[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates from nonanoic acid by Pseudomonas putida KT2440

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Pseudomonas putida KT2440 grew on glucose at a specific rate of 0.48 h−1 but accumulated almost no poly-3-hydroxyalkanoates (PHA). Subsequent nitrogen limitation on nonanoic acid resulted in the accumulation of only 27% medium-chain-length PHA (MCL-PHA). In contrast, exponential nonanoic acid-limited growth (μ = 0.15 h−1) produced 70 g l−1 biomass containing 75% PHA. At a higher exponential feed rate (μ = 0.25 h−1), the overall productivity was increased but less biomass (56 g l−1) was produced due to higher oxygen demand, and the biomass contained less PHA (67%). It was concluded that carbon-limited exponential feeding of nonanoic acid or related substrates to cultures of P. putida KT2440 is a simple and highly effective method of producing MCL-PHA. Nitrogen limitation is unnecessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Brandl H, Gross RA, Lenz RW, Fuller RC (1988) Pseudomonas oleovorans as a source of poly(beta-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl Environ Microbiol 54:1977–1982

    Article  CAS  Google Scholar 

  • Braunegg G, Bogensberger B (1985) About kinetics of growth and accumulation of poly-d(−)-3-hydroxybutyric acid in Alcaligenes latus strains. Acta Biotechnol 5:339–345

    Article  CAS  Google Scholar 

  • Braunegg G, Sonnleitner B, Lafferty RM (1978) Rapid gas-chromatographic method for determination of poly-beta-hydroxybutyric acid in microbial biomass. Eur J Appl Microb Biotechnol 6:29–37

    Article  CAS  Google Scholar 

  • Byrom D (1990) Industrial production of copolymer from Alcaligenes eutrophus. In: Dawes EA (eds) Novel biodegradable microbial polymers, Kluwer, Netherlands, pp 113–117

    Chapter  Google Scholar 

  • Carnicero D, FernandezValverde M, Canedo LM, Schleissner C, Luengo JM (1997) Octanoic acid uptake in Pseudomonas putida U. FEMS Microbiol Lett 149:51–58

    Article  CAS  Google Scholar 

  • Chen GQ, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26:6565–6578

    Article  CAS  Google Scholar 

  • Clesceri LS, Greenberg AE, Eaton AD (1999) Standard methods for the examination of water and wastewater, 20th edition, American Public Health Association, Washington, DC

  • Diard S, Carlier JP, Ageron E, Grimont PAD, Langlois V, Guerin P, Bouvet OMM (2002) Accumulation of poly(3-hydroxybutyrate) from octanoate, in different Pseudomonas belonging to the rRNA homology group I. Syst Appl Microbiol 25:183–188

    Article  CAS  Google Scholar 

  • Diniz SC, Taciro MK, Gomez JG, da Cruz Pradella JG (2004) High-cell-density cultivation of Pseudomonas putida IPT 046 and medium-chain-length polyhydroxyalkanoate production from sugarcane carbohydrates. Appl Biochem Biotechnol 119:51–70

    Article  CAS  Google Scholar 

  • Dufresne A, Samain E (1998) Preparation and characterization of a poly(beta-hydroxyoctanoate) latex produced by Pseudomonas oleovorans. Macromolecules 31:6426–6433

    Article  CAS  Google Scholar 

  • Durner R, Zinn M, Witholt B, Egli T (2001) Accumulation of poly[(R)-3-hydroxyalkanoates] in Pseudomonas oleovorans during growth in batch and chemostat culture with different carbon sources. Biotechnol Bioeng 72:278–288

    Article  CAS  Google Scholar 

  • Gross RA, Demello C, Lenz RW, Brandl H, Fuller RC (1989) Biosynthesis and characterization of poly(beta-hydroxyalkanoates) produced by Pseudomonas oleovorans. Macromolecules 22:1106–1115

    Article  CAS  Google Scholar 

  • Hänggi UJ (1990) Pilot scale production of PHA with A. latus In: Dawes EA (eds), Novel biodegradable microbial polymers, Kluwer, Netherlands, pp 65–70

    Chapter  Google Scholar 

  • Hazenberg W, Witholt B (1997) Efficient production of medium-chain-length poly(3-hydroxyalkanoates) from octane by Pseudomonas oleovorans: economic considerations. Appl Microbiol Biotechnol 48:588–596

    Article  CAS  Google Scholar 

  • Huijberts GNM, Eggink G (1996) Production of poly(3-hydroxyalkanoates) by Pseudomonas putida KT2442 in continuous cultures. Appl Microbiol Biotechnol 46:233–239

    Article  CAS  Google Scholar 

  • Huisman GW, Wonink E, De Koning G, Preusting H, Witholt B (1992) Synthesis of poly(3-hydroxyalkanoates) by mutant and recombinant Pseudomonas strains. Appl Microbiol Biotechnol 38:1–5

    Article  CAS  Google Scholar 

  • Jung K, Hazenberg W, Prieto M, Witholt B (2001) Two-stage continuous process development for the production of medium-chain-length poly(3-hydroxyalkanoates). Biotechnol Bioeng 72:19–24

    Article  CAS  Google Scholar 

  • Kang HO, Chung CW, Kim HW, Kim YB, Rhee YH (2001) Cometabolic biosynthesis of copolyesters consisting of 3-hydroxyvalerate and medium-chain-length 3-hydroxyalkanoates by Pseudomonas sp. DSY-82. Antonie Van Leeuwenhoek 80:185–191

    Article  CAS  Google Scholar 

  • Kim BS (2002) Production of medium chain length polyhydroxyalkanoates by fed-batch culture of Pseudomonas oleovorans. Biotechnol Lett 24:125–130

    Article  CAS  Google Scholar 

  • Kim GJ, Lee IY, Yoon SC, Shin YC, Park YH (1997) Enhanced yield and a high production of medium-chain-length poly(3-hydroxyalkanoates) in a two-step fed-batch cultivation of Pseudomonas putida by combined use of glucose and octanoate. Enzyme Microb Technol 20:500–505

    Article  CAS  Google Scholar 

  • Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B (1988) Formation of polyesters by Pseudomonas oleovorans—effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl Environ Microbiol 54:2924–2932

    Article  CAS  Google Scholar 

  • Lee SY, Wong HH, Choi JI, Lee SH, Lee SC, Han CS (2000) Production of medium-chain-length polyhydroxyalkanoates by high-cell-density cultivation of Pseudomonas putida under phosphorus limitation. Biotechnol Bioeng 68:466–470

    Article  CAS  Google Scholar 

  • Page WJ, Knosp O (1989) Hyperproduction of poly-beta-hydroxybutyrate during exponential growth of Azotobacter vinelandii UWD. Appl Environ Microbiol 55:1334–1339

    Article  CAS  Google Scholar 

  • Pouton CW, Akhtar S (1996) Biosynthetic polyhydroxyalkanoates and their potential in drug delivery. Adv Drug Deliv Rev 18:133–162

    Article  CAS  Google Scholar 

  • Preusting H, Vanhouten R, Hoefs A, Vanlangenberghe EK, Favrebulle O, Witholt B (1993) High-cell-density cultivation of Pseudomonas oleovorans—growth and production of poly (3-hydroxyalkanoates) in 2-liquid phase batch and fed-batch systems. Biotechnol Bioeng 41:550–556

    Article  CAS  Google Scholar 

  • Ramsay BA, Ramsay JA, Lomaliza K, Chavarie C, Bataille P (1990) Production of poly-(beta-hydroxybutyric-co-beta-hydroxyvaleric) acid copolymers. Appl Environ Microbiol 56:2093–2098

    Article  CAS  Google Scholar 

  • Ramsay BA, Saracovan I, Ramsay JA, Marchessault RH (1991) Continuous production of long-side-chain poly-beta-hydroxyalkanoates by Pseudomonas oleovorans. Appl Environ Microbiol 57:625–629

    Article  CAS  Google Scholar 

  • Ramsay BA, Saracovan I, Ramsay JA, Marchessault RH (1992) Effect of nitrogen limitation on long-side-chain poly-beta-hydroxyalkanoate synthesis by Pseudomonas resinovorans. Appl Environ Microbiol 58:744–746

    Article  CAS  Google Scholar 

  • Senior PJ, Dawes EA (1971) Poly-beta-hydroxybutyrate biosynthesis and regulation of glucose metabolism in Azotobacter beijerinckii. Biochem J 125(1):55–66

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steinbuchel A, Lutke-Eversloh T (2003) Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem Eng J 16:81–96

    Article  CAS  Google Scholar 

  • Sun Z, Ramsay JA, Guay M, Ramsay BA (2006) Automated feeding strategies for high-cell-density fed-batch cultivation of Pseudomonas putida KT2440. Appl Microbiol Biotechnol 71 (4):423–431

    Article  CAS  Google Scholar 

  • Timmis KN (2002) Pseudomonas putida: a cosmopolitan opportunist par excellence. Environ Microbiol 4:779–781

    Article  Google Scholar 

  • Weatherburn MW (1967) Phenol–hypochlorite reaction for determination of ammonia. Anal Chem 39:971–974

    Article  CAS  Google Scholar 

  • Williams SF, Martin DP, Horowitz DM, Peoples OP (1999) PHA applications: addressing the price performance issue: I. Tissue engineering. Int J Biol Macromol 25:111–121

    Article  CAS  Google Scholar 

  • Zinn M, Witholt B, Egli T (2001) Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev 53:5–21

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by the Natural Science and Engineering Research Council of Canada and a grant from BIOCAP Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Ramsay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Z., Ramsay, J.A., Guay, M. et al. Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates from nonanoic acid by Pseudomonas putida KT2440. Appl Microbiol Biotechnol 74, 69–77 (2007). https://doi.org/10.1007/s00253-006-0655-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0655-4

Keywords