Emergent Approaches to Efficient and Sustainable Polyhydroxyalkanoate Production
<p>Polyhydroxyalkanoates with short chain-length repeat units (Scl-PHA) monomers include 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV). Mcl-PHA monomers include 3-hydroxyhexanoate (3HHx), 3-hydroxyoctanoate (3HO), 3-hydroxydecanoate (3HD), and 3-hydroxydodecanoate (3-HDD). PHA granules accumulate within the cytoplasm of the bacteria cell.</p> "> Figure 2
<p>Metabolic routes for PHA biosynthesis.</p> "> Figure 3
<p>Using renewable, low-cost carbon sources such as energy crops or waste streams in combination with optimized fermentation strategies supports high yielding PHA production processes. The PHA polymers are processed and manufactured into consumer plastics that will biodegrade when disposed. The cycle begins again when biodegradation products of PHA plastics are consumed during photosynthesis or are recovered in waste streams from composting facilities.</p> "> Figure 4
<p>Process regimes for PHA fermentative synthesis.</p> "> Figure 5
<p>Genetic engineering strategies to improve bacterial strains for PHA production. PHA producing strains can be improved to convert various carbon substrates into PHAs via gene insertion or deletion. PHA synthase genes from PHA producing strains are often inserted in non-PHA producing strains. Using different strains of bacteria facilitates PHA production under conditions that are not suitable for naturally producing PHA strains.</p> "> Figure 6
<p>The use of mixed microbial consortia (MMC) for PHA production.</p> "> Figure 7
<p>Sustainable sources and conversion of feedstocks for PHA production. Provided within the dashed area is a simplified representation of the conversion of waste oils (lipids) to PHAs. The waste lipid is hydrolyzed to yield substrates for fermentation: fatty acids and glycerol. The substrates are purified prior to use in fermentations. Recovered waste biomass can be recycled as a carbon source for future fermentations.</p> "> Figure 8
<p>Key areas of PHA production to optimize to obtain high-yields of PHA. To compete with petroleum-based plastics whilst remaining as environmentally friendly as possible, PHA production requires constant innovation and optimization in four major areas. The cyclic arrows illustrate that any modification to one of the four categories will affect the following stage of production. The strategies presented herein have been proposed due to the published success regarding improved PHA production yields or PHA properties.</p> ">
Abstract
:1. Introduction
2. Modes of Operations for Production of Polyhydroxyalkanoates (PHAs) in High Cell Density Cultivations
2.1. Batch Cultivations
2.2. Fed-Batch Fermentations
2.3. Continuous Culture
3. Effect of Nutrient Limitations on Yield of PHA
4. PHA Production Using Genetically Modified Organisms
5. Enhancement of PHA Yield by β-Oxidation Inhibition
6. PHA Production Using Mixed Cultures
7. Industrial/Agro-Industrial Waste for Production of scl-and mcl-PHA
7.1. Lignocellulosic Feedstock
7.2. Waste Glycerol
7.3. Sugar-Cane Molasses as Carbon Source
7.4. Green Grass as Carbon Source
7.5. Starch as Carbon Source
7.6. Whey, Wheat, and Rice Bran as Carbon Sources
7.7. Waste Vegetable Oils and Plant Oils as Carbon Sources
7.8. Wastewater for PHA Production
8. Global PHA Producer Companies at Pilot and Industrial Scale
9. Downstream Processing of PHA
9.1. Solvent Extraction
9.1.1. Halogenated Solvents
9.1.2. Non-Halogenated Solvents
9.1.3. Green Solvents
9.2. Ultrasound-Assisted Extraction
9.3. Supercritical Fluid Extraction
9.4. Aqueous Two-Phase Extraction
9.5. Enzymatic and Chemical Digestion Method
9.6. New Biological Recovery Methods
10. Conclusions: Challenges and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lemoigne, M. Dehydration and polymerization product of β-oxybutyric acid. Bull. Soc. Chim. Biol. 1926, 8, 770–782. [Google Scholar]
- Muhammadi, S.; Muhammad, A.; Shafqat, H. Bacterial polyhydroxyalkanoates-eco-friendly next generation plastic: Production, biocompatibility, biodegradation, physical properties and applications. Green Chem. Lett. Rev. 2015, 8, 56–77. [Google Scholar] [CrossRef] [Green Version]
- Blunt, W.; Levin, D.B.; Cicek, N. Bioreactor operating strategies for improved polyhydroxyalkanoate (PHA) productivity. Polymers 2018, 10, 1197. [Google Scholar] [CrossRef] [Green Version]
- Kessler, B.; Witholt, B. Production of microbial polyesters: Fermentation and downstream processes. Adv. Biochem. Eng. Biotechnol. 2001, 71, 159–182. [Google Scholar] [PubMed]
- Sudesh, K.; Abe, H.; Doi, Y. Synthesis, structure and properties of polyhydroxyalkanoates: Biological polyesters. Prog. Polym. Sci. 2000, 25, 1503–1555. [Google Scholar] [CrossRef]
- Lee, S.Y.; Chang, H.N. Production of poly (hydroxyalkanoic acid). Adv. Biochem. Eng. Biotechnol. 1995, 52, 27–58. [Google Scholar] [PubMed]
- Muhr, A.; Rechberger, E.M.; Salerno, A.; Reiterer, A.; Schiller, M.; Kwicien, M.; Adamus, G.; Kowalczuk, M.; Strohmeier, K.; Schober, S.; et al. Biodegradable latexes from animal-derived waste: Biosynthesis and characterization of mcl-PHA accumulated by P. citronellolis. React. Funct. Polym. 2013, 73, 1391–1398. [Google Scholar] [CrossRef]
- Muhr, A.; Rechberger, E.M.; Salerno, A.; Reiterer, A.; Malli, K.; Strohmeier, K.; Schober, S.; Mittelbach, M.; Koller, M. Novel description of mcl-PHA biosynthesis by Pseudomonas chlororaphis from animal-derived waste. J. Biotechnol. 2013, 165, 45–51. [Google Scholar] [CrossRef]
- Koller, M.; Rodriguez-Contreras, A. Techniques for tracing PHA-producing organisms and for qualitative and quantitative analysis of intra- and extracellular PHA. Eng. Life Sci. 2015, 15, 558–581. [Google Scholar] [CrossRef]
- Singh, M.; Kumar, P.; Ray, S.; Kalia, V.C. Challenges and opportunities for customizing polyhydroxyalkanoates. Indian J. Microbiol. 2015, 55, 235–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koller, M. Advances in polyhydroxyalkanoate (PHA) production. Bioengineering 2017, 4, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.-Q.; Jiang, X.-R. Engineering bacteria for enhanced polyhydroxyalkanoates (PHA) biosynthesis. Synth. Syst. Biotechnol. 2017, 2, 192–197. [Google Scholar] [CrossRef]
- Kourmentza, C.; Plácido, J.; Venetsaneas, N.; Burniol-Figols, A.; Varrone, C.; Gavala, H.N.; Reis, M.A.M. Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 2017, 4, 55. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Dacosta, C.; Posada, J.A.; Kleerebezem, R.; Cuellar, M.C.; Ramirez, A. Microbial community-based polyhydroxyalkanoates (PHAs) production from wastewater: Techno-economic analysis and ex-ante environmental assessment. Bioresour. Technol. 2015, 185, 368–377. [Google Scholar] [CrossRef]
- Lee, S.Y.; Wong, H.H.; Choi, J.; Lee, S.H.; Lee, S.C.; Han, C.S. Production of medium-chain-length polyhydroxyalkanoates by high-cell-density cultivation of Pseudomonas putida under phosphorus limitation. Biotechnol. Bioeng. 2000, 68, 466–470. [Google Scholar] [CrossRef]
- Park, S.J.; Ahn, W.S.; Green, P.R.; Lee, S.Y. Production of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) by metabolically engineered Escherichia coli strains. Biomacromolecules 2001, 2, 248–254. [Google Scholar] [CrossRef]
- Kim, D.Y.; Hyung, W.K.; Moon, G.C.; Young, H.R. Biosynthesis, modification, and biodegradation of bacterial medium-chain-length polyhydroxyalkanoates. J. Microbiol. 2007, 45, 87–97. [Google Scholar] [PubMed]
- Zinn, M.; Witholt, B.; Egli, T. Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv. Drug. Del. Rev. 2001, 53, 5–21. [Google Scholar] [CrossRef]
- Nitschke, M.; Costa, S.G.V.A.O.; Contiero, J. Rhamnolipids and PHAs: Recent reports on Pseudomonas-derived molecules of increasing industrial interest. Process Biochem. 2011, 46, 621–630. [Google Scholar] [CrossRef]
- Reddy, C.S.K.; Ghai, R.; Rashmi, T.; Kahia, V.C. Polyhydroxyalkanoates: An overview. Bioresour. Technol. 2003, 87, 137–146. [Google Scholar] [CrossRef]
- Riesenberg, D.; Guthke, R. High-cell-density cultivation of microorganisms. Appl. Microbiol. Biotechnol. 1999, 51, 422–430. [Google Scholar] [CrossRef]
- Turner, C.; Gregory, M.E.; Thornhill, N. Closed-loop control of fed-batch cultures of recombinant Escherichia coli using on-line HPLC. Biotechnol. Bioeng. 1994, 44, 819–829. [Google Scholar] [CrossRef]
- Cavalheiro, J.M.B.T.; Raposo, S.R.; Almeida, M.C.M.D.; Sevrin, M.T.C.C.; Grandfils, C.; Fonseca, M.M.R. Effect of cultivation parameters on the production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) and poly (3-hydroxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) by Cupriavidus necator using waste glycerol. Bioresour. Technol. 2012, 111, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Ienczak, J.L.; Quines, L.K.; Melo, A.A.; Brandellero, M.; Mendes, C.R.; Schmidell, W.; Aragao, G.M.F. High cell density strategy for poly (3-hydroxybutyrate) production by Cupriavidus necator. Braz. J. Chem. Eng. 2011, 28, 585–596. [Google Scholar] [CrossRef]
- Yee, L.; Blanch, H.W. Recombinant protein expression in high cell density fed-batch cultures of Escherichia coli. Biotechnol. Adv. 1992, 10, 1550–1556. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.; Duane, G.; Kenny, S.T.; Cerrone, F.; Guzik, M.W.; Babu, R.P.; Casey, E.; O’Connor, K.E. 2015. High cell density cultivation of Pseudomonas putida KT2440 using glucose without the need for oxygen enriched air supply. Biotechnol. Bioeng. 2015, 112, 725–733. [Google Scholar] [CrossRef]
- Maclean, H.; Sun, Z.; Ramsay, J.; Ramsay, B. Decaying exponential feeding of nonanoic acid for the production of medium-chain-length poly(3-hydroxyalkanoates) by Pseudomonas putida KT2440. Can. J. Chem. 2008, 86, 564–569. [Google Scholar] [CrossRef]
- Huschner, F.; Grousseau, E.; Brigham, C.J.; Plassmeier, J.; Popovic, M.; Rha, C.; Sinskey, A.J. Development of a feeding strategy for high cell and PHA density fed-batch fermentation of Ralstonia eutropha H16 from organic acids and their salts. Process Biochem. 2015, 50, 165–172. [Google Scholar] [CrossRef]
- Ryu, H.W.; Hahn, S.K.; Chang, Y.K.; Chang, H.N. Production of poly(3-hydroxybutyrate) by high cell density fed-batch culture of Alcaligenes eutrophus with phosphate limitation. Biotechnol. Bioeng. 1997, 55, 25–32. [Google Scholar] [CrossRef]
- Aragao, G.M.F.; Lindley, N.D.; Uribelarrea, J.L.; Pareilleux, A. Maintaining a controlled residual growth capacity increases the production of polyhydroxyalkanoate copolymers by Alcaligenes eutrophus. Biotechnol. Lett. 1996, 18, 937–942. [Google Scholar] [CrossRef]
- Lee, W.H.; Azizan, M.N.M.; Sudesh, K. Effect of culture conditions of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) synthesized by Comamonas acidovorans. Polym. Degrad. Stab. 2004, 84, 129–134. [Google Scholar] [CrossRef]
- Kaur, G.; Roy, I. Strategies for large-scale production of polyhydroxyalkanoates. Chem. Biochem. Eng. Q. 2015, 29, 157–172. [Google Scholar] [CrossRef]
- Singh, G.; Kumari, A.; Mittal, A.; Yadav, A.; Aggarwal, N.K. Poly 𝛽-hydroxybutyrate production by Bacillus subtilis ng 220 using sugar industry waste water. BioMed Res. Int. 2013, 952641. [Google Scholar] [CrossRef] [Green Version]
- Rai, R.; Yunos, D.M.; Boccaccini, A.R.; Knowles, J.C.; Barker, I.A.; Howdle, S.M.; Tredwell, G.D.; Keshavarz, T.; Roy, I. Poly-3-hydroxyoctanoate P(3HO), a medium chain length polyhydroxyalkanoate homopolymer from Pseudomonas mendocina. Biomacromolecules 2011, 12, 2126–2136. [Google Scholar] [CrossRef]
- Pirt, S.J. The dynamics of microbial processes: A personal view. In Microbial Growth Dynamics; Poole, R.K., Bazin, M.J., Keevil, C.M., Eds.; IRL: Tokyo, Japan, 1990; Volume 28, pp. 1–16. [Google Scholar]
- Ienczak, J.L.; Schmidell, W.; de Aragao, G.M.F. High-cell-density culture strategies for polyhydroxyalkanoate production: A review. J. Ind. Microbiol. Biotechnol. 2013, 40, 275–286. [Google Scholar] [CrossRef]
- McNeil, B.; Harvey, L.M. Fermentation, a Practical Approach; IRL: Tokyo, Japan, 1990. [Google Scholar]
- Kulpreecha, S.; Boonruangthavorn, A.; Meksiriporn, B.; Thongchul, N. Inexpensive fed-batch cultivation for high poly(3-hydroxybutyrate) production by a new isolate of Bacillus megaterium. J. Biosci. Bioeng. 2009, 107, 240–245. [Google Scholar] [CrossRef]
- Shang, L.; Jiang, M.; Chang, H.N. Poly(3-hydroxybutyrate) synthesis in fed-batch culture of Ralstonia eutropha with phosphate limitation under different glucose concentrations. Biotechnol. Lett. 2003, 25, 1415–1419. [Google Scholar] [CrossRef] [PubMed]
- Yamane, T.; Fukunaga, M.; Lee, Y.W. Increased PHB production by high-cell-density fed-batch culture of Alcaligenes latus, a growth associated PHB producer. Biotechnol. Bioeng. 1996, 50, 197–202. [Google Scholar] [CrossRef]
- Mozumder, M.S.I.; De Wever, H.; Volcke, E.I.P.; Garcia-Gonzalez, E. A robust fed-batch feeding strategy independent of the carbon source for optimal polyhydroxybutyrate production. Process. Biochem. 2014, 49, 365–373. [Google Scholar] [CrossRef]
- Miranda, D.S.D.M.; Koller, M.; Puppi, D.; Morelli, A.; Chiellini, F.; Braunegg, G. Fed-batch synthesis of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from sucrose and 4-hydroxybutyrate precursors by Burkholderia sacchari strain DSM 17165. Bioengineering 2017, 4, 36. [Google Scholar] [CrossRef] [Green Version]
- Haas, C.; El-Najjar, T.; Virgolini, N.; Smerilli, M.; Neureiter, M. High cell-density production of poly (3-hydroxybutyrate) in a membrane bioreactor. New Biotechnol. 2017, 37, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Racine, F.M.; Saha, B.C. Production of mannitol by Lactobacillus intermedius NRRL B-3693 in fed-batch and continuous cell-recycle fermentations. Process. Biochem. 2007, 42, 1609–1613. [Google Scholar] [CrossRef]
- Ienczak, J.L.; Schmidt, M.; Quines, L.K.; Zanfonato, K.; da Cruz Pradella, J.G.; Schmidell, W.; de Aragao, G.M.F. Poly(3-hydroxybutyrate) production in repeated fed-batch with cell recycle using a medium with low carbon source concentration. Appl. Biochem. Biotechnol. 2016, 178, 408–417. [Google Scholar] [CrossRef]
- Schmidt, M.; Ienczak, J.L.; Quines, L.K.; Zanfonato, K.; Schmidell, W.; de Aragão, G.M.F. Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) production in a system with external cell recycle and limited nitrogen feeding during the production phase. Biochem. Eng. J. 2016, 112, 130–135. [Google Scholar] [CrossRef]
- Rodríguez-Contreras, A.; Koller, M.; Miranda-de Sousa Dias, M.; Calafell-Monfort, M.; Braunegg, G.; Marqués-Calvo, M.S. Influence of glycerol on poly (3-hydroxybutyrate) production by Cupriavidus necator and Burkholderia sacchari. Biochem. Eng. J. 2015, 94, 50–57. [Google Scholar] [CrossRef]
- Ibrahim, M.H.; Steinbüchel, A. Poly(3-hydroxybutyrate) production from glycerol by Zobellella denitrificans MW1 via high-cell-density fed-batch fermentation and simplified solvent extraction. Appl. Environ. Microbiol. 2009, 75, 6222–6623. [Google Scholar] [CrossRef] [Green Version]
- Chanprateep, S.; Buasri, K.; Muangwong, A.; Utiswannakul, P. Biosynthesis and biocompatibility of biodegradable poly (3-hydroxybutyrate-co-4-hydroxybutyrate). Polym. Degrad. Stab. 2010, 95, 2003–2012. [Google Scholar] [CrossRef]
- Le Meur, S.; Zinn, M.; Egli, T.; Thöny-Meyer, L.; Ren, Q. Improved productivity of poly (4-hydroxybutyrate) (P4HB) in recombinant Escherichia coli using glycerol as the growth substrate with fed-batch culture. Microb. Cell Fact 2014, 13, 131. [Google Scholar] [CrossRef] [Green Version]
- Stanley, A.; Punil Kumar, H.N.; Mutturi, S.; Vijayendra, S.V.N. Fed-batch strategies for production of PHA using a native isolate of Halomonas venusta KT832796 strain. Appl. Biochem. Biotechnol. 2017, 184, 935–952. [Google Scholar] [CrossRef]
- Rocha, R.C.S.; Silva, L.F.; Taciro, M.K.; Pradella, J.G.C. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) P(3HB-co-3HV) with a broad range of 3HV content at high yields by Burkholderia sacchari IPT 189. World J. Microbiol. Biotechnol. 2008, 24, 427–431. [Google Scholar] [CrossRef]
- Chen, G.Q.; Zhang, G.; Park, S.J.; Lee, S.Y. Industrial scale production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Appl. Microbiol. Biotechnol. 2001, 57, 50–55. [Google Scholar]
- Blunt, W.; Dartiailh, C.; Sparling, R.; Gapes, D.J.; Levin, D.B.; Cicek, N. Development of High cell density cultivation strategies for improved medium chain length polyhydroxyalkanoate productivity using Pseudomonas putida LS46. Bioengineering 2019, 6, 89. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Ramsay, J.A.; Ramsay, B.A. Fed-batch production of poly-3-hydroxydecanoate from decanoic acid. J. Biotechnol. 2016, 218, 102–107. [Google Scholar] [CrossRef]
- Sun, Z.; Ramsay, J.; Guay, M.; Ramsay, B.A. Enhanced yield of medium-chain-length polyhydroxyalkanoates from nonanoic acid by co-feeding glucose in carbon-limited fed-batch culture. J. Biotechnol. 2009, 143, 262–267. [Google Scholar] [CrossRef]
- Cerrone, F.; Duane, G.; Casey, E.; Davis, R.; Belton, I.; Kenny, S.T.; Guzik, M.W.; Woods, T.; Babu, R.P.; O’Connor, K. Fed-batch strategies using butyrate for high cell density cultivation of Pseudomonas putida and its use as a biocatalyst. Appl. Microbiol. Biotechnol. 2014, 98, 9217–9228. [Google Scholar] [CrossRef]
- Sun, Z.; Ramsay, J.A.; Guay, M.; Ramsay, B.A. Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates from nonanoic acid by Pseudomonas putida KT2440. Appl. Microbiol. Biotechnol. 2007, 74, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Diniz, S.; Taciro, M.K.; Gomez, J.G.C.; Pradella, J.G.C. High-cell-density cultivation of Pseudomonas putida IPT 046 and medium-chain-length polyhydroxyalkanoate production from sugarcane carbohydrates. Appl. Biochem. Biotechnol. Part A Enzym. Eng. Biotechnol. 2004, 119, 51–69. [Google Scholar] [CrossRef]
- Kim, B.S. Production of medium chain length polyhydroxyalkanoates by fed-batch culture of Pseudomonas oleovorans. Biotechnol. Lett. 2002, 24, 125–130. [Google Scholar] [CrossRef]
- Kim, G.J.; Lee, I.Y.; Yoon, S.C.; Shin, Y.C.; Park, Y.H. Enhanced yield and a high production of medium-chain-length poly(3-hydroxyalkanoates) in a two-step fed-batch cultivation of Pseudomonas putida by combined use of glucose and octanoate. Enzyme Microb. Technol. 1997, 20, 500–505. [Google Scholar] [CrossRef]
- Andin, N.; Longieras, A.; Veronese, T.; Marcato, F.; Molina-Jouve, C.; Uribelarrea, J.-L. Improving carbon and energy distribution by coupling growth and medium chain length polyhydroxyalkanoate production from fatty acids by Pseudomonas putida KT2440. Biotechnol. Bioprocess Eng. 2017, 22, 308–318. [Google Scholar] [CrossRef]
- Dey, P.; Rangarajan, V. Improved fed-batch production of high-purity PHB (poly-3 hydroxy butyrate) by Cupriavidus necator (MTCC 1472) from sucrose-based cheap substrates under response surface-optimized conditions. 3 Biotech 2017, 7, 310. [Google Scholar] [CrossRef] [PubMed]
- Penloglou, G.; Vasileiadou, A.; Chatzidoukas, C.; Kiparissides, C. Model-based intensification of a fed-batch microbial process for the maximization of polyhydroxybutyrate (PHB) production rate. Bioproc. Biosyst. Eng. 2017, 40, 1247–1260. [Google Scholar] [CrossRef]
- Jung, K.; Hazenberg, W.; Prieto, M.; Witholt, B. Two-stage continuous process development for the production of medium-chain-length poly(3-hydroxyalkanoates). Biotech Bioengineering 2001, 71, 19–24. [Google Scholar] [CrossRef]
- Atlic, A.; Koller, M.; Scherzer, D.; Kutschera, C.; Grillo-Fernandes, E.; Horvat, P.; Chiellini, E.; Braunegg, G. Continuous production of poly([R]-3-hydroxybutyrate) by Cupriavidus necator in a multistage bioreactor cascade. Appl. Microbiol. Biotechnol. 2011, 91, 295–304. [Google Scholar] [CrossRef]
- Horvat, P.; Vrana, S.I.; Lopar, M.; Atlić, A.; Koller, M.; Braunegg, G. Mathematical modelling and process optimization of a continuous 5-stage bioreactor cascade for production of poly [-(R)-3-hydroxybutyrate] by Cupriavidus necator. Bioproc. Biosyst. Eng. 2013, 36, 1235–1250. [Google Scholar] [CrossRef]
- Du, G.; Chen, J.; Yu, J.; Lun, S. Continuous production of poly- 3-hydroxybutyrate by Ralstonia eutropha in a two-stage culture system. J. Biotechnol. 2001, 88, 59–65. [Google Scholar] [CrossRef]
- Du, G.; Chen, J.; Yu, J.; Lun, S. Kinetic studies on poly-3-hydroxybutyrate formation by Ralstonia eutropha in a two-stage continuous culture system. Process Biochem. 2001, 37, 219–227. [Google Scholar] [CrossRef]
- Khanna, S.; Srivastava, A.K. Continuous production of poly-β-hydroxybutyrate by high-cell-density cultivation of Wautersia eutropha. J. Chem. Tech. Biotechnol. 2008, 83, 799–805. [Google Scholar] [CrossRef]
- Egli, T. On multiple-nutrient-limited growth of microorganisms, with special reference to dual limitation by carbon and nitrogen substrates. Antonie Van Leeuwenhoek 1991, 60, 225–234. [Google Scholar] [CrossRef]
- Zinn, M.; Weilenmann, H.-U.; Hany, R.; Schmid1, M.; Egli, T. Tailored synthesis of poly([R]-3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/HV) in Ralstonia eutropha DSM 428. Acta Biotechnol. 2003, 23, 309–316. [Google Scholar] [CrossRef]
- Yu, S.T.; Lin, C.C.; Too, J.R. PHBV production by Ralstonia eutropha in a continuous stirred tank reactor. Process Biochem. 2005, 40, 2729–2734. [Google Scholar] [CrossRef]
- Huijberts, G.N.M.; Eggink, G. Production of poly(3-hydroxyalkanoates) by Pseudomonas putida KT2442 in continuous cultures. Appl. Microbiol. Biotechnol. 1996, 46, 233–239. [Google Scholar] [CrossRef]
- Tan, D.; Xue, Y.S.; Aibaidula, G.; Chen, G.Q. Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01. Bioresour. Technol. 2011, 102, 8130–8136. [Google Scholar] [CrossRef] [PubMed]
- Macauley-Patrick, S.; Finn, B. Modes of fermenter operation. In Practical Fermentation Technology; McNeil, B., Harvey, L.M., Eds.; John Wiley and Sons Ltd.: Chichester, UK, 2008; pp. 69–95. [Google Scholar]
- Kosaric, N.; Vardar-Sukan, F. Fermentation modes of industrial interest, In The Biotechnology of Ethanol: Classical and Future Applications; Roehr, M., Ed.; Wiley-VCH GmbH: Weinheim, Germany, 2001; pp. 139–149. [Google Scholar]
- Ibrahim, M.H.A.; Steinbüchel, A. High-cell-density cyclic fed-batch fermentation of a poly(3-hydroxybutyrate)-accumulating thermophile, Chelatococcus sp. strain MW10. Appl. Environ. Microbiol. 2010, 76, 7890–7895. [Google Scholar] [CrossRef] [Green Version]
- Karasavvas, E.; Chatzidoukas, C. Model-based dynamic optimization of the fermentative production of polyhydroxyalkanoates (PHAs) in fed-batch and sequence of continuously operating bioreactors. Biochem. Eng. J. 2020, 162, 107702. [Google Scholar]
- Dufresne, A.; Samain, E. Preparation and characterization of a poly (β- hydroxyalkanoate) latex produced by Pseudomonas oleovorans. Macromolecules 1998, 31, 6426–6433. [Google Scholar] [CrossRef]
- Kellerhals, M.B.; Hazenberg, W.M.; Witholt, B. High cell density fermentations of Pseudomonas oleovorans for the production of mcl-PHAs in two-liquid-phase media. Enzyme Microb. Technol. 1999, 24, 111–116. [Google Scholar] [CrossRef]
- Ramsay, B.A.; Saracovan, I.; Ramsay, J.A.; Marchessault, R.H. Effect of nitrogen limitation on long-side-chain poly-β-hydroxyalkanoate synthesis by Pseudomonas resinovorans. Appl. Environ. Microbiol. 1992, 58, 744–746. [Google Scholar] [CrossRef] [Green Version]
- Oeding, V.; Schlegel, H.G. β-Ketothiolase from Hydrogenomonas eutropha H16 and its significance in the regulation of poly- β -hydroxybutyrate metabolism. Biochem. J. 1973, 134, 239–248. [Google Scholar] [CrossRef]
- Tu, W.; Zhang, D.; Wang, H. Polyhydroxyalkanoates (PHA) production from fermented thermal hydrolyzed sludge by mixed microbial cultures: The link between phosphorus and PHA yields. Waste Manag. 2019, 96, 149–157. [Google Scholar] [CrossRef]
- Wen, Q.; Chen, Z.; Tian, T.; Chen, W. Effects of phosphorus and nitrogen limitation on PHA production in activated sludge. J. Environ. Sci. 2010, 22, 1602–1607. [Google Scholar] [CrossRef]
- Portugal-Nunes, D.J.; Pawar, S.S.; Lidén, G.; Gorwa-Grauslund, M.F. Effect of nitrogen availability on the poly-3-d-hydroxybutyrate accumulation by engineered Saccharomyces cerevisiae. AMB Expr. 2017, 7, 35. [Google Scholar] [CrossRef] [Green Version]
- Grousseau, E.; Blanchet, E.; Déléris, S.; Albuquerque, M.G.E.; Paul, E.; Uribelarrea, J.-L. Phosphorus limitation strategy to increase propionic acid flux towards 3-hydroxyvaleric acid monomers in Cupriavidus necator. Biores Technol. 2014, 153, 206–215. [Google Scholar] [CrossRef]
- Da Cruz Pradella, J.G.; Taciro, M.K.; Mateus, A.Y.P. High-cell-density poly (3-hydroxybutyrate) production from sucrose using Burkholderia sacchari culture in airlift bioreactor. Bioresour. Technol. 2010, 101, 8355–8360. [Google Scholar] [CrossRef]
- Grousseau, E.; Blanchet, E.; Déléris, S.; Albuquerque, M.G.E.; Paul, E.; Uribelarrea, J.-L. Impact of sustaining a controlled residual growth on polyhydroxybutyrate yield and production kinetics in Cupriavidus necator. Bioresour. Technol. 2013, 148, 30–38. [Google Scholar] [CrossRef]
- Kim, S.W.; Kim, P.; Lee, H.S.; Kim, J.H. High production of polyhydroxybutyrate (PHB) from Methylobacterium organophilum under potassium limitation. Biotechnol. Lett. 1996, 18, 25–30. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, B.H.; Kim, B.S. Production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) by Ralstonia eutropha. Biochem. Eng. J. 2005, 23, 169–174. [Google Scholar] [CrossRef]
- Ahn, W.S.; Park, S.J.; Lee, S.Y. Production of poly(3-hydroxybutyrate) from whey by cell recycle fed-batch culture of recombinant Escherichia coli. Biotechnol. Lett. 2001, 23, 235–240. [Google Scholar] [CrossRef]
- Riedel, S.L.; Bader, J.; Brigham, C.J.; Budde, C.F.; Yusof, Z.A.; Rha, C.; Sinskey, A.J. Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by Ralstonia eutropha in high cell density palm oil fermentations. Biotechnol. Bioeng. 2012, 109, 74–83. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.-Q.; Jiang, X.-R. Engineering microorganisms for improving polyhydroxyalkanoate biosynthesis. Curr. Opin. Biotechnol. 2018, 53, 20–25. [Google Scholar] [CrossRef]
- Madison, L.L.; Huisman, G.W. Metabolic engineering of poly(3-hydroxyalkanoates): From DNA to plastic. Microbiol. Mol. Biol. Rev. 1999, 63, 21–53. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Jian, J.; Shen, X.; Chung, A.; Chen, J.; Chen, G.Q. Metabolic engineering of Aeromonas hydrophila 4AK4 for production of copolymers of 3-hydroxybutyrate and medium-chain length 3-hydroxyalkanoate. Bioresour. Technol. 2012, 102, 8123–8129. [Google Scholar] [CrossRef] [PubMed]
- Hoffer, P.; Vermette, P.; Groleau, D. Production and characterization of polyhydroxyalkanoates by recombinant Methylobacterium extorquens: Combining desirable thermal properties with functionality. Biochem. Eng. J. 2011, 54, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Huisman, G.W.; Wonin, E.; Koning, G.; Preusting, H.; Witholt, B. Synthesis of poly(3-hydroxyalkanoates) by mutant and recombinant Pseudomonas strains. Appl. Microbiol. Biotechnol. 1992, 38, 1–5. [Google Scholar] [CrossRef]
- Matsusaki, H.; Abe, H.; Doi, Y. Biosynthesis and properties of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant strains of Pseudomonas sp. 61-3. Biomacromolecules 2000, 1, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Chung, A.L.; Wu, L.P.; Zhang, X.; Wu, Q.; Chen, J.C.; Chen, G.Q. Biosynthesis and characterization of polyhydroxyalkanoate block copolymer P3HB-b-P4HB. Biomacromolecules 2011, 12, 3166–3173. [Google Scholar] [CrossRef]
- Fidler, S.; Dennis, D. Polyhydroxyalkanoate production in recombinant Escherichia coli. FEMS Microbiol. Rev. 1992, 103, 231–236. [Google Scholar] [CrossRef]
- Hahn, S.K.; Chang, Y.K.; Lee, S.Y. Recovery and characterization of poly (3-hydroxybutyric acid) synthesized in Alcaligenes eutrophus and recombinant Escherichia coli. Appl. Environ. Microbiol. 1995, 61, 34–39. [Google Scholar] [CrossRef] [Green Version]
- Nduko, J.M.; Suzuki, W.; Matsumoto, K.; Kobayashi, H.; Ooi, T.; Fukuoka, A.; Taguchi, S. Polyhydroxyalkanoates production from cellulose hydrolysate in Escherichia coli LS5218 with superior resistance to 5-hydroxymethylfurfural. J. Biosci. Bioeng. 2012, 113, 70–72. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.Q. A microbial polyhydroxyalkanoates (PHA) based bio- and material industry. Chem. Soc. Rev. 2009, 38, 2434–2446. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.; Roo, G.D.; Beilen, J.B.V.; Zinn, M.; Kessler, B.; Witholt, B. Poly (3- hydroxyalkanoate) polymerase synthesis and in vitro activity in recombinant Escherichia coli and Pseudomonas putida. Appl. Gen. Mol. Biotechnol. 2005, 69, 286–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suriyamongkol, P.; Weselake, R.; Narine, S.; Moloney, M.; Shah, S. Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants-A review. Biotechnol. Adv. 2007, 25, 148–175. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, P.; Xian, M.; Liu, H.; Cao, Y.; Yang, Y.; Zhao, G. Production of block copolymer poly (3-hydroxybutyrate)-block-poly (3-hydroxypropionate) with adjustable structure from an inexpensive carbon source. ACS Macro Lett. 2013, 2, 996–1000. [Google Scholar] [CrossRef]
- Kahar, P.; Agus, J.; Kikkawa, Y.; Taguchi, K.; Doi, Y.; Tsuge, T. Effective production and kinetic characterization of ultra-high-molecular-weight poly[(R)-3-hydroxybutyrate] in recombinant Escherichia coli. Polym. Degrad. Stab. 2005, 87, 161–169. [Google Scholar] [CrossRef]
- Nikel, P.I.; Giordano, A.M.; Almeida, A.; Godoy, M.S.; Pettinari, M.J. Elimination of D-lactate synthesis increase poly(3-hydroxybutyrate) and ethanol synthesis from glycerol and affects cofactor distribution in recombinant Escherichia coli. Appl. Environ. Biol. 2010, 76, 7400–7406. [Google Scholar] [CrossRef] [Green Version]
- Nikel, P.I.; Almeida, A.; Melillo, E.C.; Galvagno, M.A.; Pettinari, M.J. New recombinant Escherichia coli strain tailored for the production of poly(3-hydroxybutyrate) from agroindustrial byproducts. Appl. Environ. Biol. 2006, 72, 3949–3954. [Google Scholar] [CrossRef] [Green Version]
- Agus, J.; Kahar, P.; Abe, H.; Doi, Y.; Tsuge, T. Altered expression of polyhydroxyalkanoate synthase gene and its effect on poly[(R)-3-hydroxybutyrate] synthesis in recombinant Escherichia coli. Polym. Degrad. Stab. 2006, 91, 1645–1650. [Google Scholar] [CrossRef]
- Wang, F.; Lee, S.Y. High cell density culture of metabolically engineered Escherichia coli for the production of poly (3-hydroxybutyrate) in a defined medium. Biotechnol. Bioeng. 1998, 58, 325–328. [Google Scholar] [CrossRef]
- Wong, H.H.; Lee, S.Y. Poly(3-hydroxybutyrate) production from whey by high cell density cultivation of recombinant Escherichia coli. Appl. Microbiol. Biotechnol. 1998, 50, 30–33. [Google Scholar] [CrossRef] [PubMed]
- Morr, C.V. Whey proteins: Manufacture. Dev. Dairy Chem. 1989, 4, 245–284. [Google Scholar]
- Riedel, S.L.; Jahns, S.; Koenig, S.; Bock, M.C.; Brigham, C.J.; Bader, J.; Stahl, U. Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats. J. Biotechnol. 2015, 214, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Maruyama, H.; Fujiki, T.; Matsumoto, K. Regulation of 3-hydroxyhexanoate composition in PHBH synthesized by recombinant Cupriavidus necator H16 from plant oil by using butyrate as a co-substrate. J. Biosci. Bioeng. 2015, 120, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Povolo, S.; Toffano, P.; Basaglia, M.; Casella, S. Polyhydroxyalkanoates production by engineered Cupriavidus necator from waste material containing lactose. Bioresour. Technol. 2010, 101, 7902–7907. [Google Scholar] [CrossRef]
- Kim, D.Y.; Kim, Y.B.; Rhee, Y.H. Evaluation of various carbon substrates for the biosynthesis of polyhydroxyalkanoates bearing functional groups by Pseudomonas putida. Int. J. Biol. Macromol. 2000, 28, 23–29. [Google Scholar] [CrossRef]
- Cai, L.; Yuan, M.Q.; Liu, F.; Jian, J.; Chen, G.Q. Enhanced production of medium-chain-length polyhydroxyalkanoates (PHA) by PHA depolymerase knockout mutant of Pseudomonas putida KT2442. Bioresour. Technol. 2009, 100, 2265–2270. [Google Scholar] [CrossRef] [PubMed]
- Le Meur, S.; Zinn, M.; Egli, T.; Thöny-Meyer, L.; Ren, Q. Production of medium-chain-length polyhydroxyalkanoates by sequential feeding of xylose and octanoic acid in engineered Pseudomonas putida KT2440. BMC Biotechnol. 2012, 12, 53. [Google Scholar]
- Kahar, P.; Tsuge, T.; Taguchi, K.; Doi, Y. High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Polym. Degrad. Stab. 2004, 83, 79–86. [Google Scholar] [CrossRef]
- Jing, H.; Yuan-Zheng, Q.; Dai-Cheng, L.; Guo-Qiang, C. Engineered Aeromonas hydrophila for enhanced production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with alterable monomers composition. FEMS Microbiol. Lett. 2004, 239, 195–201. [Google Scholar]
- Qiu, Y.Z.; Han, J.; Guo, J.J.; Chen, G.Q. Production of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) from gluconate and glucose by recombinant Aeromonas hydrophila and Pseudomonas putida. Biotechnol. Lett. 2005, 27, 1381–1386. [Google Scholar] [CrossRef]
- Ouyang, S.; Han, J.; Qiu, Y.; Qin, L.; Chen, S.; Wu, Q.; Leski, M.L.; Chen, G. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) production in recombinant Aeromonas hydrophila 4ak4 harboring phba, phbb and vgb genes. Macromol. Symp. 2005, 224, 21–34. [Google Scholar] [CrossRef]
- Budde, C.F.; Riedel, S.L.; Willis, L.B.; Rha, C.; Sinskey, A.J. Production of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha strains. Appl. Environmen. Microbiol. 2011, 77, 2847–2854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thinagaran, L.; Sudesh, K. Evaluation of sludge palm oil as feedstock and development of efficient method for its utilization to produce polyhydroxyalkanoate. Waste Biomass Valoriz. 2017, 10, 709–720. [Google Scholar] [CrossRef]
- Choi, J.; Lee, S.Y.; Kyuboem, H. Cloning of the Alcaligenes latus polyhydroxyalkanoate biosynthesis genes and use of these genes for enhanced production of poly(3-hydroxybutyrate) in Escherichia coli. Appl. Environ. Microbiol. 1998, 64, 4897–4903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.; Lee, S.Y.; Shin, K.; Lee, W.G.; Park, S.J.; Chang, H.N.; Chang, Y.K. Pilot scale production of poly(3-hydroxybutyrate-co-3-hydroxy-valerate) by fed-batch culture of recombinant Escherichia coli. Biotechnol. Bioprocess Eng. 2002, 7, 371–374. [Google Scholar] [CrossRef]
- Chen, X.; Yin, J.; Ye, J.; Zhang, H.; Che, X.; Ma, Y.; Li, M.; Wu, L.P.; Chen, G.Q. Engineering Halomonas bluephagenesis TD01 for non-sterile production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Bioresour. Technol. 2017, 244, 534–541. [Google Scholar] [CrossRef]
- Poblete-Castro, I.; Rodriguez, A.L.; Lam, C.M.; Kessler, W. Improved production of medium-chain-length polyhydroxyalkanoates in glucose-based fed-batch cultivations of metabolically engineered Pseudomonas putida strains. J. Microbiol. Biotechnol. 2014, 24, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.E.; Park, S.J.; Kim, W.J.; Kim, H.J.; Kim, B.J.; Lee, H.; Shin, J.; Lee, S.Y. One-step fermentative production of aromatic polyesters from glucose by metabolically engineered Escherichia coli strains. Nat. Commun. 2018, 9, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.-Q.; Hajnal, I. The ‘PHAome’. Trends Biotechnol. 2015, 33, 559–564. [Google Scholar] [CrossRef]
- Wang, Y.; Chung, A.; Chen, G.Q. Synthesis of medium-chain-length polyhydroxyalkanoate homopolymers, random copolymers, and block copolymers by an engineered strain of Pseudomonas entomophila. Adv. Healthc. Mater. 2017, 2017, 6. [Google Scholar]
- Li, S.; Cai, L.; Wu, L.; Zeng, G.; Chen, J.; Wu, Q.; Chen, G.Q. Microbial synthesis of functional homo-, random and block polyhydroxyalkanoates by β-oxidation deleted Pseudomonas entomophila. Biomacromolecules 2014, 15, 2310–2319. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.H.; Zhou, X.R.; Liu, Q.; Chen, G.Q. Biosynthesis of polyhydroxyalkanoate homopolymers by Pseudomonas putida. Appl. Microbiol. Biotechnol. 2011, 89, 1497–1507. [Google Scholar] [CrossRef]
- Liu, Q.; Luo, G.; Zhou, X.R.; Chen, G.Q. Biosynthesis of poly(3-hydroxydecanoate) and 3-hydroxydodecanoate dominating polyhydroxyalkanoates by β-oxidation pathway inhibited Pseudomonas putida. Metab. Eng. 2011, 13, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Meng, D.C.; Wang, Y.; Wu, L.P.; Shen, R.; Chen, J.C.; Wu, Q.; Chen, G.Q. Production of poly(3-hydroxypropionate) and poly(3-hydroxybutyrate-co-3-hydroxypropionate) from glucose by engineering Escherichia coli. Metab. Eng. 2015, 29, 189–195. [Google Scholar] [CrossRef]
- Cheema, S.; Bassas-Galia, M.; Sarma, P.M.; Lal, B.; Arias, S. Exploiting metagenomic diversity for novel polyhydroxyalkanoate synthases: Production of a terpolymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate-co-3-hydroxyoctanoate) with a recombinant Pseudomonas putida strain. Bioresour. Technol. 2012, 103, 322–328. [Google Scholar] [CrossRef]
- Li, M.; Chen, X.; Che, X.; Zhang, H.; Wu, L.P.; Du, H.; Chen, G.Q. Engineering Pseudomonas entomophila for synthesis of copolymers with defined fractions of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates. Metab. Eng. 2019, 52, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, L.; Wu, L.P.; Dechuan, M.; Chen, J.; Wu, Q.; Chen, G.Q. Pseudomonas putida KT2442 as a platform for the biosynthesis of polyhydroxyalkanoates with adjustable monomer contents and compositions. Bioresour Technol. 2013, 142, 225–231. [Google Scholar] [CrossRef]
- Ouyang, S.P.; Liu, Q.; Fang, L.; Chen, G.Q. Construction of pha operon defined knockout mutants of Pseudomonas putida KT2442 and its applications in polyhydroxyalkanoates production. Macromol. Biosci. 2007, 7, 227–233. [Google Scholar] [CrossRef]
- Zhao, F.; He, F.; Liu, X.; Shi, J.; Liang, J.; Wang, S.; Yang, C.; Liu, R. Metabolic engineering of Pseudomonas mendocina NK-01 for enhanced production of medium-chain-length polyhydroxyalkanoates with enriched content of the dominant monomer. Int. J. Biol. Macromol. 2020, 154, 1596–1605. [Google Scholar] [CrossRef] [PubMed]
- Guzik, M.W.; Narancic, T.; Ilic-Tomic, T.; Vojnovic, S.; Kenny, S.T.; Casey, W.T.; Duane, G.F.; Casey, E.; Woods, T.; Babu, R.P.; et al. Identification and characterization of an acyl-CoA dehydrogenase from Pseudomonas putida KT2440 that shows preference towards medium to long chain length fatty acids. Soc. Gen. Microbiol. 2014, 160, 1760–1771. [Google Scholar] [CrossRef] [Green Version]
- Li, S.Y.; Dong, C.L.; Wang, S.Y.; Ye, H.M.; Chen, G.Q. Microbial production of polyhydroxyalkanoate block copolymer by recombinant Pseudomonas putida. Appl. Microbiol. Biotechnol. 2011, 90, 659–669. [Google Scholar] [CrossRef]
- Nakaoki, T.; Yasui, J.; Komaeda, T. Biosynthesis of P3HBV-b-P3HB-b-P3HBV triblock copolymer by Ralstonia eutropha. J. Polym. Environ. 2019, 27, 2720–2727. [Google Scholar] [CrossRef]
- Nakaoki, T.; Yamagishi, R.; Ishii, D. Biosynthetic Process and characterization of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)-block-poly (3-hydroxybutyrate) by R. Eutropha. J. Polym. Environ. 2015, 23, 487–492. [Google Scholar] [CrossRef]
- Tripathi, L.; Wu, L.P.; Chen, J.; Chen, G.Q. Synthesis of diblock copolymer poly-3-hydroxybutyrate-block-poly-3-hydroxyhexanoate [PHB-b-PHHx] by a beta-oxidation weakened Pseudomonas putida KT2442. Microb. Cell Fact 2012, 11, 44. [Google Scholar] [CrossRef] [Green Version]
- Ashby, R.D.; Solaiman, D.; Nuñez, A.; Strahan, G.D.; Johnston, D.B. Burkholderia sacchari DSM 17165: A source of compositionally-tunable block-copolymeric short-chain poly(hydroxyalkanoates) from xylose and levulinic acid. Bioresour. Technol. 2018, 253, 333–342. [Google Scholar] [CrossRef]
- Ashby, R.D.; Solaiman, D.K.Y. Levulinic Acid: A valuable platform chemical for the fermentative synthesis of poly(hydroxyalkanoate) biopolymers. Green Polym. Chem. New Prod. Process Applic. Chapter 2018, 21, 339–354. [Google Scholar]
- Ashby, R.D.; Solaiman, D.K.; Strahan, G.D. The Use of Azohydromonas lata DSM 1122 to produce 4-hydroxyvalerate-containing polyhydroxyalkanoate terpolymers, and unique polymer blends from mixed-cultures with Burkholderia sacchari DSM 17165. J. Polym. Environ. 2019, 27, 198–209. [Google Scholar] [CrossRef]
- Sparks, J.; Scholz, C. Synthesis and characterization of a cationic poly(beta-hydroxyalkanoate). Biomacromolecules 2008, 9, 2091–2096. [Google Scholar] [CrossRef]
- Zheng, Z.; Gong, Q.; Chen, G.Q. A novel method for production of 3-hydroxydecanoic acid by recombinant Escherichia coli and Pseudomonas putida. Chin. J. Chem. Eng. 2004, 12, 550–555. [Google Scholar]
- Hazer, B. Simple synthesis of amphiphilic poly (3-hydroxy alkanoate)s with pendant hydroxyl and carboxylic groups via thiol-ene photo click reactions. Polym. Degrad. Stab. 2015, 119, 159–166. [Google Scholar] [CrossRef]
- Yu, L.P.; Yan, X.; Zhang, X.; Chen, X.B.; Wu, Q.; Jiang, X.R.; Chen, G.Q. Biosynthesis of functional polyhydroxyalkanoates by engineered Halomonas bluephagenesis. Metab. Eng. 2020, 59, 119–130. [Google Scholar] [CrossRef]
- Yuan, M.Q.; Shi, Z.Y.; Wei, X.X.; Wu, Q.; Chen, S.F.; Chen, G.Q. Microbial production of medium-chain length 3-hydroxyalkanoic acids by recombinant Pseudomonas putida KT2442 harboring genes fadL, fadD and phaZ. FEMS Microbiol. Lett. 2008, 283, 167–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, L.; Zhang, H.; Liu, Q.; Chen, J.; Zhang, J.; Chen, G.Q. Production of two monomers containing medium-chain-length polyhydroxyalkanoates by β-oxidation impaired mutant of Pseudomonas putida KT2442. Bioresour. Technol. 2009, 100, 4891–4894. [Google Scholar] [CrossRef] [PubMed]
- Cereghino, J.L.; Cregg, J.M. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev. 2000, 24, 45–66. [Google Scholar] [CrossRef] [PubMed]
- Poirier, Y.; Erard, N.; MacDonald-Comber Petétot, J. Synthesis of polyhydroxyalkanoate in the peroxisome of Pichia pastoris. J. FEMS Microbiol. Lett. 2002, 207, 97–102. [Google Scholar] [CrossRef]
- Vijayasankaran, N.; Carlson, R.; Srienc, F. Synthesis of poly [(r)-3-hydroxybutyric acid)] in the cytoplasm of Pichia pastoris under oxygen limitation. Biomacromolecules 2005, 6, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Matsumoto, K.; Uramoto, S.; Motohashi, R.; Abe, H.; Taguchi, S. Lactate fraction dependent mechanical properties of semitransparent poly(lactate-co-3-hydroxybutyrate) s produced by control of lactyl-CoA monomer fluxes in recombinant Escherichia coli. J. Biotechnol. 2011, 154, 255–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, Y.; Meng, D.; Wu, L.; Chen, J.; Wu, Q.; Chen, G.Q. Microbial synthesis of a novel terpolyester P(LA-co-3HB-co-3HP) from low-cost substrates. Microb. Biotechnol. 2017, 10, 371–380. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.J.; Qiao, K.; Shi, W.; Pereira, B.; Zhang, H.; Olsen, B.D.; Stephanopoulos, G. Biosynthesis of poly(glycolate-co-lactate-co-3-hydroxybutyrate) from glucose by metabolically engineered Escherichia coli. Metab. Eng. 2016, 35, 1–8. [Google Scholar] [CrossRef]
- Li, Z.J.; Qiao, K.; Che, X.M.; Stephanopoulos, G. Metabolic engineering of Escherichia coli for the synthesis of the quadripolymer poly(glycolate-co-lactate-co-3-hydroxybutyrate-co-4-hydroxybutyrate) from glucose. Metab. Eng. 2017, 44, 38–44. [Google Scholar] [CrossRef]
- Salamanca-Cardona, L.; Scheel, R.A.; Bergey, N.S.; Stipanovic, A.J.; Matsumoto, K.; Taguchi, S.; Nomura, C.T. Consolidated bioprocessing of poly(lactate-co-3-hydroxybutyrate) from xylan as a sole feedstock by genetically-engineered Escherichia coli. J. Bioscie. Bioeng. 2016, 122, 406–414. [Google Scholar] [CrossRef]
- Takisawa, K.; Ooi, T.; Matsumoto, K.; Kadoya, R.; Taguchi, S. Xylose-based hydrolysate from eucalyptus extract as feedstock for poly(lactate-co-3-hydroxybutyrate) production in engineered Escherichia coli. Process Biochem. 2017, 54, 102–105. [Google Scholar] [CrossRef]
- Choi, S.Y.; Chae, T.U.; Shin, J.; Im, J.A.; Lee, S.Y. Biosynthesis and characterization of poly (D-lactate-co-glycolate-co-4-hydroxybutyrate). Biotechnol. Bioeng. 2020, 117, 2187–2197. [Google Scholar] [CrossRef] [PubMed]
- Goto, S.; Suzuki, N.; Matsumoto, K.; Taguchi, S.; Tanaka, K.; Matsusaki, H. Enhancement of lactate fraction in poly(lactate-co-3-hydroxybutyrate) synthesized by Escherichia coli harboring the D-lactate dehydrogenase gene from Lactobacillus acetotolerans HT. J. Gen. Appl. Microbiol. 2019, 65, 204–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.J.; Park, J.P.; Lee, S.Y.; Doi, Y. Enrichment of specific monomer in medium chain length polyhydroxyalkanoate by amplification of fadD and fadE genes in recombinant Eschericia coli. Enzyme Microb. Technol. 2003, 33, 62–70. [Google Scholar] [CrossRef]
- Jiang, X.J.; Sun, Z.; Ramsay, J.A.; Ramsay, B.A. Fed-batch production of MCL-PHA with elevated 3-hydroxynonanoate content. AMB Express 2013, 3, 50. [Google Scholar] [CrossRef] [Green Version]
- Chung, A.L.; Jin, H.L.; Huang, L.J.; Ye, H.M.; Chen, J.C.; Wu, Q.; Chen, G.Q. Biosynthesis and characterization of poly(3-hydroxydodecanoate) by β-oxidation inhibited mutant of Pseudomonas entomophila L48. Biomacromolecules 2011, 12, 3559–3566. [Google Scholar] [CrossRef]
- Gao, J.; Vo, M.T.; Ramsay, J.A.; Ramsay, B.A. Overproduction of mcl-PHA with high 3-hydroxydecanoate content. Biotechnol. Bioeng. 2018, 115, 390–400. [Google Scholar] [CrossRef]
- Oliveira, G.H.D.; Zaiat, M.; Rodrigues, J.A.D.; Ramsay, J.A.; Ramsay, B.A. Towards the production of mcl-pha with enriched dominant monomer content: Process development for the sugarcane biorefinery context. J. Polym. Environ. 2020, 28, 844–853. [Google Scholar] [CrossRef]
- Insomphun, C.; Mifune, J.; Orita, I.; Numata, K.; Nakamura, S.; Fukui, T. Modification of β-oxidation pathway in Ralstonia eutropha for production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from soybean oil. J. Biosci. Bioeng. 2014, 117, 184–190. [Google Scholar] [CrossRef]
- Oliveira, C.S.S.; Silva, C.E.; Carvalho, G.; Reis, M.A. Strategies for efficiently selecting PHA producing mixed microbial cultures using complex feedstocks: Feast and famine regime and uncoupled carbon and nitrogen availabilities. New Biotechnol. 2016, 37, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.W.; Jian, Y.Y.J.; Wu, Q.; Chen, J.Q. Production and characterization of homopolymer poly(3-hydroxyvalerate) (PHV) accumulated by wild type and recombinant Aeromonas hydrophila strain 4AK4. Bioresour. Technol. 2009, 100, 4296–4299. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, M.G.E.; Torres, C.A.V.; Reis, M.A.M. Polyhydroxyalkanoate (PHA) production by a mixed microbial culture using sugar molasses: Effect of the influent substrate concentration on culture selection. Water Res. 2010, 44, 3419–3433. [Google Scholar] [CrossRef]
- Koller, M. Characterization of polyhydroxyalkanoates. In Recent Advances in Biotechnology (Volume 2) Microbial Biopolyester; Bentham Science Publishers: Sharjah, United Arab Emirates, 2016; p. 283. [Google Scholar]
- Magdouli, S.; Brar, S.K.; Blais, J.F.; Tyagi, R.D. How to direct the fatty acid biosynthesis towards polyhydroxyalkanoates production. Biomass Bioenergy 2015, 74, 268–279. [Google Scholar] [CrossRef]
- Anjum, A.; Zuber, M.; Zia, K.M.; Noreen, A.; Anjum, M.N.; Tabasum, S. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. Int. J. Biol. Macromol. 2016, 89, 161–174. [Google Scholar] [CrossRef]
- Johnson, K.; Jiang, Y.; Kleerebezem, R.; Muyzer, G.; Van Loosdrecht, M.C.M. Enrichment of a mixed bacterial culture with a high polyhydroxyalkanoate storage capacity. Biomacromolecules 2009, 10, 670–676. [Google Scholar] [CrossRef] [PubMed]
- Serafim, L.S.; Lemos, P.C.; Albuquerque, M.G.E.; Reis, M.A.M. Strategies for PHA production by mixed cultures and renewable waste materials. Appl. Microbiol. Biotechnol. 2008, 81, 615–628. [Google Scholar] [CrossRef]
- Dionisi, D.; Majone, M.; Papa, V.; Beccari, M. Biodegradable polymers from organic acids by using activated sludge enriched by aerobic periodic feeding. Biotechnol. Bioeng. 2004, 85, 569–579. [Google Scholar] [CrossRef]
- Beccari, M.; Dionisi, D.; Giuliani, A.; Majone, M.; Ramadori, R. Effect of different carbon sources on aerobic storage by activated sludge. Water Sci. Technol. 2002, 45, 157–168. [Google Scholar] [CrossRef]
- Lemos, P.C.; Serafim, L.S.; Reis, M.A.M. Synthesis of polyhydroxyalkanoates from different short-chain fatty acids by mixed cultures submitted to aerobic dynamic feeding. J. Biotechnol. 2006, 122, 226–238. [Google Scholar] [CrossRef] [PubMed]
- Solaiman, D.K.Y.; Ashby, R.D.; Foglia, T.A.; Marmer, W.N. Conversion of agricultural feedstock and coproducts into poly(hydroxyalkanoates). Appl. Microbiol. Biotechnol. 2006, 71, 783–789. [Google Scholar] [CrossRef]
- Shen, L.; Hu, H.; Ji, H.; Cai, J.; He, N.; Li, Q.; Wang, Y. Production of poly(hydroxybutyrate-hydroxyvalerate) from waste organics by the two-stage process: Focus on the intermediate volatile fatty acids. Bioresour. Technol. 2014, 166, 194–200. [Google Scholar] [CrossRef]
- Marang, L.; Jiang, Y.; van Loosdrecht, M.C.M.; Kleerebezem, R. Butyrate as preferred substrate for polyhydroxybutyrate production. Bioresour. Technol. 2013, 142, 232–239. [Google Scholar] [CrossRef]
- Jiang, Y.; Marang, L.; Kleerebezem, R.; Muyzer, G.; van Loosdrecht, M.C.M. Polyhydroxybutyrate production from lactate using a mixed microbial culture. Biotechnol. Bioeng. 2011, 108, 2022–2035. [Google Scholar] [CrossRef]
- Jiang, Y.; Hebly, M.; Kleerebezem, R.; Muyzer, G.; van Loosdrecht, M.C.M. Metabolic modeling of mixed substrate uptake for polyhydroxyalkanoate (PHA) production. Water Res. 2011, 45, 1309–1321. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.-W.; Zhang, H.-Y.; Lu, P.-F.; Peng, Y.-Z. Effects of carbon sources on the enrichment of halophilic polyhydroxyalkanoate-storing mixed microbial culture in an aerobic dynamic feeding process. Sci. Rep. 2016, 6, 30766. [Google Scholar] [CrossRef]
- Palmeiro-Sánchez, T.; Fra-Vázquez, A.; Rey-Martínez, N.; Campos, J.L.; Mosquera-Corral, A. Transient concentrations of NaCl affect the PHA accumulation in mixed microbial culture. J. Hazard. Mater. 2016, 306, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Cavaillé, L.; Albuquerque, M.; Grousseau, E.; Lepeuple, A.S.; Uribelarrea, J.L.; Hernandez-Raquet, G.; Paul, E. Understanding of polyhydroxybutyrate production under carbon and phosphorus-limited growth conditions in non-axenic continuous culture. Bioresour. Technol. 2016, 201, 65–73. [Google Scholar] [CrossRef]
- Ceyhan, N.; Ozdemir, G. Poly-β-hydroxybutyrate (PHB) production from domestic wastewater using Enterobacter aerogenes 12Bi strain. Afr. J. Microbiol. Res. 2011, 5, 690–702. [Google Scholar]
- Valentino, F.; Morgan-Sagastume, F.; Campanari, S.; Villano, M.; Werker, A.; Majone, M. Carbon recovery from wastewater through bioconversion into biodegradable polymers. New Biotechnol. 2017, 37, 9–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosseva, M.R.; Rusbandi, E. Trends in the biomanufacture of polyhydroxyalkanoates with focus on downstream processing. Int. J. Biol. Macromol. 2018, 107, 762–778. [Google Scholar] [CrossRef]
- Johnson, K.; van Loosdrecht, M.C.M.; Kleerebezem, R. Influence of ammonium on the accumulation of polyhydroxybutyrate (PHB) in aerobic open mixed cultures. J. Biotechnol. 2010, 147, 73–79. [Google Scholar] [CrossRef]
- Lorini, L.; di Re, F.; Majone, M.; Valentino, F. High rate selection of PHA accumulating mixed cultures in sequencing batch reactors with uncoupled carbon and nitrogen feeding. New Biotechnol. 2020, 56, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.; Campanari, S.; Matteo, S.; Valentino, F.; Majone, M.; Villano, M. Impact of nitrogen feeding regulation on polyhydroxyalkanoates production by mixed microbial cultures. New Biotechnol. 2017, 37, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Qi, L.; Yang, S.; He, Y.; Jia, X. Increased sedimentation of a Pseudomonas–Saccharomyces microbial consortium producing medium chain length polyhydroxyalkanoates. Chin. J. Chem. Eng. 2019, 27, 1659–1665. [Google Scholar] [CrossRef]
- Keskin, G.; Kızıl, G.; Bechelany, M.; Pochat-Bohatier, C.; Öner,, M. IPotential of polyhydroxyalkanoate (PHA) polymers family as substitutes of petroleum-based polymers for packaging applications and solutions brought by their composites to form barrier materials. Pure Appl. Chem. 2017, 89, 1841–1848. [Google Scholar]
- Sun, J.; Shen, J.; Chen, S.; Cooper, M.A.; Fu, H.; Wu, D.; Yang, Z. Nanofiller reinforced biodegradable PLA/PHA composites: Current status and future trends. Polymers 2018, 10, 505. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Chen, W.; Xiang, H.; Yang, J.; Zhou, Z.; Zhu, M. Modification and potential application of short-chain-length polyhydroxyalkanoate (SCL-PHA). Polymers 2016, 8, 273. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.S. Production of poly(3-hydroxybutyrate) from inexpensive substrates. Enzyme Microb. Technol. 2000, 27, 774–777. [Google Scholar] [CrossRef]
- Alvi, S.; Thomas, S.; Sandeep, K.P.; Kalaalvirikkal, N.J.V.; Yaragalla, S. Polymers for Packaging Applications; Apple Academic Press: Point Pleasant, NJ, USA, 2014. [Google Scholar]
- Lee, W.H.; Loo, C.Y.; Nomura, C.T.; Sudesh, K. Biosynthesis of polyhydroxyalkanoate copolymers from mixtures of plant oils and 3-hydroxyvalerate precursors. Bioresour. Technol. 2008, 99, 6844–6851. [Google Scholar] [CrossRef]
- Al-Battashi, H.S.; Annamalai, N.; Sivakumar, N.; Al-Bahry, S.; Tripathi, B.N.; Nguyen, Q.D.; Gupta, V.K. Lignocellulosic biomass (LCB): A potential alternative biorefinery feedstock for polyhydroxyalkanoates production. Rev. Environ. Sci. Biotechnol. 2019, 18, 183–205. [Google Scholar] [CrossRef]
- Obruca, S.; Benesova, P.; Marsalek, L.; Marova, I. Use of lignocellulosic materials for PHA production. Chem. Biochem. Eng. Q. 2015, 29, 135–144. [Google Scholar] [CrossRef]
- Li, M.; Wilkins, M.R. Recent advances in polyhydroxyalkanoate production: Feedstocks, strains and process developments. Int. J. Biologic. Macromol. 2020, 156, 691–703. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, Y.Y.; Kim, T.H. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol. 2016, 199, 42–48. [Google Scholar] [CrossRef]
- Ramsay, J.A.; Hassan, M.C.A.; Ramsay, B.A. Hemicellulose as a potential substrate for production of poly (β-hydroxyalkanoates). Can. J. Microbiol. 1995, 41, 262–266. [Google Scholar] [CrossRef]
- Cesário, M.T.; Raposo, R.S.; de Almeida, M.C.M.D.; van Keulen, F.; Ferreira, B.S.; da Fonseca, M.M.R. Enhanced bioproduction of poly-3-hydroxybutyrate from wheat straw lignocellulosic hydrolysates. New Biotechnol. 2014, 3, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Cesário, M.T.; Raposo, R.S.; de Almeida, M.C.M.D.; van Keulen, F.; Ferreira, B.S.; Telo, J.P.; da Fonseca, M.M.R. Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Burkholderia sacchari using wheat straw hydrolysates and gamma-butyrolactone. Int. J. Biol. Macromol. 2014, 71, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Baroi, G.N.; Skiadas, I.V.; Westermann, P.; Gavala, H.N. Continuous fermentation of wheat straw hydrolysate by Clostridium tyrobutyricum with in-situ acids removal. Waste Biomass Valoriz. 2015, 6, 317–326. [Google Scholar] [CrossRef] [Green Version]
- Antonetti, C.; Licursi, D.; Fulignati, S.; Valentini, G.; Raspolli Galletti, A.M. New frontiers in the catalytic synthesis of levulinic acid: From sugars to raw and waste biomass as starting feedstock. Catalysts 2016, 6, 196. [Google Scholar] [CrossRef]
- Habe, H.; Sato, S.; Morita, T.; Fukuoka, T.; Kirimura, K.; Kitamoto, D. Bacterial production of short-chain organic acids and trehalose from levulinic acid: A potential cellulose-derived building block as a feedstock for microbial production. Bioresour. Technol. 2015, 177, 381–386. [Google Scholar] [CrossRef]
- Jaremko, M.; Yu, J. The initial metabolic conversion of levulinic acid in Cupriavidus necator. J. Biotechnol. 2011, 155, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, R.-H.; Kautinass, A.A.; Webb, C. Microbial biodegradable plastic production from a wheat-based biorefining strategy. Process Biochem. 2010, 45, 153–163. [Google Scholar] [CrossRef]
- Sathiyanarayanan, G.; Saibaba, G.; Seghal, K.G.; Selvin, J. A statistical approach for optimization of polyhydroxybutyrate production by marine Bacillus subtilis MSBN17. Int. J. Biol. Macromol. 2013, 59, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, K.; Oliveira-Filho, E.R.; Dumont, M.J.; Gomez, J.G.C.; Taciro, M.K.; DaSilva, L.F.; Orsat, V.; Del Rio, L.F. Increasing PHB production with an industrially scalable hardwood hydrolysate as a carbon source. Ind. Crops Prod. 2020, 154, 112703. [Google Scholar] [CrossRef]
- Yang, F.; Hanna, M.A.; Sun, R. Value-added uses for crude glycerol-a byproduct of biodiesel production. Biotechnol. Biofuels. 2012, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Koutinas, A.A.; Papanikolaou, S. Biodiesel production from microbial oil. In Handbook of Biofuels Production—Processes and Technologies; Luque, R., Campelo, J., Clark, J.H., Eds.; Woodhead Publishing Limited: Sawston, UK, 2011; pp. 177–198. [Google Scholar]
- Chatzifragkou, A.; Papanikolaou, S. Effect of impurities in biodiesel-derived waste glycerol on the performance and feasibility of biotechnological processes. Appl. Microbiol. Biotechnol. 2012, 95, 13–27. [Google Scholar] [CrossRef]
- Chatzifragkou, A.; Papanikolaou, S.; Kopsahelis, N.; Kachrimanidou, V.; Dorado, M.P.; Koutinas, A. Biorefinery development through utilization of biodiesel industry by-products as sole fermentation feedstock for 1,3-propanediol production. Bioresour. Technol. 2014, 159, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Kachrimanidou, V.; Kopsahelis, N.; Chatzifragkou, A.; Papanikolaou, S.; Yanniotis, S.; Kookos, I.; Koutinas, A.A. Utilization of by-products from sunflower-based biodiesel production processes for the production of fermentation feedstock. Waste Biomass Valoriz. 2013, 4, 529–537. [Google Scholar] [CrossRef]
- Cavalheiro, J.M.B.T.; de Almeida, M.C.M.D.; Grandfils, C.; da Fonseca, M.M.R. Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem. 2009, 44, 509–515. [Google Scholar] [CrossRef]
- Salakkam, A.; Webb, C. Production of poly(3-hydroxybutyrate) from a complete feedstock derived from biodiesel by-products (crude glycerol and rapeseed meal). Biochem. Eng. J. 2018, 137, 358–364. [Google Scholar] [CrossRef]
- Kumar, P.; Jun, H.B.; Kim, B.S. Co-production of polyhydroxyalkanoates and carotenoids through bioconversion of glycerol by Paracoccus sp. strain LL1. Int. J. Biol. Macromol. 2018, 107, 2552–2558. [Google Scholar] [CrossRef]
- Volova, T.; Demidenko, A.; Kiselev, E.; Baranovskiy, S.; Shishatskaya, E.; Zhila, N. Polyhydroxyalkanoate synthesis based on glycerol and implementation of the process under conditions of pilot production. Appl. Microbiol. Biotechnol. 2019, 103, 225–237. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Nomura, C.T.; Perrotta, J.A.; Stipanovic, A.J.; Nakas, J.P. Production and characterization of poly-3-hydroxybutyrate from biodiesel-glycerol by Burkholderia cepacia ATCC 17759. Biotechnol. Progress 2010, 26, 424–430. [Google Scholar]
- Kachrimanidou, V.; Kopsahelis, N.; Papanikolaou, S.; Kookos, I.K.; De Bruyn, M.; Clark, J.H.; Koutinas, A.A. Sunflower-based biorefinery: Poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production from crude glycerol, sunflower meal and levulinic acid. Bioresour. Technol. 2014, 172, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, M.G.E.; Eiroa, M.; Torres, C.; Nunes, B.R.; Reis, M.A.M. Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses. J. Biotechnol. 2007, 130, 411–421. [Google Scholar] [CrossRef]
- Shasaltaneh, M.D.; Moosavi-Nejad, Z.; Gharavi, S.; Fooladi, J. Cane molasses as a source of precursors in the bioproduction of tryptophan by Bacillus subtilis. Iran. J. Microbiol. 2013, 5, 285–292. [Google Scholar] [PubMed]
- Jiang, Y.; Song, X.; Gong, L.; Li, P.; Dai, C.; Shao, W. High poly(hydroxybutyrate) production by Pseudomonas fluorescens A2a5 from inexpensive substrates. Enzyme Microb. Technol. 2008, 42, 167–172. [Google Scholar] [CrossRef]
- Kanjanachumpol, P.; Kulpreecha, S.; Tolieng, V.; Thongchul, N. Enhancing polyhydroxybutyrate production from high cell density fed-batch fermentation of Bacillus megaterium BA-019. Bioprocess Biosyst. Eng. 2013, 36, 1463–1474. [Google Scholar] [CrossRef]
- Parnaudeau, V.; Condom, N.; Oliver, R.; Cazevieille, P.; Recous, S. Vinasse organic matter quality and mineralization potential, as influenced by raw material, fermentation and concentration processes. Bioresour. Technol. 2008, 99, 1553–1562. [Google Scholar] [CrossRef]
- FitzGibbon, F.; Singh, D.; McMullan, G.; Marchant, R. The effect of phenolic acids and molasses spent wash concentration on distillery wastewater remediation by fungi. Process Biochem. 1998, 33, 799–803. [Google Scholar] [CrossRef]
- Dalsasso, R.R.; Pavan, F.A.; Bordignon, S.E.; de Aragão, G.M.F.; Poletto, P. Polyhydroxybutyrate (PHB) production by Cupriavidus necator from sugarcane vinasse and molasses as mixed substrate. Process Biochem. 2019, 85, 12–18. [Google Scholar] [CrossRef]
- Davis, R.; Kataria, R.; Cerrone, F.; Woods, T.; Kenny, S.; O’Donovan, A.; Guzik, M.; Shaikh, H.; Duane, G.; Gupta, V.K.; et al. Conversion of grass biomass into fermentable sugars and its utilization for medium chain length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas strains. Bioresour. Technol. 2013, 150, 202–209. [Google Scholar] [CrossRef]
- Haas, R.; Jin, B.; Zepf, F.T. Production of poly(3-hydroxybutyrate) from waste potato starch. Biosci. Biotechnol. Biochem. 2008, 72, 253–256. [Google Scholar] [CrossRef]
- Chen, C.W.; Don, T.M.; Yen, H.F. Enzymatic extruded starch as a carbon source for the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Haloferax mediterranei. Process Biochem. 2006, 41, 2289–2296. [Google Scholar] [CrossRef]
- Ahn, W.S.; Park, S.J.; Lee, S.Y. Production of poly(3-Hydroxybutyrate) by fed-batch culture of recombinant Escherichia coli with a highly concentrated whey solution. Appl. Environ. Microb. 2000, 66, 3624–3627. [Google Scholar] [CrossRef] [Green Version]
- Park, S.J.; Park, J.P.; Lee, S.Y. Production of poly(3-hydroxybutyrate) from whey by fed-batch culture of recombinant Escherichia coli in a pilot-scale fermenter. Biotechnol. Lett. 2002, 24, 185–189. [Google Scholar] [CrossRef]
- Annamalai, N.; Sivakumar, N. Production of polyhydroxybutyrate from wheat bran hydrolysate using Ralstonia eutropha through microbial fermentation. J. Biotechnol. 2016, 237, 13–17. [Google Scholar] [CrossRef]
- Huang, T.Y.; Duan, K.J.; Huang, S.Y.; Chen, C.W. Production of polyhydroxyalkanoates from inexpensive extruded rice bran and starch by Haloferax mediterranei. J. Ind. Microbiol. Biotechnol. 2006, 33, 701–706. [Google Scholar] [CrossRef]
- Demirbas, A.; Bafail, A.; Ahmad, W.; Sheikh, M. Biodiesel production from non-edible plant oils. Energ. Explor. Exploit 2016, 34, 290–318. [Google Scholar] [CrossRef] [Green Version]
- Abid, S.; Raza, Z.A.; Hussain, T. Production kinetics of polyhydroxyalkanoates by using Pseudomonas aeruginosa gamma ray mutant strain EBN-8 cultured on soybean oil. 3 Biotech 2016, 6, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tufail, S.; Munir, S.; Jamil, N. Variation analysis of bacterial polyhydroxyalkanoates production using saturated and unsaturated hydrocarbons. Braz. J. Microbiol. 2017, 48, 629–636. [Google Scholar] [CrossRef]
- Obruca, S.; Marova, I.; Snajdar, O.; Mravcova, L.; Svoboda, Z. Production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus necator from waste rapeseed oil using propanol as a precursor of 3-hydroxyvalerate. Biotechnol. Lett. 2010, 32, 1925–1932. [Google Scholar] [CrossRef] [PubMed]
- Cruz, M.V.; Gouveia, A.R.; Dionísio, M.; Freitas, F.; Reis, M.A.M. A process engineering approach to improve production of P(3HB) by Cupriavidus necator from used cooking oil. Int. J. Polym. Sci. 2019, 2019, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, C.; Kenny, S.T.; Babu, P.R.; Walsh, M.; Narancic, T.; O’Connor, K.E. High cell density conversion of hydrolyzed waste cooking oil fatty acids into medium chain length polyhydroxyalkanoate using Pseudomonas putida KT2440. Catalysts 2019, 9, 468. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, C.; Kenny, S.T.; Narancic, T.; Babu, R.; O’Connor, K. Conversion of waste cooking oil into medium chain polyhydroxyalkanoates in a high cell density fermentation. J. Biotechnol. 2019, 306, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Thuoc, D.V.; My, D.N.; Loan, T.T.; Sudesh, K. Utilization of waste fish oil and glycerol as carbon sources for polyhydroxyalkanoate (PHA) production by Salinivibrio sp. M318. Int. J. Biologic. Macromol. 2019, 141, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Da Cruz Pradella, J.G.; Ienczak, J.L.; Delgado, C.R.; Taciro, M.K. Carbon source pulsed feeding to attain high yield and high productivity in poly(3-hydroxybutyrate) (PHB) production from soybean oil using Cupriavidus necator. Biotechnol. Lett. 2012, 34, 1003–1007. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Jiang, M.; Yun, Z.; Yan, H.-Q.; Chang, H.-N. Mass production of medium-chain-length poly(3-hydroxyalkanoates) from hydrolyzed corn oil by fed-batch culture of Pseudomonas putida. World J. Microbiol. Biotechnol. 2008, 24, 2783–2787. [Google Scholar] [CrossRef]
- Ryu, H.W.; Cho, K.S.; Goodrich, P.R.; Park, C.H. Production of polyhydroxyalkanoates by Azotobacter vinelandii UWD using swine wastewater: Effect of supplementing glucose, yeast extract, and inorganic salts. Biotechnol. Bioprocess Eng. 2008, 13, 651–658. [Google Scholar] [CrossRef]
- Yan, S.; Tyagi, R.D.; Surampalli, R.Y. Polyhydroxyalkanoates (PHA) production using wastewater as carbon source and activated sludge as microorganisms. Water Sci. Technol. 2006, 53, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Noda, I.; Lindsey, S.B.; Caraway, D. Nodax™ class PHA copolymers: Their properties and applications. In Plastics from Bacteria; Chen, G.Q., Ed.; Microbiology 2010 Monographs 14; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Danimer Scientific Nodax™. Available online: http://danimerscientific.com/pha-begining-of-life/ (accessed on 16 August 2020).
- Available online: http://ww.biocycle.com.br (accessed on 16 August 2020).
- Plastics News. Available online: https://www.plasticsnews.com/news/bio-declares-bankruptcy (accessed on 13 October 2020).
- Bio-On. S.p.A. Flos to be World’s First Company to Use Revolutionary Bioplastic Designed by Bio-On. Available online: http://www.bio-on.it/project.php?lin=portoghese (accessed on 7 August 2020).
- TianAn Biopolymer Homepage. Available online: http://www.tianan-enmat.com (accessed on 16 August 2020).
- Tianjin Gouyun Biomaterials Co. Homepage. Available online: http://www.tjgreenbio.com/en/about.aspx?title=Enterprise%20Introduction&cid=25 (accessed on 16 August 2020).
- Bio-mer Homepage. Available online: http://www.biomer.de/IndexE.html (accessed on 16 August 2020).
- Press Release by Kaneka Corporation. Available online: https://www.kaneka.co.jp/en/service/news/nr20191219/ (accessed on 16 August 2020).
- Yield10 Bioscience Home Page. Available online: https://www.yield10bio.com (accessed on 16 August 2020).
- Available online:. Available online: https://www.tepha.com/technology/polymer-processing-material-attributes/ (accessed on 16 August 2020).
- Available online:. Available online: www.mgc.co.jp (accessed on 16 August 2020).
- Available online:. Available online: http://www.polymerofcanada.com/versamer_phas.html (accessed on 16 August 2020).
- Online News Article. Available online: https://www.ajudaily.com/view/20160823101739592 (accessed on 16 August 2020).
- Jennifer, B.; Emily, G. Plastic from thin air. Popul. Sci. 2014, 285, 24. [Google Scholar]
- Daniel, L. Can plastic be made environmentally friendly? Scientific American. 2014. Available online: Scientificamerican.com (accessed on 7 April 2021).
- Grady, B. August 31 2015, Newlight and Vinmar Bet on Carbon-Negative Plastic, GreenBiz. Available online: https://www.greenbiz.com/article/newlight-and-vinmar-bet-carbon-negative-plastic (accessed on 15 August 2020).
- Bresan, S.; Sznajder, A.; Hauf, W.; Forchhammer, K.; Pfeiffer, D.; Jendrossek, D. Polyhydroxyalkanoate (PHA) granules have no phospholipids. Sci. Rep. 2016, 6, 26612. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, K.; Dumont, M.-J.; Del Rio, L.F.; Orsat, V. Producing PHAs in the bioeconomy-towards a sustainable bioplastic. Sustain. Prod. Consumpt. 2017, 9, 58–70. [Google Scholar] [CrossRef]
- Koller, M.; Niebelschütz, H.; Braunegg, G. Strategies for recovery and purification of poly[(R)-3-hydroxyalkanoates] (PHA) biopolyesters from surrounding biomass. Eng. Life Sci. 2013, 13, 549–562. [Google Scholar] [CrossRef]
- Jacquel, N.; Lo, C.W.; Wei, Y.H.; Wu, H.S.; Wang, S.S. Isolation and purification of bacterial poly(3-hydroxyalkanoates). Biochem. Eng. J. 2008, 39, 15–27. [Google Scholar] [CrossRef]
- Aramvash, A.; Moazzeni Zavareh, F.; Gholami Banadkuki, N. Comparison of different solvents for extraction of polyhydroxybutyrate from Cupriavidus necator. Eng Life Sci. 2018, 18, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Rivero, C.; López-Gómez, J.P.; Roy, I. A sustainable approach for the downstream processing of bacterial polyhydroxyalkanoates: State-of-the-art and latest developments. Biochem. Eng. J. 2019, 150, 107283. [Google Scholar] [CrossRef]
- Lafferty, R.M.; Heinzle, E. Cyclic Carbonic Acid Esters as Solvents for Poly-(β-Hydroxybutyric Acid), 18 July 1978, US4101533A. Available online: https://patents.google.com/patent/US4101533 (accessed on 20 March 2021).
- Noda, I.; Schechtman, L.A. Solvent Extraction of Polyhydroxyalkanoates from Biomass. 24 August 1996, US5942597A. Available online: https://patents.google.com/patent/US5942597A (accessed on 15 April 2021).
- Kurdikar, D.L.; Strauser, F.E.; Solodar, A.J.; Paster, M.D.; Asrar, J. Methods of PHA Extraction and Recovery Using Non-Halogenated Solvents. 28 March 1998, US6043063A. Available online: https://patents.google.com/patent/US6043063A (accessed on 15 March 2021).
- Horowitz, D.M. Methods for Purifying Polyhydroxyalkanoates. 18 January 2002, US20020058316A1. Available online: https://patents.google.com/patent/US20020058316A1 (accessed on 1 April 2021).
- Van Walsem, J.; Zhong, L.; Shih, S.S. Polymer Extraction Methods. 23 July 2003, US7252980B2. Available online: https://patents.google.com/patent/US7252980B2 (accessed on 15 April 2021).
- Kinoshita, K.; Osakada, F.; Ueda, Y.; Narasimhan, K.; Cearley, A.C.; Yee, K.; Noda, I. Method for Producing Polyhydroxyalkanoate Crystal. 26 December 2006, US7153928B2. Available online: https://patents.google.com/patent/US7153928 (accessed on 1 April 2021).
- Ibrahim, M.H.A.; Takwa, M.; Hatti-Kaul, R. Process for Extraction of Bioplastic and Production of Monomers from the Bioplastic. March 24, 2020, US10597506B2. (accessed on 10 March 2021).
- Furrer, P.; Panke, S.; Zinn, M. Efficient recovery of low endotoxin medium-chain length poly([R]-3-hydroxyalkanoate) from bacterial biomass. J. Microbiol. Methods. 2007, 69, 206–213. [Google Scholar] [CrossRef]
- Anis, S.N.; Iqbal, N.M.; Kumar, S.; Al-Ashraf, A. Increased recovery and improved purity of PHA from recombinant Cupriavidus necator. Bioengineering 2013, 4, 115–118. [Google Scholar]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green extraction of natural products: Concept and principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [Green Version]
- Yabueng, N.; Napathorn, S.C. Toward non-toxic and simple recovery process of poly (3-hydroxybutyrate) using the green solvent 1, 3-dioxolane. Process Biochem. 2018, 69, 197–207. [Google Scholar] [CrossRef]
- Hecht, S.E.; Niehoff, R.L.; Narasimhan, K.; Neal, C.W.; Forshey, P.A.; Van Phan, D.; Brooker, A.D.M.; Combs, K.H. Extracting Biopolymers from a Biomass Using Ionic Liquids. 26 October 2006, US7763715B2. Available online: https://patents.google.com/patent/US7763715B2 (accessed on 3 April 2021).
- Dubey, S.; Bharmoria, P.; Singh Gehlot, P.; Agrawal, V.; Kumar, A.; Mishra, S. 1-Ethyl-3-Methylimidazolium Diethylphosphate based extraction of bioplastic “polyhydroxyalkanoates” from bacteria: Green and sustainable approach. ACS Sustain. Chem. Eng. 2018, 6, 766–773. [Google Scholar] [CrossRef]
- Ishak, K.A.; Annuar, M.S.M.; Heidelberg, T.; Gumel, A.M. Ultrasound-assisted rapid extraction of bacterial intracellular medium-chain-length poly(3-hydroxyalkanoates) (mcl-phas) in medium mixture of solvent/marginal non-solvent. Arab J. Sci. Eng. 2016, 41, 33–44. [Google Scholar] [CrossRef]
- Noda, I. Process for Recovering Polyhydroxyalkanotes Using Air Classification. 15 December 1998; US5849854A. [Google Scholar]
- Vilkhu, K.; Mawson, R.; Simons, L.; Bates, D. Applications and opportunities for ultrasound assisted extraction in the food industry-A review. Innov. Food Sci. Emerg. Technol. 2008, 9, 161–169. [Google Scholar] [CrossRef]
- Darani, K.K.; Mozafari, M.R. Supercritical fluids technology in bioprocess industries: A review. J. Biochem. Tech. 2009, 2, 144–152. [Google Scholar]
- Raza, Z.A.; Abid, S.; Banat, I.M. Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. Int. Biodeterior. Biodegrad. 2018, 126, 45–56. [Google Scholar] [CrossRef]
- Poliakoff, M.; Licence, P. Supercritical fluids: Green solvents for green chemistry? Philos. Trans. A Math. Phys. Eng. Sci. 2015, 373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hampson, J.W.; Ashby, R.D. Extraction of lipid-grown bacterial cells by supercritical fluid and organic solvent to obtain pure medium chain-length polyhydroxyalkanoates. J. Am. Oil Chem. Soc. 1999, 76, 1371–1374. [Google Scholar] [CrossRef]
- Hejazi, P.; Vasheghani-Farahani, E.; Yamini, Y. Supercritical fluid disruption of Ralstonia eutropha for poly(β-hydroxybutyrate) recovery. Biotechnol. Prog. 2003, 19, 1519–1523. [Google Scholar] [CrossRef]
- Leong, Y.K.; Koroh, F.E.; Show, P.L.; Lan, J.C.W.; Loh, H.S. Optimization of extractive bioconversion for green polymer via aqueous two-phase system. Chem. Eng. Trans. 2015, 45, 1495–1500. [Google Scholar]
- Leong, Y.K.; Lan, J.C.W.; Loh, H.S.; Ling, T.C.; Ooi, C.W.; Show, P.L. Cloud-point extraction of green-polymers from Cupriavidus necator lysate using thermoseparating-based aqueous two-phase extraction. J. Biosci. Bioeng. 2016, 123, 3270–3375. [Google Scholar] [CrossRef]
- Leong, Y.K.; Show, P.L.; Lan, J.C.-W.; Loh, H.-S.; Yap, Y.-J.; Ling, T.C. Extraction and purification of polyhydroxyalkanoates (PHAs): Application of thermoseparating aqueous two-phase extraction. J. Polym. Res. 2017, 24, 158. [Google Scholar] [CrossRef]
- Leong, K.; Show, P.L.; Lan, J.C.W.; Krishnamoorthy, R.; Chu, D.T.; Nagarajan, D.; Yen, H.W.; Chang, J.S. Application of thermo-separating aqueous two-phase system in extractive bioconversion of polyhydroxyalkanoates by Cupriavidus necator H16. Bioresour. Technol. 2019, 287, 121474. [Google Scholar] [CrossRef]
- López-Abelairas, M.; García-Torreiro, M.; Lú-Chau, T.; Lema, J.M.; Steinbüchel, A. Comparison of several methods for the separation of poly(3-hydroxybutyrate) from Cupriavidus necator H16 cultures. Biochem. Eng. J. 2015, 93, 250–259. [Google Scholar] [CrossRef]
- Gumel, A.M.; Annuar, M.S.M.; Chisti, Y. Recent advances in the production, recovery and applications of polyhydroxyalkanoates. J. Polym. Environ. 2013, 21, 580–605. [Google Scholar] [CrossRef]
- Dong, Z.; Sun, X.; Zhaolin, D.; Xuenan, S.U.N. A new method of recovering polyhydroxyalkanoate from Azotobacter chroococcum. Chinese Sci. Bull. 2000, 45, 252–256. [Google Scholar] [CrossRef]
- Kapritchkoff, F.M.; Viotti, A.P.; Alli, R.C.P.; Zuccolo, M.; Pradella, J.G.C.; Maiorano, A.E.; Miranda, E.A.; Bonomi, A. Enzymatic recovery and purification of polyhydroxybutyrate produced by Ralstonia eutropha. J. Biotechnol. 2006, 122, 453–462. [Google Scholar] [CrossRef]
- Harrison, S.T.L. Bacterial cell disruption: A key unit operation in the recovery of intracellular products. Biotechnol. Adv. 1991, 9, 217–240. [Google Scholar] [CrossRef]
- Yasotha, K.; Aroua, M.K.; Ramachandran, K.B.; Tan, I.K.P. Recovery of medium-chain-length polyhydroxyalkanoates (PHAs) through enzymatic digestion treatments and ultrafiltration. Biochem. Eng. J. 2006, 30, 260–268. [Google Scholar] [CrossRef]
- Kachrimanidou, V.; Kopsahelis, N.; Vlysidis, A.; Papanikolaou, S.; Kookos, I.K.; Martínez, B.M.; Rondan, M.C.E.; Kautinas, A.A. Downstream separation of poly(hydroxyalkanoates) using crude enzyme consortia produced via solid state fermentation integrated in a biorefinery concept. Food Bioprod. Process. 2016, 100, 323–334. [Google Scholar] [CrossRef]
- Martino, L.; Cruz, M.V.; Scoma, A.; Freitas, F.; Bertin, L.; Scandola, M.; Reis, M.A.M. Recovery of amorphous polyhydroxybutyrate granules from Cupriavidus necator cells grown on used cooking oil. Int. J. Biol. Macromol. 2014, 71, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Israni, N.; Thapa, S.; Shivakumar, S. Biolytic extraction of poly(3-hydroxybutyrate) from Bacillus megaterium Ti3 using the lytic enzyme of Streptomyces albus Tia1. J. Genet. Eng. Biotechnol. 2018, 16, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Murugan, P.; Han, L.; Gan, C.Y.; Maurer, H.J.M.; Sudesh, K. A new biological recovery approach for PHA using mealworm, Tenebrio molitor. J. Biotechnol. 2017, 239, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Kunasundari, B.; Arza, C.R.; Maurer, F.H.J.; Murugaiyah, V.; Kaur, G.; Sudesh, K. Biological recovery and properties of poly(3-hydroxybutyrate) from Cupriavidus necator H16. Sep. Purif. Technol. 2017, 172, 1–6. [Google Scholar] [CrossRef]
Microorganisms | Stages of Fermentation | PHA Type | Carbon Source | Biomass (g/L) | PHA Content(%) | Overall Productivity(g/L/h) | Carbon Conversion Efficiency (Yp/s) g/g | Reference |
---|---|---|---|---|---|---|---|---|
P. putida KT2440ATCC 47054 | One stage | PHO/PHD | Oleic acid | 141 | 51 | 1.91 | NA | [15] |
PHN | Glucose/ nonanoic acid | 102 | 32 | 0.97 | 0.56 | [26] | ||
PHN | Nonanoic acid | 109 | 63 | 2.3 | NA | [27] | ||
PHD | Decanoic acid/ glucose | 75 | 74 | 1.16 | 0.86 | [55] | ||
PHN | Glucose/ nonanoic acid | 71 | 56 | 1.44 | 0.66 | [56] | ||
PHN | Glucose/ nonanoic acid | 56 | 67 | 1.44 | 0.60 | [58] | ||
Two stage | mcl-PHA | Oleic acid/linoleic acid/palmitic acid/stearic acid | 125 | 54.4 | 1.01 | 0.70 | [62] | |
R. eutropha H16 | Two stage | P(3HB-co-3HV) | Acetic acid/ propionic acid/butyric acid | 112 | 83 | 2 | NA | [28] |
Alcaligenes latus DSM 1122 | One stage | PHB | Sucrose | 143 | 50 | 3.97 | NA | [40] |
Cupriavidus necator DSM 545 | Two stage | PHB | Glucose | 164 | 76.2 | 2.03 | NA | [41] |
One stage | PHB | Glucose | 148 | 76 | 3.1 | 0.33 | [43] | |
PHB | Glucose/ Fructose | 61.6 | 68.8 | 1.0 | NA | [45] | ||
P(3HB-co-3HV) | Glucose/ propionic acid | 80 | 73 | 1.24 | NA | [46] | ||
PHB | Glycerol | 68.56 | 64.55 | 0.76 | 0.34 | [47] | ||
Burkholderia sacchari DSM 17165 | One stage | P(3HB-co-4HB) | Saccharose/γ-butyrolactone | 77 | 72.6 | 1.87 | 0.275 | [42] |
PHB | Glycerol | 43.79 | 10.22 | 0.08 | 0.41 | [47] | ||
Zobellella denitrificans MW1 | NA | PHB | Glycerol | 82.2 | 67 | 1.09 | NA | [48] |
C. necator A-04 | One stage | P(3HB -co-4HB) | Fructose/1,4 butanediol | 112 | 65 | 0.76 | NA | [49] |
Halomonas venusta KT832796 | One stage | PHB | Glucose | 38 | 88 | 0.25 | 0.22 | [51] |
Burkholderia sacchari IPT 189 | One stage | P(3HB-co-3HV) | Sucrose/ propionic acid | NA | 60 | 1.04 | 0.25 | [52] |
Aeromonas hydrophila 4AK4 | One stage | P(3HB-co-3HHx) | Glucose/ lauric acid | 50 | 50 | 0.54 | NA | [53] |
P. putida LS46 | One stage | PHO | Octanoic acid | 29 | 61 | 0.66 | 0.62 | [54] |
P. putida CA-3 | Two stage | PHD | Butyric acid/decanoic acid | 71.3 | 65 | 1.63 | 0.55 | [57] |
P. putida IPT046 | One stage | mcl-PHA | Glucose/fructose | 50 | 63 | 0.80 | 0.19 | [59] |
P. oleovorans ATCC 29347 | One stage | PHO | Octanoic acid | 63 | 62 | 1 | NA | [60] |
P. putida BM01 | Two stage | PHO | Octanoic acid/glucose | 55 | 65 | 0.90 | 0.40 | [61] |
Cupriavidus necator MTCC 1472 | One stage | PHB | Sucrose | 37.56 | 61.82 | 0.58 | 0.20 | [63] |
Azohydromonas lata DSM 1123 | One stage | PHB | Sucrose | - | 94 | 4.2 | 0.15 | [64] |
Carbon Source | Microorganisms | Stages of Fermentation | Biomass (g/L) | %PHA | Overall Productivity (g/L/h) | Carbon Conversion Efficiency (Yp/s) g/g | Reference |
---|---|---|---|---|---|---|---|
n-Octane | P. oleovorans ATCC 29347 | Two stage | 18 | 63 | 1.06 | NA | [65] |
Glucose | C. necator DSM 545 | Five stage | 81 | 77 | 1.85 | NA | [66] |
C. necator DSM 545 | Multi stage | 80 | NA | 2.14 | 0.47 | [67] | |
R. eutropha WSH3 | Two stage | 50 | 73 | 1.23 | 0.36 | [68] | |
R. eutropha WSH3 (lab collection) | Two stage | 32.6 | 75 | NA | 0.043 | [69] | |
Halomonas TD01 | One stage | 20 | 65 | 0.26 | 0.242 | [75] | |
Chelatococcus sp. Strain MW10 | semi-continuous/cyclic fed-batch | 115 | 12 | NA | 0.09 | [78] | |
Fructose | Wautersia eutropha NRRL B-14690 | Two stage | 49 | 51 | 0.42 | NA | [70] |
Butyric acid and valeric acid | R. eutropha DSM 428 | One stage | NA | 40 | NA | NA | [72] |
Glucose/ sodium propionate | R. eutropha (ATCC 17699, CCRC 13039) | One stage | 7.96 | 30 | 0.045 | NA | [73] |
Oleic acid | P. putida KT2442 | Two stage | 30 | 23 | 0.69 | 0.15 | [74] |
Sucrose | Azohydromonas lata | Two stage | 20.52 | 83.43 | NA | NA | [79] |
Microorganisms | PHA Type | Limiting Nutrients | Carbon Source | Biomass (g/L) | %-PHA | Overall Productivity (g/L/h) | Carbon Conversion Efficiency (Yp/s) g/g | Reference |
---|---|---|---|---|---|---|---|---|
P. putida KT 2440 ATCC 47054 | mcl-PHA | Phosphorus (4 g/L) | Oleic acid | 141 | 51.4 | 1.91 | NA | [15] |
Phosphorus (22 g/L) | 173 | 18.7 | 1.13 | |||||
Alcaligenes eutrophus NCIMB 11599 | PHB | Phosphorus (5.5 g/L) | Glucose | 281 | 82 | 3.14 | 0.38 | [29] |
R. eutropha NCIMB 11599 | PHB | Phosphate | Glucose | 208 | 67 | 3.1 | NA | [39] |
Activated sludge | PHB/PHV | Phosphorus | Acetate | NA | 37 | NA | NA | [85] |
Nitrogen | NA | 59 | NA | |||||
C. necator DSM 545 | P(3HB-co-3HV) | Phosphorus | Propionic acid/butyric acid | 65.9 | 88 | 0.65 | 0.51 | [87] |
Burkholderia sacchari IPT 189 | PHB | Nitrogen/oxygen | Sucrose | 150 | 42 | 1.7 | 0.22 | [88] |
C. necator DSM545 | PHB | Phosphate | Butyric acid | 46.7 | 82 | 0.57 | 0.62 | [89] |
Methylobacterium organophilum NCIB 11278 | PHB | Potassium | Methanol | 250 | 52 | 1.86 | 0.19 | [90] |
Ralstonia eutropha ATCC 17699 | P(3HB-co-4HB) | Nitrogen | Fructose + γ-butyrolactone | 48.5 | 50.2 | 0.55 | NA | [91] |
Microorganisms | PHA Type | Carbon Source | Biomass (g/L) | %-PHA | Overall Productivity (g/L/h) | Carbon Conversion Efficiency (Yp/s) g/g | Reference |
---|---|---|---|---|---|---|---|
Recombinant E. coli | P4HB | Glycerol/acetate/4-hydroxy-butyrate | 43.2 | 33 | 0.207 | NA | [50] |
PHB | Lactose | 194 | 87 | 4.6 | 0.45 | [92] | |
PHB | Glycerol | 42.9 | 63 | 0.45 | NA | [109] | |
PHB | Glucose/ thiamine | 156 | 72 | 2.4 | NA | [112] | |
PHB | Lactose | 87 | 80 | 1.4 | 0.11 | [113] | |
P(3HB-co-3HV) | Glucose/ oleic acid/ propionic acid | 42.2 | 70 | 1.37 | 0.5 | [128] | |
Recombinant R. eutropha | P(3HB-co-3HHx) | Palm oil | 139 | 74 | 1.06 | 0.52 | [93] |
P(3HB-co-3HHx) | Waste animal fat | 45 | 60 | 0.4 | 0.40 | [117] | |
P(3HB-co-3HHx) | Soybean oil | 133 | 72.5 | 1 | 0.74 | [121] | |
E. coli strain K1060 | PHB | Corn steep liquor/milk whey | 70.1 | 73 | 2.13 | NA | [110] |
Escherichia coli XL1-Blue | PHB | Glucose | 178 | 72 | NA | NA | [111] |
Recombinant C. necator H16 | P(3HB-co-3HHx) | Palm kernel oil/butyrate | 171 | 78 | - | NA | [116] |
Recombinant Aeromonas hydrophila 4AK4 | P(3HB-co-3HHx) | Dodecanoate | 54 | 52.7 | 0.791 | NA | [124] |
P(3HB-co-3HHx) | Dodecanoate: sodium gluconate | 38.4 | 52 | 0.475 | NA | ||
Recombinant C. necator | P(3HB-co-3HHx) | Sludge palm oil | 88.3 | 57 | 1.1 | 0.7 | [126] |
Recombinant Halomonas Bluephagenesis TD01 | P(3HB-co-4HB) | Glucose, γ-butyro- lactone | 83 | 60.62 | 1.04 | 0.27 | [129] |
Recombinant P. putida KT2440 | PHD | Glucose | 62 | 67 | 0.83 | NA | [130] |
Recombinant E. coli XL1-Blue | P (PhLA-co-3HB) | Glucose | 25.27 | 55 | 0.145 | NA | [131] |
Microorganisms | Polymer Type | PHAs Composition | Carbon Source | Reference |
---|---|---|---|---|
Recombinant Escherichia coli | Polylactic acid random copolymer | Poly(lactate-co-3-hydroxybutyrate) | Xylan | [17] |
Recombinant Pseudomonas putida | Block copolymer | Poly(3-hydroxybutyrate-b-poly4-hydroxybutyrate) | sodium butyrate/γ-butyrolactone | [100] |
Recombinant Escherichia coli | Block copolymer | poly(3-hydroxybutyrate)-b-poly(3-hydroxypropionate) | Glycerol | [107] |
Recombinant P. entomophila LAC23 | Homopolymer | Poly(3-hydroxyheptanoate) Poly(3-hydroxyoctanoate) Poly(3-hydroxynonanoate) Poly(3-hydroxydecanoate) Poly(3-hydroxyundecanoate) Poly(3-hydroxytetradecanoate) Poly(3-hydroxytridecanoate) | Sodium heptanoate/ sodium octanoate/ sodium nonanoate/decanoic acid/undecanoic acid/dodecanoic acid/tridecanoic acid/tetradecanoic acid | [133] |
Recombinant P. entomophila LAC23 | Random copolymer | P(3hydroxyoctanoate-co-3hydroxydodecanoate) | Sodium octanoate/dodecanoic acid | [133] |
P(3hydroxyoctanoate-co-3hydroxytetradecanoate) | Sodium octanate/ tetradecanoic acid | |||
P. entomophila LAC32 | Diblock copolymer | P(3-hydroxyoctanoate)-b-P(3-hydroxydodecanaote) | Sodium octanoate/dodecanoic acid | [133] |
Recombinant Pseudomonas entomophila LAC23 | Homopolymer | Poly(3-hydroxy-9-decenoate) | 9-decenol | [134] |
Recombinant Pseudomonas entomophila LAC23 | Block copolymer | P(3-hydroxydodecanoate-b-3-hydroxy-9-decenoate) | dodecanoic acid/9-decenol | [134] |
Recombinant Pseudomonas putida | Homopolymer | Poly(3-hydroxyhexanoate) Poly(3-hydroxyheptanoat) Poly(3-hydroxyoctanoate-co-2 mol% 3-hydroxyhexanoate) Poly(3-hydroxyvalerate) Poly(3-hydroxybutyrate) Poly(4-hydroxybutyrate) | Hexanoate/ Heptanoate/ Octanoate/Valerate/γ-butyrolactone | [135] |
Recombinant Pseudomonas putida | Homopolymer | Poly(3-hydroxydecanoate) Poly(3-hydroxydecanoate-co-84 mol%3-hydroxydodecanoate) | Decanoic acid/Dodecanoic acid | [136] |
Recombinant E. coli | Random copolymer | P(3-hydroxybutyrate-co-3-hydroxypropionate) | Glucose | [137] |
Recombinant Pseudomonas putida | Random copolymer | Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate-co-3-hydroxyoctanoate) | Sodium heptanoate/ Oleic acid | [138] |
P. entomophila LAC32 | Random copolymer | P(3-hydroxybutyrate-co-3-hydroxydecanaote) | Glucose/ decanoic acid/dodecanoic acid | [139] |
P(3-hydroxybutyrate-co-3-hydroxydodecanaote) | ||||
Pseudomonas putida KT2442 | Random copolymer | Poly (3-hydroxybutyrate-co-3-hydroxyhexanaote) | Sodium butyrate/ Sodium hexanoate | [140] |
Pseudomonas putida KT2442 | Random copolymer | Poly (3-hydroxybutyrate-co-mcl 3HA) | scl-fatty acid/mcl-fatty acid | [141] |
P. mendocina NK-01 | Random copolymer | P(3-hydroxyoctanoate-co-3-hydroxydecanoate-co-3-hydroxydodecanoate), P(3-hydroxyhexanaote-co-3-hydroxyoctanaote-co-3-hydroxydecanaote-co-3-hydroxydodecanoic acid) | sodium octanoate/Sodium decanoate/dodecanoic acid | [142] |
Recombinant Pseudomonas entomophila LAC23 | Random copolymer | P (3-hydroxydodecanoate-co-3-hydroxy-9-decenoate) | dodecanoic acid/9-decenol | [144] |
Recombinant Pseudomonas putida | Block copolymer | Poly(hydroxybutyrate-b-polyhydroxyvalerate-hexanoate-heptanaote | Butyrate/hexanaote | [144] |
Random copolymer | Poly(3-hydroxybutyrate-co-valerate-hexanoate-heptanaote) | Butyrate/hexanaote | ||
Ralstonia eutropha NCIMB 11599 | Triblock copolymer | Poly(3-hydroxybutyrate-co-3-hydroxyvalerate-b-poly(3-hydroxybutyrate)-b- Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) | Glucose/Pentanoic acid | [145] |
R. eutropha NCIMB 11599 | Block copolymer | Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-b-poly(3-hydroxybutyrate) | Glucose/Pentanoic acid | [146] |
Recombinant Pseudomonas putida KT2442 | Diblock copolymer | Poly(3-hydroxybutyrate -b-poly-3-hydroxyhexanoate) | Sodium butyrate/sodium hexanoate | [147] |
Burkholderia sacchari DSM 17165 | Block copolymer | Poly(3-hydroxybutyrate-b-3-hydroxyvalerate) | Xylose/levulinic acid | [148] |
Mixed culture containing Azohydromonas lata DSM 1122 and Burkholderiasacchari DSM 17165 | Random copolymer and block copolymer | Poly(3-hydroxybutyric-co-3-hydroxyvalerate-co-4-hydroxyvalerate) P(3-hydroxybutyrate-b-3-hydroxyvalerate) | Glucose/levulinic acid | [150] |
Pseudomonas putida Gpo1 | Functional polymer (cationic PHA) | Poly[(β-hydroxy-octanoate)-co-(β-hydroxy-11-(bis(2-hydroxyethyl)-amino)-10-hydroxyundecanoate)] | Sodium octanoate | [151] |
Recombinant Escherichia coli and Pseudomonas putida | Functional polymer | 3-hydroxydecanoic acid | Fructose | [152] |
Recombinant Escherichia coli | Polylactic acid random copolymer | P(lactic acid-co-3-hydroxybutyrate-co-3-hydroxypropionate) | Glucose/glycerol | [161] |
Recombinant Escherichia coli | Polylactic acid random copolymer | Poly(glycolate-co-lactate-co-3-hydroxybutyrate) | Glucose | [162] |
Recombinant Escherichia coli | Polylactic acid random copolymer | Poly(glycolate-co-lactate-co-3-hydroxybutyrate-co-4- hydroxybutyrate) | Glucose | [163] |
Recombinant Escherichia coli | Polylactic acid random copolymer | Poly (lactate-co-3- hydroxybutyrate) | Xylose/acetate | [164] |
Recombinant Escherichia coli | Polylactic acid random copolymer | Poly(lactate-co-3-hydroxybutyrate) | Xylose-based hydrolysate | [165] |
Recombinant Escherichia coli | Polylactic acid random copolymer | Poly(D-lactate-co-glycolate-co-4-hydroxybutyrate) | Glucose/xylose | [166] |
Recombinant Escherichia coli | Polylactic acid random copolymer | Poly(lactate-co-3-hydroxybutyrate) | Glucose | [167] |
Microorganisms | PHA Type | Carbon Source | Biomass (g/L) | %-PHA | Overall Productivity (g/L/h) | Carbon Conversion Efficiency (Yp/s) g/g | Reference |
---|---|---|---|---|---|---|---|
Cupriavidus necator DSM 545 | P(3HB-co-4HB) | Waste glycerol/γ-butyrolactone | 30.19 | 36.1 | 0.17 | 0.06 | [23] |
P(3HB-4HB-3HV) | Waste glycerol/γ-butyrolactone/propionic acid | 45.25 | 36.9 | 0.25 | 0.08 | ||
Bacillus megaterium BA-019 | PHB | Sugarcane molasses | 72.6 | 42.1 | 1.27 | NA | [38] |
C. necator DSM 545 | PHB | Waste glycerol | 104.7 | 62.7 | 1.36 | NA | [41] |
Zobellella denitrificans MW1 | PHB | Crude glycerol | 81 | 66.9 | 1.09 | 0.25 | [48] |
Burkholderia sacchari DSM 17165 | PHB | Wheat straw hydrolysate | 146 | 72 | 1.6 | 0.22 | [211] |
Burkholderia sacchari DSM 17165 | P(3HB-co-4HB) | Wheat straw hydrolysate/-butyrolactone | 88 | 27 | 0.5 | NA | [212] |
Wautersia eutropha NCIMB 11599 | PHB | Wheat hydrolysate | 175.05 | 93 | 0.89 | 0.47 | [217] |
Paraburkholderia sacchari IPT 101 LMG 19450 | PHB | Hardwood hydrolysate | 59.5 | 58 | 0.72 | 0.15 | [219] |
Cupriavidus necator DSM 4058 | PHB | Crude glycerol/rapeseed meal | 28.86 | 85.75 | 0.21 | 0.32 | [226] |
Paracoccus sp. LL1 | P(3HB-co-3HV) | Crude glycerol | 24.2 | 39.3 | NA | 0.136 | [227] |
Cupriavidus eutrophus B-10646 | PHB | Glycerol (99.3% purity) (30 L fermenter) | 69.3 | 72.4 | NA | NA | [228] |
Glycerol (99.7% purity) (30 L fermenter) | 69.4 | 73.3 | NA | NA | |||
(Glycerol 82.1% purity) (30 L fermenter) | 69.3 | 78.1 | NA | NA | |||
Glycerol (99.7% purity) (150 L fermenter) | 110 | 78 | 1.83 | NA | |||
Burkholderia cepacia ATCC 17759 | PHB | Crude glycerol | 23.6 | 31 | NA | NA | [229] |
C. necator DSM 7237 | PHB | Crude glycerol and sunflower meal hydrolysate | 37 | 72.9 | 0.28 | 0.32 | [230] |
P(3HB-co-3HV) | Sunflower meal hydrolysate and levulinic acid | 35.2 | 66.4 | 0.24 | 0.28 | ||
P. fluorescens A2a5 | PHB | Cane liquor medium | 32 | 68.75 | 0.23 | NA | [233] |
Bacillus megaterium BA-019 | PHB | Sugarcane molasses | 90.71 | 45.85 | 1.73 | NA | [234] |
Cupriavidus necator | PHB | Sugarcane vinnase and molasses | 20.89 | 56 | NA | NA | [237] |
R. eutropha NCIMB 11599 | PHB | Waste potato starch | 179 | 52.51 | 1.47 | 0.22 | [239] |
R. eutropha NCIMB 11599 | PHB | Wheat bran hydrolysate | 24.5 | 62.5 | 0.25 | 0.32 | [243] |
Haloferax mediterranei ATCC 33500 | P(3HB-co-3HV) | Extruded rice bran/extruded cornstarch/yeast extract | 140 | 55.6 | 3.2 | NA | [244] |
H. mediterranei ATCC 33500 | P(3HB-co-3HV) | Enzymatic extruded starch | 39.4 | 50.8 | 0.29 | NA | [244] |
P. aeruginosa STN-10 | P(3HB-co-3HV) | Waste frying oil | 44.71 | 53 | 0.33 | NA | [247] |
Cupriavidus necator H16 | P(3HB-co-3HV) | Waste rapeseed oil/propanol | 138 | 76 | 1.46 | 0.83 | [248] |
Cupriavidus necator DSM 428 | PHB | Used cooking oil (Exponential profile) | 21.3 | 84 | 0.1875 | 0.65 | [249] |
Used cooking oil (DO stat strategy) | 27.2 | 77 | 0.525 | 0.52 | |||
Pseudomonas putida KT2440ATCC 47054 | PHD/PHO | Hydrolyzed waste cooking oil | 159.3 | 36.4 | 1.93 | 0.76 | [250] |
P. chlororaphis 555 | PHD/PHDD/PHO/PHHx | Waste cooking oil | 73 | 19 | 0.29 | 0.11 | [251] |
Salinivibrio sp. M318 | PHB | Waste fish oil and glycerol | 61.1 | 51.5 | 0.46 | 0.32 | [252] |
C. necator DSM 545 | PHB | Soybean oil | 83 | 80 | 2.5 | 0.83 | [253] |
P. putida KT2442 | PHO/PHD | Corn oil hydrolysate | 103 | 27.1 | 0.61 | NA | [254] |
Company | Trade Name | PHA Type | Raw Material | Production Capacity (tons per year) | Price per kg | References |
---|---|---|---|---|---|---|
Danimer Scientific (Bainbridge, GA, USA) | Nodax™ | PHBH | NA | 20 | NA | [257,258] |
PHB Industrial (Sao Paulo, Brazil) | Biocycle® | PHB, P(3HB-co-3HV) | Sugarcane | 600 | NA | [259] |
Bio-On, (Bologna, Italy) | Minerv-PHA™ | PHA | Sugar beet and sugar cane molasses, other waste-derived feedstocks. | 10,000 | NA | [261] |
TianAn GreenBio Materials Co. Biopolymer, (Ningbo, China) | ENMAT™, SoGreen™ | PHB, P(3HB-co-4HB) | Dextrose | 10,000 | NA | [262] |
GreenBio-DSM (TEDA Tianjin, China) | Ecoflex blend Enmat® | P(3HB-co-4HB), P(3HB-co-3HV) + Ecoflex blend Enmat® | NA | 10,000 | €3.26 | [263] |
Biomer Biotechnology Co. (Schwalbach, Germany) | Biomer® biopolyesters | PHB | Glucose from corn starch | 50 | €3.00–5.00 | [264] |
Kaneka Corporation (Minato-ku, Tokyo, Japan) | PHBH™ | P(3HB-co-HHx) | Vegetable oil | 5000 | NA | [265] |
Yield10 Bioscience, (formerly Metabolix, Inc.), (Woburn, MA, USA) | Mirel™ | PHB copolymers (e.g., P(3HB-co-HHx-co-HO) | Corn sugar | 50,000 | NA | [266] |
Tepha Inc (Lexington, MA, USA) | TephaFlex® TephElast® | P4HB, P3HB-co- 4HB | NA | NA | NA | [267] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bedade, D.K.; Edson, C.B.; Gross, R.A. Emergent Approaches to Efficient and Sustainable Polyhydroxyalkanoate Production. Molecules 2021, 26, 3463. https://doi.org/10.3390/molecules26113463
Bedade DK, Edson CB, Gross RA. Emergent Approaches to Efficient and Sustainable Polyhydroxyalkanoate Production. Molecules. 2021; 26(11):3463. https://doi.org/10.3390/molecules26113463
Chicago/Turabian StyleBedade, Dattatray K., Cody B. Edson, and Richard A. Gross. 2021. "Emergent Approaches to Efficient and Sustainable Polyhydroxyalkanoate Production" Molecules 26, no. 11: 3463. https://doi.org/10.3390/molecules26113463
APA StyleBedade, D. K., Edson, C. B., & Gross, R. A. (2021). Emergent Approaches to Efficient and Sustainable Polyhydroxyalkanoate Production. Molecules, 26(11), 3463. https://doi.org/10.3390/molecules26113463