[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Biosynthesis of P3HBV-b-P3HB-b-P3HBV Triblock Copolymer by Ralstonia eutropha

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Poly(3-hydroxybutyrate-c-3-hydroxyvalerate)(P3HBV)-b-poly(3-hydroxybutyrate) (P3HB)-b-P3HBV triblock copolymer biosynthesized from Ralstonia eutropha was investigated with respect to crystallization and compared with P3HBV-b-P3HB diblock copolymer. First, P3HBV and second, P3HB blocks lengths were fixed, and the third P3HBV block length was changed by regulating the cultivation time. The fraction of P3HB sandwiched by P3HBV blocks was between 50.0 and 86.4%. For the triblock copolymer with a longer third P3HBV block, there was no exothermic crystallization peak cooling from the melt at 200 °C. However, the diblock copolymer provided P3HB crystallization. Therefore, the P3HB block sandwiched by P3HBV with a sufficiently long cultivation time prevented crystallization during the melt-cooling process. Although the crystallization was prevented just after cooling from the melt for the triblock copolymer, it was gradually promoted within a few hours. This shows that the crystallization rate of P3HB is very low because of P3HV blocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Kamiya N, Yamamoto Y, Inoue Y, Chujo R, Doi Y (1989) Macromolecules 22:1676

    Article  CAS  Google Scholar 

  2. Holmes PA (1985) Phys Technol 16:32

    Article  CAS  Google Scholar 

  3. Doi Y, Tamaki A, Kunioka M, Soga K (1987) J Chem Soc Chem Commun 21:1635

    Article  Google Scholar 

  4. Doi Y, Tamaki A, Kunioka M, Soga K (1998) Appl Microbiol Biotechnol 28:330

    Article  Google Scholar 

  5. Mitomo H, Morishiota N, Doi Y (1993) Macromolecules 26:5809

    Article  CAS  Google Scholar 

  6. Yoshie N, Menju H, Sato H, Inoue Y (1995) Macromolecules 28:6516

    Article  CAS  Google Scholar 

  7. Yoshie N, Fujiwara M, Kasuya K, Abe H, Doi Y, Inoue Y (1999) Macromol Chem Phys 200:977

    Article  CAS  Google Scholar 

  8. Mitomo H, Morishita N, Doi Y (1995) Polymer 36:2573

    Article  CAS  Google Scholar 

  9. Scandola M, Ceccorulli G, Pizzoli M, Gazzano M (1992) Macromolecules 25:1405

    Article  CAS  Google Scholar 

  10. Abe H, Doi Y, Kumagai Y (1994) Macromolecules 27:6012

    Article  CAS  Google Scholar 

  11. Andrade AP, Neuenschwander P, Hany R, Egli T, Witholt B (2002) Z, Li. Macromolecules 35:4946

    Article  CAS  Google Scholar 

  12. Ravenelle F, Marchessault RH (2002) Biomacromol 3:1057

    Article  CAS  Google Scholar 

  13. Shuai X, Jedlinski Z, Luo Q, Farhod N (2000) Chin J Polym Sci 18:19

    CAS  Google Scholar 

  14. Kumagai Y, Doi Y (1993) J Environ Polym Degrad 1:81

    Article  CAS  Google Scholar 

  15. Pederson EN, McChalicher CWJ, Srienc F (2006) Biomacromol 7:1904

    Article  CAS  Google Scholar 

  16. Hu D, Chung AL, Wu LP, Zhang X, Wu Q, Chen JC, Chen GQ (2011) Biomacromol 12:3166

    Article  CAS  Google Scholar 

  17. Tappel RC, Kucharski JM, Mastroianni JM, Stipanovic AJ, Nomur CT (2012) Biomacromol 12:2964

    Article  Google Scholar 

  18. Tripathi L, Wu L-P, Meng D, Chen J, Chen G-Q (2013) Biomacromol 14:862

    Article  CAS  Google Scholar 

  19. Wang Q, Yang P, Liu C, Xue Y, Xian M, Zhao G (2013) Bioresour Technol 131:548

    Article  CAS  Google Scholar 

  20. Li S, Cai L, Wu L, Zeng G, Chen J, Wu Q, Chen G-Q (2014) Biomacromol 15:2310

    Article  CAS  Google Scholar 

  21. Nakaoki T, Yamagishi R, Ishii D (2015) J Polym Environ 23:487

    Article  CAS  Google Scholar 

  22. Kobayashi M, Akita K, Tadokoro H (1968) Makromol Chem 118:324

    Article  CAS  Google Scholar 

  23. Kissin YV, Tsvetkova VI, Chirkov NM (1972) Eur Polym J 8:529

    Article  CAS  Google Scholar 

  24. Kissin YV (1975) Adv Polym Sci 15:92–155

    Google Scholar 

  25. Kissin YV, Rishina LA (1976) Eur Polym J 12:757

    Article  CAS  Google Scholar 

  26. Reddy KR, Tashiro K, Sakurai T, Yamaguchi N, Sasaki S, Masunaga H, Takata M (2009) Macromolecules 42:4191

    Article  CAS  Google Scholar 

  27. Nakaoki T, Fukui D (2013) J Mol Struct 1051:271

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was carried out by the financial support from Ryukoku University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiko Nakaoki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakaoki, T., Yasui, J. & Komaeda, T. Biosynthesis of P3HBV-b-P3HB-b-P3HBV Triblock Copolymer by Ralstonia eutropha. J Polym Environ 27, 2720–2727 (2019). https://doi.org/10.1007/s10924-019-01555-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01555-3

Keywords