[重要なお知らせ (2023/8/12)] 現在,スライドの p.10 に不十分な記述があります.ルートの答えは 0 以上の数に限定することに注意してください (たとえば -3 を 2 乗しても 9 ですが,ルート 9 は -3 ではありません).なお,現在筆者のパソコンが修理中でデータがないので,修…
[重要なお知らせ (2023/8/12)] 現在,スライドの p.10 に不十分な記述があります.ルートの答えは 0 以上の数に限定することに注意してください (たとえば -3 を 2 乗しても 9 ですが,ルート 9 は -3 ではありません).なお,現在筆者のパソコンが修理中でデータがないので,修…
数学嫌いはどこから生まれてくるのか? よく聞かれる「役に立たないから」なる理由は、実のところ良くて後付け悪くて言い訳であって、その実態は、算数や数学につまずいて分からなくなった人たちが、イソップ寓話のキツネよろしく「あのブドウ(数学)は酸っぱい(役に立たない)」と言い広めているのである。 ならば撃つべきは〈算数・数学のつまずき〉である。 以下に示すのは、小学校の算数から大学基礎レベルの数学まで、「つまずいて分からなくなる」箇所を集めて16のカテゴリーに分類したものである。 一度もつまずかず専門レベルまで一気に駆け上がることのできた一握りの天才を除けば、数学が得意な人も不得意な人もみなどこかでつまずいたであろう、さまざまな算数・数学の難所が挙げられている。 この分類が示そうとしていることのひとつは、同じ〈根っこ〉をもったつまずきが、小・中・高・大の各レベルで繰り返し出現することである。 たと
前回の記事で「誰が、どんな数学を、どのように使っているか」の表がクリックしても大きくならない、見えない、見たい、なんとかしろ、という話があったので、それを。 Hal Saundersの書物When Are We Ever Gonna Have to Use This?にある 「100の職業人に聞きました、あなたが仕事で使う数学はどんなん?」をまとめた表をそのままスキャンして貼り付けるのもどうかと思ったので、これを元に、より多くの数学のスキル/知識を使う職業から順にソートして並べてみた。 Saundersは、職業人に使われている数学を60のトピックにまとめているが、これについても、より多くの職業で使われるものから順に並べた。 (クリックで拡大) 元のデータをgoogle spreadsheetにアップロードしました(2017.12.31) 元々この本は、教科書に頻出するあまりに非現実的な応用
このブログは、専門外の人間が外から密輸した理屈で、正しいことを正しいと主張することを禁止する風潮を批判するためのものである。そんな私にとってどうしても看過できないのが、今回の「掛け算の順序」騒動だ。詳細は以下を参照。 かけ算の5×3と3×5って違うの? - Togetter 特に、応用数学を専門とし、中高の数学教諭の専修免許も持ち、さらに子供時代に遠山啓の本で数学に親しみ現在も遠山啓の著作集が本棚に並んでいるというような私としては、まるで掛け算の順序を区別することが遠山啓の意にかなっているかのごとく喧伝される*1のは我慢がならない*2。 この件については、上記togetterで既に、学識豊かな方々が大抵の論点には触れてくださっているので、私は今まで余り触れられていない論点 「積は一般に非可換」という言説の妥当性 交換法則の証明は必要か 「定義」や「立式のルール」をどの程度遵守すべきか 北海
2010年11月16日06:30 カテゴリLoveMath 3x5=5x3 【ゆっくり理解】なぜ3×5で正答で、5×3が小2のテストでは誤答なのか | Kidsnote「皿が5皿ある。1つのお皿に3つずつりんごが載っている。全部でいくつか。」という問いに対して、5×3と式を立てるのは誤りか 正しい。誤りとするのが、誤り。 まず、「乗法の可換性に関してはまだ教えていないから、(かけられる数)×(かける数)でないと×(ばつ)」というものだが、twitterでも言った通り、可換性はまったく関係ない。 3x5=5x3問題、乗算の可換性は実は無関係であることは、分数を見ればわかる。2/3は「さんぶんのに」と日本語、英語ではtwo thirds (or two over three)。非可換な除算すらこう。すなわちどちらを先に書くかというのは人間の都合であって数学の都合ではない。less than a
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く