[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Production of polyhydroxyalkanoates by Azotobacter vinelandii UWD using swine wastewater: Effect of supplementing glucose, yeast extract, and inorganic salts

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This study examined the effect of adding glucose, yeast extract, and inorganic salts to swine wastewater (SWW) in a batch culture on the production of a biodegradable plastic, polyhydroxyalkanoate (PHA). A bacterial strain, Azotobacter vinelandii UWD, was used to produce PHA without limiting the non-carbon nutrients. The addition of glucose (30 g/L) to the SWW medium increased the level of cell growth (4.4∼7.0 times) and PHA production (3.8∼8.5 times) depending upon the dilution of SWW. A 50% dilution of SWW was found to be optimal considering the dry cell weight (9.40 g/L), PHA content (58 wt%), and hydroxyvalerate (HV) mol fraction in the PHA (4.3 mol%). A 75% SWW medium was more advantageous for producing PHA with a higher HV fraction (7.1 mol%) at the expense of losing 22% of PHA production. The undiluted SWW medium produced less than one third of the PHA compared with the 50% SWW medium, but the HV fraction was the highest (10.8 mol%). Regarding the effect of the glucose concentration, at 20 g/L glucose, the dry cell weight and level of PHA production increased to 9.34 g/L (0.63 g PHA/g dry cell weight) and 5.90 g/L, respectively. At 50 g/L glucose, there was no significant increase in PHA production. For the glucose-supplemented (30 g/L) 50% SWW medium, the addition of a nitrogen source (1 g/L of yeast extract) did not increase the level of cell growth or PHA production because the C:N ratio (23:1) was already close to the optimal value (22:1). Better aeration increased the productivity of PHA. External nitrogen supplements (1 g/L of yeast extract) and other essential mineral salts was not necessary for bacterial growth because they were contained in the SWW. These results suggest that SWW is an excellent feedstock for producing larger amounts of the value-added material, PHA, if it is combined with carbohydrate-rich organic waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldor, I. S. and J. D. Keasling (2003) Process design for microbial plastic factories: metabolic engineeering of polyhydroxyalkanoates. Curr. Opin. Biotechnol. 14: 475–483.

    Article  CAS  Google Scholar 

  2. Reddy, C. S. K., R. Ghai, Rashmi, and V. C. Kalia (2003) Polyhydroxyalkanoates: an overview. Bioresour. Technol. 87: 137–146.

    Article  CAS  Google Scholar 

  3. Suriyamongkol, P., R. Weselake, S. Narine, M. Moloney, and S. Shah (2007) Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants — a review. Biotechnol. Adv. 25: 148–175.

    Article  CAS  Google Scholar 

  4. Choi, G. G., H. W. Kim, Y. B. Kim, and Y. H. Rhee (2005) Biocompatibility of poly(3-hydroxybutyrate-co-3-hydroxy valerate) copolyesters produced by Alcaligenes sp. MT-16. Biotechnol. Bioprocess Eng. 10: 540–545.

    Article  CAS  Google Scholar 

  5. Choi, J. I. and S. Y. Lee (2004) High level production of supra molecular weight poly(3-hydroxybutyrate) by metabolically engineered Escherichia coli. Biotechnol. Bioprocess Eng. 9: 196–200.

    Article  CAS  Google Scholar 

  6. Ryu, H. W., K. S. Cho, B. S. Kim, Y. K. Chang, H. N. Chang, and H. J. Shim (1999) Mass production of poly(3-hydroxybutyrate) by fed-batch cultures of Ralstonia eutropha with nitrogen and phosphate limitation. J. Microbiol. Biotechnol. 9: 751–756.

    CAS  Google Scholar 

  7. Ryu, H. W., S. K. Hahn, Y. K. Chang, and H. N. Chang (1997) Production of poly(3-hydroxybutyrate) by high cell density fed-batch culture of Alcaligenes eutrophus with phosphate limitation. Biotechnol. Bioeng. 55: 28–32.

    Article  CAS  Google Scholar 

  8. Du, G. C., J. Chen, J. Yu, and S. Lun (2001) Feeding strategy of propionic acid for production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with Ralstonia eutropha. Biochem. Eng. J. 8: 103–110.

    Article  CAS  Google Scholar 

  9. Park, C. H. and V. K. Damodaran (1994) Effect of alcohol feeding mode on the biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Biotechnol. Bioeng. 44: 1306–1314.

    Article  CAS  Google Scholar 

  10. Park, C. H. and V. K. Damodaran (1994) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from ethanol and pentanol by Alcaligenes eutrophus. Biotechnol. Prog. 10: 615–620.

    Article  CAS  Google Scholar 

  11. Yu, J. (2001) Production of PHA from starchy wastewater via organic acids. J. Biotechnol. 86: 105–112.

    Article  CAS  Google Scholar 

  12. Yu, J., Y. Si, and W. K. R. Wong (2002) Kinetics modeling of inhibition and utilization of mixed volatile fatty acids in the formation of polyhydroxyalkanoates by Ralstonia eutropha. Process Biochem. 37: 731–738.

    Article  CAS  Google Scholar 

  13. Page, W. J., J. Manchak, and B. Rudy (1992) Formation of poly(hydroxybutyrate-co-hydroxyvalerate) by Azotobacter vinelandii UWD. Appl. Envrion. Microbiol. 58: 2866–2873.

    CAS  Google Scholar 

  14. Page, W. J. (1992) Production of polyhydroxyalkanoates by Azotobacter vinelandii UWD in beet molasses culture. FEMS Microbiol. Rev. 103: 149–158.

    Article  CAS  Google Scholar 

  15. Cho, K. S., H. W. Ryu, C.-H. Park, and P. R. Goodrich (1997) Poly(hydroxybutyrate-co-hydroxyvalerate) from swine waste liquor by Azotobacter vinelandii UWD. Biotechnol. Lett. 19: 7–10.

    Article  CAS  Google Scholar 

  16. Cho, K. S., H. W. Ryu, C.-H. Park, and P. R. Goodrich (2001) Utilization of swine wastewater as a feedstock for the production of polyhydroxyalkanoates by Azotobacter vinelandii UWD. J. Biosci. Bioeng. 91: 129–133.

    Article  CAS  Google Scholar 

  17. Kim, S. W., P. Kim, H. S. Lee, and J. H. Kim (1996) High production of poly-β-hydroxybutyrate (PHB) from Methylobacterium organophilum under potassium limitation. Biotechnol. Lett. 18: 25–30.

    Article  CAS  Google Scholar 

  18. Koller, M., R. Bona, E. Chiellini, E. G. Fernandes, P. Horvat, C. Kutschera, P. Hesse, and G. Braunegg (2008) Polyhydroxyalkanoate production from whey by Pseudomonas hydrogenovora. Bioresour. Technol. 99: 4854–4863.

    Article  CAS  Google Scholar 

  19. Ho, I. C., S. P. Yang, W. Y. Chiu, and S. Y. Huang (2007) Structure and polymer form of poly-3-hydroxyal-kanoates produced by Pseudomonas oleovorans grown with mixture of sodium octanoate/undecylenic acid and sodium octanoate/5-phenylvaleric acid. Int. J. Biol. Macromol. 40: 112–118.

    Article  CAS  Google Scholar 

  20. Choi, J. and S. Y. Lee (1999) High-level production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by fedbatch culture of recombinant Escherichia coli. Appl. Environ. Microbiol. 65: 4363–4368.

    CAS  Google Scholar 

  21. King, P. P. (1982) Biotechnology. An industrial view. J. Chem. Technol. Biotechnol. 32: 2–8.

    CAS  Google Scholar 

  22. Page, W. J. (1989) Production of poly-β-hydroxybutyrate by Azotobacter vinelandii strain UWD during growth on molasses and other complex carbon sources. Appl. Microbiol. Biotechnol. 31: 329–333.

    Article  CAS  Google Scholar 

  23. Son, H., G. Park, and S. Lee (1996) Growth-associated production of poly-β-hydroxybutyrate from glucose or alcoholic distillary wastewater by Actinobacillus sp. EL-9. Biotechnol. Lett. 18: 1229–1234.

    Article  CAS  Google Scholar 

  24. Chua, A. S. M., H. Takabatake, H. Satoh, and T. Mino (2003) Production of polyhydroxyalkanoates (PHA) by activated sludge treating municipal wastewater: effect of pH, sludge retention time (SRT), and acetate concentration in influent. Water Res. 37: 3602–3611.

    Article  CAS  Google Scholar 

  25. Bengtsson, S., A. Werker, M. Christensson, and T. Welander (2008) Production of polyhydroxyalkanoates by activated sludge treating a paper mill wastewater. Bioresour. Technol. 99: 509–516.

    Article  CAS  Google Scholar 

  26. Dionisi, D., G. Carucci, M. Petrangeli Papini, C. Riccardi, M. Majone, and F. Carrasco (2005) Olive oil mill effluents as a feedstock for production of biodegradable polymers. Water Res. 39: 2076–2084.

    Article  CAS  Google Scholar 

  27. Moon, S. H., J. M. Park, H. Y. Chun, and S. J. Kim (2006) Comparisons of physical properties of bacterial celluloses produced in different culture conditions using saccharified food wastes. Biotechnol. Bioprocess Eng. 11: 26–31.

    Article  CAS  Google Scholar 

  28. Lim, S. J., Y. H. Ahn, E. Y. Kim, and H. N. Chang (2006) Nitrate removal in a packed bed reactor using volatile fatty acids from anaerobic acidogenesis of food wastes. Biotechnol. Bioprocess Eng. 11: 538–543.

    Article  CAS  Google Scholar 

  29. Cho, K. S., H. W. Ryu, and C.-H. Park (1996) Production of polyhydoxyalkanoates from swine wastewater. J. Kor. Soc. Environ. Eng. 18: 1259–1270.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Ho Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryu, H.W., Cho, K.S., Goodrich, P.R. et al. Production of polyhydroxyalkanoates by Azotobacter vinelandii UWD using swine wastewater: Effect of supplementing glucose, yeast extract, and inorganic salts. Biotechnol Bioproc E 13, 651–658 (2008). https://doi.org/10.1007/s12257-008-0072-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-008-0072-x

Keywords