[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

High-Cell-Density cultivation of pseudomonas putida IPT 046 and medium-chain-length polyhydroxyalkanoate production from sugarcane carbohydrates

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

We studied high-density cultures of Pseudomonas putida IPT 046 for the production of medium-chain-length polyhydroxyalkanoates (PHAMCL) using an equimolar mixture of glucose and fructose as carbon sources. Kinetics studies of P. putida growth resulted in a maximum specific growth rate of 0.65h−1. Limitation and inhibition owing to NH4 + ions were observed, respectively, at 400 and 3500 mg of NH4 +/L. The minimum concentration of dissolved oxygen in the broth must be 15% of saturation. Fed-batch strategies for high-cell-density cultivation were proposed. Pulse feed followed by constant feed produced a cell concentration of 32 g/L in 18 h of fermentation and low PHAMCL content. Constant feed produced a cell concentration of 35 g/L, obtained in 27 h of fermentation, with up to 15% PHAMCL. Exponential feed produced a cell concentration of 30 g/L in 20 h of fermentation and low PHAMCL content. Using the last strategy, 21% PHAMCL was produced during a period of 34 h of fed-batch operation, with a final cell concentration of 40 g/L and NH4 + limitation. Using phosphate limitation, 50 g/L cell concentration, 63% PHAMCL and a productivity of 0.8 g/(L·h) were obtained in 42 h of fed-batch operation. The PHAMCL yield factors from consumed carbohydrate for N-limited and P-limited experiments were, respectively, 0.15 and 0.19 g/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CER:

CO2 evolution rate (mol/[L·h])

k La :

volumetric coefficient for oxyen transfer (h−1)

K O2 :

constant for Monod equation

OUR:

oxygen uptake rate (mol/[L·h])

P Xr :

active biomass productivity (g/[L·h])

qCO2 :

specific CO2 evolution rate (mol/[g·h])

qO2 :

specific oxygen uptake rate (mol/[g·h])

r SX :

substrate consumption rate for growth (g/L·h])

s :

substrate (g)

S I :

inhitial concentration of substrate (g/L)

T :

time (h)

V :

volume (L)

V O :

initial volume (L)

Vesp :

specific feed rate (g/[g·h])

xr :

active biomass (g)

xr o :

initial amount of active biomass (g)

Xr :

concentration of active biomass (g/L)

X O :

initial concentration of biomass (g/L)

Y Xr/F :

conversion yield of fructose to biomass (g/g)

Y Xr/G :

conversion yield of glucose to biomass (g/g)

Y Xr/G+F :

conversion yield of carbohydrate to biomass (g/g)

Y Xr/O :

conversion yield of oxygen to biomass (g/g)

Y Xr/S :

conversion yield of substrate to biomass (g/g)

μ:

specific growth rate (h−1)

μ F :

specific consumption rate of fructose (h−1)

μ G :

specific consumption rate of glucose (h−1)

μ N :

specific consumption rate of ammonium ions (h−1)

μ Xr1 :

specific growth rate on glucose (h−1)

μ Xr2 :

specific growth rate on fructose (h−1)

θ:

freed rate (L/h)

CRIT:

critical

MAX:

maximum

References

  1. Anderson, A. J. and Dawes, E. A. (1990), Microbiol. Rev. 54(4), 450–472.

    PubMed  CAS  Google Scholar 

  2. Steinbüchel, A. (1991), in Biomaterials: Novel Materials from Biological Sources, Byrom, D., ed., Macmillan, Basingstoke, UK, pp. 123–213.

    Google Scholar 

  3. Madison, L. L. and Huisman, G. W. (1999), Microbiol. Mol. Biol. Rev. 63, 21–53.

    PubMed  CAS  Google Scholar 

  4. Preusting, H. J., Kingma, J., and Witholt, B. (1991), Enzyme Microb. Technol. 13, 770–780.

    Article  CAS  Google Scholar 

  5. Preusting H. J., Hazenberg, W., and Witholt, B. (1993), Enzyme Microb. Technol. 15, 311–316.

    Article  CAS  Google Scholar 

  6. Jung, K., Hazenberg, W., Prieto, M., and Witholt, B. (2001), Biotechnol. Bioeng. 72, 19–24.

    Article  PubMed  CAS  Google Scholar 

  7. Kim, G. J., Lee, I. Y., Yoon, S. C., Shin, Y. C., and Park, Y. H. (1997), Enzyme Microb. Technol. 20, 500–505.

    Article  CAS  Google Scholar 

  8. De Koning, G. J. M., Kellerhals, M., Van Meurs, C., and Witholt, B. (1997), in International Symposium on Bacterial Polyhydroyxalkanoates, Eggink, G., Steinbüchel, A., Poirier, Y., and Witholt, B., eds., NRC Research Press, Ottawa, pp. 137–141.

    Google Scholar 

  9. Weusthuis, R. A., Huijberts, G. N. M., and Eggink, G. (1997), in International Symposium on Bacterial Polyhydroxyalkanoates, Eggink, G., Steinbüchel, A., Poirier, Y., and Witholt, B., eds., NRC Research Press, Ottawa, pp. 102–109.

    Google Scholar 

  10. Lee, S. Y., Wong, H. H., and Choi, J. (2000), Biotechnol. Bioeng. 68, 466–470.

    Article  PubMed  CAS  Google Scholar 

  11. Bueno Netto, C. L., Craveiro, A. M., Pradella, J. G. C., Oliveira, M. S., Maiorano, A. E., Pinto, A. G., and Matsubara, R. M. S. (2000), Patent PI9103116-8.

  12. Gomez, J. G. C., Costa, M., Pradella, J. G. C., Silva, L. F., Torres, B. B., and Schenberg, A. C. G. (2000), in Abstracts of 8th International Symposium on Biological Polyesters.

  13. Sánchez, R. J., Schripsema, J., Silva, L. F., Taciro, M. K., Pradella, J. G. C., and Gomez, J. G. C. (2003), Eur. Polym. J. 39, 1385–1394.

    Article  Google Scholar 

  14. Treadwell, F. P. (1956), Tratado de Química Analítica in Gravimetriao análisis por pesadas, Ed. Manuel Marín y CIA, Barcelona, pp. 54–56.

    Google Scholar 

  15. Riss, V. and Mai, W. (1988), J. Chromatogr. 445, 285–289.

    Article  Google Scholar 

  16. Franson, M. A. H. (1985) Standard Methods for the Examination of Water and Wastewater, 16th ed, American Public Health Association, Washington, DC.

    Google Scholar 

  17. Nonato, R. V., Mantelato, P. E., and Rossell, C. E. V. (2001), Appl. Microbiol. Biotechnol. 57, 1–5.

    Article  PubMed  CAS  Google Scholar 

  18. Sonnleitner, B., Heinzle, E., Braunneg, G., and Laferty, R. M. (1979), Eur. J. Appl. Microbiol. Biotechnol. 7, 1–10.

    Article  CAS  Google Scholar 

  19. Bitar, A. and Underhill, S. (1990), Biotechnol. Lett. 12, 563–568.

    Article  CAS  Google Scholar 

  20. Gaudin, P., Bueno Netto, C. L. Pradella, J. G. C., Taciro, M. K., Piccoli, R. A. M., Pereira, R. P. M., Silva, E. S., and Santos, A. L. (1993), XVII Congresso Brasileiro de Mocrobiologia, X Simpósio Nacional de Fermentações-Anais.

  21. Piccoli, R. A. M. (2000), PhD thesis, Escola Politécnica da Universidade de São Paulo.

  22. Lee, J. H., Hong, J., and Lim, H. C. (1997), Biotechnol. Bioeng. 56, 697–705.

    Article  CAS  Google Scholar 

  23. Piccoli, R. A. M., Bueno Netto, C. L., Pradella, J. G. C., Taciro, M. K., Pereira, R. P. M., Urenha, L. C. and Simões, D. A. (1998), IV Seminário de Hidrólise Enzimática de Biomassa 1, 141–143.

    Google Scholar 

  24. Riesenberg, D. and Guthke, R. (1999), Appl. Microbiol. Biotechnol. 51, 422–430.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Geraldo da Cruz Pradella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diniz, S.C., Taciro, M.K., Cabrera Gomez, J.G. et al. High-Cell-Density cultivation of pseudomonas putida IPT 046 and medium-chain-length polyhydroxyalkanoate production from sugarcane carbohydrates. Appl Biochem Biotechnol 119, 51–69 (2004). https://doi.org/10.1385/ABAB:119:1:51

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:119:1:51

Index Entries