[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Poly(3-Hydroxybutyrate) Production in Repeated fed-Batch with Cell Recycle Using a Medium with low Carbon Source Concentration

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Among approaches applied to obtain high productivity and low production costs in bioprocesses are high cell density and the use of low cost substrates. Usually low cost substrates, as waste/agroindustrial residues, have low carbon concentration, which leads to a difficulty in operating bioprocesses. Real time control of process for intracellular products is also difficult. The present study proposes a strategy of repeated fed-batch with cell recycle to attain high cell density of Cupriavidus necator and high poly(3-hydroxybutyrate) (P(3HB)) productivity, using a substrate with low carbon source concentration (90 g l−1). Also, the use of the oxygen uptake rate data was pointed out as an on line solution for process control, once P(3HB) is an intracellular product. The results showed that total biomass (X), residual biomass (Xr) and P(3HB) values at the end of the culture were 61.6 g l−1, 19.3 g l−1 and 42.4 g l−1 respectively, equivalent to 68.8 % of P(3HB) in the cells, and P(3HB) productivity of 1.0 g l−1 h−1. Therefore, the strategy proposed was efficient to achieve high productivity and high polymer content from a medium with low carbon source concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Anderson, A. J., & Dawes, E. A. (1990). Occurrence, metabolism, metabolic role, end industrial uses of bacterial polyhydroxyalkanoates. Microbiol Reviews, 54(4), 450–472.

    CAS  Google Scholar 

  2. Riesenberg, D., & Guthke, R. (1999). High-cell-density cultivation of microorganisms. Applied Microbiology and Biotechnology, 51, 422–430.

    Article  CAS  Google Scholar 

  3. Ienczak, J. L., Quines, L. K., Melo, A. A., Brandellero, M., Mendes, C. R., Schmidell, W., & Aragão, G. M. F. (2011). High cell density strategy for poly(3-hydroxybutyrate) production by Cupriavidus necator. Brazilian Journal of Chemical Engineering, 28, 585–596.

    CAS  Google Scholar 

  4. Marangoni, C., Furigo Jr., A., & Aragão, G. M. F. (2002). Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Ralstonia eutropha in whey and inverted sugar with propionic acid feeding. Process Biochemistry, 38, 137–141.

    Article  CAS  Google Scholar 

  5. Aragão, G. M. F., Schmidell, W., Ienczak, J. L., Schmidt, F. C., Dalcanton, F., Fiorese, M. L., Rodrigues, R., Deucher, R., & Marangoni, C. (2009). Preparation of polyhydroxyalkanoates from a citric residue. International Application Published Under the Patent Cooperation Treaty (PCT), WO2009/149529 A1.

  6. Delgenes, J. P., Escare, M. C., Laplace, J. M., Moletta, R., & Navarro, J. M. (1998). Biological production of industrial chemicals, i.e. xylitol and ethanol, from lignocelluloses by controlled mixed culture systems. Ind. Crop Prod., 7, 101–111.

    Article  CAS  Google Scholar 

  7. Santos, S. C., Rosa, P. R. F., Sakamoto, I. K., Varesche, M. B. A., & Silva, E. L. (2014). Hydrogen production from diluted and raw sugarcane vinasse under thermophilic anaerobic conditions. Interntional Journal of Hydrogen Energy, 39, 9599–9610.

    Article  CAS  Google Scholar 

  8. Khanna, S., & Srivastava, A. K. (2005). Repeated fed-batch cultivation of Ralstonia eutropha for poly(β-hydroxybutyrate) production. Biotechnology Letters, 27, 1401–1403.

    Article  CAS  Google Scholar 

  9. Ibrahim, M. H. A., & Steinbüchel, A. (2010). High-cell-density cyclic fed-batch fermentation of a poly(3-hydroxybutyrate)-accumulating thermophile, Chelatococcus sp. Strain MW10. Applied and Enviromental Microbiology, 76, 7890–7895.

    Article  CAS  Google Scholar 

  10. Ahn, W. S., Park, S. J., & Lee, S. Y. (2001). Production of poly(3-hydroxybutyrate) from whey by cell recycle fed-batch culture of recombinant Escherichia coli. Biotechnolgy Letters., 23, 235–240.

    Article  CAS  Google Scholar 

  11. Pinto, M. A., & Immanuel, C. D. (2005). Modelling and bifurcation studies os a two-stage continuous bioreactor for the production of poly-ß-hydroxybutyrate (PHB). Aiche Annual Meeting.

  12. Lambrechts, T., Papantoniou, I., Sonnaert, M., Schrooten, J., & Aerts, J. M. (2014). Model-based cell number quantification using online single-oxygen sensor data for tissue engineering perfusion bioreactors. Biotechnology and Bioengineering, 111, 1982–1992.

    Article  CAS  Google Scholar 

  13. Brandl, H., Gross, R. A., Lenz, R. W., & Fuller, R. C. (1998). Pseudomonas oleovorans as a source of poly(β-hydroxyalkanoates) for potential applications as biodegradable polyesters. Applied and Enviromental Microbiology, 54, 1977–1982.

    Google Scholar 

  14. Taguchi, H., & Humphrey, A. (1966). Dynamic measurement of the volumetric oxygen transfer coefficient in fermentation systems. Journal of Fermentation Technology, 44, 881–889.

    CAS  Google Scholar 

  15. Pirt, S. J. (1975). Principles of microbe and cell cultivations. Oxford: Blackwell.

    Google Scholar 

  16. Ryu, H. W., Hahn, S. K., Chang, Y. K., & Chang, H. N. (1997). Production of poly(3-hydroxybutyrate) by high cell density fed-batch culture of Alcaligenes eutrophus with phosphate limitation. Biotechnology and Bioengineering, 55(1), 25–32.

    Article  Google Scholar 

  17. Khanna, S., & Srivastava, A. K. (2008). Continuous production of poly-β-hydroxybutyrate by high-cell-density cultivation of Wautersia eutropha. Journal of Chemical Technology & Biotechnology, 83, 799–805.

    Article  CAS  Google Scholar 

  18. Shang, L., Jiang, M., & Chang, H. N. (2003). Poly(3-hydroxybutyrate) synthesis in fed-batch culture of Ralstonia eutropha with phosphate limitation under different glucose concentrations. Biotechnology Letters, 25, 1415–1419.

    Article  CAS  Google Scholar 

  19. Davis, R., Duane, G., Kenny, S. T., Cerrone, F., Guzik, M. W., Babu, R. P., Casey, E., & O’Connor, K. E. (2015). High cell density cultivation of Pseudomonas putida KT2440 using glucose without the need for oxygen enriched air supply. Biotechnology and Bioengineering, 112, 725–733.

    Article  CAS  Google Scholar 

  20. Atlié, A., Koller, M., Scherzer, D., Kutschera, C., Grillo-Fernandes, E., Horvat, P., Chiellini, E., & Braunegg, G. (2011). Continuous production of poly([R]-3-hydroxybutyrate) by Cupriavidus necator in a multistage bioreactor cascade. Applied and Enviromental Microbiology, 91, 295–304.

    Google Scholar 

  21. Cesário, M. T., Rapose, R. S., Almeida, M. C. M. D., Keulen, F. V., Ferreira, B. S., & Fonseca, M. M. R. (2014). Enhanced bioproduction of poly-3-hydroxybutyrate from wheat straw lignocellulosic hydrolysates. New Biotechnology, 31, 104–113.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glaucia Maria Falcao de Aragao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ienczak, J.L., Schmidt, M., Quines, L.K. et al. Poly(3-Hydroxybutyrate) Production in Repeated fed-Batch with Cell Recycle Using a Medium with low Carbon Source Concentration. Appl Biochem Biotechnol 178, 408–417 (2016). https://doi.org/10.1007/s12010-015-1883-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1883-9

Keywords