電子障壁層は、発光層と正孔輸送層との間に存在し、電子が発光層を通過して正孔輸送層へ至ることを阻止する。いくつかの実施形態では、正孔障壁層は、発光層と電子輸送層との間に存在し、正孔が発光層を通過して電子輸送層へ至ることを阻止する。いくつかの実施形態では、障壁層は、励起子が発光層の外側に拡散することを阻止する。いくつかの実施形態では、電子障壁層および正孔障壁層は励起子障壁層を構成する。本明細書で用いる用語「電子障壁層」または「励起子障壁層」には、電子障壁層の、および励起子障壁層の機能の両方を有する層が含まれる。
正孔障壁層:
 正孔障壁層は、電子輸送層として機能する。いくつかの実施形態では、電子の輸送の間、正孔障壁層は正孔が電子輸送層に至ることを阻止する。いくつかの実施形態では、正孔障壁層は、発光層における電子と正孔との再結合の確率を高める。正孔障壁層に用いる材料は、電子輸送層について前述したのと同じ材料であってもよい。
 以下に、正孔障壁層に用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000152
電子障壁層:
 電子障壁層は、正孔を輸送する。いくつかの実施形態では、正孔の輸送の間、電子障壁層は電子が正孔輸送層に至ることを阻止する。いくつかの実施形態では、電子障壁層は、発光層における電子と正孔との再結合の確率を高める。電子障壁層に用いる材料は、正孔輸送層について前述したのと同じ材料であってもよい。
 以下に電子障壁材料として用いることができる好ましい化合物の具体例を挙げる。
Figure JPOXMLDOC01-appb-C000153
励起子障壁層:
 励起子障壁層は、発光層における正孔と電子との再結合を通じて生じた励起子が電荷輸送層まで拡散することを阻止する。いくつかの実施形態では、励起子障壁層は、発光層における励起子の有効な閉じ込め(confinement)を可能にする。いくつかの実施形態では、装置の光放射効率が向上する。いくつかの実施形態では、励起子障壁層は、陽極の側と陰極の側のいずれかで、およびその両側の発光層に隣接する。いくつかの実施形態では、励起子障壁層が陽極側に存在するとき、当該層は、正孔輸送層と発光層との間に存在し、当該発光層に隣接してもよい。いくつかの実施形態では、励起子障壁層が陰極側に存在するとき、当該層は、発光層と陰極との間に存在し、当該発光層に隣接してもよい。いくつかの実施形態では、正孔注入層、電子障壁層または同様の層は、陽極と、陽極側の発光層に隣接する励起子障壁層との間に存在する。いくつかの実施形態では、正孔注入層、電子障壁層、正孔障壁層または同様の層は、陰極と、陰極側の発光層に隣接する励起子障壁層との間に存在する。いくつかの実施形態では、励起子障壁層は、励起一重項エネルギーと励起三重項エネルギーを含み、その少なくとも1つが、それぞれ、発光材料の励起一重項エネルギーと励起三重項エネルギーより高い。
正孔輸送層:
 正孔輸送層は、正孔輸送材料を含む。いくつかの実施形態では、正孔輸送層は単層である。いくつかの実施形態では、正孔輸送層は複数の層を有する。
 いくつかの実施形態では、正孔輸送材料は、正孔の注入または輸送特性および電子の障壁特性のうちの1つの特性を有する。いくつかの実施形態では、正孔輸送材料は有機材料である。いくつかの実施形態では、正孔輸送材料は無機材料である。本発明で使用できる公知の正孔輸送材料の例としては、限定されないが、トリアゾール誘導体、オキサジアゾール誘導剤、イミダゾール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリアリールアルカン誘導剤、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリルアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導剤、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリンコポリマーおよび導電性ポリマーオリゴマー(特にチオフェンオリゴマー)、またはその組合せが挙げられる。いくつかの実施形態では、正孔輸送材料はポルフィリン化合物、芳香族三級アミン化合物およびスチリルアミン化合物から選択される。いくつかの実施形態では、正孔輸送材料は芳香族三級アミン化合物である。以下に正孔輸送材料として用いることができる好ましい化合物の具体例を挙げる。
Figure JPOXMLDOC01-appb-C000154
Figure JPOXMLDOC01-appb-C000155
電子輸送層:
 電子輸送層は、電子輸送材料を含む。いくつかの実施形態では、電子輸送層は単層である。いくつかの実施形態では、電子輸送層は複数の層を有する。
 いくつかの実施形態では、電子輸送材料は、陰極から注入された電子を発光層に輸送する機能さえあればよい。いくつかの実施形態では、電子輸送材料はまた、正孔障壁材料としても機能する。本発明で使用できる電子輸送層の例としては、限定されないが、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フルオレニリデンメタン誘導体、アントラキノジメタン、アントロン誘導体、オキサジアゾール誘導体、アゾール誘導体、アジン誘導体またはその組合せ、またはそのポリマーが挙げられる。いくつかの実施形態では、電子輸送材料はチアジアゾール誘導剤またはキノキサリン誘導体である。いくつかの実施形態では、電子輸送材料はポリマー材料である。以下に電子輸送材料として用いることができる好ましい化合物の具体例を挙げる。
Figure JPOXMLDOC01-appb-C000156
 さらに、各有機層に添加可能な材料として好ましい化合物例を挙げる。例えば、安定化材料として添加すること等が考えられる。
Figure JPOXMLDOC01-appb-C000157
 有機エレクトロルミネッセンス素子に用いることができる好ましい材料を具体的に例示したが、本発明において用いることができる材料は、以下の例示化合物によって限定的に解釈されることはない。また、特定の機能を有する材料として例示した化合物であっても、その他の機能を有する材料として転用することも可能である。
デバイス:
 いくつかの実施形態では、発光層はデバイス中に組み込まれる。例えば、デバイスには、OLEDバルブ、OLEDランプ、テレビ用ディスプレイ、コンピューター用モニター、携帯電話およびタブレットが含まれるが、これらに限定されない。
 いくつかの実施形態では、電子デバイスは、陽極、陰極、および当該陽極と当該陰極との間の発光層を含む少なくとも1つの有機層を有するOLEDを含む。
 いくつかの実施形態では、本願明細書に記載の構成物は、OLEDまたは光電子デバイスなどの、様々な感光性または光活性化デバイスに組み込まれうる。いくつかの実施形態では、前記構成物はデバイス内の電荷移動またはエネルギー移動の促進に、および/または正孔輸送材料として有用でありうる。前記デバイスとしては、例えば有機発光ダイオード(OLED)、有機集積回線(OIC)、有機電界効果トランジスタ(O-FET)、有機薄膜トランジスタ(O-TFT)、有機発光トランジスタ(O-LET)、有機太陽電池(O-SC)、有機光学検出装置、有機光受容体、有機磁場クエンチ(field-quench)装置(O-FQD)、発光燃料電池(LEC)または有機レーザダイオード(O-レーザー)が挙げられる。
バルブまたはランプ:
 いくつかの実施形態では、電子デバイスは、陽極、陰極、当該陽極と当該陰極との間の発光層を含む少なくとも1つの有機層を含むOLEDを含む。
 いくつかの実施形態では、デバイスは色彩の異なるOLEDを含む。いくつかの実施形態では、デバイスはOLEDの組合せを含むアレイを含む。いくつかの実施形態では、OLEDの前記組合せは、3色の組合せ(例えばRGB)である。いくつかの実施形態では、OLEDの前記組合せは、赤色でも緑色でも青色でもない色(例えばオレンジ色および黄緑色)の組合せである。いくつかの実施形態では、OLEDの前記組合せは、2色、4色またはそれ以上の色の組合せである。
 いくつかの実施形態では、デバイスは、
 取り付け面を有する第1面とそれと反対の第2面とを有し、少なくとも1つの開口部を画定する回路基板と、
 前記取り付け面上の少なくとも1つのOLEDであって、当該少なくとも1つのOLEDが、陽極、陰極、および当該陽極と当該陰極との間の発光層を含む少なくとも1つの有機層を含む、発光する構成を有する少なくとも1つのOLEDと、
 回路基板用のハウジングと、
 前記ハウジングの端部に配置された少なくとも1つのコネクターであって、前記ハウジングおよび前記コネクターが照明設備への取付けに適するパッケージを画定する、少なくとも1つのコネクターと、を備えるOLEDライトである。
 いくつかの実施形態では、前記OLEDライトは、複数の方向に光が放射されるように回路基板に取り付けられた複数のOLEDを有する。いくつかの実施形態では、第1方向に発せられた一部の光は偏光されて第2方向に放射される。いくつかの実施形態では、反射器を用いて第1方向に発せられた光を偏光する。
ディスプレイまたはスクリーン:
 いくつかの実施形態では、本発明の発光層はスクリーンまたはディスプレイにおいて使用できる。いくつかの実施形態では、本発明に係る化合物は、限定されないが真空蒸発、堆積、蒸着または化学蒸着(CVD)などの工程を用いて基材上へ堆積させる。いくつかの実施形態では、前記基材は、独特のアスペクト比のピクセルを提供する2面エッチングにおいて有用なフォトプレート構造である。前記スクリーン(またマスクとも呼ばれる)は、OLEDディスプレイの製造工程で用いられる。対応するアートワークパターンの設計により、垂直方向ではピクセルの間の非常に急な狭いタイバーの、並びに水平方向では大きな広範囲の斜角開口部の配置を可能にする。これにより、TFTバックプレーン上への化学蒸着を最適化しつつ、高解像度ディスプレイに必要とされるピクセルの微細なパターン構成が可能となる。
 ピクセルの内部パターニングにより、水平および垂直方向での様々なアスペクト比の三次元ピクセル開口部を構成することが可能となる。更に、ピクセル領域中の画像化された「ストライプ」またはハーフトーン円の使用は、これらの特定のパターンをアンダーカットし基材から除くまで、特定の領域におけるエッチングが保護される。その時、全てのピクセル領域は同様のエッチング速度で処理されるが、その深さはハーフトーンパターンにより変化する。ハーフトーンパターンのサイズおよび間隔を変更することにより、ピクセル内での保護率が様々異なるエッチングが可能となり、急な垂直斜角を形成するのに必要な局在化された深いエッチングが可能となる。
 蒸着マスク用の好ましい材料はインバーである。インバーは、製鉄所で長い薄型シート状に冷延された金属合金である。インバーは、ニッケルマスクとしてスピンマンドレル上へ電着することができない。蒸着用マスク内に開口領域を形成するための適切かつ低コストの方法は、湿式化学エッチングによる方法である。
 いくつかの実施形態では、スクリーンまたはディスプレイパターンは、基材上のピクセルマトリックスである。いくつかの実施形態では、スクリーンまたはディスプレイパターンは、リソグラフィー(例えばフォトリソグラフィーおよびeビームリソグラフィー)を使用して加工される。いくつかの実施形態では、スクリーンまたはディスプレイパターンは、湿式化学エッチングを使用して加工される。更なる実施形態では、スクリーンまたはディスプレイパターンは、プラズマエッチングを使用して加工される。
デバイスの製造方法:
 OLEDディスプレイは、一般的には、大型のマザーパネルを形成し、次に当該マザーパネルをセルパネル単位で切断することによって製造される。通常は、マザーパネル上の各セルパネルは、ベース基材上に、活性層とソース/ドレイン電極とを有する薄膜トランジスタ(TFT)を形成し、前記TFTに平坦化フィルムを塗布し、ピクセル電極、発光層、対電極およびカプセル化層、を順に経時的に形成し、前記マザーパネルから切断することにより形成される。
 OLEDディスプレイは、一般的には、大型のマザーパネルを形成し、次に当該マザーパネルをセルパネル単位で切断することによって製造される。通常は、マザーパネル上の各セルパネルは、ベース基材上に、活性層とソース/ドレイン電極とを有する薄膜トランジスタ(TFT)を形成し、前記TFTに平坦化フィルムを塗布し、ピクセル電極、発光層、対電極およびカプセル化層、を順に経時的に形成し、前記マザーパネルから切断することにより形成される。
 本発明の他の態様では、有機発光ダイオード(OLED)ディスプレイの製造方法を提供し、当該方法は、
  マザーパネルのベース基材上に障壁層を形成する工程と、
  前記障壁層上に、セルパネル単位で複数のディスプレイユニットを形成する工程と、
  前記セルパネルのディスプレイユニットのそれぞれの上にカプセル化層を形成する工程と、
  前記セルパネル間のインタフェース部に有機フィルムを塗布する工程と、を含む。
 いくつかの実施形態では、障壁層は、例えばSiNxで形成された無機フィルムであり、障壁層の端部はポリイミドまたはアクリルで形成された有機フィルムで被覆される。いくつかの実施形態では、有機フィルムは、マザーパネルがセルパネル単位で軟らかく切断されるように補助する。
 いくつかの実施形態では、薄膜トランジスタ(TFT)層は、発光層と、ゲート電極と、ソース/ドレイン電極と、を有する。複数のディスプレイユニットの各々は、薄膜トランジスタ(TFT)層と、TFT層上に形成された平坦化フィルムと、平坦化フィルム上に形成された発光ユニットと、を有してもよく、前記インタフェース部に塗布された有機フィルムは、前記平坦化フィルムの材料と同じ材料で形成され、前記平坦化フィルムの形成と同時に形成される。いくつかの実施形態では、前記発光ユニットは、不動態化層と、その間の平坦化フィルムと、発光ユニットを被覆し保護するカプセル化層と、によりTFT層と連結される。前記製造方法のいくつかの実施形態では、前記有機フィルムは、ディスプレイユニットにもカプセル化層にも連結されない。
 前記有機フィルムと平坦化フィルムの各々は、ポリイミドおよびアクリルのいずれか1つを含んでもよい。いくつかの実施形態では、前記障壁層は無機フィルムであってもよい。いくつかの実施形態では、前記ベース基材はポリイミドで形成されてもよい。前記方法は更に、ポリイミドで形成されたベース基材の1つの表面に障壁層を形成する前に、当該ベース基材のもう1つの表面にガラス材料で形成されたキャリア基材を取り付ける工程と、インタフェース部に沿った切断の前に、前記キャリア基材をベース基材から分離する工程と、を含んでもよい。いくつかの実施形態では、前記OLEDディスプレイはフレキシブルなディスプレイである。
 いくつかの実施形態では、前記不動態化層は、TFT層の被覆のためにTFT層上に配置された有機フィルムである。いくつかの実施形態では、前記平坦化フィルムは、不動態化層上に形成された有機フィルムである。いくつかの実施形態では、前記平坦化フィルムは、障壁層の端部に形成された有機フィルムと同様、ポリイミドまたはアクリルで形成される。いくつかの実施形態では、OLEDディスプレイの製造の際、前記平坦化フィルムおよび有機フィルムは同時に形成される。いくつかの実施形態では、前記有機フィルムは、障壁層の端部に形成されてもよく、それにより、当該有機フィルムの一部が直接ベース基材と接触し、当該有機フィルムの残りの部分が、障壁層の端部を囲みつつ、障壁層と接触する。
 いくつかの実施形態では、前記発光層は、ピクセル電極と、対電極と、当該ピクセル電極と当該対電極との間に配置された有機発光層と、を有する。いくつかの実施形態では、前記ピクセル電極は、TFT層のソース/ドレイン電極に連結している。
 いくつかの実施形態では、TFT層を通じてピクセル電極に電圧が印加されるとき、ピクセル電極と対電極との間に適切な電圧が形成され、それにより有機発光層が光を放射し、それにより画像が形成される。以下、TFT層と発光ユニットとを有する画像形成ユニットを、ディスプレイユニットと称する。
 いくつかの実施形態では、ディスプレイユニットを被覆し、外部の水分の浸透を防止するカプセル化層は、有機フィルムと無機フィルムとが交互に積層する薄膜状のカプセル化構造に形成されてもよい。いくつかの実施形態では、前記カプセル化層は、複数の薄膜が積層した薄膜状カプセル化構造を有する。いくつかの実施形態では、インタフェース部に塗布される有機フィルムは、複数のディスプレイユニットの各々と間隔を置いて配置される。いくつかの実施形態では、前記有機フィルムは、一部の有機フィルムが直接ベース基材と接触し、有機フィルムの残りの部分が障壁層の端部を囲む一方で障壁層と接触する態様で形成される。
 一実施形態では、OLEDディスプレイはフレキシブルであり、ポリイミドで形成された柔軟なベース基材を使用する。いくつかの実施形態では、前記ベース基材はガラス材料で形成されたキャリア基材上に形成され、次に当該キャリア基材が分離される。
 いくつかの実施形態では、障壁層は、キャリア基材の反対側のベース基材の表面に形成される。一実施形態では、前記障壁層は、各セルパネルのサイズに従いパターン化される。例えば、ベース基材がマザーパネルの全ての表面上に形成される一方で、障壁層が各セルパネルのサイズに従い形成され、それにより、セルパネルの障壁層の間のインタフェース部に溝が形成される。各セルパネルは、前記溝に沿って切断できる。
 いくつかの実施形態では、前記の製造方法は、更にインタフェース部に沿って切断する工程を含み、そこでは溝が障壁層に形成され、少なくとも一部の有機フィルムが溝で形成され、当該溝がベース基材に浸透しない。いくつかの実施形態では、各セルパネルのTFT層が形成され、無機フィルムである不動態化層と有機フィルムである平坦化フィルムが、TFT層上に配置され、TFT層を被覆する。例えばポリイミドまたはアクリル製の平坦化フィルムが形成されるのと同時に、インタフェース部の溝は、例えばポリイミドまたはアクリル製の有機フィルムで被覆される。これは、各セルパネルがインタフェース部で溝に沿って切断されるとき、生じた衝撃を有機フィルムに吸収させることによってひびが生じるのを防止する。すなわち、全ての障壁層が有機フィルムなしで完全に露出している場合、各セルパネルがインタフェース部で溝に沿って切断されるとき、生じた衝撃が障壁層に伝達され、それによりひびが生じるリスクが増加する。しかしながら、一実施形態では、障壁層間のインタフェース部の溝が有機フィルムで被覆されて、有機フィルムがなければ障壁層に伝達されうる衝撃を吸収するため、各セルパネルをソフトに切断し、障壁層でひびが生じるのを防止してもよい。一実施形態では、インタフェース部の溝を被覆する有機フィルムおよび平坦化フィルムは、互いに間隔を置いて配置される。例えば、有機フィルムおよび平坦化フィルムが1つの層として相互に接続している場合には、平坦化フィルムと有機フィルムが残っている部分とを通じてディスプレイユニットに外部の水分が浸入するおそれがあるため、有機フィルムおよび平坦化フィルムは、有機フィルムがディスプレイユニットから間隔を置いて配置されるように、相互に間隔を置いて配置される。
 いくつかの実施形態では、ディスプレイユニットは、発光ユニットの形成により形成され、カプセル化層は、ディスプレイユニットを被覆するためディスプレイユニット上に配置される。これにより、マザーパネルが完全に製造された後、ベース基材を担持するキャリア基材がベース基材から分離される。いくつかの実施形態では、レーザー光線がキャリア基材へ放射されると、キャリア基材は、キャリア基材とベース基材との間の熱膨張率の相違により、ベース基材から分離される。
 いくつかの実施形態では、マザーパネルは、セルパネル単位で切断される。いくつかの実施形態では、マザーパネルは、カッターを用いてセルパネル間のインタフェース部に沿って切断される。いくつかの実施形態では、マザーパネルが沿って切断されるインタフェース部の溝が有機フィルムで被覆されているため、切断の間、当該有機フィルムが衝撃を吸収する。いくつかの実施形態では、切断の間、障壁層でひびが生じるのを防止できる。
 いくつかの実施形態では、前記方法は製品の不良率を減少させ、その品質を安定させる。
 他の態様は、ベース基材上に形成された障壁層と、障壁層上に形成されたディスプレイユニットと、ディスプレイユニット上に形成されたカプセル化層と、障壁層の端部に塗布された有機フィルムと、を有するOLEDディスプレイである。
 本明細書は、少なくとも下記の発明を開示している。
[1] 下記一般式(1)で表される化合物。
一般式(1) 
Figure JPOXMLDOC01-appb-C000158
[一般式(1)において、XおよびXは、一方が窒素原子であり、他方がホウ素原子である。R~R26、A、Aは、各々独立に水素原子、重水素原子または置換基を表す。RとR、RとR、RとR、RとR、RとR、RとR、RとR、RとR、RとR10、R10とR11、R11とR12、R13とR14、R14とR15、R15とR16、R16とR17、R17とR18、R18とR19、R19とR20、R20とR21、R21とR22、R22とR23、R23とR24、R24とR25、R25とR26は、互いに結合して環状構造を形成していてもよい。ただし、Xが窒素原子であるとき、R17とR18は互いに結合して単結合となりピロール環を形成し、Xが窒素原子であるとき、R21とR22は互いに結合して単結合となりピロール環を形成する。ただし、Xが窒素原子であって、RとRおよびR21とR22が窒素原子を介して結合して6員環を形成し、R17とR18が互いに結合して単結合を形成しているとき、R~Rの少なくとも1つは置換もしくは無置換のアリール基であるか、RとR、RとR、RとR、RとR、RとRのいずれかが互いに結合して芳香環または複素芳香環を形成している。]
[2] 前記化合物が下記骨格(1a)または骨格(1b)を有する、[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000159
[骨格(1a)および(1b)における各水素原子は、重水素原子または置換基に置換されていてもよいし、隣接する水素原子とともに連結基に置換されて環状構造を形成していてもよい。]
[3] 前記化合物が下記骨格(2a)または骨格(2b)を有する、[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000160
[骨格(2a)および(2b)における各水素原子は、重水素原子または置換基に置換されていてもよいし、隣接する水素原子とともに連結基に置換されて環状構造を形成していてもよい。]
[4] 前記化合物が下記骨格(3a)または骨格(3b)を有する、[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000161
[骨格(3a)および(3b)における各水素原子は、重水素原子または置換基に置換されていてもよいし、隣接する水素原子とともに連結基に置換されて環状構造を形成していてもよい。]
[5] 前記化合物が下記骨格(4a)または骨格(4b)を有する、[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000162
[骨格(4a)および(4b)において、Y~Yは、各々独立に水素原子2個、単結合またはN(R27)を表し、Z~Zは、各々独立に酸素原子または硫黄原子を表し、R27は水素原子、重水素原子または置換基を表す。骨格(4a)および(4b)における各水素原子は、重水素原子または置換基に置換されていてもよいし、隣接する水素原子とともに連結基に置換されて環状構造を形成していてもよい。]
[6] 前記化合物が下記骨格(5a)または骨格(5b)を有する、[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000163
[骨格(5a)および(5b)において、Y~Yは、各々独立に水素原子2個、単結合またはN(R27)を表し、Z~Zは、各々独立に酸素原子または硫黄原子を表し、R27は水素原子、重水素原子または置換基を表す。骨格(5a)および(5b)における各水素原子は、重水素原子または置換基に置換されていてもよいし、隣接する水素原子とともに連結基に置換されて環状構造を形成していてもよい。]
[7] 前記化合物が下記骨格(6a)または骨格(6b)を有する、[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000164
[骨格(6a)および(6b)において、Y~Y12は、各々独立に水素原子2個、単結合またはN(R27)を表し、Z~Z16は、各々独立に酸素原子または硫黄原子を表し、R27は水素原子、重水素原子または置換基を表す。骨格(6a)および(6b)における各水素原子は、重水素原子または置換基に置換されていてもよいし、隣接する水素原子とともに連結基に置換されて環状構造を形成していてもよい。]
[8] 前記化合物が下記骨格(7a)または骨格(7b)を有する、[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000165
[骨格(7a)および(7b)において、Y21~Y24は、各々独立に水素原子2個、単結合またはN(R27)を表し、R27は水素原子、重水素原子または置換基を表す。骨格(7a)および(7b)における各水素原子は、重水素原子または置換基に置換されていてもよいし、隣接する水素原子とともに連結基に置換されて環状構造を形成していてもよい。]
[9] 前記化合物が下記骨格(8a)または骨格(8b)を有する、[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000166
[骨格(8a)および(8b)において、Y25~Y28は、各々独立に水素原子2個、単結合またはN(R27)を表し、R27は水素原子、重水素原子または置換基を表す。骨格(8a)および(8b)における各水素原子は、重水素原子または置換基に置換されていてもよいし、隣接する水素原子とともに連結基に置換されて環状構造を形成していてもよい。]
[10] 前記化合物が下記骨格(9a)または骨格(9b)を有する、[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000167
[骨格(9a)および(9b)において、Y29~Y32は、各々独立に水素原子2個、単結合またはN(R27)を表し、R27は水素原子、重水素原子または置換基を表す。骨格(9a)および(9b)における各水素原子は、重水素原子または置換基に置換されていてもよいし、隣接する水素原子とともに連結基に置換されて環状構造を形成していてもよい。]
[11] 前記化合物が下記骨格(10)を有する、[1]に記載の化合物。
骨格(10)
Figure JPOXMLDOC01-appb-C000168
[骨格(10)における各水素原子は、重水素原子または置換基に置換されていてもよいし、隣接する水素原子とともに連結基に置換されて環状構造を形成していてもよい。]
[12] 前記化合物を構成するカルバゾール部分構造を構成するベンゼン環に置換もしくは無置換のアリール基が結合している、[1]~[11]のいずれか1つに記載の化合物。
[13] 回転対称構造を有する、[1]~[12]のいずれか1つに記載の化合物。
[14] 線対称構造を有する、[1]~[12]のいずれか1つに記載の化合物。
[15] [1]~[14]のいずれか1つに記載の化合物からなる発光材料。
[16] [1]~[14]のいずれか1つに記載の化合物を含む膜。
[17] [1]~[14]のいずれか1つに記載の化合物を含む有機半導体素子。
[18] [1]~[14]のいずれか1つに記載の化合物を含む有機発光素子。
[19] 前記素子が前記化合物を含む層を有しており、前記層がホスト材料も含む、[18]に記載の有機発光素子。
[20] 前記化合物を含む層が前記ホスト材料の他に遅延蛍光材料も含み、前記遅延蛍光材料の最低励起一重項エネルギーが前記ホスト材料より低く、前記化合物よりも高い、[19]に記載の有機発光素子。
[21] 前記素子が前記化合物を含む層を有しており、前記層が前記化合物とは異なる構造を有する発光材料も含む、[18]に記載の有機発光素子。
[22] 前記素子に含まれる材料のうち、前記化合物からの発光量が最大である、[18]~[20]のいずれか1つに記載の有機発光素子。
[23] 前記発光材料からの発光量が前記化合物からの発光量よりも多い、[20]に記載の有機発光素子。
[24] 遅延蛍光を放射する、[18]~[23]のいずれか1つに記載の有機発光素子。
 以下に合成例と実施例を挙げて本発明の特徴をさらに具体的に説明する。以下に示す材料、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。なお、発光特性の評価は、ソースメータ(ケースレー社製:2400シリーズ)、半導体パラメータ・アナライザ(アジレント・テクノロジー社製:E5273A)、光パワーメータ測定装置(ニューポート社製:1930C)、光学分光器(オーシャンオプティクス社製:USB2000)、分光放射計(トプコン社製:SR-3)およびストリークカメラ(浜松ホトニクス(株)製C4334型)を用いて行った。また、モル吸光係数はハイパフォーマンス紫外可視近赤外分光光度計 (パーキンエルマー社製:Lambda 950)を用いて行った。配向値(S値)の測定は、(浜松ホトニクス(株)分子配向特性測定装置C14234-01)を用いて行った。
(合成例1)化合物1の合成
Figure JPOXMLDOC01-appb-C000169
 窒素気流下、カルバゾール(7.69g,46.0mmol)を水素化ナトリウム(1.16g,29.0mmol)のN,N-ジメチルホルムアミド溶液(160mL)に加え、室温で30分間攪拌した後、2,5-ジブロモ-1,4-ジフルオロベンゼン(5.00g,18.4mmol)を加えて60℃で16時間撹拌した。この混合物を室温に戻し、水を加えて、析出した固体をろ過した。これをシリカゲルカラムクロマトグラフィー(トルエン)で精製し、得られた固体をアセトニトリルにて洗浄することで白色固体の中間体A(5.83g,10.3mmol,収率56%)を得た。
1HNMR (400 MHz, CDCl3, δ): 8.19 (d, J = 8.0 Hz, 4H), 8.01 (s, 2H), 7.58-7.48 (m, 4H), 7.39-7.35 (m, 4H), 7.27-7.24 (m, 4H) 
MS (ASAP) : 567.01 (M+H+). Calcd for. C30H18Br2N2 : 565.98
Figure JPOXMLDOC01-appb-C000170
 窒素気流下、中間体A(1.00g,1.80mmol)のトルエン溶液(100mL)に-30℃でn-ブチルリチウム(1.6mol/Lヘキサン溶液,4.5mL,7.19mmol)を加えて室温で1時間攪拌した。反応混合物を-30℃に冷却し、三臭化ホウ素(0.991g,3.96mmol)を加えて室温で30分攪拌した。反応混合物に1,2,2,6,6-ペンタメチルピペリジン(0.558g,3.60mmol)を加えて120℃で17時間攪拌した。反応混合物を室温に冷却し、2-メシチルマグネシウムブロミド(1.0mol/Lテトラヒドロフラン溶液,5.4mL,5.40mmol)を加えて室温で2.5時間撹拌した。得られた反応混合物の溶媒を留去し、メタノールを加えて沈殿をろ過した。この固体をシリカゲルカラムクロマトグラフィー(トルエン:ヘキサン=4:6)で精製し、橙色固体の化合物1(0.258g,0.388mmol,収率22%)を得た。
1HNMR (400 MHz, CDCl3, δ): 9.26 (s, 2H), 8.52 (d, J = 6.8 Hz, 2H), 8.28-8.21 (m, 4H), 7.94-7.90 (m, 2H), 7.64-7.60 (m, 2H), 7.45-7.42 (m, 4H), 7.15-7.14 (m, 4H), 2.56 (s, 6H), 2.16 (s, 12H) 
MS (ASAP) : 664.23 (M+). Calcd for. C48H38B2N2 : 664.32
(合成例2)化合物2の合成
Figure JPOXMLDOC01-appb-C000171
 窒素気流下、3,6-ジフェニルカルバゾール(3.00g,9.39mmol)を水素化ナトリウム(0.376g,9.39mmol)のN,N-ジメチルホルムアミド溶液(70mL)に加え、室温で30分間攪拌した後、2,5-ジブロモ-1,4-ジフルオロベンゼン(1.02g,3.76mmol)を加えて60℃で14時間撹拌した。この混合物を室温に戻し、水、メタノールを加えて、析出した固体をろ過した。この固体を熱トルエン中に溶解させ、シリカゲルパッド(トルエン)でろ過し、ろ液の溶媒を留去した。得られた固体をアセトニトリルにて洗浄することで白色固体の中間体B(2.36g,2.71mmol,収率72%)を得た。
1HNMR (400 MHz, CDCl3, δ): 8.46-8.44 (m, 4H), 8.10 (s, 2H), 7.79-7.75 (m, 12H), 7.54-7.49 (m, 8H), 7.41-7.35 (m, 8H) 
MS (ASAP) : 870.20 (M+). Calcd for. C54H34Br2N2 : 870.11
Figure JPOXMLDOC01-appb-C000172
 窒素気流下、中間体B(1.00g,1.15mmol)のトルエン溶液(300mL)に-30℃でn-ブチルリチウム(1.6mol/Lヘキサン溶液,2.9mL,4.60mmol)を加えて室温で1時間攪拌した。反応混合物を-30℃に冷却し、三臭化ホウ素(0.633g,2.53mmol)を加えて室温で30分攪拌した。反応混合物に1,2,2,6,6-ペンタメチルピペリジン(0.357g,2.30mmol)を加えて120℃で17時間攪拌した。反応混合物を室温に冷却し、2-メシチルマグネシウムブロミド(1.0mol/Lのテトラヒドロフラン溶液,3.4mL,3.40mmol)を加えて室温で4時間撹拌した。得られた反応混合物をシリカパッド(トルエン)にてろ過し、ろ液の溶媒を留去した。得られた粘張体に酢酸エチルを加えて沈殿をろ過することで橙色固体の化合物2(0.0710g,0.0732mmol,収率6%)を得た。
1HNMR (400 MHz, CDCl3, δ): 9.29 (s, 2H), 8.81-8.79 (m, 2H), 8.53-8.52 (m, 2H), 8.46-8.45 (m, 2H), 7.82-7.78 (m, 8H), 7.59-7.36 (m, 14H), 7.20-7.18 (m, 4H), 2.59 (s, 6H), 2.22 (s, 12H) 
MS (ASAP) : 968.67 (M+). Calcd for. C72H54B2N2 : 968.45
(合成例3)化合物3の合成
Figure JPOXMLDOC01-appb-C000173
中間体C
 窒素気流下、3,6-ジtert-ブチル-9H-カルバゾール(29.2g,105mmol)、炭酸セシウム(61.9g,190mmol)と2,5-ジブロモ-1,4-ジフルオロベンゼン(12.9g,47.5mmol)のN,N-ジメチルホルムアミド溶液(360mL)を120℃で17時間撹拌した。この混合物を室温に戻し、水を加えて、析出した固体をろ過した。これをシリカゲルカラムクロマトグラフィー(トルエン)で精製し、得られた固体をトルエン/メタノールにて再結晶することで白色固体の中間体C(17.5g,22.1mmol,収率47%)を得た。
1HNMR (400 MHz, CDCl3, δ): 8.2-8.17 (m, 4H), 7.93 (s, 2H), 7.55-7.52 (m, 4H), 7.17 (d, J = 8.4 Hz, 4 H), 1.49 (s, 36H)
MS (ASAP) : 791.47 (M+H+). Calcd for. C46H50Br2N2 : 790.23
Figure JPOXMLDOC01-appb-C000174
化合物3
 窒素気流下、中間体C(2.00g,2.52mmol)のトルエン溶液(100mL)に-30℃でn-BuLi(1.6mol/Lヘキサン溶液,4.7mL,7.56mmol)を加えて50℃で30分間攪拌した。反応混合物を-30℃に冷却し、三臭化ホウ素(3.16g,12.6mmol)を加えて室温で30分攪拌した。反応混合物に1,2,2,6,6-ペンタメチルピペリジン(1.96g,12.6mmol)を加えて130℃で2時間攪拌した。反応混合物に、2-メシチルマグネシウムブロミド(1.0mol/Lテトラヒドロフラン溶液,25.2mL,25.2mmol)を加えて室温に戻しながら17時間撹拌した。得られた反応混合物の溶媒を留去し、メタノールを加えて沈殿をろ過した。この固体をシリカゲルカラムクロマトグラフィー(トルエン:ヘキサン=1:9)で精製し、橙色固体の化合物3(0.292g,0.328mmol,収率13%)を得た。
1HNMR (400 MHz, CDCl3, δ): 9.11 (s, 2H), 8.58 (d, J = 2.0 Hz, 2H), 8.25 (d, J = 2.0 Hz, 2H), 8.23 (d, J = 1.6 Hz, 2H), 7.75 (d, J = 9.2 Hz, 2H), 7.44-7.41 (m, 2H), 7.17 (s, 4H), 2.60 (s, 6H), 2.16 (s, 12H), 1.53-1.51 (m, 36H)
MS (ASAP) : 888.85 (M+). Calcd for. C64H70B2N2 : 888.57
(合成例4)化合物4の合成
Figure JPOXMLDOC01-appb-C000175
化合物4
 窒素気流下、化合物3(250mg,0.281mmol)とN-ブロモスクシンイミド(99.6mg,0.562mmol)のN,N-ジメチルホルムアミド溶液(20mL)を室温で16時間撹拌する。この混合物に水を加えて、析出した固体をろ過する。これをシリカゲルカラムクロマトグラフィーで精製し、橙色固体の化合物4を得る。
(合成例5)化合物5の合成
Figure JPOXMLDOC01-appb-C000176
化合物5
 窒素気流下、化合物4(100mg,0.0955mmol)のテトラヒドロフラン溶液(10mL)に-30℃でn-BuLi(1.6mol/Lヘキサン溶液,0.13mL,0.201mmol)を加えて室温で30分間攪拌する。反応混合物にジメチルマロノニトリル(27.0mg,0.287mmol)を加えて室温で16時間撹拌する。反応混合物の溶媒を留去し、シリカゲルカラムクロマトグラフィーで精製し、赤色固体の化合物5を得る。
(合成例6)化合物6の合成
Figure JPOXMLDOC01-appb-C000177
化合物6
 窒素気流下、中間体C(2.00g,2.53mmol)のトルエン溶液(100mL)に0℃でn-BuLi(1.6mol/Lヘキサン溶液,4.7mL,7.56mmol)を加えて50℃で30分間攪拌した。反応混合物を0℃に冷却し、三臭化ホウ素(3.16g,12.6mmol)を加えて室温で30分間攪拌した。反応混合物に1,2,2,6,6-ペンタメチルピペリジン(1.96g,12.6mmol)を加えて135℃で2時間攪拌した。反応混合物に、2,4,6-トリイソプロピルマグネシウムブロミド-塩化リチウム錯体(1.0mol/Lテトラヒドロフラン溶液,25.2mL,25.2mmol)を加えて室温に戻しながら17時間撹拌した。得られた反応混合物の溶媒を留去し、メタノールを加えて沈殿をろ過した。この固体をシリカゲルカラムクロマトグラフィー(トルエン:ヘキサン=1:49)で精製し、トルエン/メタノールにて再結晶することで、橙色固体の化合物6(0.140g,0.328mmol,収率5%)を得た。
1HNMR (400 MHz, CDCl3, δ): 9.10 (s, 2H), 8.53 (d, J=1.6 Hz, 2H), 8.27 (d, J=1.6 Hz, 2H), 8.21 (d, J=1.6 Hz, 2H), 7.64 (d, J=8.8 Hz, 2H), 7.36 (dd, J=8.8, 1.6 Hz, 2H), 7.27 (s, 4H), 3.17 (sept, J=6.8 Hz, 2H), 2.55 (sept, J=6.8 Hz, 4H), 1.55 (d, J=6.8 Hz, 12H), 1.48 (s, 18H), 1.47 (s, 18H), 1.06 (d, J=6.8 Hz, 12H), 1.01 (d, J=6.8 Hz, 12H).
MS (MALDI) : 1058.07 (M+). Calcd for. C76H96B2N2 : 1058.78
(合成例7)化合物7および8の合成
Figure JPOXMLDOC01-appb-C000178
中間体D
 窒素気流下、3-tert-ブチル-9H-カルバゾール(1.8g,8.06mmol)、炭酸カリウム(1.78g,12.9mmol)と2,5-ジブロモ-1,4-ジフルオロベンゼン(0.876g,3.22mmol)のN,N-ジメチルホルムアミド溶液(50mL)を120℃で17時間撹拌した。この混合物を室温に戻し、水を加えて、析出した固体をろ過した。これをシリカゲルカラムクロマトグラフィー(クロロホルム:ヘキサン=1:4)で精製することで、白色固体の中間体D(0.44g,0.650mmol,収率20%)を得た。
1HNMR (400 MHz, CDCl3, δ): 8.2-8.18 (m, 4H), 7.97 (s, 2H), 7.56 (d, J= 8.4 Hz, 2H), 7.48 (t, J = 8.4 Hz, 2H), 7.35 (t, J = 8.4 Hz, 2H), 7.25-7.18 (m, 6H), 1.49 (s, 18H)
MS (ASAP) : 679.28 (M+H+). Calcd for. C38H34Br2N2 : 678.11
Figure JPOXMLDOC01-appb-C000179
化合物7,8
 窒素気流下、中間体D(1.90g,2.79mmol)のトルエン溶液(100mL)に-30℃でn-BuLi(1.6mol/Lヘキサン溶液,5.23mL,8.37mmol)を加えて50℃で30分間攪拌した。反応混合物を-30℃に冷却し、三臭化ホウ素(3.49g,14.0mmol)を加えて室温で30分間攪拌した。反応混合物に1,2,2,6,6-ペンタメチルピペリジン(2.17g,14.0mmol)を加えて135℃で2時間攪拌した。反応混合物に、2-メシチルマグネシウムブロミド(1.0mol/Lテトラヒドロフラン溶液,27.9mL,27.9mmol)を加えて室温に戻しながら17時間撹拌した。得られた反応混合物の溶媒を留去し、メタノールを加えて沈殿をろ過した。この固体をシリカゲルカラムクロマトグラフィー(トルエン:ヘキサン=1:9)で精製し、橙色固体の化合物7(0.243g,0.313mmol,収率11%)と化合物8(0.313g,0.403mmol,収率14%)を得た。
化合物7
1H NMR (400 MHz, CDCl3, δ): 9.21 (s, 2H), 8.52 (dd, J = 9.5, 2.0 Hz, 2H), 8.25 (d, J = 2.0 Hz, 2H), 8.20 (dd, J = 9.5, 2.0 Hz, 2H), 7.81 (d, J = 11.5 Hz, 2H), 7.60 (t, J = 9.5 Hz, 2H), 7.44 (dd, J = 11.5, 9.0 Hz, 2H), 7.16 (s, 4H), 2.57 (s, 6H), 2.15 (s, 12H), 1.51 (s, 18H)
MS (MALDI) : 776.90 (M+). Calcd for. C56H54B2N2 : 776.45
化合物8
1H NMR (400 MHz, CDCl3, δ): 9.21 (s, 1H), 9.16 (s, 1H), 8.58 (d, J = 2.0 Hz, 1H), 8.52 (d, J = 7.6 Hz, 1H), 8.3-8.24 (m, 3H), 8.19 (d, J= 7.2 Hz, 1H), 7.92-7.85 (m, 1H), 7.82-7.75 (m, 1H), 7.60 (t, J = 7.2 Hz, 1H), 7.47-7.39 (m, 3H), 7.19-7.13 (m, 4H), 2.6-2.55 (m, 6H), 2.17-2.14 (m, 12H), 1.51 (s, 18H)
MS (MALDI) : 776.98 (M+). Calcd for. C56H54B2N2 : 776.45
(合成例8)化合物9の合成
Figure JPOXMLDOC01-appb-C000180
化合物9
 窒素気流下、中間体A(1.00g,1.77mmol)のトルエン溶液(100mL)に-30℃でn-BuLi(1.6mol/Lヘキサン溶液,3.3mL,5.30mmol)を加えて室温で30分間攪拌した。反応混合物を-30℃に冷却し、三臭化ホウ素(2.21g,8.83mmol)を加えて室温で30分間攪拌した。反応混合物に1,2,2,6,6-ペンタメチルピペリジン(1.37g,8.83mmol)を加えて120℃で15時間攪拌した。反応混合物を室温に戻し、2,4,6-トリイソプロピルマグネシウムブロミド-塩化リチウム錯体(1.0mol/Lテトラヒドロフラン溶液,17.7mL,17.7mmol)を加えて120℃で4時間撹拌した。得られた反応混合物をろ過し、ろ液の溶媒を留去した。この残渣をシリカゲルカラムクロマトグラフィー(トルエン:ヘキサン=15:85)で精製することで、橙色固体の化合物9(0.128g,0.154mmol,収率9%)を得た。
1H NMR (400 MHz, CDCl3, δ): 9.31 (s, 2H), 8.49 (d, J = 7.2 Hz, 2H), 8.28 (d, J = 7.2 Hz, 2H), 8.25 (d, J = 7.6 Hz, 2H), 7.85 (d, J = 8.4 Hz, 2H), 7.61 (t, J = 7.6 Hz, 2H), 7.41 (t, J = 7.6 Hz, 2H), 7.38-7.33 (m, 2H), 7.28 (s, 4H), 3.16 (sept, J = 6.8 Hz, 2H), 2.57 (sept, J = 6.8 Hz, 4H), 1.52 (d, J = 7.2 Hz, 12H), 1.09 (d, J = 6.8 Hz, 12H), 1.04 (d, J = 6.8 Hz, 12H)
MS (MALDI) : 832.73 (M+). Calcd for. C60H62B2N2 : 832.51
(合成例9)化合物10の合成
Figure JPOXMLDOC01-appb-C000181
中間体E
 窒素気流下、3-tert-ブチル-6-フェニル-9H-カルバゾール(2.70g,9.02mmol)、炭酸セシウム(5.34g,16.4mmol)と2,5-ジブロモ-1,4-ジフルオロベンゼン(1.11g,4.10mmol)のN,N-ジメチルホルムアミド溶液(50mL)を120℃で15時間撹拌した。この混合物を室温に戻し、水を加えて、析出した固体をろ過した。これをトルエンにて再結晶することで白色固体の中間体E(3.06g,3.68mmol,収率90%)を得た。
1HNMR (400 MHz, CDCl3, δ): 8.40 (d, J = 2.0 Hz, 2H), 8.23 (d, J= 1.6 Hz, 2H), 8.02 (s, 2H), 7.79-7.76 (m, 4H), 7.73 (dd, J = 8.8, 1.6 Hz, 2H), 7.59 (dd, J = 8.4, 1.6 Hz, 2H), 7.53-7.48 (m, 4H), 7.41-7.35 (m, 2H), 7.31 (d, J = 7.6 Hz, 2H), 7.23 (d, J = 8.8 Hz, 2H), 1.50 (s, 18H)
MS (ASAP) : 831.43 (M+H+). Calcd for. C50H42Br2N2 : 830.17
Figure JPOXMLDOC01-appb-C000182
化合物10
 窒素気流下、中間体E(1.00g,1.21mmol)のトルエン溶液(100mL)に-30℃でn-BuLi(1.6mol/Lヘキサン溶液,2.27mL,3.63mmol)を加えて50℃で30分間攪拌した。反応混合物を-30℃に冷却し、三臭化ホウ素(1.52g,6.05mmol)を加えて室温で30分間攪拌した。反応混合物に1,2,2,6,6-ペンタメチルピペリジン(0.939g,6.05mmol)を加えて135℃で2時間攪拌した。反応混合物に、2,4,6-トリイソプロピルマグネシウムブロミド-塩化リチウム錯体(1.0mol/Lテトラヒドロフラン溶液,12.1mL,12.1mmol)を加えて室温に戻しながら17時間撹拌した。得られた反応混合物の溶媒を留去し、メタノールを加えて沈殿をろ過した。この固体をシリカゲルカラムクロマトグラフィー(トルエン:ヘキサン=1:9)で精製し、トルエン/メタノールにて再結晶することで、橙色固体の化合物10(0.364g,0.332mmol,収率27%)を得た。
1H NMR (400 MHz, CDCl3, δ): 9.24-9.19 (m, 2H), 8.62-8.60 (m, 2H), 8.50-8.47 (m, 2H), 8.35-8.32 (m, 2H), 7.85-7.69 (m, 6H), 7.64-7.60 (m, 2H), 7.56-7.46 (m, 4H), 7.45-7.35 (m, 2H), 7.31 (s, 4H), 3.23-3.16 (m, 2H), 2.65-2.56 (m, 4H), 1.60-1.55 (m, 18H), 1.51-1.48 (m, 12H), 1.14-1.02 (m, 24H)
MS (MALDI) : 1098.09 (M+H+). Calcd for. C80H86B2N2 : 1096.70
(合成例10)化合物11の合成
Figure JPOXMLDOC01-appb-C000183
化合物11
 窒素気流下、化合物D(2.00g,2.12mmol)のトルエン溶液(100mL)に0℃でn-BuLi(1.6mol/Lヘキサン溶液,4.0mL,6.35mmol)を加えて50℃で30分間攪拌した。反応混合物を0℃に冷却し、三臭化ホウ素(2.65g,10.6mmol)を加えて室温で30分攪拌した。反応混合物に1,2,2,6,6-ペンタメチルピペリジン(1.64g,10.6mmol)を加えて135℃で2時間攪拌した。反応混合物に、2,4,6-トリイソプロピルフェニルマグネシウムブロミド-塩化リチウム錯体(1.0mol/Lテトラヒドロフラン溶液,12.7mL,12.7mmol)を加えて室温に戻しながら17時間撹拌した。得られた反応混合物の溶媒を留去し、メタノールを加えて沈殿をろ過した。この固体をシリカゲルカラムクロマトグラフィー(クロロホルム:ヘキサン=5:95)で精製し、橙色固体の化合物11(0.250g,0.265mmol,収率13%)を得た。
MS (ASAP) : 944.91 (M+). Calcd for. C68H78B2N2: 944.64
(合成例11)化合物12の合成
Figure JPOXMLDOC01-appb-C000184
化合物F
 窒素気流下、3,6-ジイソプロピル-9H-カルバゾール(10.0g,39.8mmol)、炭酸セシウム(23.6g,72.3mmol)と2,5-ジブロモ-1,4-ジフルオロベンゼン(4.92g,18.1mmol)のN,N-ジメチルホルムアミド溶液(100mL)を150℃で17時間撹拌した。この混合物を室温に戻し、水を加えて、析出した固体をろ過した。これをシリカゲルカラムクロマトグラフィー(トルエン:ヘキサン=3:7)で精製し、得られた固体をトルエン/メタノールにて再結晶することで白色固体の化合物F(5.60g,7.62mmol,収率42%)を得た。
1HNMR (400 MHz, CDCl3, δ): 8.01 (d, J = 1.2 Hz, 4H), 7.93 (s, 2H), 7.35 (dd, J = 8.4 Hz, 1.2 Hz, 4H), 7.15 (d, J = 8.4 Hz, 4H), 3.20-3.10 (m, 4H), 1.42-1.39 (m, 24H)
MS (ASAP) : 735.10 (M+H+). Calcd for. C42H42Br2N2: 734.17
Figure JPOXMLDOC01-appb-C000185
化合物12
 窒素気流下、化合物F(3.00g,4.08mmol)のトルエン溶液(150mL)に0℃でn-BuLi(1.6mol/Lヘキサン溶液,7.7mL,12.2mmol)を加えて75℃で1時間攪拌した。反応混合物を0℃に冷却し、三臭化ホウ素(5.11g,20.4mmol)を加えて室温で30分攪拌した。反応混合物に1,2,2,6,6-ペンタメチルピペリジン(3.17g,20.4mmol)を加えて135℃で3時間攪拌した。反応混合物に、2,4,6-トリイソプロピルフェニルマグネシウムブロミド-塩化リチウム錯体(1.0mol/Lテトラヒドロフラン溶液,40.8mL,40.8mmol)を加えて室温に戻しながら17時間撹拌した。得られた反応混合物の溶媒を留去した。この残渣をシリカゲルカラムクロマトグラフィー(トルエン:ヘキサン=5:95)で精製し、トルエン/メタノールにて再結晶することで橙色固体の化合物12(0.106g,0.106mmol,収率3%)を得た。
MS (ASAP) : 1000.81 (M+). Calcd for. C72H86B2N2: 1000.70
(合成例12)化合物13の合成
Figure JPOXMLDOC01-appb-C000186
化合物G
 窒素気流下、3,6-ジメチル-9H-カルバゾール(5.00g,25.6mmol)、炭酸セシウム(15.2g,46.6mmol)と2,5-ジブロモ-1,4-ジフルオロベンゼン(3.16g,11.6mmol)のN,N-ジメチルホルムアミド溶液(50mL)を150℃で17時間撹拌した。この混合物を室温に戻し、水を加えて、析出した固体をろ過した。これをシリカゲルカラムクロマトグラフィー(トルエン:ヘキサン=3:7)で精製し、得られた固体をo-ジクロロベンゼン/メタノールにて再結晶することで白色固体の化合物G(5.48g,8.80mmol,収率76%)を得た。
1HNMR (400 MHz, CDCl3, δ): 7.95 (s, 2H), 7.93 (d, J = 1.2 Hz, 4H), 7.29 (dd, J = 8.4 Hz, 1.2 Hz, 4H), 7.12 (d, J = 8.4 Hz, 4H), 2.72 (s, 12H)
MS (ASAP) : 623.04 (M+H+). Calcd for. C34H26Br2N2: 622.04
Figure JPOXMLDOC01-appb-C000187
化合物13
 窒素気流下、化合物G(2.00g,3.21mmol)のトルエン溶液(200mL)に0℃でn-BuLi(1.6mol/Lヘキサン溶液,6.0mL,9.64mmol)を加えて50℃で1時間攪拌した。反応混合物を0℃に冷却し、三臭化ホウ素(4.02g,16.1mmol)を加えて室温で1時間攪拌した。反応混合物に1,2,2,6,6-ペンタメチルピペリジン(2.50g,16.1mmol)を加えて135℃で3時間攪拌した。反応混合物に、2,4,6-トリイソプロピルフェニルマグネシウムブロミド-塩化リチウム錯体(1.0mol/Lテトラヒドロフラン溶液,32.1mL,32.1mmol)を加えて室温に戻しながら17時間撹拌した。得られた反応混合物の溶媒を留去した。この残渣をシリカゲルカラムクロマトグラフィー(トルエン:ヘキサン=5:95)で精製し、トルエン/メタノールにて再結晶することで橙色固体の化合物13(0.270g,0.304mmol,収率9%)を得た。
MS (ASAP) : 888.59 (M+). Calcd for. C64H70B2N2: 888.57
(合成例13)化合物14の合成
Figure JPOXMLDOC01-appb-C000188
化合物14
 窒素気流下、化合物A(2.26g,2.86mmol)のトルエン溶液(100mL)に0℃でn-BuLi(1.6mol/Lヘキサン溶液,5.4mL,8.58mmol)を加えて50℃で1時間攪拌した。反応混合物を0℃に冷却し、三臭化ホウ素(3.58g,14.3mmol)を加えて室温で1時間攪拌した。反応混合物に1,2,2,6,6-ペンタメチルピペリジン(2.22g,14.3mmol)を加えて135℃で3時間攪拌した。反応混合物に、2,6-ジイソプロピルフェニルマグネシウムブロミド-塩化リチウム錯体(1.0mol/Lテトラヒドロフラン溶液,28.6mL,28.6mmol)を加えて室温に戻しながら17時間撹拌した。得られた反応混合物の溶媒を留去した。この残渣をシリカゲルカラムクロマトグラフィー(トルエン:ヘキサン=5:95)で精製し、トルエン/メタノールにて再結晶することで橙色固体の化合物14(0.198g,0.203mmol,収率7%)を得た。
MS (ASAP) : 972.64 (M+). Calcd for. C70H82B2N2: 972.67
(合成例14)化合物15の合成
Figure JPOXMLDOC01-appb-C000189
化合物15
 窒素気流下、化合物D(1.40g,1.77mmol)のトルエン溶液(70mL)に0℃でn-BuLi(1.6mol/Lヘキサン溶液,3.3mL,5.31mmol)を加えて50℃で30分間攪拌した。反応混合物を0℃に冷却し、三臭化ホウ素(2.21g,8.85mmol)を加えて室温で30分間攪拌した。反応混合物に1,2,2,6,6-ペンタメチルピペリジン(1.37g,8.85mmol)を加えて135℃で3時間攪拌した。反応混合物に、2,6-ジイソプロピルフェニルマグネシウムブロミド-塩化リチウム錯体(1.0mol/Lテトラヒドロフラン溶液,17.7mL,17.7mmol)を加えて室温に戻しながら17時間撹拌した。得られた反応混合物の溶媒を留去した。この残渣をシリカゲルカラムクロマトグラフィー(トルエン:ヘキサン=5:95)で精製し、トルエン/メタノールにて再結晶することで橙色固体の化合物15(0.100g,0.116mmol,収率7%)を得た。
MS (ASAP) : 861.82 (M+H+). Calcd for. C62H66B2N2: 860.54
(合成例15)化合物16の合成
Figure JPOXMLDOC01-appb-C000190
化合物I
 窒素雰囲気下、1,5-ジブロモ-2,4-ジフルオロベンゼン(2.00g,5.98mmol)、化合物H(0.74g,2.72mmol)、炭酸セシウム(3.54g,10.87mmol)のN,N-ジメチルホルムアミド溶液(30mL)を140℃で17時間撹拌した。室温まで冷却し、水(120mL)を加え、析出物をろ過し、メタノールで洗浄した。得られた固体をシリカゲルカラムクロマトグラフィー(トルエン:ヘキサン=2:3)で精製し、化合物I(1.648g,1.83mmol,67%)を得た。
1H-NMR (400 MHz, CDCl3, δ): 8.42 (s, 1H), 7.73 (d, J = 7.8 Hz, 2H), 7.71 (d, J = 3.2 Hz, 1H), 7.41 (q, J = 8.1 Hz, 2H), 7.35 (q, J = 7.9 Hz, 2H), 7.24-7.15 (m, 12H), 7.11 (d, J = 7.3 Hz, 10H), 7.08-7.00 (m, 7H), 6.94 (t, J = 7.1 Hz, 5H). 
MS (ASAP) : 901.20 (M+H+). Calcd for. C54H36Br2N4: 900.13.
Figure JPOXMLDOC01-appb-C000191
化合物16
 窒素雰囲気下、化合物I(0.80g,0.89mmol)のトルエン溶液(40mL)に、0℃でn-BuLi(1.6mol/Lヘキサン溶液,1.63mL,2.67mmol)を加えて50℃で30分間攪拌した。反応混合物を0℃に冷却し、三臭化ホウ素(1.13g,4.44mmol)を加えて室温で30分間攪拌した。反応混合物に1,2,2,6,6-ペンタメチルピペリジン(0.670g,4.44mmol)を加えて120℃で2時間攪拌した。そこに、2-メシチルマグネシウムブロミド(1.0mol/Lテトラヒドロフラン溶液,6.0mL,6.00mmol)を加え、終夜かけて放冷した。反応液を、シリカゲルパッドでろ過し、ろ液を濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:ヘキサン=1:4)で精製し、化合物16(150mg,0.150mmol,17%)を得た。
1H-NMR (400 MHz, CDCl3, δ): 9.85 (s, 1H), 8.74 (d, J = 8.6 Hz, 2H), 8.36 (d, J = 3.4 Hz, 1H), 7.97 (d, J = 7.9 Hz, 2H), 7.80 (d, J = 7.6 Hz, 2H), 7.59 (t, J = 7.3 Hz, 1H), 7.42-7.40 (m, 2H), 7.23-7.15 (m, 15H), 7.05-6.94 (m, 8H), 6.80 (s, 4H), 2.36 (s, 6H), 1.97 (s, 12H). 
MS (ASAP) : 999.52 (M+H+). Calcd for. C72H56B2N4: 998.47.
 合成した化合物16のトルエン溶液を調製してモル吸光係数を測定したところ、422nmにおいて122000もの高い値を示した。このモル吸光係数は、一般式(1)のRが置換された化合物よりも有意に高かった。また、トルエン溶液を用いてフォトルミネッセンス量子収率を測定したところ94%もの高い値が得られた。
(合成例16)化合物17の合成
Figure JPOXMLDOC01-appb-C000192
化合物J
 1,5-ジブロモ-2,4-ジフルオロベンゼン(1.30g,3.91mmol)、化合物J(0.53g,1.96mmol)、炭酸セシウム(1.91g,5.88mmol)をN-メチル-2-ピロリドン(39mL)に溶解させ、140℃で16時間撹拌した。反応混合物に水(120mL)を加え、沈殿物をろ過し、メタノールで洗浄した。得られた固体をシリカゲルクロマトグラフィー(トルエン:ヘキサン=1:2)で精製し、化合物K(0.47g,0.53mmol,27%)を得た。
1H-NMR (400 MHz, CDCl3, δ): 8.27-8.24 (m, 4H), 7.84 (d, J = 0.9 Hz, 1H), 7.67 (t, J = 8.0 Hz, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.45-7.28 (m, 15H), 7.24-7.16 (m, 4H), 7.08 (td, J = 4.7, 2.0 Hz, 2H), 6.86 (d, J = 7.8 Hz, 1H), 6.82 (d, J = 8.2 Hz, 1H), 6.56 (dd, J = 8.2, 3.2 Hz, 2H). 
MS (ASAP) : 895.20 (M+H+). Calcd for. C54H32Br2N: 894.10.
Figure JPOXMLDOC01-appb-C000193
化合物17
 窒素雰囲気下、化合物K(0.47g,0.52mmol)のトルエン溶液(24mL)に、0℃でn-BuLi(1.6mol/Lヘキサン溶液,0.98mL,1.57mmol)を加えて50℃で30分間攪拌した。反応混合物を0℃に冷却し、三臭化ホウ素(0.656g,2.62mmol)を加えて室温で30分間攪拌した。反応混合物に1,2,2,6,6-ペンタメチルピペリジン(0.407g,2.62mmol)を加えて120℃で2時間攪拌した。そこに、2-メシチルマグネシウムブロミド(1.0mol/Lテトラヒドロフラン溶液,3.14mL,3.14mmol)を加え、終夜かけて放冷した。反応液を、シリカゲルパッドでろ過し、ろ液を濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(トルエン:ヘキサン=1:9)で精製し、化合物17(68.4mg,0.069mmol,13%)を得た。
1H-NMR (400 MHz, CDCl3, δ): 9.96 (s, 1H), 8.82 (d, J = 8.4 Hz, 2H), 8.58 (s, 1H), 8.30-8.25 (m, 8H), 7.72-7.68 (m, 2H), 7.64 (t, J = 7.9 Hz, 2H), 7.41-7.35 (m, 6H), 7.29 (t, J = 3.8 Hz, 4H), 7.13-7.08 (m, 2H), 6.91 (d, J = 7.5 Hz, 2H), 6.88 (s, 4H), 2.41 (s, 6H), 2.06 (s, 12H). 
MS (ASAP) : 994.51 (M+). Calcd for. C72H52B2N4: 994.45.
 なお、合成例で合成した化合物は昇華精製してから以下の用途に用いた。
(実施例1)薄膜の作製と発光性評価
 石英基板上に真空蒸着法にて、真空度1×10-3Pa未満の条件にて化合物2とmCBPとを異なる蒸着源から蒸着し、化合物2の濃度が0.5重量%である薄膜を100nmの厚さで形成した。
 化合物2の代わりに、化合物1、7、8、9、11をそれぞれ用いて、同様にして各薄膜を得た。
 作製した各薄膜に対して300nmの励起光を照射したところ、いずれの薄膜もからも発光が認められた。各薄膜のフォトルミネッセンス量子収率(PLQY)を測定した結果を以下の表に示す。いずれの薄膜も高いPLQYを示した。
Figure JPOXMLDOC01-appb-T000194
(実施例2)薄膜の作製と配向性評価
 石英基板上に真空蒸着法にて、真空度1×10-3Pa未満の条件にてHost1と遅延蛍光材料1と化合物6を異なる蒸着源から蒸着し、Host1の濃度が64.5重量%、遅延蛍光材料1の濃度が35.0重量%、化合物6の濃度が0.5重量%である薄膜を100nmの厚さで形成した。化合物6の代わりに、化合物2、3、7、8、10、11をそれぞれ用いて、同様にして各薄膜を得た。
 これとは別に、石英基板上に真空蒸着法にて、真空度1×10-3Pa未満の条件にてHost1と遅延蛍光材料2と化合物6を異なる蒸着源から蒸着し、Host1の濃度が64.5重量%、遅延蛍光材料2の濃度が35.0重量%、化合物6の濃度が0.5重量%である薄膜を100nmの厚さで形成した。化合物6の代わりに、化合物1を用いて、同様にして薄膜を得た。
 さらにこれとは別に、石英基板上に真空蒸着法にて、真空度1×10-3Pa未満の条件にてHost1と遅延蛍光材料2と化合物6を異なる蒸着源から蒸着し、Host1の濃度が54.5重量%、遅延蛍光材料2の濃度が45.0重量%、化合物6の濃度が0.5重量%である薄膜を100nmの厚さで形成した。化合物6の代わりに、化合物1、7、8、10をそれぞれ用いて、同様にして各薄膜を得た。
 さらにこれとは別に、石英基板上に真空蒸着法にて、真空度1×10-3Pa未満の条件にてHost1と遅延蛍光材料3と化合物6を異なる蒸着源から蒸着し、Host1の濃度が54.2重量%、遅延蛍光材料3の濃度が45.0重量%、化合物6の濃度が0.8重量%である薄膜を100nmの厚さで形成した。化合物6の代わりに、化合物1、3、11をそれぞれ用いて、同様にして各薄膜を得た。
 作製した各薄膜について、一般式(1)で表される化合物の配向値(S値)を測定した結果を以下の表に示す。化合物2、3、6、7、8、10、11を用いた場合は、特に良好な配向性を示した。
Figure JPOXMLDOC01-appb-T000195
(実施例3)有機エレクトロルミネッセンス素子の作製と評価
 膜厚100nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基材上に、各薄膜を真空蒸着法にて、真空度1×10-5Paで積層した。まず、ITO上にHATCNを10nmの厚さに形成し、その上に、NPDを30nmの厚さに形成し、さらにEBL1を10nmの厚さに形成した。次に、Host1、遅延蛍光材料3、化合物2を異なる蒸着源から共蒸着し、40nmの厚さの発光層を形成した。Host1、遅延蛍光材料3、化合物2の含有量は、順に54.2重量%、45.0重量%、0.8重量%とした。次に、SF3-TRZを10nmの厚さに形成した後、LiqとSF3-TRZを異なる蒸着源から共蒸着し、30nmの厚さの層を形成した。この層におけるLiqとSF3-TRZの含有量はそれぞれ30重量%と70重量%とした。さらにLiqを2nmの厚さに形成し、次いでアルミニウム(Al)を100nmの厚さに蒸着することにより陰極を形成し、有機エレクトロルミネッセンス素子とした。
 化合物2の代わりに、化合物1、6、11、13、15をそれぞれ用いて、同様にして各有機エレクトロルミネッセンス素子を作製した。また、化合物2を用いずに、Host1(55重量%)と遅延蛍光材料3(45重量%)からなる発光層を形成した点を変更だけを変更して、同様にして比較例1の有機エレクトロルミネッセンス素子を作製した。
 各有機エレクトロルミネッセンス素子に通電したところ、いずれの素子からも発光が観測された。一般式(1)で表される化合物を用いた素子では、発光層に含まれる材料のうち、一般式(1)で表される化合物からの発光量が最大であった。各有機エレクトロルミネッセンス素子の6.3mA/cmにおける外部量子効率(EQE)を測定した。結果を、比較例1の有機エレクトロルミネッセンス素子のEQEを1とした相対値で以下の表に示す。一般式(1)の化合物を用いた有機エレクトロルミネッセンス素子は、いずれも高いEQEを示した。また、一般式(1)の化合物を用いた有機エレクトロルミネッセンス素子は耐久性も良好であった。
Figure JPOXMLDOC01-appb-T000196
(実施例4)遅延蛍光材料を代えた有機エレクトロルミネッセンス素子の作製と評価
 実施例3の発光層の遅延蛍光材料3を遅延蛍光材料1に代え、発光層の組成をHost1、遅延蛍光材料1、化合物2の含有量が順に64.5重量%、45.0重量%、0.5重量%となるようにした。その他は実施例3と同じ手順で有機エレクトロルミネッセンス素子を作製した。
 化合物2の代わりに、化合物5、6、7をそれぞれ用いて、同様にして各有機エレクトロルミネッセンス素子を作製した。また、化合物2を用いずに、Host1(65重量%)と遅延蛍光材料3(35重量%)からなる発光層を形成した点を変更だけを変更して、同様にして比較例2の有機エレクトロルミネッセンス素子を作製した。
 各有機エレクトロルミネッセンス素子に通電したところ、いずれの素子からも発光が観測された。一般式(1)で表される化合物を用いた素子では、発光層に含まれる材料のうち、一般式(1)で表される化合物からの発光量が最大であった。各有機エレクトロルミネッセンス素子の6.3mA/cmにおける外部量子効率(EQE)を測定した。結果を、比較例2の有機エレクトロルミネッセンス素子のEQEを1とした相対値で以下の表に示す。一般式(1)の化合物を用いた有機エレクトロルミネッセンス素子は、遅延蛍光材料1に代えた場合であっても、いずれも高いEQEを示した。また、一般式(1)の化合物を用いた有機エレクトロルミネッセンス素子は耐久性も良好であった。
Figure JPOXMLDOC01-appb-T000197
Figure JPOXMLDOC01-appb-C000198
 1 基材
 2 陽極
 3 正孔注入層
 4 正孔輸送層
 5 発光層
 6 電子輸送層
 7 陰極

Claims (20)

  1.  下記一般式(1)で表される化合物。
    一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    [一般式(1)において、XおよびXは、一方が窒素原子であり、他方がホウ素原子である。R~R26、A、Aは、各々独立に水素原子、重水素原子または置換基を表す。RとR、RとR、RとR、RとR、RとR、RとR、RとR、RとR、RとR10、R10とR11、R11とR12、R13とR14、R14とR15、R15とR16、R16とR17、R17とR18、R18とR19、R19とR20、R20とR21、R21とR22、R22とR23、R23とR24、R24とR25、R25とR26は、互いに結合して環状構造を形成していてもよい。ただし、Xが窒素原子であるとき、R17とR18は互いに結合して単結合となりピロール環を形成し、Xが窒素原子であるとき、R21とR22は互いに結合して単結合となりピロール環を形成する。ただし、Xが窒素原子であって、RとRおよびR21とR22が窒素原子を介して結合して6員環を形成し、R17とR18が互いに結合して単結合を形成しているとき、R~Rの少なくとも1つは置換もしくは無置換のアリール基であるか、RとR、RとR、RとR、RとR、RとRのいずれかが互いに結合して芳香環または複素芳香環を形成している。また、Xがホウ素原子で、Xが窒素原子であり、RとR、R17とR18が互いに結合してホウ素原子を含む環状構造を形成している場合、その環状構造は5~7員環であり、6員環である場合はRとR、R17とR18が互いに結合して-B(R32)-、-CO-、-CS-または-N(R27)-を形成している。R27は水素原子、重水素原子または置換基を表す。]
  2.  Xが窒素原子であり、Xがホウ素原子である、請求項1に記載の化合物。
  3.  RとR、RとR、RとR、RとR、RとR、RとR、RとR、RとR10、R10とR11、R11とR12、R13とR14、R14とR15、R15とR16、R16とR17、R18とR19、R19とR20、R20とR21、R22とR23、R23とR24、R24とR25、R25とR26のうちの1~6組は、互いに結合して新たにベンゾフラン環またはベンゾチオフェン環を形成している、請求項1または2に記載の化合物。
  4.  RおよびRの少なくとも一方が置換基である、請求項1~3のいずれか1項に記載の化合物。
  5.  RおよびRがともに置換基である、請求項1~3のいずれか1項に記載の化合物。
  6.  RおよびRが表す置換基が、アルキル基およびアリール基からなる群より選択される1つの基または2つ以上を組み合わせて形成される基である、請求項4または5に記載の化合物。
  7.  RおよびR12がともに置換基である、請求項1~6のいずれか1項に記載の化合物。
  8.  下記一般式(1a)で表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000002
    [一般式(1a)において、Ar~Arは各々独立に置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基を表す。R41およびR42は、各々独立に置換もしくは無置換のアルキル基を表す。m1およびm2は各々独立に0~5の整数を表し、n1およびn3は各々独立に0~4の整数を表し、n2およびn4は各々独立に0~3の整数を表す。A、Aは、各々独立に水素原子、重水素原子または置換基を表す。]
  9.  AおよびAが、各々独立にハメットのσp値が0.2よりも大きい基である、請求項1~8のいずれか1項に記載の化合物。
  10.  AおよびAがともにシアノ基である、請求項9に記載の化合物。
  11.  AおよびAがともにハロゲン原子である、請求項9に記載の化合物。
  12.  回転対称構造を有する、請求項1~11のいずれか1項に記載の化合物。
  13.  下記のいずれかの構造を有する、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000003
  14.  下記のいずれかの構造を有する化合物。
    Figure JPOXMLDOC01-appb-C000004
  15.  請求項1~14のいずれか1項に記載の化合物からなる発光材料。
  16.  請求項1~14のいずれか1項に記載の化合物を含む膜。
  17.  請求項1~14のいずれか1項に記載の化合物を含む有機半導体素子。
  18.  請求項1~14のいずれか1項に記載の化合物を含む有機発光素子。
  19.  ホスト材料と遅延蛍光材料と前記化合物を含む発光層を有しており、素子に含まれる材料のうち、前記化合物からの発光量が最大である、請求項18に記載の有機発光素子。
  20.  遅延蛍光を放射する、請求項18または19に記載の有機発光素子。
PCT/JP2022/023781 2021-06-23 2022-06-14 化合物、発光材料および有機発光素子 WO2022270354A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
EP22828271.1A EP4361160A1 (en) 2021-06-23 2022-06-14 Compound, light-emitting material, and organic light-emitting element
JP2023530341A JPWO2022270354A1 (ja) 2021-06-23 2022-06-14
KR1020237044672A KR20240023051A (ko) 2021-06-23 2022-06-14 화합물, 발광 재료 및 유기 발광 소자
CN202280043652.6A CN117651705A (zh) 2021-06-23 2022-06-14 化合物、发光材料及有机发光元件
TW111123189A TW202317551A (zh) 2021-06-23 2022-06-22 化合物、組合物、主體材料、電子障壁材料及有機發光元件
TW111123192A TW202313931A (zh) 2021-06-23 2022-06-22 電子障壁材料、有機半導體元件及化合物
PCT/JP2022/025150 WO2022270591A1 (ja) 2021-06-23 2022-06-23 化合物、組成物、ホスト材料、電子障壁材料および有機発光素子
CN202280043806.1A CN117545753A (zh) 2021-06-23 2022-06-23 化合物、组合物、主体材料、电子阻挡材料及有机发光元件
JP2023530125A JPWO2022270592A1 (ja) 2021-06-23 2022-06-23
PCT/JP2022/025151 WO2022270592A1 (ja) 2021-06-23 2022-06-23 電子障壁材料、有機半導体素子および化合物
JP2023530124A JPWO2022270591A1 (ja) 2021-06-23 2022-06-23
CN202280044336.0A CN117546634A (zh) 2021-06-23 2022-06-23 电子阻挡材料、有机半导体元件及化合物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021103702 2021-06-23
JP2021-103702 2021-06-23
JP2021151805 2021-09-17
JP2021-151805 2021-09-17

Publications (1)

Publication Number Publication Date
WO2022270354A1 true WO2022270354A1 (ja) 2022-12-29

Family

ID=84544334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023781 WO2022270354A1 (ja) 2021-06-23 2022-06-14 化合物、発光材料および有機発光素子

Country Status (6)

Country Link
US (1) US20230064110A1 (ja)
EP (1) EP4361160A1 (ja)
JP (2) JP7222159B2 (ja)
KR (1) KR20240023051A (ja)
TW (1) TW202317590A (ja)
WO (1) WO2022270354A1 (ja)

Citations (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011955A1 (ja) 2011-07-15 2013-01-24 国立大学法人九州大学 遅延蛍光材料およびそれを用いた有機エレクトロルミネッセンス素子
WO2013011954A1 (ja) 2011-07-15 2013-01-24 国立大学法人九州大学 有機エレクトロルミネッセンス素子およびそれに用いる化合物
WO2013081088A1 (ja) 2011-12-02 2013-06-06 国立大学法人九州大学 有機発光素子ならびにそれに用いる遅延蛍光材料および化合物
JP2013116975A (ja) 2011-12-02 2013-06-13 Kyushu Univ 遅延蛍光材料、有機発光素子および化合物
WO2013133359A1 (ja) 2012-03-09 2013-09-12 国立大学法人九州大学 発光材料および有機発光素子
WO2013154064A1 (ja) 2012-04-09 2013-10-17 国立大学法人九州大学 有機発光素子ならびにそれに用いる発光材料および化合物
WO2013161437A1 (ja) 2012-04-25 2013-10-31 国立大学法人九州大学 発光材料および有機発光素子
JP2013253121A (ja) 2011-07-15 2013-12-19 Kyushu Univ 遅延蛍光材料、それを用いた有機エレクトロルミネッセンス素子および化合物
JP2013256490A (ja) 2012-05-17 2013-12-26 Kyushu Univ 化合物、発光材料および有機発光素子
JP2014009352A (ja) 2012-07-03 2014-01-20 Kyushu Univ 発光材料、化合物および有機発光素子
JP2014009224A (ja) 2012-07-03 2014-01-20 Kyushu Univ 発光材料、化合物および有機発光素子
WO2014034535A1 (ja) 2012-08-30 2014-03-06 国立大学法人九州大学 発光材料、化合物、およびそれらを用いた有機発光素子
WO2014115743A1 (ja) 2013-01-23 2014-07-31 国立大学法人九州大学 発光材料およびそれを用いた有機発光素子
WO2014122895A1 (ja) 2013-02-07 2014-08-14 保土谷化学工業株式会社 ジアザトリフェニレン環構造を有する化合物および有機エレクトロルミネッセンス素子
WO2014126200A1 (ja) 2013-02-18 2014-08-21 国立大学法人九州大学 化合物、発光材料および有機発光素子
WO2014133121A1 (ja) 2013-03-01 2014-09-04 国立大学法人九州大学 化合物、発光材料および有機発光素子
WO2014136860A1 (ja) 2013-03-08 2014-09-12 国立大学法人九州大学 化合物、発光材料および有機発光素子
WO2014136758A1 (ja) 2013-03-05 2014-09-12 国立大学法人九州大学 電荷輸送材料、ホスト材料、薄膜および有機発光素子
WO2014168101A1 (ja) 2013-04-10 2014-10-16 国立大学法人九州大学 発光材料、有機発光素子および化合物
WO2014189122A1 (ja) 2013-05-24 2014-11-27 国立大学法人九州大学 化合物、発光材料および有機発光素子
WO2014196585A1 (ja) 2013-06-05 2014-12-11 国立大学法人九州大学 発光材料、有機発光素子および化合物
WO2014203840A1 (ja) 2013-06-21 2014-12-24 国立大学法人九州大学 赤色発光材料、有機発光素子および化合物
WO2015002213A1 (ja) 2013-07-03 2015-01-08 国立大学法人九州大学 発光材料、遅延蛍光体、有機発光素子および化合物
WO2015008580A1 (ja) 2013-07-16 2015-01-22 国立大学法人九州大学 化合物、発光材料および有機発光素子
WO2015016200A1 (ja) 2013-08-01 2015-02-05 国立大学法人九州大学 化合物、発光材料および有機発光素子
WO2015019725A1 (ja) 2013-08-09 2015-02-12 国立大学法人九州大学 有機金属錯体、発光材料、遅延蛍光体および有機発光素子
WO2015022974A1 (ja) 2013-08-14 2015-02-19 国立大学法人九州大学 有機エレクトロルミネッセンス素子
WO2015072537A1 (ja) 2013-11-18 2015-05-21 国立大学法人九州大学 発光材料、有機発光素子および化合物
WO2015072470A1 (ja) 2013-11-12 2015-05-21 国立大学法人九州大学 発光材料、並びに、これを用いた遅延蛍光体および有機発光素子
WO2015080183A1 (ja) 2013-11-28 2015-06-04 国立大学法人九州大学 発光材料、有機発光素子および化合物
WO2015080182A1 (ja) 2013-11-28 2015-06-04 国立大学法人九州大学 発光材料、有機発光素子および化合物
JP2015129240A (ja) 2014-01-08 2015-07-16 国立大学法人九州大学 発光材料、有機発光素子および化合物
WO2015108049A1 (ja) 2014-01-17 2015-07-23 国立大学法人九州大学 発光材料、有機発光素子および化合物
WO2015129714A1 (ja) 2014-02-28 2015-09-03 国立大学法人九州大学 発光材料、有機発光素子および化合物
WO2015129715A1 (ja) 2014-02-28 2015-09-03 国立大学法人九州大学 発光材料、有機発光素子および化合物
WO2015133501A1 (ja) 2014-03-07 2015-09-11 国立大学法人九州大学 発光材料、有機発光素子および化合物
WO2015137244A1 (ja) 2014-03-11 2015-09-17 国立大学法人九州大学 発光材料、有機発光素子および化合物
WO2015137202A1 (ja) 2014-03-11 2015-09-17 国立大学法人九州大学 有機発光素子、ホスト材料、発光材料および化合物
WO2015137136A1 (ja) 2014-03-12 2015-09-17 国立大学法人九州大学 発光材料及びそれを用いた有機el素子
WO2015136880A1 (ja) 2014-03-11 2015-09-17 保土谷化学工業株式会社 アザフルオレン環構造を有するスピロ化合物、発光材料および有機エレクトロルミネッセンス素子
WO2015146541A1 (ja) 2014-03-27 2015-10-01 国立大学法人九州大学 発光材料、有機発光素子および化合物
WO2015159541A1 (ja) 2014-04-18 2015-10-22 保土谷化学工業株式会社 テトラアザトリフェニレン環構造を有する化合物、発光材料および有機エレクトロルミネッセンス素子
JP2017119663A (ja) 2015-12-28 2017-07-06 株式会社Kyulux 化合物、発光材料および有機発光素子
JP2017119664A (ja) 2015-12-28 2017-07-06 株式会社Kyulux 化合物、発光材料および有機発光素子
JP2017222623A (ja) 2016-06-17 2017-12-21 株式会社Kyulux 化合物および有機発光素子
JP2017226838A (ja) 2016-06-17 2017-12-28 株式会社Kyulux 発光材料、有機発光素子および化合物
WO2018047853A1 (ja) 2016-09-06 2018-03-15 株式会社Kyulux 有機発光素子
JP2018100411A (ja) 2016-12-21 2018-06-28 国立大学法人九州大学 発光材料、化合物および有機発光素子
JP2020132636A (ja) * 2019-02-13 2020-08-31 学校法人関西学院 多環芳香族化合物およびその多量体
CN112341482A (zh) * 2019-12-27 2021-02-09 广东聚华印刷显示技术有限公司 有机化合物、高聚物、混合物、组合物及电子器件
CN113402537A (zh) * 2021-07-15 2021-09-17 清华大学 一种有机化合物及其应用
WO2021245221A1 (en) * 2020-06-05 2021-12-09 Cynora Gmbh Organic molecules for optoelectronic devices
US20220123228A1 (en) * 2020-10-20 2022-04-21 Samsung Display Co., Ltd. Light emitting device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113169285A (zh) * 2018-08-23 2021-07-23 学校法人关西学院 有机电致发光元件、显示装置、照明装置、发光层形成用组合物和化合物
JP2021063067A (ja) * 2019-10-11 2021-04-22 学校法人関西学院 多環芳香族化合物、有機デバイス用材料、有機電界発光素子、表示装置および照明装置
KR20210076297A (ko) * 2019-12-13 2021-06-24 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 축합 다환 화합물

Patent Citations (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011955A1 (ja) 2011-07-15 2013-01-24 国立大学法人九州大学 遅延蛍光材料およびそれを用いた有機エレクトロルミネッセンス素子
WO2013011954A1 (ja) 2011-07-15 2013-01-24 国立大学法人九州大学 有機エレクトロルミネッセンス素子およびそれに用いる化合物
JP2013253121A (ja) 2011-07-15 2013-12-19 Kyushu Univ 遅延蛍光材料、それを用いた有機エレクトロルミネッセンス素子および化合物
WO2013081088A1 (ja) 2011-12-02 2013-06-06 国立大学法人九州大学 有機発光素子ならびにそれに用いる遅延蛍光材料および化合物
JP2013116975A (ja) 2011-12-02 2013-06-13 Kyushu Univ 遅延蛍光材料、有機発光素子および化合物
WO2013133359A1 (ja) 2012-03-09 2013-09-12 国立大学法人九州大学 発光材料および有機発光素子
WO2013154064A1 (ja) 2012-04-09 2013-10-17 国立大学法人九州大学 有機発光素子ならびにそれに用いる発光材料および化合物
WO2013161437A1 (ja) 2012-04-25 2013-10-31 国立大学法人九州大学 発光材料および有機発光素子
JP2013256490A (ja) 2012-05-17 2013-12-26 Kyushu Univ 化合物、発光材料および有機発光素子
JP2014009352A (ja) 2012-07-03 2014-01-20 Kyushu Univ 発光材料、化合物および有機発光素子
JP2014009224A (ja) 2012-07-03 2014-01-20 Kyushu Univ 発光材料、化合物および有機発光素子
WO2014034535A1 (ja) 2012-08-30 2014-03-06 国立大学法人九州大学 発光材料、化合物、およびそれらを用いた有機発光素子
WO2014115743A1 (ja) 2013-01-23 2014-07-31 国立大学法人九州大学 発光材料およびそれを用いた有機発光素子
WO2014122895A1 (ja) 2013-02-07 2014-08-14 保土谷化学工業株式会社 ジアザトリフェニレン環構造を有する化合物および有機エレクトロルミネッセンス素子
WO2014126200A1 (ja) 2013-02-18 2014-08-21 国立大学法人九州大学 化合物、発光材料および有機発光素子
WO2014133121A1 (ja) 2013-03-01 2014-09-04 国立大学法人九州大学 化合物、発光材料および有機発光素子
WO2014136758A1 (ja) 2013-03-05 2014-09-12 国立大学法人九州大学 電荷輸送材料、ホスト材料、薄膜および有機発光素子
WO2014136860A1 (ja) 2013-03-08 2014-09-12 国立大学法人九州大学 化合物、発光材料および有機発光素子
WO2014168101A1 (ja) 2013-04-10 2014-10-16 国立大学法人九州大学 発光材料、有機発光素子および化合物
WO2014189122A1 (ja) 2013-05-24 2014-11-27 国立大学法人九州大学 化合物、発光材料および有機発光素子
WO2014196585A1 (ja) 2013-06-05 2014-12-11 国立大学法人九州大学 発光材料、有機発光素子および化合物
WO2014203840A1 (ja) 2013-06-21 2014-12-24 国立大学法人九州大学 赤色発光材料、有機発光素子および化合物
WO2015002213A1 (ja) 2013-07-03 2015-01-08 国立大学法人九州大学 発光材料、遅延蛍光体、有機発光素子および化合物
WO2015008580A1 (ja) 2013-07-16 2015-01-22 国立大学法人九州大学 化合物、発光材料および有機発光素子
WO2015016200A1 (ja) 2013-08-01 2015-02-05 国立大学法人九州大学 化合物、発光材料および有機発光素子
WO2015019725A1 (ja) 2013-08-09 2015-02-12 国立大学法人九州大学 有機金属錯体、発光材料、遅延蛍光体および有機発光素子
WO2015022974A1 (ja) 2013-08-14 2015-02-19 国立大学法人九州大学 有機エレクトロルミネッセンス素子
WO2015072470A1 (ja) 2013-11-12 2015-05-21 国立大学法人九州大学 発光材料、並びに、これを用いた遅延蛍光体および有機発光素子
WO2015072537A1 (ja) 2013-11-18 2015-05-21 国立大学法人九州大学 発光材料、有機発光素子および化合物
WO2015080183A1 (ja) 2013-11-28 2015-06-04 国立大学法人九州大学 発光材料、有機発光素子および化合物
WO2015080182A1 (ja) 2013-11-28 2015-06-04 国立大学法人九州大学 発光材料、有機発光素子および化合物
JP2015129240A (ja) 2014-01-08 2015-07-16 国立大学法人九州大学 発光材料、有機発光素子および化合物
WO2015108049A1 (ja) 2014-01-17 2015-07-23 国立大学法人九州大学 発光材料、有機発光素子および化合物
WO2015129714A1 (ja) 2014-02-28 2015-09-03 国立大学法人九州大学 発光材料、有機発光素子および化合物
WO2015129715A1 (ja) 2014-02-28 2015-09-03 国立大学法人九州大学 発光材料、有機発光素子および化合物
WO2015133501A1 (ja) 2014-03-07 2015-09-11 国立大学法人九州大学 発光材料、有機発光素子および化合物
WO2015136880A1 (ja) 2014-03-11 2015-09-17 保土谷化学工業株式会社 アザフルオレン環構造を有するスピロ化合物、発光材料および有機エレクトロルミネッセンス素子
WO2015137202A1 (ja) 2014-03-11 2015-09-17 国立大学法人九州大学 有機発光素子、ホスト材料、発光材料および化合物
WO2015137244A1 (ja) 2014-03-11 2015-09-17 国立大学法人九州大学 発光材料、有機発光素子および化合物
WO2015137136A1 (ja) 2014-03-12 2015-09-17 国立大学法人九州大学 発光材料及びそれを用いた有機el素子
WO2015146541A1 (ja) 2014-03-27 2015-10-01 国立大学法人九州大学 発光材料、有機発光素子および化合物
WO2015159541A1 (ja) 2014-04-18 2015-10-22 保土谷化学工業株式会社 テトラアザトリフェニレン環構造を有する化合物、発光材料および有機エレクトロルミネッセンス素子
JP2017119663A (ja) 2015-12-28 2017-07-06 株式会社Kyulux 化合物、発光材料および有機発光素子
JP2017119664A (ja) 2015-12-28 2017-07-06 株式会社Kyulux 化合物、発光材料および有機発光素子
JP2017226838A (ja) 2016-06-17 2017-12-28 株式会社Kyulux 発光材料、有機発光素子および化合物
JP2017222623A (ja) 2016-06-17 2017-12-21 株式会社Kyulux 化合物および有機発光素子
WO2018047853A1 (ja) 2016-09-06 2018-03-15 株式会社Kyulux 有機発光素子
JP2018100411A (ja) 2016-12-21 2018-06-28 国立大学法人九州大学 発光材料、化合物および有機発光素子
JP2020132636A (ja) * 2019-02-13 2020-08-31 学校法人関西学院 多環芳香族化合物およびその多量体
CN112341482A (zh) * 2019-12-27 2021-02-09 广东聚华印刷显示技术有限公司 有机化合物、高聚物、混合物、组合物及电子器件
WO2021245221A1 (en) * 2020-06-05 2021-12-09 Cynora Gmbh Organic molecules for optoelectronic devices
US20220123228A1 (en) * 2020-10-20 2022-04-21 Samsung Display Co., Ltd. Light emitting device
CN113402537A (zh) * 2021-07-15 2021-09-17 清华大学 一种有机化合物及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ADV. MATER., vol. 28, 2016, pages 2777 - 2781
ANGEW. CHEM. INT. ED., vol. 57, 2018, pages 11316 - 11320
HANSCH, C, CHEM. REV., vol. 91, 1991, pages 165 - 195

Also Published As

Publication number Publication date
TW202317590A (zh) 2023-05-01
JPWO2022270354A1 (ja) 2022-12-29
JP2023003372A (ja) 2023-01-11
KR20240023051A (ko) 2024-02-20
US20230064110A1 (en) 2023-03-02
EP4361160A1 (en) 2024-05-01
JP7222159B2 (ja) 2023-02-15

Similar Documents

Publication Publication Date Title
TWI773787B (zh) 發光元件
JP5898683B2 (ja) 有機エレクトロルミネッセンス素子用材料および有機エレクトロルミネッセンス素子
TWI692119B (zh) 發光元件
CN104837834B (zh) 芳香族胺衍生物和有机电致发光元件
WO2013084885A1 (ja) 有機エレクトロルミネッセンス素子
CN111886236A (zh) 化合物及包含其的有机发光器件
WO2022249506A1 (ja) 化合物、発光材料および発光素子
CN112204033A (zh) 有机化合物、发光元件、发光装置、电子设备及照明装置
WO2023140130A1 (ja) 化合物、発光材料および有機発光素子
WO2022254965A1 (ja) 化合物、発光材料および発光素子
WO2023090154A1 (ja) 化合物、発光材料および発光素子
WO2023090288A1 (ja) 化合物、発光材料および発光素子
WO2022270354A1 (ja) 化合物、発光材料および有機発光素子
WO2022270113A1 (ja) 有機エレクトロルミネッセンス素子
JP2023097788A (ja) 化合物、発光材料および発光素子
JP2023036162A (ja) 化合物、発光材料および有機発光素子
JP2023002882A (ja) 化合物、発光材料および有機発光素子
WO2022270591A1 (ja) 化合物、組成物、ホスト材料、電子障壁材料および有機発光素子
WO2022168956A1 (ja) 化合物、発光材料および有機発光素子
WO2022270600A1 (ja) 有機発光素子および膜
WO2022270602A1 (ja) 有機発光素子および膜
CN117651705A (zh) 化合物、发光材料及有机发光元件
WO2022230574A1 (ja) 電荷輸送材料、組成物および有機発光素子
WO2023140374A1 (ja) 化合物、発光材料および発光素子
CN117561805A (zh) 有机发光元件及膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828271

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023530341

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280043652.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237044672

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022828271

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022828271

Country of ref document: EP

Effective date: 20240123