ZOZO研究所の後藤です。本記事ではGoogle Cloud TPUを使った計量学習の高速化の事例を紹介します。 はじめに 深層学習を用いたプロダクトを開発・運用する上で、モデルの学習にかかる膨大な時間はボトルネックの1つです。 ファッションにおける深層学習を用いた画像認識技術にも同じことが言えます。 今回はファッションの分野において定番のタスクであるStreet2shopの課題設定に対し、Google Cloud TPUを用いて計量学習の高速化を試みます。 Street2shopは、スナップ画像から商品部分を切り出す物体検出のパートと、切り出した画像と類似した商品を検索するクロスドメイン画像検索のパートに分けられます。 今回の取り組みでは、後者のパートで利用する画像間の距離を測るためのモデルの学習の高速化を行います。 目次 はじめに 目次 Google Cloud TPUとは タスク S