KR102438168B1 - 시뮬레이션된 절개가능 조직 - Google Patents
시뮬레이션된 절개가능 조직 Download PDFInfo
- Publication number
- KR102438168B1 KR102438168B1 KR1020167026613A KR20167026613A KR102438168B1 KR 102438168 B1 KR102438168 B1 KR 102438168B1 KR 1020167026613 A KR1020167026613 A KR 1020167026613A KR 20167026613 A KR20167026613 A KR 20167026613A KR 102438168 B1 KR102438168 B1 KR 102438168B1
- Authority
- KR
- South Korea
- Prior art keywords
- silicone
- gel
- simulated
- delete delete
- layer
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B23/00—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
- G09B23/28—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
- G09B23/30—Anatomical models
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/002—Methods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C39/00—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
- B29C39/02—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
- B29C39/10—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. casting around inserts or for coating articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C39/00—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
- B29C39/22—Component parts, details or accessories; Auxiliary operations
- B29C39/38—Heating or cooling
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B23/00—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
- G09B23/28—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B23/00—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
- G09B23/28—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
- G09B23/30—Anatomical models
- G09B23/34—Anatomical models with removable parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2083/00—Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0046—Elastic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0081—Tear strength
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/753—Medical equipment; Accessories therefor
- B29L2031/7532—Artificial members, protheses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/753—Medical equipment; Accessories therefor
- B29L2031/7546—Surgical equipment
Landscapes
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Mathematical Optimization (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Algebra (AREA)
- Computational Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Mathematical Physics (AREA)
- Pure & Applied Mathematics (AREA)
- Business, Economics & Management (AREA)
- Educational Administration (AREA)
- Educational Technology (AREA)
- Mechanical Engineering (AREA)
- Instructional Devices (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
수술 트레이닝을 위한 시뮬레이션된 절개가능 조직이 제공된다. 시뮬레이션된 조직은 실리콘 쉘로 봉입되는 실리콘 겔 층을 포함한다. 시뮬레이션된 해부학적 구조체가 밀봉된 쉘 내에 실리콘 겔 층과 함께 내장된다. 실리콘 겔 층뿐만 아니라 실리콘 쉘이 약화제를 포함할 수 있다. 실리콘 겔 층의 추가적인 프로세싱은 알콜을 첨가하는 단계 및, 선택적으로, 혼합물을 가열하는 단계를 포함할 수 있다. 시뮬레이션된 절개가능 조직은 수술 스킬을 실습하기 위하여 특정 조직 또는 장기 모델 내에 형성될 수 있다. 사용자는, 외부 층을 통해 절개하는 것 및 내장된 시뮬레이션된 해부학적 구조체들의 가시성을 획득하기 위하여 실리콘 겔 층에 의해 획정된 절개 평면을 따라 쉘 층을 분리하는 것을 실습한다. 실리콘 겔 층은 절개가능 조직을 시뮬레이션하며, 그 내부에 포함된 시뮬레이션된 해부학적 구조체들의 골격화를 에뮬레이션하기 위한 사실적인 절개가능 조직을 제공하는 광택 및 탄성 속성들을 갖는다.
Description
관련 출원들에 대한 상호 참조
본 출원은 "Right colon model"이라는 명칭으로 2014년 3월 26일자로 출원된 미국 가특허 출원 일련번호 61/970,436호 및 2015년 3월 26일자로 출원된 국제 특허 출원 일련번호 PCT/US2015/022774호에 대한 이익 및 우선권을 주장하며, 이들의 전부는 그 전체가 본원에 참조로서 포함된다.
기술분야
본 발명은 수술 트레이닝 툴들에 관한 것으로서, 더 구체적으로, 수술 절차들을 가르치고 실습하기 위한 시뮬레이션된 조직 구조체들 및 모델들에 관한 것이다.
복강경 결장절제술은 다양한 위치에서의 장의 절제를 수반한다. 위치에 따라서, 결장절제술은, 우측 반결장 절제술, 좌측 반결장 절제술, S상 결장 절제술, 또는 결장전절제술로 불린다. 우측 반결장 절제술은 횡행 결장의 일 부분을 통한 상행 결장의 전체의 제거이며, 결장절제술 절차들 중 가장 일반적이다. 우측 반결장 절제술 절차의 중요한 단계는, 적절한 혈관들을 가로로 절개하기 위한 주요 해부학적 랜드마크(landmark)들 및 맥관구조를 식별하기 위한 능력 및 결장의 집결(mobilization)을 가능하게 하기 위한 접합(adhesion)들이다. 외과의의 절차의 제 1 단계는 회결장 혈관들을 식별하고 이를 가로로 절개하는 것이다. 회결장 혈관들은, 우측이 위를 향해 위치된 상태의 트렌델렌버그(Trendelenburg) 체위에 있는 환자의 도움으로 끌어 내려진다. 이러한 체위는 장막 및 소장을 멀어지게 움직이는데 도움을 준다. 회결장 혈관들은 전형적으로 십이지장에 인접하여 위치되며, 2개의 복막 층들로 이루어진 장간막 층 내에 케이싱(encase)된다. 이러한 단계 동안, 외과의는 회결장 혈관들을 발견함에 있어서 구조적인 랜드마크로서 십이지장을 사용한다. 회결장 혈관들의 가로 절개시에, 장간막 층의 중앙으로부터 측방으로의 또는 측방으로부터 중앙으로의 절개 중 하나가 존재할 수 있다. 이러한 절개는, 장간막 층 내에 케이싱된 더 작은 맥관구조 및 림프절들을 자르고 봉합할 수 있는 복강경 툴들 또는 에너지 호환 디바이스들을 사용하여 비절개박리를 통해 이루어진다. 중앙으로부터 측방으로의 절개를 위하여, 움직임은 정면으로부터 십이지장으로 그리고 제로타 근막으로부터 맹장 및 회장에 연결된 장간막의 루트(root)로 이루어진다. 외과의가 측방으로부터 중앙으로 움직이는 경우, 절개는 회맹판에서 수행되고 중앙으로 움직이며, 이는 다시 정면으로부터 십이지장 및 제로타 근막으로 유지하는 것을 보장한다. 맹장 및 회장이 집결(mobilize)되면, 외과의는 간결장곡에 도달하기 위하여 톨드트(Toldt)의 백선을 위로 움직일 것이다. 톨드트의 백선은 측방 접합부들을 통해 복부 측벽에 연결된 무혈관 층이다. 외과의는 전형적으로 복강경 가위들 또는 다른 에너지 호환 복강경 디바이스들을 사용하여 톨드트의 백선 및 이러한 접합부들을 끌어 내린다. 톨드트의 백선을 끌어 내릴 때, 간 만곡부를 따른 접합부들은 장의 체외 집결 및 가로 절개를 가능하게 하기 위하여 제거된다. 장의 가로 절개시에, 외과의는 나머지 장을 재연결하는 체외 문합술을 수행한다.
우측 반결장 절제술을 위한 몇몇 절차 단계들이 존재하기 때문에, 외과의들이 이러한 수술 절차를 배우고 실습하기 위한 방법을 갖는 것이 중요하다. 모델이 해부학적으로 정확하고 우측 반결장 절제술 절차들과 연관된 주요 랜드마크들뿐만 아니라 맥관구조를 포함해야 할 필요가 있다. 모델은 절차 단계들의 임의의 변형과 호환되어야만 한다. 일 예로서, 중앙에서 측방으로의 또는 측방에서 중앙으로의 절개가 모델 상에서 수행될 수 있어야만 한다. 또한, 모델은, 외과의가 절차 동안 관찰하는 촉각적 피드백을 시뮬레이션해야 할 필요가 있다. 일 예로서, 장간막 층을 통한 절개가 수행될 때, 층들을 관통해 나아가는 것과 큰 혈관들에 영향을 주는 것 사이의 느낌의 차이가 분명해야만 한다. 혈관들이 그래스핑(grasp)되고, 커팅되며 및 클리핑(clip)될 수 있어야만 한다. 몇몇 절차 단계들이 존재하지만, 이러한 절차의 다수는 다양한 절개 기술들을 통해 장을 집결시키는 것을 수반하며, 따라서, 정확한 절개 모델을 개발하는 것이 시뮬레이션에 대해 결정적이다. 모델 내의 장기들은, 장기들이 신체 내에 있는 것처럼 이동되고 조작되는 것이 가능하도록 시뮬레이션되어야만 한다. 추가적으로, 모델 상의 장기들은, 모델의 포지셔닝이 트렌델버그(Trendelenberg) 또는 역 트렌델버그 체위로 위치될 때 장기들이 정확한 방방으로 이동될 수 있도록 모델에 부착되어야만 한다. 이러한 문제들을 처리하는 해부학적 모델에 대한 필요성이 존재한다.
또한, 수술 레지던트들뿐만 아니라 실습하는 외과의들이 인간 환자들에 대한 수술을 실습하기 위한 자격을 부여받기 전에 광범위한 트레이닝을 겪는다. 트레이닝은 수술의 다양한 측면들을 교시하며, 이는 특정 스킬을 전개하거나, 특정 수술 절차를 실습하거나, 또는 특정 수술 기구들을 사용하는 것을 실습하기 위한 트레이닝을 포함할 수 있다. 외과의들이 트레이닝하는 것을 가능하게 할 인조의 시뮬레이션된 모델들에 대한 필요성이 존재한다. 특히, 절개되는 인간의 조직의 반응과 아주 유사한 시뮬레이션된 조직에 대한 필요성이 존재한다. 평면(plane)들 사이에서 절개를 수행하기 위한 또는 주변 해부학적 조직으로부터 맥관구조를 골격화하기(skeletonize) 위한 능력은 수술 절차들 내에서 발견되는 스킬이다. 구체적으로, 복강경 절차가 수행되는 경우, 절개를 수행하기 위한 기구들의 조작이 획득될 수 있는 스킬이며, 이는 최소의 상처를 가지고 비외상(atraumatic) 절차를 가능하게 할 것이다. 본 발명은 이러한 시뮬레이션된 조직을 기술한다.
본 발명의 일 측면에 따르면, 수술 트레이닝을 위한 시뮬레이션된 절개가능 조직이 제공된다. 시뮬레이션된 절개가능 조직은 실리콘으로 이루어지며 그 사이에 두께를 획정(define)하는 내부 표면 및 외부 표면을 갖는 제 1 층을 포함한다. 시뮬레이션된 절개가능 조직은 실리콘으로 이루어지며 그 사이에 두께를 획정하는 내부 표면 및 외부 표면을 갖는 제 2 층을 포함한다. 시뮬레이션된 절개가능 조직은 제 1 층과 제 2 층 사이에 위치된 실리콘 겔을 포함하는 제 3 층을 포함한다. 실리콘 겔은 제 1 및 제 2 층들에 의해 밀봉된다. 제 1 및 제 2 층들을 절개가능하며, 제 3 층은, 제 1 및 제 2 층들이 무딘 기구로 분리될 수 있도록 제 1 및 제 2 층들을 함께 탄성적으로 부착한다.
본 발명의 다른 측면에 따르면, 수술 트레이닝을 위한 시뮬레이션된 절개가능 조직이 제공된다. 시뮬레이션된 절개가능 조직은 실리콘으로 이루어지며 내부 공동(cavity)을 형성하도록 구성된 외부 쉘(shell)을 포함한다. 충전물이 내부 공동 내에 위치되고 그 내부에 밀봉된다. 봉입된(encapsulated) 충전물은 실리콘 겔을 포함하며, 외부 쉘은 수술적 골격화(skeletonization)를 에뮬레이션하기 위하여 충전물의 위치에서 분리가능하다.
본 발명의 다른 측면에 따르면, 수술 트레이닝을 위한 시뮬레이션된 절개가능 조직을 제조하는 방법이 제공된다. 방법은, 실리콘의 제 1 층을 제공하는 단계, 제 1 층을 경화시키는 단계, 중심 공동을 갖는 몰드(mold)를 제공하는 단계, 제 1 층이 중심 공동을 커버하도록 실리콘의 제 1 층을 몰드 상에 위치시키는 단계; 실리콘 겔을 마련하는 단계; 경화되지 않은 실리콘 겔을 제 1 층 상에 도포(apply)하는 단계, 실리콘의 제 2 층을 제공하는 단계; 제 2 층을 실리콘 겔 및 제 1 층 위에 위치시키는 단계, 실리콘 겔을 경화시키는 단계 및 제 2 층을 경화시키는 단계를 포함한다.
본 발명의 다른 측면에 따르면, 내부 층을 봉입하는 하나 이상의 외부 층을 포함하는 시뮬레이션된 절개가능 조직을 제조하는 방법이 제공된다. 방법은 외부 층에 대한 재료를 선택하는 단계들을 포함한다. 외부 층에 대한 재료를 선택하는 단계는 실리콘 및, 실리콘과 약화제(deadener)의 혼합물 중 하나를 선택하는 단계를 포함한다. 방법은 내부 층에 대한 재료를 선택하는 단계를 포함한다. 내부 층에 대한 재료를 선택하는 단계는 실리콘 겔 및, 실리콘 겔과 약화제의 혼합물 중 하나를 선택하는 단계를 포함한다.
도 1은 복강경 트레이너의 상단 사시도이다.
도 2는 본 발명에 따른 우측 결장 모델의 평면도이다.
도 3은 본 발명에 따른 뒤로 당겨진 장막 층을 갖는 우측 결장 모델의 평면도이다.
도 4는 본 발명에 따른 우측 결장 모델의 대장의 평면도이다.
도 5는 본 발명에 따른 우측 결장 모델의 대동맥의 평면도이다.
도 6은 본 발명에 따른 장간막 층과 같은 시뮬레이션된 조직 구조체의 평면도이다.
도 7a 내지 도 7e는 본 발명에 따른 장간막과 같은 시뮬레이션된 조직 구조체에 대한 제조 프로세스의 단계들을 예시하는 개략적인 도면들이다.
도 8a는 본 발명에 따른 장간막 층과 같은 시뮬레이션된 조직 구조체의 외부 층들에 대한 조성 변동들의 리스트이다.
도 8b는 본 발명에 따른 장간막 층과 같은 시뮬레이션된 조직 구조체의 중간 또는 내부 층에 대한 조성 변동들의 리스트이다.
도 9a 내지 도 9b는 본 발명에 따른 장간막과 같은 시뮬레이션된 조직 구조체에 대한 조성 변동들의 순서도이다.
도 10a는 본 발명에 따른 시뮬레이션된 절개가능 조직의 제 1 층의 평면도이다.
도 10b는 본 발명에 따른 시뮬레이션된 절개가능 조직을 제조하기 위한 몰드 및 템플릿(template)의 평면도이다.
도 10c는 본 발명에 따른 몰드 및 템플릿의 상단 상의 시뮬레이션된 절개가능 조직의 제 1 층의 평면도이다.
도 10d는 본 발명에 따른 제 1 층, 템플릿 및 몰드의 상단 상의 시뮬레이션된 종양들 및 시뮬레이션된 맥관구조의 평면도이다.
도 10e는 본 발명에 따른 시뮬레이션된 맥관구조, 시뮬레이션된 종양들, 제 1 층, 템플릿 및 몰드의 상단 상의 겔 제 2 층의 평면도이다.
도 10f는 본 발명에 따른 겔 제 2 층, 시뮬레이션된 맥관구조, 시뮬레이션된 종양들, 제 1 층, 템플릿 및 몰드의 상단 상의 제 3 층의 평면도이다.
도 10g는 본 발명에 따른 시뮬레이션된 조직 플랫폼의 페그(peg)들 상에 장착된 시뮬레이션된 절개가능 조직의 모델의 상단 사시도이다.
도 10h는 본 발명에 따른 시뮬레이션된 조직 플랫폼의 페그들 상에 장착된 시뮬레이션된 절개가능 조직의 모델의 평면도이다.
도 11은 본 발명에 따른 내부 겔 층을 노출하는 외부 층 내의 절개부를 갖는 시뮬레이션된 절개가능 조직의 상단 사시도이다.
도 2는 본 발명에 따른 우측 결장 모델의 평면도이다.
도 3은 본 발명에 따른 뒤로 당겨진 장막 층을 갖는 우측 결장 모델의 평면도이다.
도 4는 본 발명에 따른 우측 결장 모델의 대장의 평면도이다.
도 5는 본 발명에 따른 우측 결장 모델의 대동맥의 평면도이다.
도 6은 본 발명에 따른 장간막 층과 같은 시뮬레이션된 조직 구조체의 평면도이다.
도 7a 내지 도 7e는 본 발명에 따른 장간막과 같은 시뮬레이션된 조직 구조체에 대한 제조 프로세스의 단계들을 예시하는 개략적인 도면들이다.
도 8a는 본 발명에 따른 장간막 층과 같은 시뮬레이션된 조직 구조체의 외부 층들에 대한 조성 변동들의 리스트이다.
도 8b는 본 발명에 따른 장간막 층과 같은 시뮬레이션된 조직 구조체의 중간 또는 내부 층에 대한 조성 변동들의 리스트이다.
도 9a 내지 도 9b는 본 발명에 따른 장간막과 같은 시뮬레이션된 조직 구조체에 대한 조성 변동들의 순서도이다.
도 10a는 본 발명에 따른 시뮬레이션된 절개가능 조직의 제 1 층의 평면도이다.
도 10b는 본 발명에 따른 시뮬레이션된 절개가능 조직을 제조하기 위한 몰드 및 템플릿(template)의 평면도이다.
도 10c는 본 발명에 따른 몰드 및 템플릿의 상단 상의 시뮬레이션된 절개가능 조직의 제 1 층의 평면도이다.
도 10d는 본 발명에 따른 제 1 층, 템플릿 및 몰드의 상단 상의 시뮬레이션된 종양들 및 시뮬레이션된 맥관구조의 평면도이다.
도 10e는 본 발명에 따른 시뮬레이션된 맥관구조, 시뮬레이션된 종양들, 제 1 층, 템플릿 및 몰드의 상단 상의 겔 제 2 층의 평면도이다.
도 10f는 본 발명에 따른 겔 제 2 층, 시뮬레이션된 맥관구조, 시뮬레이션된 종양들, 제 1 층, 템플릿 및 몰드의 상단 상의 제 3 층의 평면도이다.
도 10g는 본 발명에 따른 시뮬레이션된 조직 플랫폼의 페그(peg)들 상에 장착된 시뮬레이션된 절개가능 조직의 모델의 상단 사시도이다.
도 10h는 본 발명에 따른 시뮬레이션된 조직 플랫폼의 페그들 상에 장착된 시뮬레이션된 절개가능 조직의 모델의 평면도이다.
도 11은 본 발명에 따른 내부 겔 층을 노출하는 외부 층 내의 절개부를 갖는 시뮬레이션된 절개가능 조직의 상단 사시도이다.
하나 이상의 시뮬레이션된 장기들의 장기 트레이(tray) 모델들은, 캘리포니아의 Applied Medical Resources Corporation에 의해 제조되는 SIMSEI 복강경 트레이닝 시스템과 같은 시뮬레이션된 복강경 트레이너 내에 위치될 때 복강경 절차들 및 기술들을 트레이닝하고 실습하는데 이상적이다. 복강경 트레이너(10)가 도 1에 도시된다. 복강경 트레이너(10)는, 그 전체가 본원에 참조로서 포함되는 “Portable laparoscopic trainer”라는 명칭으로 2011년 9월 29일자로 Pravong 등에 의해 Applied Medical Resources Corporation 명의로 출원되어 미국 특허 공보 제2012/0082970호로 공개된 함께 계류 중인 미국 특허 출원 일련번호 제13/248,449호에서 설명된다. 복강경 트레이너(10)는, 상단 커버(12)를 베이스(14)로부터 이격시키는 한 쌍의 레그(leg)들(16)에 의해 베이스(14)에 연결된 상단 커버(12)를 포함한다. 복강경 트레이너(10)는 복부 영역과 같은 환자의 몸통을 모사하도록 구성된다. 상단 커버(12)는 환자의 정면 표면을 나타내며, 상단 커버(12)와 베이스(14) 사이의 공간은 장기들이 존재하는 환자의 내부 또는 체강(18)을 나타낸다. 복강경 트레이너(10)는, 환자의 시뮬레이션에서, 다양한 수술 절차들 및 그들의 관련된 기구들을 교습하고, 실습하며, 예증하기 위한 유용한 툴이다. 수술 기구들이 상단 커버(12)에 미리-수립된 개구들(20)을 통해 공동(18) 내로 삽입된다. 이러한 미리-수립된 개구들(20)은 몸통들을 시뮬레이션하는 밀봉부들을 포함할 수 있거나, 또는 환자의 피부 및 복벽 부분들을 시뮬레이션하는 시뮬레이션된 조직을 포함할 수 있다. 다양한 툴들 및 기술들이, 본 발명의 우측 결장 모델과 같은 상단 커버(12)와 베이스(14) 사이에 위치된 모델 장기들에 대해 모조 절차들을 수행하기 위해 상단 커버(12)를 관통하는데 사용될 수 있다. 트레이너(10)의 공동(18) 내에 위치될 때, 장기 모델은 전반적으로, 그 뒤 비디오 모니터(22) 상에 디스플레이되는 비디오 피드(video feed)를 통해 간접적으로 수술 지점을 보면서 복강경 수술로 수술 기술들을 수행하는 것을 실습할 수 있는 사용자의 시야로부터 가려진다.
상단 커버(12)에 힌지 결합된 비디오 디스플레이 모니터(22)가 도 1에서 개방 배향으로 도시된다. 비디오 모니터(22)는 이미지를 모니터(22)에 전달하기 위한 다양한 시각적 시스템들에 연결가능하다. 예를 들어, 시뮬레이션된 절차를 관찰하기 위해 사용되는 미리-수립된 개구들(20) 중 하나를 통해 삽입되어 공동 내에 위치된 복강경 또는 웹캠은 이미지를 사용자에게 제공하기 위하여 비디오 모니터(22) 및/또는 모바일 컴퓨팅 디바이스에 연결될 수 있다. 다른 변형예에 있어, 상단 커버(12)는 비디오 디스플레이(22)를 포함하지 않지만, 태블릿, 랩탑 컴퓨터, 또는 모바일 디지털 디바이스를 지원하고 이를 무선 또는 유선으로 트레이너(10)에 연결하기 위한 수단을 포함한다.
어셈블리될 때, 상단 커버(12)는, 실질적으로 주변부에 위치되며 상단 커버(12) 및 베이스(14) 사이에 상호연결된 레그들(16)을 갖는 베이스(14) 바로 위에 위치된다. 상단 커버(12) 및 베이스(14)는 실질적으로 동일한 형상 및 크기이며, 실질적으로 동일한 주변 아웃라인(outline)을 갖는다. 트레이너(10)가 측벽들을 갖지 않지만, 레그들(16)이 내부 공동을 달리 측면이 열린 트레이너(10)로부터의 시야로부터 부분적으로 가린다. 복강경 트레이너(10)는 베이스(14)에 대하여 각이 진 상단 커버(12)를 포함한다. 레그들(16)은 베이스(14)에 대한 상단 커버(12)의 각도가 조정되는 것을 허용하도록 구성된다. 도 1은, 베이스(14)에 대하여 약 30-45도의 각 모양(angulation)으로 조정된 트레이너(10)를 예시한다. 트레이너(10)의 각 모양은 바람직하게는 트렌델렌버그 체위 또는 역 트렌델렌버그 체위로 환자를 시뮬레이션한다. 트렌델렌버그 체위에서, 신체가 기울어져서, 신체가 머리보다 발이 더 높은 채로 또는 그 역인 상태로 등을 대고 평평하게 놓인다. 트렌델렌버그 체위는, 중력이 장을 골반으로부터 멀어지도록 당김에 따라 골반 장기들에 대한 더 양호한 액세스를 허용하며, 그럼으로써 외과의가 더 용이하게 장기들을 조작할 수 있는 복강 내부의 더 많은 작업 공간을 제공하기 위해 골반 동작 필드(pelvic operating field) 상으로의 장의 잠식을 방지한다. 상단 커버(12)의 선택된 각 모양은 레그들(16) 상에 제공된 나비나사(thumbscrew)들을 조임으로써 고정된다. 베이스(14)에 대한 트레이너(10)의 상단 커버(12)의 각 모양 또는 테이블 상단과 같은 수평적인 표면에 대한 상단 커버(12)의 각 모양은, 트레이너(10)의 공동(18) 내로 삽입된 본 발명의 결장 모델을 이용한 우측 반결장 절제술을 트레이닝하고 실습하는 것과 관련하여 특히 유익하다.
이제 도 2를 참조하면, 도 1과 관련하여 이상에서 설명된 복강경 트레이너(10)와 같은 복강경 환경에서의 다른 절차들 중에서도 우측 반결장 절제술 절차를 트레이닝하고 실습하기에 특히 적절한 본 발명의 우측 결장 모델(26)이 도시된다. 시뮬레이션된 장기들은 전형적으로 열가소성 탄성중합체(thermoplastic elastomer; TPE) 또는 실리콘으로 이루어지며, 트레이(28) 내에 위치된다. 트레이(28)는 트레이(28) 내에 배치된 모델 장기들을 포함하도록 구성된다. 트레이(28)는 베이스 및 전형적으로 베이스의 주변부 둘레에 형성된 적어도 하나의 측벽을 포함한다. 추가적인 측벽들이 해부학적-특정 위치들을 획정하기 위하여 주변부 내에 형성되며, 이들은 시뮬레이션된 장기 구조체들 및 조직들을 포함하도록 구성된다. 이러한 추가적인 측벽들은, 공동(18) 내에 배치된 모델(26)을 갖는 트레이너(10)의 상단 커버(12)를 통해 삽입된 기구들을 가지고 시뮬레이션된 장기들을 조작하는 동안 개업의에 의해 인가되는 힘들에 응답하여 측방적인 지지를 제공한다. 도 2는, 트레이(28)의 상단을 따라 위치된 실리콘으로 이루어진 모델 간(30) 및 다른 장기들을 덮으며 대표적인 맥관구조(34)를 포함하는 시뮬레이션된 장막 층(32)을 예시한다.
도 3을 참조하면, 장막 층(32)은, 충수(42) 및 S상 결장, 소장(38)의 적어도 일 부분, 담낭 어셈블리를 포함하는 간(30), 위, 십이지장, 신장들, 수뇨관들, 및 (도 5에 별개로 도시된) 대동맥(40), 동맥들 및 정맥들(44)을 나타내는 혈관들, 및 (도 6에 별개로 도시된) 복막, 제로타 근막, 및 장간막 층(46)을 포함하는 결합 조직 층들에 부착될 수 있는, (도 4에 별개로 도시된) 대장(36)의 적어도 일 부분을 포함하는 아래의 시뮬레이션된 장기들을 노출시키기 위해 뒤로 당겨져 도시된다. 장기들은 다양한 복강경 기구들을 사용하는 수술 트레이닝을 위해 인체 내에 존재하는 정확한 해부학적 포지셔닝(positioning) 및 위치를 나타내도록 어셈블리된다. 우측 장 모델(26)로도 지칭될 수 있는 우측 결장 모델(26)은, 우측 반결장 절제술 수술 트레이닝을 위한 주요 랜드마크들 및 특징부들을 강조하기 위해 수정된 상태의 실리콘 시뮬레이션된 장기들을 사용하여 어셈블리된다.
베이스 트레이(28)가 제공된다. 베이스 트레이(28)는 황색 또는 적색 발포고무(foam)로 이루어지며, 트레이너(10)의 공동(18) 내로 삽입될 수 있도록 구성되고 크기가 결정된다. 대안적으로, 베이스 트레이(28)는, 라이너(liner)와 함께 복강경 트레이너(10) 내로 삽입될 수 있는 베이스 트레이(28) 내에 직접적으로 끼워지는 황색 또는 적색 발포고무로 만들어진 라이너를 포함할 수 있다. 추가적인 발포고무 부분이 우측 복부 측벽을 시뮬레이션하기 위하여 발포고무 베이스의 좌측에 부가될 수 있다. 시뮬레이션된 수술 절차 동안 다양한 체위의 시뮬레이션을 허용하기 위하여, 대안적인 모델 베이스들이 제공된다. 예를 들어, 우측 결장 모델 베이스(28) 또는 라이너는 모델(26)의 일 단부에서 경사진 각도를 갖도록 진공 성형된 플라스틱으로 만들어질 수 있다. 각도는 수술 절차 동안 환자의 역 트렌델버그 체위를 시뮬레이션할 수 있다. 또한, 모델(26)은, 복부 측벽들의 만곡된 형상을 형성하도록 몸 중심부쪽으로 연장하는 골반 형상을 모방하도록 모델링되는 만곡된 형상을 갖도록 진공-성형된 플라스틱 상에 구축될 수 있다.
실리콘으로 만들어진 시트가 시뮬레이션된 장기들의 어셈블리 및 부착을 돕기 위하여 모델의 베이스(28)의 상단 상에 부착될 수 있다. 실리콘으로 만들어지는 시뮬레이션된 장기들 및 그들의 컬러들이 이하의 표 1에서 찾아질 수 있다. 대장(36), 대동맥(40) 및 장간막(46)은 도 2 및 도 3에 도시된 크기를 실질적으로 유지할 수 있거나, 또는 이들이 복강경 트레이너(10)의 베이스에 더 잘 들어맞게 하기 위하여 단축되거나 또는 줄어들 수 있다. 이러한 해부학적인 구조체들은, 그들의 정확한 상대적인 해부학적 포지셔닝을 가깝게 나타내는 방식으로 발포고무 베이스 트레이(28)의 상단 상에 부착된다.
표 1: 장기들 & 그들의 컬러들
장기 | 컬러 |
대장 | 핑크 |
소장 | 핑크 |
충수 | 핑크 |
맹장 | 핑크 |
위 | 살색 톤 또는 핑크 |
신장 | 암적색 |
간 | 암적색 |
담낭 | 녹색 내지 갈색 |
대동맥 | 암적색 |
십이지장 | 살색 톤 |
동맥들 | 암적색 |
정맥들 | 청색 |
수뇨관들 | 투명(clear) |
장막 | 황색 |
장간막 | 황색 |
접합부 | 핑크 |
복막 | 황색 또는 백색 |
장간막 층(46)은 동맥들 및 정맥들(44)을 봉입하며, 복강경 디섹터(dissector)들을 사용하여 그래스핑되고 절개되도록 구성된다. 조직 층들 사이의 절개는 실리콘만에 의해서는 시뮬레이션될 수 없는 특성들을 갖는다. 따라서, 이러한 문제를 해결하기 위하여, 장간막(46)과 같은 실제 해부학적 구조체들을 시뮬레이션하기에 적절한 시뮬레이션된 절개가능 조직의 몇몇 변형들이 개발되어왔다. 장간막(46)을 시뮬레이션하기에 적절한 시뮬레이션된 절개가능 조직은 서로의 상단 상에 적층되는 3개의 층들로 구성된다. 3개의 층들은 상단 층(48), 하단 층(50) 및 중간 층(54)을 포함한다. 상단 층(48) 및 하단 층(50)은 복막 층들을 나타낼 수 있으며, 겔을 포함하는 중간 층(54)은 절개될 수 있는 실리콘으로 만들어진 혈관들(44)을 둘러싸는 결합 조직을 나타낼 수 있다.
이제 도 7a 내지 도 7e를 참조하여, 장간막 층(46)으로서의 예시적인 사용을 찾을 수 있는 본 발명에 따른 시뮬레이션된 절개가능 조직의 구성이 이제 설명될 것이다. 본 발명의 시뮬레이션된 절개가능 조직(47)이 장간막 층(46)으로서의 사용에 한정되는 것이 아니라 임의의 시뮬레이션된 조직 구성의 적어도 일 부분을 형성할 수 있다는 것을 주의해야만 한다. 시뮬레이션된 절개가능 조직(47)을 구성하는 것은, 도 7a에 도시된 바와 같이 하나는 상단 층(48)에 대한 것이고 다른 하나는 하단 층(50)에 대한 것인 실리콘의 2개의 별개의 얇은(thin) 시트들을 형성하고, 이들을 완전히 경화시키는 최초 단계를 수반한다. 시트들이 완전히 경화될 때, 도 7b에 도시된 바와 같이, 실리콘 겔(58a, 58b)의 얇은 층이 각기 실리콘 시트들(48, 50)의 각각의 텍스처링되지 않은(untextured) 면 상에 스패튤라(spatula) 또는 유사한 툴을 사용하여 발라진다. 실리콘 혈관들을 포함하는 시뮬레이션된 맥관구조(44)는 경화되지 않은 겔 층들(58a, 58b)의 각각 중 하나 위에 놓인다. 도 7c는 상단 층(48) 시트 상의 경화되지 않은 겔 층(58a) 상에 위치되는 시뮬레이션된 맥관구조(44)를 예시한다. 그런 다음, 겔 층들(58a, 58b)을 갖는 실리콘 시트들(48, 50)이 시뮬레이션된 맥관구조(44)를 상단 층(48)에 부착시키기 위하여 완전히 경화되도록 허용된다. 겔-라이닝된(gel-lined) 층들(48, 50)이 경화될 때, 신선한 실리콘 겔을 포함하는 제 3 또는 중간 층(54)이 마련되고, 층들(48, 50) 중 하나 위로 부어진다. 일 변형예에 있어서, 신선한 실리콘 겔은 실리콘 혈관들(44)이 놓여졌던 실리콘 시트(48) 위로 부어진다. 겔은 맥관구조(44)의 시뮬레이션된 혈관들을 완전히 커버하도록 발라진다. 그런 다음, 실리콘이 여전히 경화되지 않은 겔이며 에어 포켓(air pocket)들이 샌드위치-유사 구성을 생성하기 위하여 에지(edge)들로 밀어 내어지는 동안, 제 2 층(50) 시트가 제 1 층(48) 위의 중간 층(54) 위에 놓인다. 이러한 프로세스의 결과는, 층들 사이에 위치된 봉입된 맥관구조(44)의 골격화 및 복강경 절개에 특히 적절하고 이와 호환되는 도 6에 도시된 것과 같은 장간막 어셈블리(46)를 시뮬레이션하기 위하여 사용될 수 있는 3-층화 시뮬레이션된 절개가능 조직(47)이다. 복수의 층들을 갖는 것이 시뮬레이션된 절개가능 조직 구조체에 대하여 정확하고, 사실적인 느낌 및 기능을 제공한다. 또한, 시뮬레이션된 절개가능 조직(47)은 바람직하게는 개업의가 절개 스킬들을 실습할 수 있는 다양한 조직 평면들을 생성한다. 모델(26)은, 층을 절개하기 위한 능력을 제공할 뿐만 아니라, 개업의가 각각의 개별적인 절차에 대하여 학습하기 위한 중요한 스킬인 조직 평면들 또는 층들(44, 48, 50, 54, 58a, 58b)을 적절하게 식별하는 것을 가능하게 한다. 일 변형예에 있어서, 시뮬레이션된 절개가능 조직(47)은 맥관구조 층(44) 없이 구성될 수 있으며, 이는 또한 절개를 실습하기 위하여 사용될 수 있다.
시뮬레이션된 절개가능 조직(47)을 제조하는 프로세스를 통해, 몇몇 첨가제들이 도입되었으며, 이들은 시뮬레이션된 절개가능 조직(47)의 다양한 바람직한 특성들 및 반복(iteration)들을 야기하였다. 절개가능 장간막 층(46)의 내부 또는 중간 층(54) 및 외측 제 1 및 제 2 층들(48, 50)에 대한 다양한 조성들의 리스트가 표 2에 도시되며 도 8a 및 도 8b의 순서도에서 요약된다. 도 8a 내지 도 8b의 바람직한 특성들에 기초하여 최적의 절개가능 시트를 결정하기 위한 순서도가 도 9a 내지 도 9b에 도시된다. 도 9a 내지 도 9b에서, 장간막 층은 본 발명에 따른 시뮬레이션된 절개가능 조직에 대한 예시적인 애플리케이션으로서 사용되며, 도 9a 내지 도 9b의 차트는 시뮬레이션된 장간막 층을 만들기 위한 사용으로만 제한되는 것이 아니라 임의의 시뮬레이션된 조직 구조체에서의 사용을 포함할 수 있다. 또한, 도 9a 내지 도 9b의 혈관들의 언급은 시뮬레이션된 혈관들에 한정되는 것이 아니라, 비제한적으로 종양들, 병상들, 장기들, 관(duct)들, 연골 및 유사한 것을 포함하는 임의의 내장된 시뮬레이션된 해부학적 구조체 또는 조직을 포함할 수 있다. 실리콘 외측 층들(48, 50)은 통상적인 2-부분(two-part) 1:1 비율 실온 경화성(room temperature vulcanizing; RTV) 실리콘으로 또는 1:1 비율의 RTV 실리콘 및 약화제(deadening agent) 첨가제로 또는 2:1 비율의 RTV 실리콘 및 약화제 첨가제로 만들어진다. RTV는 비제한적으로 백금 경화형 실온 경화성 실리콘(platinum cured room temperature vulcanization silicone; PCRTVS)을 포함한다. 실리콘 약화제는, 비제한적으로 실리콘 오일을 포함하는 실리콘 유체 화학군 내이며, 백금 경화형 실리콘 첨가제이다. 약화제의 일 예는 펜실바니아 맥컨지의 Smooth-On사에 의해 만들어진 소위 SLACKER이다. 약화제 첨가제는 실리콘을 피부 또는 인간 조직의 느낌과 유사하게 더 부드럽고 더 사실적으로 만든다. 실리콘 약화제는, 결과적인 "느낌"뿐만 아니라 경화된 실리콘의 리바운드(rebound) 속성들을 부드럽게 하고 변경할 수 있는 실리콘 첨가제이다. 이러한 첨가제는 실리콘 오일들을 포함하는 실리콘 유체들의 화학군 내에 있다. 실리콘 유체들 및 실리콘 오일들은 유체의 점도 및 화학적 구조에 의존하는 사용들의 범위를 갖는다. 실리콘 약화제는 백금-경화형 실온 경화 실리콘과 혼합될 수 있는 실리콘 오일의 일 유형이다.
장기들을 몰딩하는데 사용되는 통상적인 실리콘은 00-10 쇼어 내지 10A 쇼어 경도계(durometer)의 범위를 갖는다. 따라서, 약화제의 첨가가 상이한 경도계들을 갖는 실리콘들에 첨가될 때 상이한 속성들을 야기할 것이다. 더 부드러운 경도계에 대한 약화제의 첨가는 완전히 경화될 때 겔-유사 조성물을 야기할 것이다. 그러나, 더 높은 경도계의 실리콘들에 대한 약화제의 첨가는, 완전히 경화될 때 그것의 변형의 파단점(fracture point of deformation)에 더 용이하게 도달하는 더 부드러운 느낌의 실리콘의 바람직한 특징들을 야기한다. 따라서, 실리콘 및 약화제의 조합이 장간막(46)을 구성하는 복막 층과 같은 외부 층들(48, 50)의 촉각적인 특징들을 제공할 수 있다.
중간 층의 변형물들은: (1) 약화제를 갖는 겔, (2) 알콜을 갖는 겔, (3) 알콜뿐만 아니라 열이 부가되는 겔, 또는 (4) 열과 함께 알콜 및 약화제를 갖는 겔을 포함한다. 이소프로필 알콜이 사용된다. 봉입된 겔 층(54)에 대한 각각의 첨가제의 첨가가 층을 통해 절개하기 위해 사용되는 압력 및 힘의 양을 감소시키며, 이는 절개를 더 용이하게 만든다. 겔은, 장간막 어셈블리(46) 내의 중간 절개가능 층(54)으로서 사용될 수 있는 백금 경화형 실리콘 고무 겔이다. 다른 변형예에 있어서, 중간 층(54)을 절개하기에 더 용이하게 만들기 위하여, 알콜이 겔을 희석(thin)시키기 위하여 부가되며, 그에 따라서 겔을 침투하기에 더 용이하게 만든다. 겔 층(54)의 추가적인 품질저하는 중간 층(54)이 절개될 수 있는 용이성을 추가적으로 향상시킨다. 알콜 및 겔 혼합물은 알콜의 기화에 기인하는 다공성 중간 층(54)을 생성하기 위해서뿐만 아니라 경화 시간을 가속하기 위하여 섭씨 약 70 도까지 가열된다. 겔, 알콜 및 열로 구성된 다공성 중간 층(54)은 겔에 대하여 고유한 점성(tack)을 감소시키며, 겔을 침투하고 장간막 층들(48, 50, 54)을 통해 절개하기에 더 용이하게 만든다. 다른 변형예에 있어서, 약화제가 실리콘 겔에 첨가되며, 이는 완전히 경화될 때 더 낮은 탄성 속성을 가지지만 증가된 양의 점성을 가지는 제형을 야기한다. 경화된 겔 혼합물의 점성과 관련된 문제들을 완화시키기 위하여, 알콜이 동일한 비율로 실리콘 겔 및 약화제 혼합물에 첨가된다. 완전히 경화될 때, 결과적인 속성은 겔만의 혼합물, 및 겔, 약화제 혼합물에 비하여 감소된 양의 점성을 가지지만, 또한 복강경 디섹터들을 사용할 때 바람직한 절개가능 촉각적 피드백을 나타낸다. 다시, 이러한 혼합물은 절개가능 층의 다양한 변형예들에 대하여 이상에서 열거된 특징들을 갖는 다공성 중간 층(54)을 생성하기 위하여 가열되도록 도입될 수 있다. 겔 및 다양한 첨가제들로 구성된 중간 절개가능 층(54)의 변형예들은 바람직하게는 장간막 층(46) 내의 2개의 외부 층들(48, 50) 사이에 케이싱된 자유 혈관(free vessel)들을 절개하기 위하여 조직을 통한 움직임의 촉각적인 피드백을 제공한다. 또한, 본원에서 제공되는 조제된 겔 변형물들은, 공동이 둘러싸이고 복강경으로 조명되는 복강경 절차들에서 특히 유익한 광택을 제공하는 사실적인 윤기나는 외관을 층(54)에 제공한다.
표 2: 층들 & 재료들
층 | 재료 | 첨가제 |
외측 | 실리콘 또는 TPE | 약화제 |
중간 |
겔 |
약화제 |
알콜 | ||
알콜 & 열 | ||
약화제 & 열 | ||
약화제 & 알콜 & 열 |
우측 결장 모델(26) 내에 존재하는 맥관구조(44)는 실리콘 또는 텍사스 휴스톤의 크라톤 폴리머즈(Kraton Polymers)로부터의 KRATON 폴리머 튜브들로 만들어진다. 혈관들은 이상에서 설명된 시뮬레이션된 장간막 층(46) 내에 케이싱된다. 맥관구조(44)는 해부학적으로 배열되며, 겔 중간 층(54)에 의해 복막 층들(48, 50)에 부착된다. 또한, 케이싱된 맥관구조(44)를 갖는 절개가능 조직이 우측 반결장 절제술 모델과 관련하여 설명되었지만, 제조 방법이 유사한 수단을 통해 임의의 조직 시뮬레이션 모델에 적용될 수 있거나 또는 시뮬레이션된 조직 플랫폼과 함께 사용하기 위한 독립형 모델에 적용될 수 있다.
우측 결장 트레이의 다른 컴포넌트는 장막(32)이다. 장막(32)은 대장(36) 위에 부착되며, 모델(26)의 상단 위에 걸쳐진다. 장막(32)의 몇몇 변형예들이 개발되어 왔다. 제 1 예는, 모델(26)의 상단 위에 쉽게 걸쳐질 수 있는 텍스처링된 실리콘 캐스트(cast) 장막(32)이다. 그러나, 장막(32)의 무게 및 느낌을 시뮬레이션하기 위하여, 이는 또한 소프트 실리콘 발포고무를 사용하여 캐스팅될 수 있다. 발포고무로 만들어진 장막(32)은 황색으로 채색되며 복부 공동 내에서 더 많은 공간을 차지하는 것으로 나타나지만, 여전히 모델(26)의 상단 위에 걸쳐지는 것이 가능하다. 맥관구조(34)는 맥관구조가 신체 내에서 보여지는 것과 같은 그것의 외관을 시뮬레이션하기 위하여 장막(32)의 변형예들 둘 모두 상에 존재한다.
다시 도 3을 참조하면, 상행 결장(60)을 복부 벽(62)에 연결하는 모델 상의 접합부들(64)의 존재가 우측 반결장 절제술 절차 트레이닝을 위해 중요한 특징이다. 복부 벽(62)을 다루기 위하여, 몇몇 반복들이 발생하였다. 복부 벽(62)의 제 1 반복은 약 2 인치 높이의 발포고무의 길고 얇은 조각을 또한 발포고무로 만들어질 수 있는 베이스(28)의 면에 부착함으로써 이루어진다. 복부 측벽(62)이 또한 이상에서 설명된 형성된 베이스들 및 측벽들의 만곡부를 통해 베이스(28) 내로 구축될 수 있다. 마지막으로, 복부 측벽(62)은, 발포고무 베이스(28)의 길이까지 연장하며 발포고무 베이스(28)에 부착되는 만곡된 강성의 단단한 캐스트 재료로 만들어질 수 있다. 측방 접합부들(64)이 설명된 복부 벽들(62) 중 임의의 것에 부착될 수 있다. 측방 접합부들(64)은, 설명된 복부 벽들(62) 중 임의의 것의 상단에 부착된 2개의 텍스처링된 실리콘 시트들을 사용함으로써 만들어진다. 톨드트의 백선이 복부 벽(62)에 부착된 2개의 시트들 사이에 존재한다. 톨드트의 백선에 대한 몇몇 모델들이 존재한다. 제 1 반복은 로프 섬유(rope fiber)들을 갖는 톨드트의 백선을 시뮬레이션한다. 백색 면 로프의 가닥들이 톨드트의 백선의 맥관구조 평면의 외관을 모방하기 위하여 모델(26) 내에서 사용된다. 톨드트의 백선은 또한 해부학적인 랜드마크를 나타내기 위하여 실리콘으로부터 백색 스트라이프(stripe)를 생성함으로써 시뮬레이션될 수 있다. 톨드트의 백선은 실리콘의 2개의 층들 사이에 부착되며, 그런 다음 층들이 에지들을 따라 서로 부착되고 그 뒤 상행 결장(60) 상에 부착된다. 결과적인 구조체는 장(36)을 복부 측벽(62)에 연결하는 측방 접합부들일 것이다.
본 발명의 다른 측면에 있어서, 시뮬레이션된 절개가능 조직(47)은 적어도 2개의 상이한 층들로 구성된다. 제 1 층은 실리콘 층으로 구성되며, 제 2 층은 실리콘 겔로 구성된다. 시뮬레이션된 절개가능 조직(47)은, 밀접한 해부학적 유사성을 갖는 인조 조직 및 장기 모델들을 생성하기 위해 사용될 수 있으며, 절개 및 다른 수술 절차들을 위해 사용될 수 있는 시뮬레이션 트레이닝 모델들로서 사용될 수 있다. 본 발명에 따른 시뮬레이션된 절개가능 조직(47)은 적어도 하나의 외부 실리콘 층 및 하나 이상의 외부 실리콘 층에 의해 봉입된 겔 층으로 구성된 어셈블리이며, 이는 외과의들에 의해 관찰되는 절개부를 밀접하게 모방하는 구조체를 야기한다. 시뮬레이션된 절개가능 조직의 하나 이상의 외부 실리콘 층들은, 사용되는 총 실리콘 대 약화제의 2:1 비율을 야기하는 총 중량의 33%로 실리콘 약화제와 혼합된 2-부분 RTV 10A 경도계 실리콘으로 만들어진다. 약화제는, 이것이 첨가된 실리콘을 경화시키는 것의 속성을 연하게 하는 실리콘 오일이다. 결과적으로, 약화제가 첨가된 10A 경도계 실리콘이 10A 경도계 실리콘보다 덜 경화될 것이다. 첨가되는 약화제의 양은 그것이 첨가되는 것의 경도계의 속성의 변화들에 비례한다. 실리콘 색소가 실리콘 및 약화제 혼합물에 첨가되며, 이는 실리콘이 나타내도록 캐스팅될 해부학적 조직에 대응하는 색소를 갖는 점착성 혼합물을 생성한다. 실리콘 혼합물은 선택적으로 질감부(texture)을 포함하는 발포고무의 시트 상에 또는 플라스터(plaster) 재료로 만들어진 질감부를 포함하는 시트 상에 캐스팅된다. 캐스팅된 실리콘 혼합물은, 발포고무가 사용되는 경우 약 45 분 동안 실온에서 경화되거나, 또는 발포고무가 사용되지 않은 경우 약 25 분 동안 약 70°C에서 오븐 내에서 경화된다. 시트 크기는 절개되는 평면 또는 표면의 크기에 의존하여 변화하는 길이 및 폭을 가질 수 있다.
경화되면, 실리콘 시트는, 실리콘 시트의 크기보다 더 작은 직사각형 공동을 포함하는 몰드 상에 위치된다. 실리콘 시트는, 시트의 중심 영역이 공동 내에 위치되고 시트의 외부 주변부가 몰드의 표면 상에 평평하게 놓이도록 몰드 상에 위치된다. 이러한 셋 업(set up) 구성을 가지는 것이 겔의 누설을 최소화하는 겔 봉입 프로세스를 가능하게 할 것이다. 중심 공동 내에서, 실리콘 맥관구조 및 종양들과 같은 병상들이 실리콘 접착제를 사용하여 공동 내에 존재하는 시트의 섹션 상에 부착된다. 맥관구조 및 병상의 배열이 전형적으로 절개가 수행되는 해부학적 조직과 유사하다. 실리콘 접착제가 경화되고 맥관구조 및 병상들이 손상되지 않을 때, 중간 겔 층이 생성된다. 본 발명은 맥관구조를 내장하는 것에 한정되지 않으며, 비제한적으로 맥관구조, 종양들, 병상들, 장기들 및 조직 구조체들 및 비제한적으로 임의의 폴리머 재료, 실리콘, KRATON 및 유사한 것을 포함하는 이로부터 이들이 제조되는 재료를 포함하는 다른 해부학적인 랜드마크들 및 구조체들을 포함할 수 있다.
일 변형예에 있어서, 시뮬레이션된 절개가능 조직 내에 존재하는 봉입된 겔은 실리콘 겔, 약화제, 및 이소프로필 알콜로 구성된다. 겔을 생성하기 위하여, 2 부분 실리콘 겔이 중량 및 체적의 동일한 부분들로 혼합 컵에 첨가된다. 첨가된 총 실리콘과 동일한 체적 양으로 약화제가 첨가된다. 약화제와 동일한 체적 양으로 이소프로필 알콜이 첨가된다. 균질한 용액이 생성될 때까지 혼합물이 혼합된다. 절개되는 인간 조직을 가깝게 모방하는 색소를 생성하기 위하여 필요에 따라 실리콘 색소가 첨가될 수 있다. 용액이 완전히 혼합되면, 이는 겔 층을 생성하기 위하여 몰드의 공동 내에 위치된 외부 실리콘 시트의 상단 상에 캐스팅된다. 겔의 누설을 초래할 것이며 전체 조직 모델에 해로울 것이기 때문에, 겔이 공동 내에 포함되며 공동의 상단을 통과하는 것이 허용되지 않는다. 실리콘 겔은 실리콘 탄성중합체이다. 이는 몹시 부드러운 백금 경화형 실리콘 고무이다. 실리콘 겔의 경도계는 쇼어 00 경도 스케일 아래로 떨어지며, 이는 부드러움, 끈끈함(tackiness) 및 낮은 인열 저항의 겔-유사 속성들을 야기한다. 절개가능 조직에 대해 사용되는 겔의 일 예는, 000-35의 경도를 가지며 Smooth-On사에 의해 제조되는 ECOFLEX 겔이다.
제조의 이러한 지점에서, 시뮬레이션된 절개가능 조직 모델을 완성하기 위한 2개의 별개의 방법들이 존재한다. 예를 들어, 시뮬레이션된 절개가능 조직은, 도 1 내지 도 6과 관련하여 설명된 바와 같은 수술 절차를 트레이닝하는데 초점이 맞춰진 장기 트레이 내의 컴포넌트로서 소비될 수 있다. 이러한 경우에 있어서, 시뮬레이션된 절개가능 조직이 트레이 내의 컴포넌트로서 소비될 때, 제 1 실리콘 시트와 동일한 크기 및 실리콘, 약화제, 및 색소의 동일한 조성을 갖는 제 2 실리콘 시트가 겔 층을 봉입하기 위하여 사용된다. 제 2 실리콘 시트는 겔을 포함하는 제 1 시트 위에 위치된다. 임의의 에어 포켓들이 시트들의 측면들로 밀려나고 대기로 방출되도록 층들이 눌려진다. 2개의 실리콘 층들 사이에 밀봉부를 생성하고 겔의 누설을 방지하기 위하여 실리콘 접착제가 2개의 실리콘 시트들 사이의 공동의 주변부를 라이닝하기 위하여 사용된다. 겔은 2개의 실리콘 시트들 사이에서 실온에서 경화되도록 허용된다. 경화되면, 시뮬레이션된 절개가능 조직이 캐스팅 몰드로부터 제거된다. 실리콘 시트들의 주변부들이 장기 트레이 내의 다양한 실리콘 장기들에 시뮬레이션된 절개가능 조직을 부착시키기 위하여 사용될 수 있다. 시뮬레이션된 절개가능 조직(47)은 특히 도 2 내지 도 6에 도시된 바와 같은 우측 반결장 절제술 절차를 트레이닝하는 시뮬레이션된 장기 트레이닝 트레이를 위해 생성될 수 있다.
다른 예에 있어서, 시뮬레이션된 절개가능 조직(46)은 오로지 절개 스킬만을 트레이닝하기 위하여 더 작은 플랫폼 상에서 사용될 수 있다. 이러한 경우에 있어서, 겔 층이 공동 내로 캐스팅되면, 겔 층은 오븐 내에서 약 35 분 동안 약 60°C로 경화된다. 겔이 경화될 때, 10A 경도계 실리콘 혼합물이 시뮬레이션된 절개가능 조직의 외부 실리콘 시트와 동일한 색소를 가지고 마련된다. 제 2 실리콘 시트 층을 형성하기 위하여, 실리콘 혼합물이 겔 및 외부 실리콘 시트 층 위에 캐스팅되며, 그런 다음 오븐에서 약 60°C로 약 30 분 동안 경화된다. 결과적인 시뮬레이션된 절개가능 조직은 절개 스킬을 실습하기 위해 사용될 수 있는 독립형 모델이다. 시뮬레이션된 절개가능 조직의 이러한 반복이 편면(one sided) 모델이며, 여기에서 외부 층의 하나만이 인간 조직의 유사한 속성들을 갖는 더 부드러운 실리콘이다. 10 A 경도계 실리콘을 벗어나도록 구성된 외부 층은, 그 전체가 본원에 참조로서 포함되는 “Surgical training model for laparoscopic procedures”라는 명칭으로 2012년 09월 25일자로 출원된 일련 번호 14/037,005호를 갖는 미국 특허 출원에서 설명되는 종류와 같은 봉합 플랫폼에 위치될 때 모델에 대한 팽팽한 지지를 제공한다.
외부 실리콘 층을 제조하는 동안 첨가되는 약화제 첨가제는 경화된 실리콘을 더 부드럽게 만들고 피부 또는 인간 조직의 느낌으로 더 사실적으로 만든다. 약화제의 첨가가 상이한 경도계들을 갖는 실리콘들에 첨가될 때 상이한 속성들을 야기한다. 더 부드러운 경도계에 대한 약화제의 첨가는 완전히 경화될 때 겔 유사 조성물을 야기할 것이다. 그러나, 더 높은 경도계의 실리콘들에 대한 약화제의 첨가는, 완전히 경화될 때 그것의 변형의 파단점에 더 용이하게 도달하는 더 부드러운 느낌의 실리콘의 바람직한 특징들을 야기한다. 따라서, 실리콘 및 약화제의 조합이 장간막을 구성하는 외부 복막 층과 같은 인간 조직의 촉각적인 특징들을 제공할 수 있다.
중간 겔 층은 알콜 및 열의 첨가뿐만 아니라 약화제를 갖는 겔을 포함한다. 봉입된 겔 층에 대한 각각의 첨가제의 첨가가 관통해 절개하기 위해 사용되는 압력 및 힘의 양을 감소시키며, 이는 절개를 더 용이하게 만든다. 겔은, 시뮬레이션된 절개가능 조직 내의 중간 절개가능 층으로서 사용될 수 있는 백금 경화형 실리콘 고무 겔이다. 알콜이 겔을 희석시키기 위하여 첨가되며, 이는 중간 층을 절개하기에 더 용이하게 만들고 이를 통해 침투하기에 더 용이하게 만든다. 또한, 겔 층의 품질저하가 중간 층의 절개가능 속성들을 추가적으로 향상시킨다. 알콜 및 겔 혼합물은 알콜의 기화를 통해 다공성 중간 층을 생성하기 위해서뿐만 아니라 경화 시간을 가속하기 위하여 가열된다. 겔 및 알콜로 구성된 다공성 중간 층은 겔에 대하여 고유한 점성을 감소시키며, 봉입된 겔 층을 통해 이에 침투하고 절개하기에 더 용이하게 만든다. 다른 변형예에 있어서, 약화제가 실리콘 겔에 첨가되며, 이는 완전히 경화될 때 더 낮은 탄성 속성을 가지지만 증가된 양의 점성을 가지는 제형을 야기한다. 경화된 겔 혼합물의 점성과 관련된 문제들을 완화시키기 위하여, 알콜이 동일한 비율로 실리콘 겔 및 약화제 혼합물에 첨가된다. 완전히 경화될 때, 결과적인 속성은 겔만의 혼합물, 및 겔, 약화제 혼합물에 비하여 감소된 양의 점성을 가지지만, 또한 복강경 디섹터들을 사용할 때 바람직한 절개가능한 촉각적 피드백을 나타낸다. 다시, 이러한 혼합물은 절개가능 층의 다양한 변형예들에 대하여 이상에서 열거된 특징들을 갖는 다공성 중간 층을 생성하기 위하여 가열되도록 도입될 수 있다. 겔 및 다양한 첨가제들로 구성된 중간 절개가능 층의 구성은 장간막 층 또는 다른 조직 구조체 또는 장기 내에 케이싱된 자유 혈관들을 절개하기 위하여 조직을 통한 움직임의 촉각적인 피드백을 제공한다. 또한, 겔의 광택의 사용은 실제 조직 내에서와 같은 사실적인 윤기나는 외관을 제공하며, 이는 특히 복강경 스킬들의 트레이닝 시에 비디오 모니터 상에서 보여질 때 유용하다.
외부 실리콘 층을 제조함에 있어서의 변형예들은 실리콘의 경도계를 변화시키는 것을 포함한다. 시뮬레이션된 장기 모델들을 생성하는데 유용한 RTV 백금 경화형 실리콘들은 00-10 경도계 및 10A 경도계를 포함하며, 실리콘 외부 층은 어느 하나의 실리콘을 사용하여 제조될 수 있다. 추가적으로, 약화제가 실리콘의 경화된 발포고무를 부드럽게 만들기 위하여 실리콘에 첨가될 수 있다. 실리콘의 부드러움 및 탄성의 변화는 첨가되는 약화제의 양에 직접적으로 비례한다. 도 8은 시뮬레이션된 절개가능 조직을 형성하는 외부 실리콘 층들의 순서도를 도시한다.
중간 겔 층은, 약화제, 알콜 및 경화시키기 위한 열의 적용을 포함하는 첨가제들을 갖는 베이스 실리콘 겔로 구성된다. 첨가제들의 각각을 개별적으로 제거하는 것이 각각의 단계에서 변동을 줄 것이며, 이는 각각의 구성에 대한 속성들을 야기할 것이다. 도 8b는 그들이 나타내는 특정 비율을 속성들에서의 첨가제들을 갖는 각각의 겔 층 조성의 변동을 도시한다. 모든 실시예들에 대하여 본 명세서 전체에 걸쳐, 외부 층에 대한 비율들은 체적으로 또는 중량으로 일 수 있으며, 이는 실리콘 및 약화제의 밀도들이 거의 동등하기 때문이다. 약화제 대 알콜에 대한 겔 층에 대한 비율은 체적에 의한다.
시뮬레이션된 절개가능 장간막 층의 어셈블리 내의 변동은 맥관구조를 접착하기 위한 실리콘의 사용을 포함할 수 있다. 이러한 어셈블리의 구성은, 도 7a에 도시된 바와 같이 약화제를 포함하는 실리콘의 2개의 별개의 얇은 시트들을 생성하고 이들을 완전히 경화시키는 초기 단계를 수반한다. 시트들이 완전히 경화될 때, 도 7b에 도시된 바와 같이, 실리콘 겔의 얇은 층(58a, 58b)이 실리콘 시트들(48, 50)의 각각의 텍스처링되지 않은 면 상에 스패튤라 또는 유사한 툴을 사용하여 발라진다. 실리콘 혈관들로 만들어진 맥관구조(44)는 도 7c에 도시된 바와 같이 시트들 중 하나 상의 경화되지 않은 겔 층(58a) 상에 놓인다. 그런 다음, 겔 층들(58a, 58b)을 갖는 실리콘 시트들(48, 50)이 완전히 경화되도록 허용된다. 겔 라이닝 층이 경화될 때, 신선한 실리콘 겔(54)이 마련되며, 이는 실리콘 혈관들(44)이 레이 아웃(lay out)된 실리콘 시트(48) 위로 부어진다. 도 7d에 도시된 바와 같이 겔(54)이 혈관들(44)을 완전히 커버하도록 발라진다. 그런 다음, 제 2 실리콘 시트(50)가 경화되지 않은 겔 위에 놓이며, 에어 포켓들이 에지들로 밀려 난다. 이러한 프로세스의 결과는 도 7e에 도시된 바와 같이 복강경 절개와 호환될 수 있는 다-층화 장간막이다.
본 발명의 시뮬레이션된 절개가능 조직은, 절개되는 전형적인 조직의 낮은 인열 저항, 탄성, 인성, 컬러, 및 질감(texture)의 기계적인 속성들을 갖는다. 메릴랜드(Maryland) 디섹터들 또는 복강경 가위들과 같은 복강경 툴들이 각기 조직을 절개하거나 또는 잘라내기 위하여 이러한 조직 내에서 사용될 수 있다. 겔의 절개가능 조직의 사용은 재료에 고유한 광택을 생성하며, 이는 이것이 사실적인 촉촉한 외관을 갖는 것을 가능하게 한다. 이러한 절개가능 조직을 구성하는데 사용되는 겔이 실리콘 기반이기 때문에, 이는 실리콘 혈관들과 같이 이미 제조된 다양한 다른 실리콘 모델들 또는 장기들에 접착될 수 있다. 또한, 겔의 끈끈함이 KRATON 폴리머와 같은 다른 열가소성 탄성중합체들로 만들어진 혈관들이 실리콘 겔을 가지고 외부 실리콘 층들 상에 부착되는 것을 가능하게 만든다.
본 발명의 시뮬레이션된 절개가능 조직은 절개되는 것이 가능하며, 인간 조직을 밀접하게 모방하는 몇몇 유리한 특성들을 갖는다. 시뮬레이션된 조직은 탄성, 인성, 컬러, 및 질감와 같은 인간 조직의 기계적인 속성들을 에뮬레이션한다. 또한, 시뮬레이션된 조직의 인열 저항 또는 인열 강도가 낮으며, 이는 바람직하게는 조직 분리의 전파를 허용한다. 낮은 인열 저항은 최소한의 힘을 가지고 복강경 메릴랜드 디섹터들 또는 복강경 가위들을 사용하여 비절개박리를 가능하게 한다. 시뮬레이션된 조직은 또한 절개를 필요로 하는 전형적인 해부 구조의 해부학적 랜드마크들 또는 해부학적 구조체들의 포함을 가능하게 한다. 이러한 해부학적 랜드마크들 또는 구조체들은 비제한적으로, 장기들을 둘러싸는 복막 시트들, 장간막 층들 사이에 내장된 맥관구조, 또는 절제되어야 할 종양들과 같은 병상들을 포함한다. 해부학적 랜드마크들 또는 구조체들은 비외상 복강경 그래스퍼들 또는 메릴랜드 디섹터들을 사용하여 그래스핑되거나 또는 복강경 가위들 사용하여 절제되는 것이 가능하다. 추가적으로, 본 발명의 시뮬레이션된 절개가능 조직은 절개의 완료 시에 해부학적 구조체들의 조작 또는 조종을 가능하게 한다. 구조체들의 움직임은 절개가 완료될 때 인간 조직의 해부학적 구조체들의 움직임을 밀접하게 모방한다. 추가적으로, 시뮬레이션된 절개가능 조직은 일관적으로 제조되는 것이 가능하다. 시뮬레이션된 조직은 인간 장기들 또는 멤브레인(membrane)들의 형상을 취하도록 몰딩가능(moldable)하다. 시뮬레이션된 절개가능 조직은 또한 다양한 실리콘들 및 열가소성 플라스틱들과 접착될 수 있다. 본 발명의 실리콘 층들 중 전부 또는 임의의 실리콘 층은, 아래에 내장된 병상들, 종양들, 맥관구조 및 유사한 것이 층들 중 하나 이상의 통해 약간 보일 수 있도록 반투명하거나 또는 투명할 수 있다.
예
도 9a 내지 도 9h를 참조하면, 시뮬레이션된 절개가능 조직의 조성을 갖는 시뮬레이션된 조직을 제조하는 것의 일 예가 이제 설명될 것이다. 2 부분들, 즉, 부분들(A 및 B)을 포함하는 10A 경도계 실리콘이 제공된다. 약 5 그램의 10A 경도계 실리콘의 부분 A가 약 5 그램의 10A 경도계 실리콘의 부분 B와 혼합된다. 약 5 그램의 실리콘 약화제가 첨가된다. 황색 실리콘 색소가 첨가된다. 실리콘, 약화제 및 색소가 완전히 혼합된다. 혼합물이 텍스처링된 몰드 상으로 캐스팅되며, 도 9a에 도시된 바와 같이 제 1 층 시트(66)를 형성하기 위하여 경화된다. 도 9b에 도시된 바와 같이, 약 0.125 인치 깊이의 중심 공동(70)을 갖는 직사각형 몰드(68)가 제공된다. 중심 공동(70)의 깊이는 희망되는 절개가능 두께에 의존하여 수정될 수 있다. 도 9b에 도시된 바와 같이, 맥관구조 템플릿(72)이 중심 공동 내의 직사각형 몰드 내로 위치된다. 템플릿(72)은, 실리콘 혈관들이 정확한 해부 구조를 위하여 위치되어야만 하는 라인들(74)을 묘사한다. 템플릿(72)은 또한 특정 병상들이 포함되어야만 하는 해부학적 위치들(76)의 묘사들을 포함한다. 맥관구조 템플릿(72)이 개시되었지만, 본 발명이 이에 한정되는 것은 아니며, 특정 구조체들, 병상들, 장기들, 종양들 및 다른 조직 및 해부학적 랜드마크들이 위치되어야만 하는 장소를 지시하는 임의의 해부학적 특징들의 템플릿(72)이 이용될 수 있다. 그런 다음, 제 1 층 시트(66)는, 도 9c에 도시된 바와 같이 제 1 층 시트가 몰드(68)의 외부 에지들과 정렬되도록 몰드(68) 위에 위치된다. 제 1 층 시트(66)는, 템플릿(72)이 제 1 층 시트(66)를 통해 보일 수 있도록 투명하다. 다음으로, 도 9d에 도시된 바와 같이, 시뮬레이션된 맥관구조(78) 및 시뮬레이션된 종양들(80)이 아래에 위치된 템플릿(72) 상에 도시된 위치들에 실리콘 접착제를 사용하여 제 1 실리콘 시트 층(66)에 부착된다. 시뮬레이션된 맥관구조(78)는 템플릿(72)의 라인들(74) 위에 위치된다. 템플릿(72) 상의 라인들(74) 또는 다른 형상들은, 대응하는 채색된 혈관들 및/또는 장기들이 정확한 해부학적 위치들에 위치될 수 있도록 추가적으로 컬러-코딩(color-code)될 수 있다. 약 3.3 그램의 부분 A 실리콘 겔이 약 3.3 그램의 부분 B 실리콘 겔과 혼합된다. 약 6.67 밀리미터의 실리콘 약화제 및 5.27 그램의 이소프로필 알콜이 실리콘 겔에 첨가되며 함께 혼합된다. 체적 측정으로, 이러한 양들은, 약 3.3 밀리미터의 부분 B 실리콘 겔, 6.67 밀리미터의 실리콘 약화제 및 6.67 밀리미터의 이소프로필 알콜과 혼합된 약 3.3 밀리미터의 부분 A의 실리콘 겔일 것이다. 황색 및 백색 실리콘 색소가 첨가되고 혼합된다. 도 9e에 도시된 중간 겔 층(82)을 생성하기 위하여, 혼합물이 시뮬레이션된 맥관구조(78)를 둘러싸지만 공동 위로 누설되지 않도록 중심 공동 내로 캐스팅된다. 모든 컴포넌트들이 섭씨 약 60 도에서 약 35 분 동안 오븐에서 경화된다. 중간 겔 층(82)이 또한, 시뮬레이션된 혈관들(78) 및 시뮬레이션된 종양(80)이 중간 겔 층(82)을 통해 보일 수 있도록 경화되었을 때 투명하다. 10A 경도계 실리콘의 약 35 그램의 부분 B 및 35 그램의 부분 A가 혼합된다. 실리콘이 제 2 외부 층(84)을 생성하기 위하여 모델의 경화된 겔 및 측면 표면들 위에 캐스팅된다. 그런 다음, 모델은 섭씨 약 60 도에서 약 25 분 동안 오븐 내에서 경화되도록 허용된다. 제 2 외부 층(84)이 또한, 겔 층(82) 및 외부 층(84)의 조합 내에서 시뮬레이션된 종양(80) 및 시뮬레이션된 혈관들(78)과 같은 내장된 랜드마크들이 층들(66, 82, 84)을 통해 보일 수 있도록 투명하다. 실리콘 시트 샌드위치의 임의의 여분의 주변부는, 2개의 둘러싸는 외부 층들(66, 84)에 의해 중간 겔 층(82)이 봉입된 상태에서 모델의 치수들이 약 4 인치 곱하기 5 인치가 되도록 트리밍(trim)된다. 모델의 주변부는, 겔 층(84)이 모델 밖으로 누설되는 것을 방지하기 위하여 그들 사이에 중간 겔 층(82)이 없는 상태로 서로에 대하여 접착된 2개의 외부 층들(66, 84)로 만들어 진다. 외부 층들(66, 84)은 겔 중간 층(84)을 밀봉하며 이를 둘러싸도록 기능한다. 도 9g 및 도 9h를 참조하면, 직사각형 모델의 코너들 내에 4개의 홀(hole)들(86)이 천공되며, 모델은, 절개가 실습될 수 있도록 시뮬레이션된 조직 플랫폼(90)의 직립 페그(peg)들(88) 위에 위치되고 트램펄린-유사(trampoline-like) 방식으로 매달린다. 도 9a 내지 도 9h의 시뮬레이션된 조직 모델은 담낭에 인접한 맥관구조의 시뮬레이션된 조직 모델이며, 이는 부분적인 담낭 모델로서 고려될 수 있고 시뮬레이션된 담낭을 포함하거나 또는 포함하지 않을 수 있다. 사용 시에, 모델이 플랫폼(90) 상에 매달리거나 또는 더 큰 장기 모델 또는 장기 트레인의 부분을 이룰 수 있고, 개업의가 모델 상에서 수술 절차들을 트레이닝할 수 있도록 수술 시뮬레이션 및/또는 트레이너 내에 위치될 수 있다. 모델은 또한 시뮬레이터 및/또는 트레이너 외부에서 사용될 수 있다. 도 11을 추가적으로 참조하면, 개업의가 제 2 외부 층(84)을 절개하고 중간 겔 층(82)으로 진입할 것이다. 개업의는 내장된 구조체들, 시뮬레이션된 혈관들(78) 및 시뮬레이션된 종양들(80)에 액세스(access)하기 위하여 제 2 외부 층(84)을 제 1 외부 층(66)으로부터 멀어지도록 펼칠 것이다. 이렇게 하는 동안, 개업의는 중간 겔 층(82)을 분리하거나 또는 절개해야만 할 것이다. 중간 겔 층(82)은 부드러우며, 광택이 있고 탄성적이다. 제 2 외부 층(84)이 들어올려질 때, 제 2 외부 층(84)이 제 1 외부 층(66)으로부터 멀어지도록 이동됨에 따라, 중간 층(82)의 부드러운 탄성 겔이 바람직하게는 섬유 멤브레인을 모방할 것이다. 중간 겔 층(82)이 늘려짐에 따라, 이는 통상적으로 바람직하게는, 외과의가 겔의 이러한 가닥들을 통해 절제를 실습할 수 있는 2개의 층들 사이에 상호연결된 채로 남아 있는 겔의 가닥들(92)을 갖는 깊은 포켓들 내로 개방된다. 부드러운 실리콘 겔의 비절개박리 또는 날카로운 절개가 계속해서, 제 1 외부 층(66)과 제 2 외부 층(84) 사이에 그리고 중간 겔 층(82)을 통한 절개 평면을 생성하는 공간을 개방할 것이다. 정면 층이 중간 겔 층(82) 내에 내장된 시뮬레이션된 맥관구조(78)와 같은 구조체들의 가시성을 추가적으로 획득하기 위하여 절개되고 분할될 수 있으며, 이는 골격화를 에뮬레이션한다.
본원에 개시된 시뮬레이션된 절개가능 조직의 실시예들에 대해 다양한 변형들이 이루어질 수 있다는 것이 이해되어야 한다. 따라서, 이상의 설명은 제한적이 아니라 단지 선호되는 실시예들의 예시들로서 해석되어야만 한다. 당업자들은 본 발명의 사상 및 범위 내의 다른 수정예들을 구상할 것이다.
Claims (62)
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 수술 트레이닝을 위한 시뮬레이션된 절개가능 조직을 제조하는 방법으로서,
실리콘의 제 1 얇은 시트 및 실리콘의 제 2 얇은 시트를 형성하는 단계;
상기 실리콘의 제 1 얇은 시트 및 상기 실리콘의 제 2 얇은 시트를 동시에 경화시키는 단계;
제 1 겔-라이닝된((gel-lined) 실리콘 시트 및 제 2 겔-라이닝된 실리콘 시트를 형성하는 단계;
적어도 하나의 시뮬레이션된 해부학적 구조체를 상기 제 1 겔-라이닝된 실리콘 시트 상에 위치시키는 단계;
상기 적어도 하나의 시뮬레이션된 해부학적 구조체를 갖는 상기 제 1 겔-라이닝된 실리콘 시트 및 상기 제 2 겔-라이닝된 실리콘 시트를 동시에 경화시키는 단계;
경화되지 않은 실리콘 겔 층을 형성하기 위하여 상기 제 1 겔-라이닝된 실리콘 시트 위에 경화되지 않은 실리콘 겔을 붓는 단계로서, 상기 붓는 단계는 상기 적어도 하나의 시뮬레이션된 해부학적 구조체를 갖는 상기 제 1 겔-라이닝된 실리콘 시트를 경화시키는 단계를 수행한 이후에 수행되는, 단계; 및
평면 다층 구조체를 형성하기 위하여 상기 제 1 겔-라이닝된 실리콘 시트 위의 상기 경화되지 않은 실리콘 겔 층 위에 상기 제 2 겔-라이닝된 실리콘 시트를 위치시키는 단계를 포함하는, 방법.
- 청구항 21에 있어서,
상기 방법은, 상기 제 1 겔-라이닝된 실리콘 시트와 상기 제 2 겔-라이닝된 실리콘 시트 사이에 배치된 상기 경화되지 않은 실리콘 겔 층이 경화되는 것을 허용하는 단계를 더 포함하는, 방법.
- 청구항 21에 있어서,
상기 제 1 겔-라이닝된 실리콘 시트 및 제 2 겔-라이닝된 실리콘 시트를 형성하는 단계는, 상기 실리콘의 제 1 얇은 시트 및 상기 실리콘의 제 2 얇은 시트의 각각의 하나의 면 상에 경화되지 않은 실리콘의 얇은 층을 바르는(spread) 단계를 포함하며, 상기 바르는 단계는 스패튤라(spatula)를 사용하여 수행되는, 방법.
- 청구항 21에 있어서,
상기 경화되지 않은 실리콘 겔 층은 상기 적어도 하나의 시뮬레이션된 해부학적 구조체를 완전히 커버하는, 방법.
- 청구항 21에 있어서,
상기 방법은, 상기 붓는 단계 이전에 상기 경화되지 않은 실리콘 겔을 마련하는 단계를 더 포함하는, 방법.
- 청구항 25에 있어서,
상기 경화되지 않은 실리콘 겔을 마련하는 단계는, 체적으로 1:1의 비율의 실리콘 겔 및 알콜의 혼합물, 체적으로 1:1의 비율의 실리콘 겔 및 약화제의 혼합물, 및 체적으로 1:1:1의 비율의 실리콘 겔 및 약화제 및 알콜의 혼합물로 구성된 그룹으로부터 상기 경화되지 않은 실리콘 겔을 선택하는 단계를 포함하는, 방법.
- 청구항 26에 있어서,
상기 경화되지 않은 실리콘 겔을 마련하는 단계는, 25 분 동안 적어도 섭씨 60 도의 온도에서 실리콘 겔 및 알콜의 상기 혼합물 또는 실리콘 겔 및 약화제 및 알콜의 상기 혼합물을 가열하는 단계를 더 포함하는, 방법.
- 청구항 21에 있어서,
상기 평면 다층 구조체를 형성하기 위해 상기 제 2 겔-라이닝된 실리콘 시트를 위치시키는 단계는, 상기 평면 다층 구조체 내에 위치된 에어 포켓(air pocket)들을 실질적으로 제거하기 위하여 압력을 인가하는 단계를 더 포함하는, 방법.
- 청구항 28에 있어서,
상기 방법은, 상기 경화되지 않은 실리콘 겔 층을 봉입하고 밀봉하기 위하여 상기 제 1 겔-라이닝된 실리콘 시트 및 상기 제 2 겔-라이닝된 실리콘 시트의 주변부들을 함께 부착하는 단계로서, 상기 제 1 겔-라이닝된 실리콘 시트 및 상기 제 2 겔-라이닝된 실리콘 시트의 주변부들은 상기 경화되지 않은 실리콘 겔 층을 둘러싸는, 단계를 더 포함하는, 방법.
- 청구항 21에 있어서,
상기 적어도 하나의 시뮬레이션된 해부학적 구조체는 실리콘 또는 크라톤 폴리머들로 만들어진 혈관들, 맥관구조, 병상, 종양, 장기, 연골 및 관(duct) 중 하나 이상을 포함하며, 상기 적어도 하나의 시뮬레이션된 해부학적 구조체는 상기 경화되지 않은 실리콘 겔 층 내에 내장되는, 방법.
- 청구항 21에 있어서,
상기 평면 다층 구조체는 장간막 층을 시뮬레이션하며, 상기 실리콘의 제 1 및 제 2 얇은 시트는 복막 층들을 나타내고, 상기 제 1 및 제 2 겔-라이닝된 실리콘 시트들 사이에 배치되는 상기 경화되지 않은 실리콘 겔 층은 상기 적어도 하나의 시뮬레이션된 해부학적 구조체를 둘러싸는 결합 조직을 나타내는, 방법.
- 수술 트레이닝을 위한 시뮬레이션된 절개가능 조직으로서,
평면 다층 구조체를 포함하며,
상기 평면 다층 구조체는,
내부 표면 및 외부 표면을 갖는 실리콘의 제 1 얇은 시트로서, 상기 실리콘의 제 1 얇은 시트의 상기 내부 표면은 실리콘 겔로 코팅되어 제 1 겔-라이닝된 실리콘 시트를 형성하는, 상기 실리콘의 제 1 얇은 시트;
내부 표면 및 외부 표면을 갖는 실리콘의 제 2 얇은 시트로서, 상기 실리콘의 제 2 얇은 시트의 상기 내부 표면은 실리콘 겔로 코팅되어 제 2 겔-라이닝된 실리콘 시트를 형성하는, 상기 실리콘의 제 2 얇은 시트;
상기 제 1 겔-라이닝된 실리콘 시트 및 상기 제 2 겔-라이닝된 실리콘 시트 사이에 위치된 실리콘 겔을 포함하는 제 3 층을 포함하는, 시뮬레이션된 절개가능 조직.
- 청구항 32에 있어서,
상기 제 3 층은, 실리콘 겔, 체적으로 1:1의 비율의 실리콘 겔 및 알콜의 혼합물, 체적으로 1:1의 비율의 실리콘 겔 및 약화제의 혼합물, 및 체적으로 1:1:1의 비율의 실리콘 겔 및 약화제 및 알콜의 혼합물로 구성된 그룹으로부터 선택된 재료로 구성되는, 시뮬레이션된 절개가능 조직.
- 청구항 32에 있어서,
상기 시뮬레이션된 절개가능 조직은 상기 제 1 겔-라이닝된 실리콘 시트와 상기 제 2 겔-라이닝된 실리콘 시트 사이에 위치된 적어도 하나의 시뮬레이션된 해부학적 구조체를 더 포함하며, 상기 적어도 하나의 시뮬레이션된 해부학적 구조체는 상기 제 3 층 내에 내장되는, 시뮬레이션된 절개가능 조직.
- 청구항 34에 있어서,
상기 하나 이상의 시뮬레이션된 해부학적 구조체는 상기 제 1 겔-라이닝된 실리콘 시트 및 상기 제 2 겔-라이닝된 실리콘 시트 중 하나에 부착되는, 시뮬레이션된 절개가능 조직.
- 청구항 34에 있어서,
상기 적어도 하나의 시뮬레이션된 해부학적 구조체는 실리콘 또는 크라톤 폴리머들로 만들어진 혈관들, 맥관구조, 병상, 종양, 장기, 연골 및 관 중 하나 이상을 포함하는, 시뮬레이션된 절개가능 조직.
- 청구항 32에 있어서,
상기 제 1 겔-라이닝된 실리콘 시트 및 상기 제 2 겔-라이닝된 실리콘 시트의 주변부들은 상기 제 3 층을 둘러싸며, 상기 제 1 및 제 2 겔-라이닝된 실리콘 시트들의 주변부들은 함께 부착되어 상기 제 3 층을 봉입하고 밀봉하기 위한 포켓을 형성하는, 시뮬레이션된 절개가능 조직.
- 청구항 32에 있어서,
상기 제 1 겔-라이닝된 실리콘 시트 및 제 2 겔-라이닝된 실리콘 시트는 상기 제 3 층을 포함하도록 밀봉되는 포켓을 형성하는, 시뮬레이션된 절개가능 조직.
- 청구항 32에 있어서,
상기 평면 다층 구조체는 장간막 층을 시뮬레이션하며, 상기 실리콘의 제 1 및 제 2 얇은 시트는 복막 층들을 나타내고, 상기 제 1 및 제 2 겔-라이닝된 실리콘 시트들 사이에 배치되는 상기 제 3 층은 적어도 하나의 시뮬레이션된 해부학적 구조체를 둘러싸는 결합 조직을 나타내는, 시뮬레이션된 절개가능 조직.
- 청구항 39에 있어서,
상기 적어도 하나의 시뮬레이션된 해부학적 구조체는 시뮬레이션된 혈관들 및 맥관구조들을 나타내는, 시뮬레이션된 절개가능 조직.
- 청구항 32에 있어서, 상기 제 1 및 제 2 겔-라이닝된 실리콘 시트들은 절개가능하고, 제 3 층은, 상기 제 1 및 제 2 겔-라이닝된 실리콘 시트들이 무딘 기구로 분리될 수 있도록 상기 제 1 겔-라이닝된 실리콘 시트 및 상기 제 2 겔-라이닝된 실리콘 시트를 함께 탄성적으로 부착하도록 구성되는, 시뮬레이션된 절개가능 조직.
- 청구항 31에 있어서,
상기 적어도 하나의 시뮬레이션된 해부학적 구조체는 시뮬레이션된 혈관들 및 맥관구조들을 나타내는, 방법. - 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020227029086A KR102581212B1 (ko) | 2014-03-26 | 2015-03-26 | 시뮬레이션된 절개가능 조직 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461970436P | 2014-03-26 | 2014-03-26 | |
US61/970,436 | 2014-03-26 | ||
PCT/US2015/022774 WO2015148817A1 (en) | 2014-03-26 | 2015-03-26 | Simulated dissectible tissue |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020227029086A Division KR102581212B1 (ko) | 2014-03-26 | 2015-03-26 | 시뮬레이션된 절개가능 조직 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20160138064A KR20160138064A (ko) | 2016-12-02 |
KR102438168B1 true KR102438168B1 (ko) | 2022-08-31 |
Family
ID=52875786
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020227029086A KR102581212B1 (ko) | 2014-03-26 | 2015-03-26 | 시뮬레이션된 절개가능 조직 |
KR1020167026613A KR102438168B1 (ko) | 2014-03-26 | 2015-03-26 | 시뮬레이션된 절개가능 조직 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020227029086A KR102581212B1 (ko) | 2014-03-26 | 2015-03-26 | 시뮬레이션된 절개가능 조직 |
Country Status (8)
Country | Link |
---|---|
US (1) | US10796606B2 (ko) |
EP (2) | EP3913602A1 (ko) |
JP (2) | JP6623169B2 (ko) |
KR (2) | KR102581212B1 (ko) |
AU (2) | AU2015235994B2 (ko) |
CA (1) | CA2943197C (ko) |
ES (1) | ES2891756T3 (ko) |
WO (1) | WO2015148817A1 (ko) |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2911454T3 (es) | 2010-10-01 | 2022-05-19 | Applied Med Resources | Dispositivo de entrenamiento laparoscópico portátil |
AU2012325987B2 (en) | 2011-10-21 | 2017-02-02 | Applied Medical Resources Corporation | Simulated tissue structure for surgical training |
AU2012358851B2 (en) | 2011-12-20 | 2016-08-11 | Applied Medical Resources Corporation | Advanced surgical simulation |
EP2880647A1 (en) | 2012-08-03 | 2015-06-10 | Applied Medical Resources Corporation | Simulated stapling and energy based ligation for surgical training |
AU2013323744B2 (en) | 2012-09-26 | 2017-08-17 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
WO2014052612A1 (en) | 2012-09-27 | 2014-04-03 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
EP3483863B1 (en) | 2012-09-27 | 2021-04-21 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
US10679520B2 (en) | 2012-09-27 | 2020-06-09 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
AU2013323255B2 (en) | 2012-09-28 | 2018-02-08 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
EP3467805B1 (en) | 2012-09-28 | 2020-07-08 | Applied Medical Resources Corporation | Surgical training model for transluminal laparoscopic procedures |
EP3660816B1 (en) | 2013-03-01 | 2021-10-13 | Applied Medical Resources Corporation | Advanced surgical simulation constructions and methods |
JP6496717B2 (ja) | 2013-06-18 | 2019-04-03 | アプライド メディカル リソーシーズ コーポレイション | 外科的処置を教示すると共に練習するための胆嚢モデル |
US10198966B2 (en) | 2013-07-24 | 2019-02-05 | Applied Medical Resources Corporation | Advanced first entry model for surgical simulation |
US9548002B2 (en) | 2013-07-24 | 2017-01-17 | Applied Medical Resources Corporation | First entry model |
EP3913602A1 (en) | 2014-03-26 | 2021-11-24 | Applied Medical Resources Corporation | Simulated dissectible tissue |
KR102518089B1 (ko) | 2014-11-13 | 2023-04-05 | 어플라이드 메디컬 리소시스 코포레이션 | 시뮬레이션된 조직 모델들 및 방법들 |
JP6806684B2 (ja) | 2015-02-19 | 2021-01-06 | アプライド メディカル リソーシーズ コーポレイション | 模擬組織構造体および方法 |
WO2016183412A1 (en) | 2015-05-14 | 2016-11-17 | Applied Medical Resources Corporation | Synthetic tissue structures for electrosurgical training and simulation |
EP4057260A1 (en) | 2015-06-09 | 2022-09-14 | Applied Medical Resources Corporation | Hysterectomy model |
AU2016291726B2 (en) | 2015-07-16 | 2022-02-03 | Applied Medical Resources Corporation | Simulated dissectable tissue |
WO2017059417A1 (en) | 2015-10-02 | 2017-04-06 | Applied Medical Resources Corporation | Hysterectomy model |
JP6886975B2 (ja) * | 2015-11-20 | 2021-06-16 | アプライド メディカル リソーシーズ コーポレイション | 模擬切開可能組織 |
EP3251811B1 (en) | 2016-05-30 | 2019-08-28 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Method of producing a phantom and phantom |
EP3475939B1 (en) | 2016-06-27 | 2023-06-07 | Applied Medical Resources Corporation | Simulated abdominal wall |
US11348482B2 (en) * | 2016-07-25 | 2022-05-31 | Rush University Medical Center | Inanimate model for laparoscopic repair |
JP6860141B2 (ja) * | 2016-12-14 | 2021-04-14 | 学校法人自治医科大学 | デブリードマンシミュレータ |
JP7235665B2 (ja) | 2017-02-14 | 2023-03-08 | アプライド メディカル リソーシーズ コーポレイション | 腹腔鏡訓練システム |
US10847057B2 (en) | 2017-02-23 | 2020-11-24 | Applied Medical Resources Corporation | Synthetic tissue structures for electrosurgical training and simulation |
US10943507B2 (en) * | 2017-07-27 | 2021-03-09 | Mochtech, Llc | Self-contained multipurpose medical training system and components |
JP7320504B2 (ja) * | 2017-11-15 | 2023-08-03 | アプライド メディカル リソーシーズ コーポレイション | 縫合技術外科訓練モデル |
AU2018377861B2 (en) * | 2017-11-30 | 2024-09-05 | Queensland University Of Technology | Surgical training device |
AU2018388635B2 (en) | 2017-12-19 | 2024-11-07 | Applied Medical Resources Corporation | Total mesorectal excision surgical simulator |
KR20210014157A (ko) * | 2018-06-01 | 2021-02-08 | 어플라이드 메디컬 리소시스 코포레이션 | 신장문 수술 시뮬레이션 시스템 |
WO2020062521A1 (zh) * | 2018-09-29 | 2020-04-02 | 江南大学 | 一种仿生消化道及其制备方法和应用 |
US11107371B2 (en) * | 2019-05-24 | 2021-08-31 | Sharp Medical Products—Chest Tube, LLC. | Rib training assembly |
WO2022004770A1 (ja) * | 2020-07-01 | 2022-01-06 | テルモ株式会社 | 血管モデルおよび医療用長尺体の評価方法 |
CA3209856A1 (en) * | 2021-03-01 | 2022-09-09 | Gwendolyn Mary-jean MORGAN | Tactile tissue simulating structures |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110207104A1 (en) * | 2010-02-19 | 2011-08-25 | Gaumard Scientific Company, Inc. | Breast tissue models, materials, and methods |
Family Cites Families (442)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US184573A (en) | 1876-11-21 | Improvement in gas-cocks | ||
US2127774A (en) | 1936-04-27 | 1938-08-23 | Jacobs Julian Bay | Apparatus for teaching obstetrics |
US2324702A (en) | 1938-11-30 | 1943-07-20 | Karl F Hoffmann | Surgical simulacra and process of preparing same |
US2284888A (en) | 1941-04-14 | 1942-06-02 | Arc Diaphragm & Drug Co | Demonstrating device for vaginal diaphragms |
US2345489A (en) | 1943-04-10 | 1944-03-28 | Frederic P Lord | Anatomical model |
US2495568A (en) | 1948-12-30 | 1950-01-24 | Holland Rantos Company Inc | Clinical model |
US3766666A (en) | 1971-10-13 | 1973-10-23 | Robins Co Inc A H | Uterine simulator trainer |
US3789518A (en) | 1972-04-12 | 1974-02-05 | Weatherby Nasco Inc | Simulated human limb |
US3775865A (en) | 1972-07-24 | 1973-12-04 | R Rowan | Simulator for teaching suturing techniques |
US3991490A (en) | 1973-04-09 | 1976-11-16 | Markman H David | Teaching aid for sigmoidoscope and the like |
US3921311A (en) | 1975-01-06 | 1975-11-25 | Pathfinder Fund | Clinical demonstration model |
US4001951A (en) | 1975-03-25 | 1977-01-11 | Fasse Wolfgang G | Breast cancer detection training device |
US4001952A (en) | 1975-10-24 | 1977-01-11 | Kleppinger Trygve M | Hysteroscopy teaching aid |
US4134218A (en) * | 1977-10-11 | 1979-01-16 | Adams Calvin K | Breast cancer detection training system |
US4321047A (en) | 1980-06-05 | 1982-03-23 | Bradley Landis | Simulator and process for teaching surgical knot tying techniques |
US4323350A (en) | 1980-09-22 | 1982-04-06 | Bowden Jr Robert L | Anatomical model |
US4371345A (en) | 1980-10-17 | 1983-02-01 | National Research Development Corporation | Multi-dimensional display equipment |
US4332569A (en) | 1981-03-16 | 1982-06-01 | University Of Kentucky Research Foundation | Instructional device for use of a bronchoscope |
ES260340Y (es) | 1981-08-31 | 1982-10-16 | Dispositivo de aprendizaje para endoscopias | |
US4386917A (en) | 1981-09-16 | 1983-06-07 | Forrest Leonard E | Suturing training device and method |
US4481001A (en) * | 1983-05-26 | 1984-11-06 | Collagen Corporation | Human skin model for intradermal injection demonstration or training |
US4596528A (en) | 1984-07-02 | 1986-06-24 | Lewis Leonard A | Simulated skin and method |
US4726772A (en) | 1986-12-01 | 1988-02-23 | Kurt Amplatz | Medical simulator |
US4737109A (en) * | 1987-03-03 | 1988-04-12 | Abramson Daniel J | Breast cancer detection training device |
US4832978A (en) | 1987-04-24 | 1989-05-23 | Lesser Jary M | Simulated connective tissue for construction of models and prostheses |
US4789340A (en) | 1987-08-18 | 1988-12-06 | Zikria Bashir A | Surgical student teaching aid |
ATE114490T1 (de) | 1987-08-24 | 1994-12-15 | Holdings Pty Ltd Merredin | Puppe. |
IL84752A (en) | 1987-12-08 | 1991-11-21 | Elscint Ltd | Anatomical models and methods for manufacturing such models |
US4907973A (en) | 1988-11-14 | 1990-03-13 | Hon David C | Expert system simulator for modeling realistic internal environments and performance |
US4867686A (en) | 1989-02-09 | 1989-09-19 | Goldstein Mark K | Breast cancer detection model and method for using same |
US4938696A (en) | 1989-07-25 | 1990-07-03 | Foster-Pickard International, Inc. | Model demonstrating human organ systems |
US5061187A (en) | 1990-04-12 | 1991-10-29 | Ravinder Jerath | Ultrasound training apparatus |
US5104328A (en) | 1990-04-18 | 1992-04-14 | Lounsbury Katherine L | Anatomical model |
US5149270A (en) | 1990-10-29 | 1992-09-22 | Mckeown M J | Apparatus for practicing surgical procedures |
US5279547A (en) | 1991-01-03 | 1994-01-18 | Alcon Surgical Inc. | Computer controlled smart phacoemulsification method and apparatus |
DE4105892A1 (de) | 1991-02-14 | 1992-08-27 | Arnold Dipl Ing Dr Med Pier | Trainingsgeraet fuer die laparoskopische operationstechnik |
DE9102218U1 (de) | 1991-02-14 | 1991-05-16 | Pier, Arnold, Dipl.-Ing. Dr.med., 5138 Heinsberg | Trainingsgerät für die laparoskopische Operationstechnik |
DE69230494T2 (de) | 1991-04-05 | 2000-06-08 | Metcal Inc., Menlo Park | Instrument zum schneiden, koagulieren und abtragen von gewebe |
US5403191A (en) | 1991-10-21 | 1995-04-04 | Tuason; Leo B. | Laparoscopic surgery simulator and method of use |
US5180308A (en) | 1992-01-06 | 1993-01-19 | Garito Jon C | Medical demonstration model |
US5318448A (en) | 1992-01-06 | 1994-06-07 | Garito Jon C | Demonstration model for gynecological procedure |
DK0621974T3 (da) * | 1992-01-15 | 1997-09-01 | Limbs & Things Ltd | Kirurgisk og/eller klinisk apparat |
US5775916A (en) | 1992-01-15 | 1998-07-07 | Limbs & Things Limited | Method of making a surgical and/or clinical apparatus |
FR2691826A1 (fr) | 1992-06-01 | 1993-12-03 | Allal Hossein | Appareil de simulation d'actes cÓoeliochirurgicaux. |
US5273435B1 (en) | 1992-07-16 | 1995-12-05 | Wisconsin Med College Inc | Tumor localization phantom |
US5230630A (en) | 1992-07-20 | 1993-07-27 | Richard Burgett | Suture training device |
US5368487A (en) | 1992-07-31 | 1994-11-29 | Medina; Marelyn | Laparoscopic training device and method of use |
US5762458A (en) | 1996-02-20 | 1998-06-09 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive cardiac procedures |
WO1994006109A1 (de) | 1992-09-07 | 1994-03-17 | Diethelm Wallwiener | Medizinisches trainingsgerät |
US5310348A (en) | 1992-10-09 | 1994-05-10 | United States Surgical Corporation | Suture demonstration portfolio |
US5295694A (en) | 1992-10-27 | 1994-03-22 | Levin John M | Laparoscopic surgery simulating game |
US5769640A (en) | 1992-12-02 | 1998-06-23 | Cybernet Systems Corporation | Method and system for simulating medical procedures including virtual reality and control method and system for use therein |
US5358408A (en) | 1993-03-09 | 1994-10-25 | Marelyn Medina | Tissue specimen suspension device |
US5320537A (en) | 1993-03-16 | 1994-06-14 | Triangle Research And Development Corporation | Microsurgical training apparatus |
US5472345A (en) | 1993-04-14 | 1995-12-05 | Gaumard Scientific Company, Inc. | Gynecological simulator |
US5425644A (en) | 1993-05-13 | 1995-06-20 | Gerhard Szinicz | Surgical training apparatus and method |
US5518407A (en) | 1993-11-02 | 1996-05-21 | Greenfield; Cathy L. | Anatomically correct artificial organ replicas for use as teaching aids |
US5518406A (en) | 1993-11-24 | 1996-05-21 | Waters; Tammie C. | Percutaneous endoscopic gastrostomy teaching device |
US5380207A (en) | 1993-12-27 | 1995-01-10 | Siepser; Steven B. | Slip suture practice kit |
DE4414832A1 (de) | 1994-04-28 | 1995-11-02 | Laerdal Asmund S As | Modell zum Üben des Einstechens in Blutgefäße und/oder der Gefäßresektion |
US5541304A (en) | 1994-05-02 | 1996-07-30 | Hercules Incorporated | Crosslinked hydrogel compositions with improved mechanical performance |
US5623582A (en) | 1994-07-14 | 1997-04-22 | Immersion Human Interface Corporation | Computer interface or control input device for laparoscopic surgical instrument and other elongated mechanical objects |
WO1996010725A1 (fr) | 1994-09-30 | 1996-04-11 | Tovarischestvo S Ogranichennoi Otvetstvennostiu 'anter Ltd.' | Cible |
US5720742A (en) | 1994-10-11 | 1998-02-24 | Zacharias; Jaime | Controller and actuating system for surgical instrument |
US6106524A (en) | 1995-03-03 | 2000-08-22 | Neothermia Corporation | Methods and apparatus for therapeutic cauterization of predetermined volumes of biological tissue |
US5882206A (en) | 1995-03-29 | 1999-03-16 | Gillio; Robert G. | Virtual surgery system |
US5649956A (en) | 1995-06-07 | 1997-07-22 | Sri International | System and method for releasably holding a surgical instrument |
US5814038A (en) | 1995-06-07 | 1998-09-29 | Sri International | Surgical manipulator for a telerobotic system |
US5620326A (en) | 1995-06-09 | 1997-04-15 | Simulab Corporation | Anatomical simulator for videoendoscopic surgical training |
US5803746A (en) | 1996-01-23 | 1998-09-08 | Medisim Corporation | Body part model and method of making same |
US5855583A (en) | 1996-02-20 | 1999-01-05 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive cardiac procedures |
US5743730A (en) | 1996-05-07 | 1998-04-28 | Clester; Kenneth E. | Dental porcelain shading guide and method of use therefore |
US5722836A (en) | 1996-05-21 | 1998-03-03 | Simulab Corporation | Reflected-image videoendoscopic surgical trainer and method of training |
US5785531A (en) | 1996-06-06 | 1998-07-28 | Wilson-Cook Medical Incorporated | Cuttable papilla and sphincterotomy training apparatus |
US6929481B1 (en) | 1996-09-04 | 2005-08-16 | Immersion Medical, Inc. | Interface device and method for interfacing instruments to medical procedure simulation systems |
US5727948A (en) | 1996-09-05 | 1998-03-17 | Jordan; Lynette S. | Syringe injection practice device |
WO1998025254A1 (de) | 1996-12-04 | 1998-06-11 | Erbe Elektromedizin Gmbh | Künstliches gewebe |
JP3679535B2 (ja) | 1997-01-29 | 2005-08-03 | オリンパス株式会社 | 大腸内視鏡挿入練習装置 |
DE19716341C2 (de) | 1997-03-19 | 2000-09-21 | Erbe Elektromedizin | Trainingsmodell, insbesondere Torso |
US6271278B1 (en) | 1997-05-13 | 2001-08-07 | Purdue Research Foundation | Hydrogel composites and superporous hydrogel composites having fast swelling, high mechanical strength, and superabsorbent properties |
GB9712987D0 (en) | 1997-06-19 | 1997-08-27 | Limbs & Things Ltd | Surgical training apparatus |
US5873863A (en) | 1997-08-29 | 1999-02-23 | United States Surgical Corporation | Vascular surgery demonstration/training kit |
JP2893178B2 (ja) | 1997-09-01 | 1999-05-17 | 工業技術院長 | 生体の光学ファントム及びその製造方法 |
US5947743A (en) | 1997-09-26 | 1999-09-07 | Hasson; Harrith M. | Apparatus for training for the performance of a medical procedure |
US5873732A (en) | 1997-09-26 | 1999-02-23 | Hasson; Harrith M. | Apparatus for training for the performance of a medical procedure |
IL123073A0 (en) | 1998-01-26 | 1998-09-24 | Simbionix Ltd | Endoscopic tutorial system |
EP1103041B1 (en) | 1998-01-28 | 2016-03-23 | Immersion Medical, Inc. | Interface device and method for interfacing instruments to medical procedure simulation system |
US8016823B2 (en) | 2003-01-18 | 2011-09-13 | Tsunami Medtech, Llc | Medical instrument and method of use |
US6511325B1 (en) | 1998-05-04 | 2003-01-28 | Advanced Research & Technology Institute | Aortic stent-graft calibration and training model |
US5908302A (en) | 1998-06-12 | 1999-06-01 | Goldfarb; Michael A. | Inguinal hernia model |
US6113395A (en) | 1998-08-18 | 2000-09-05 | Hon; David C. | Selectable instruments with homing devices for haptic virtual reality medical simulation |
GB9827496D0 (en) | 1998-12-14 | 1999-02-10 | Pharmabotics Limited | Simulated body tissue |
US6169155B1 (en) * | 1999-01-14 | 2001-01-02 | Dow Corning Corporation | Silicone gel composition and silicone gel produced therefrom |
EP1169693A2 (en) | 1999-03-02 | 2002-01-09 | Peter Yong | Thoracic training model for endoscopic cardiac surgery |
JP2001005378A (ja) | 1999-06-24 | 2001-01-12 | Yasuhisa Koki:Kk | 手術手技訓練用シミュレータ |
US20030031993A1 (en) | 1999-08-30 | 2003-02-13 | Carla Pugh | Medical examination teaching and measurement system |
US6398557B1 (en) | 1999-09-17 | 2002-06-04 | The University Of Iowa Research Foundation | Devices, methods and kits for training in surgical techniques |
US6488507B1 (en) | 1999-11-29 | 2002-12-03 | Ethicon, Inc. | Portable surgical trainer |
US6497902B1 (en) | 1999-12-01 | 2002-12-24 | The Regents Of The University Of Michigan | Ionically crosslinked hydrogels with adjustable gelation time |
BR9906054A (pt) | 1999-12-29 | 2001-09-18 | Thadeu Rezende Provenza | Dispositivo simulador de glândula mamária humana feminina |
US6817973B2 (en) | 2000-03-16 | 2004-11-16 | Immersion Medical, Inc. | Apparatus for controlling force for manipulation of medical instruments |
US7819799B2 (en) | 2000-03-16 | 2010-10-26 | Immersion Medical, Inc. | System and method for controlling force applied to and manipulation of medical instruments |
US6939138B2 (en) | 2000-04-12 | 2005-09-06 | Simbionix Ltd. | Endoscopic tutorial system for urology |
CN2421706Y (zh) | 2000-04-26 | 2001-02-28 | 佟玉章 | 手术作结、缝合多功能练习器 |
US6969480B2 (en) | 2000-05-12 | 2005-11-29 | Matregen Corp. | Method of producing structures using centrifugal forces |
CA2420240A1 (en) | 2000-08-23 | 2002-02-28 | The Royal Alexandra Hospital For Children | A laparoscopic trainer |
US6589057B1 (en) | 2000-09-27 | 2003-07-08 | Becton, Dickinson & Company | Incision trainer for ophthalmological surgery |
US8556635B2 (en) | 2000-10-23 | 2013-10-15 | Christopher C. Toly | Physiological simulator for use as a brachial plexus nerve block trainer |
US7850454B2 (en) | 2000-10-23 | 2010-12-14 | Toly Christopher C | Simulated anatomical structures incorporating an embedded image layer |
US6780016B1 (en) | 2000-10-23 | 2004-08-24 | Christopher C. Toly | Human surgical trainer and methods for training |
US7857626B2 (en) | 2000-10-23 | 2010-12-28 | Toly Christopher C | Medical physiological simulator including a conductive elastomer layer |
AU2002230578A1 (en) | 2000-10-30 | 2002-05-15 | Naval Postgraduate School | Method and apparatus for motion tracking of an articulated rigid body |
US6517354B1 (en) | 2000-11-17 | 2003-02-11 | David Levy | Medical simulation apparatus and related method |
US6659776B1 (en) | 2000-12-28 | 2003-12-09 | 3-D Technical Services, Inc. | Portable laparoscopic trainer |
US7526112B2 (en) | 2001-04-30 | 2009-04-28 | Chase Medical, L.P. | System and method for facilitating cardiac intervention |
US6485308B1 (en) | 2001-07-09 | 2002-11-26 | Mark K. Goldstein | Training aid for needle biopsy |
US7056123B2 (en) | 2001-07-16 | 2006-06-06 | Immersion Corporation | Interface apparatus with cable-driven force feedback and grounded actuators |
NL1018874C2 (nl) | 2001-09-03 | 2003-03-05 | Michel Petronella Hub Vleugels | Chirurgisch instrument. |
DE10148341A1 (de) | 2001-09-29 | 2003-04-24 | Friedhelm Brassel | Verfahren zur Herstellung eines Modellsystems für Gefässmissbildungen |
GB2380594B (en) | 2001-10-02 | 2004-02-04 | Keymed | Improvements in endoscopy training apparatus |
US6773263B2 (en) | 2001-10-09 | 2004-08-10 | Robert J. Nicholls | Medical simulator |
US7464847B2 (en) | 2005-06-03 | 2008-12-16 | Tyco Healthcare Group Lp | Surgical stapler with timer and feedback display |
JP4458464B2 (ja) | 2001-12-04 | 2010-04-28 | パワー メディカル インターベンションズ, エルエルシー | 外科器具を校正するためのシステムおよび方法 |
FR2838185B1 (fr) | 2002-04-05 | 2004-08-06 | Commissariat Energie Atomique | Dispositif de capture des mouvements de rotation d'un solide |
AU2003234159A1 (en) | 2002-04-22 | 2003-11-03 | Purdue Research Foundation | Hydrogels having enhanced elasticity and mechanical strength properties |
JP4431404B2 (ja) | 2002-04-25 | 2010-03-17 | タイコ ヘルスケア グループ エルピー | マイクロ電気機械的システム(mems)を含む外科用器具 |
US7080984B1 (en) | 2002-04-29 | 2006-07-25 | Bonnie Cohen | Simulated disposable foreskin for training surgical procedure of infant circumcision |
MXPA02004422A (es) | 2002-05-03 | 2003-11-07 | Univ Mexico Nacional Autonoma | Dispositivo entrenador para cirugia de minima invasion. |
AU2003231885B2 (en) | 2002-05-10 | 2008-12-18 | Cae Healthcare Inc. | "A surgical training simulator" |
US6950025B1 (en) | 2002-05-17 | 2005-09-27 | Li Nguyen | Medical surgery safety device |
US6997719B2 (en) | 2002-06-26 | 2006-02-14 | Ethicon, Inc. | Training model for endoscopic vessel harvesting |
US7018327B1 (en) | 2002-08-27 | 2006-03-28 | Conti James C | Test apparatus providing pulsatile flow service for test samples |
WO2004032095A1 (en) | 2002-10-07 | 2004-04-15 | Xitact S.A. | Interactive medical training system and method |
US6854976B1 (en) | 2002-11-02 | 2005-02-15 | John S. Suhr | Breast model teaching aid and method |
JP4522653B2 (ja) * | 2003-01-08 | 2010-08-11 | 株式会社高研 | 生体シミュレータ |
US20070166682A1 (en) | 2003-01-22 | 2007-07-19 | Realsim Systems, Llc. | Medical training apparatus |
US7997903B2 (en) | 2003-01-22 | 2011-08-16 | Realsim Systems, Llc | Medical training apparatus |
US6866514B2 (en) | 2003-01-31 | 2005-03-15 | Von Enterprises, Inc. | Gel electrophoresis training aid and training kit |
US20050142525A1 (en) | 2003-03-10 | 2005-06-30 | Stephane Cotin | Surgical training system for laparoscopic procedures |
WO2004082486A1 (en) | 2003-03-18 | 2004-09-30 | Anke Gasche | Apparatus and method for colonoscopic appendectomy |
US20050008997A1 (en) | 2003-07-08 | 2005-01-13 | Mayo Foundation For Medical Education And Research | Portable endoscopic training and research device and methods of use |
US7850456B2 (en) | 2003-07-15 | 2010-12-14 | Simbionix Ltd. | Surgical simulation device, system and method |
FR2858453B1 (fr) | 2003-08-01 | 2006-04-28 | Centre Nat Rech Scient | Simulateur fonctionnel et anatomique d'accouchement |
US8007281B2 (en) | 2003-09-24 | 2011-08-30 | Toly Christopher C | Laparoscopic and endoscopic trainer including a digital camera with multiple camera angles |
US7594815B2 (en) | 2003-09-24 | 2009-09-29 | Toly Christopher C | Laparoscopic and endoscopic trainer including a digital camera |
US20070148626A1 (en) | 2003-10-16 | 2007-06-28 | Seiichi Ikeda | Three-dimensional model |
US10041822B2 (en) | 2007-10-05 | 2018-08-07 | Covidien Lp | Methods to shorten calibration times for powered devices |
US7147650B2 (en) | 2003-10-30 | 2006-12-12 | Woojin Lee | Surgical instrument |
EP1691666B1 (en) | 2003-12-12 | 2012-05-30 | University of Washington | Catheterscope 3d guidance and interface system |
WO2005071639A1 (en) | 2004-01-09 | 2005-08-04 | Board Of Regents, The University Of Texas System | Models imitating internal organs and the real anatomy |
US7802990B2 (en) | 2004-01-23 | 2010-09-28 | Korndorffer James R Jr | Laparoscopic camera navigation trainer |
CA2558650A1 (en) * | 2004-03-08 | 2005-09-22 | The Johns Hopkins University | Device and method for medical training and evaluation |
US20050196739A1 (en) | 2004-03-08 | 2005-09-08 | Olympus Corporation | Endoscopic simulator system and training method for endoscopic manipulation using endoscopic simulator |
US20050196740A1 (en) | 2004-03-08 | 2005-09-08 | Olympus Corporation | Simulator system and training method for endoscopic manipulation using simulator |
US7255565B2 (en) | 2004-03-15 | 2007-08-14 | Brian Keegan | Anthropomorphic phantoms and method |
US8403674B2 (en) | 2004-03-23 | 2013-03-26 | Laerdal Medical As | Vascular-access simulation system with ergonomic features |
US20070275359A1 (en) | 2004-06-22 | 2007-11-29 | Rotnes Jan S | Kit, operating element and haptic device for use in surgical simulation systems |
US7968085B2 (en) | 2004-07-05 | 2011-06-28 | Ascendis Pharma A/S | Hydrogel formulations |
US8021162B2 (en) | 2004-08-06 | 2011-09-20 | The Chinese University Of Hong Kong | Navigation surgical training model, apparatus having the same and method thereof |
US7465168B2 (en) | 2004-09-03 | 2008-12-16 | Birth Injury Prevention, Llc | Birthing simulator |
US8128658B2 (en) | 2004-11-05 | 2012-03-06 | Biomet Sports Medicine, Llc | Method and apparatus for coupling soft tissue to bone |
CN2751372Y (zh) | 2004-12-15 | 2006-01-11 | 武彪 | 腹腔镜模拟训练台 |
US7467075B2 (en) | 2004-12-23 | 2008-12-16 | Covidien Ag | Three-dimensional finite-element code for electrosurgery and thermal ablation simulations |
US7699615B2 (en) | 2005-02-03 | 2010-04-20 | Christopher Sakezles | Joint replica models and methods of using same for testing medical devices |
US7272766B2 (en) | 2005-04-04 | 2007-09-18 | Christopher Sakezles | Method of making tissue simulating analog materials and models made from same |
US7427199B2 (en) | 2005-02-03 | 2008-09-23 | Christopher Sakezles | Models and methods of using same for testing medical devices |
US8137110B2 (en) | 2005-02-03 | 2012-03-20 | Christopher Sakezles | Dielectric properties models and methods of using same |
WO2006083963A2 (en) | 2005-02-03 | 2006-08-10 | Christopher Sakezles | Models and methods of using same for testing medical devices |
US8480408B2 (en) | 2005-02-09 | 2013-07-09 | Koken Co., Ltd. | Medical training model device |
US9427496B2 (en) | 2005-02-18 | 2016-08-30 | Drexel University | Method for creating an internal transport system within tissue scaffolds using computer-aided tissue engineering |
WO2006102756A1 (en) | 2005-03-30 | 2006-10-05 | University Western Ontario | Anisotropic hydrogels |
US8945095B2 (en) | 2005-03-30 | 2015-02-03 | Intuitive Surgical Operations, Inc. | Force and torque sensing for surgical instruments |
US20110020779A1 (en) | 2005-04-25 | 2011-01-27 | University Of Washington | Skill evaluation using spherical motion mechanism |
US20060252019A1 (en) | 2005-05-06 | 2006-11-09 | David Burkitt | Knot tying training apparatus |
US20060275741A1 (en) | 2005-06-02 | 2006-12-07 | Depuy Spine, Inc. | Spine simulator system |
US7717312B2 (en) | 2005-06-03 | 2010-05-18 | Tyco Healthcare Group Lp | Surgical instruments employing sensors |
US20070077544A1 (en) | 2005-06-16 | 2007-04-05 | Gottfried Lemperle | Life-like anatomic feature for testing injection of soft tissue fillers |
US8573462B2 (en) | 2006-05-19 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Electrical surgical instrument with optimized power supply and drive |
US7544062B1 (en) | 2005-08-02 | 2009-06-09 | Ams Research Corporation | Abdominopelvic region male anatomic model |
US7775916B1 (en) | 2005-08-05 | 2010-08-17 | Thomas Henry Mahoney | Soccer goal structure |
EP1934289A4 (en) | 2005-09-09 | 2011-07-20 | Ottawa Health Research Inst | INTERPENDENT NETWORKS AND RELATED METHODS AND COMPOSITIONS |
US7648367B1 (en) | 2005-09-23 | 2010-01-19 | Acclarent, Inc. | Anatomical models and methods for training and demonstration of medical procedures |
CA2520942C (en) | 2005-09-23 | 2013-03-19 | Queen's University At Kingston | Tactile amplification instrument and method of use |
US20070078484A1 (en) | 2005-10-03 | 2007-04-05 | Joseph Talarico | Gentle touch surgical instrument and method of using same |
US20070074584A1 (en) | 2005-10-03 | 2007-04-05 | Joseph Talarico | Gentle touch surgical instrument and method of using same |
EP1964086A1 (de) | 2005-12-13 | 2008-09-03 | Erbe Elektromedizin GmbH | Trainingsmodell für endoskopische untersuchung und bearbeitung von hohlorganen |
US7549866B2 (en) | 2005-12-15 | 2009-06-23 | Kimberly-Clark Worldwide, Inc. | Mannequin with more skin-like properties |
DE602006017160D1 (de) | 2005-12-22 | 2010-11-11 | Zimmer Inc | Perfluorcyclobutanvernetzte Hydrogele |
DE102006001884A1 (de) | 2006-01-13 | 2007-07-19 | Siemens Ag | Verfahren zur bildlichen Unterstützung einer Führung eines in einen Hohlraum eines Untersuchungsobjekts mindestens teilweise eingeführten medizinischen Instruments |
WO2007082313A2 (en) | 2006-01-13 | 2007-07-19 | East Tennessee State University Research Foundation | Surgical simulator system |
US7845537B2 (en) | 2006-01-31 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument having recording capabilities |
US20120292367A1 (en) | 2006-01-31 | 2012-11-22 | Ethicon Endo-Surgery, Inc. | Robotically-controlled end effector |
US8708213B2 (en) | 2006-01-31 | 2014-04-29 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a feedback system |
EP1815949A1 (en) | 2006-02-03 | 2007-08-08 | The European Atomic Energy Community (EURATOM), represented by the European Commission | Medical robotic system with manipulator arm of the cylindrical coordinate type |
US20070197895A1 (en) | 2006-02-17 | 2007-08-23 | Sdgi Holdings, Inc. | Surgical instrument to assess tissue characteristics |
CN2909427Y (zh) | 2006-03-21 | 2007-06-06 | 南方医科大学珠江医院 | 外科基本技巧训练箱 |
US20070225734A1 (en) | 2006-03-22 | 2007-09-27 | Minos Medical | Systems and methods for less invasive resolution of maladies of tissue including the appendix, gall bladder, and hemorrhoids |
US7837473B2 (en) | 2006-04-11 | 2010-11-23 | Koh Charles H | Surgical training device and method |
US20100285094A1 (en) | 2006-04-20 | 2010-11-11 | University Of Utah Research Foundation | Polymeric compositions and methods of making and using thereof |
US7621749B2 (en) | 2006-05-05 | 2009-11-24 | Wallcur, Inc. | Kit, injectable object, aids and a method of using them for practicing hypodermic needle insertion techniques |
US20080076101A1 (en) | 2006-05-12 | 2008-03-27 | Abbott Laboratories | Forming vascular diseases within anatomical models |
US7553159B1 (en) | 2006-05-12 | 2009-06-30 | Ams Research Corporation | Abdominopelvic region surgical training model |
WO2007136784A2 (en) | 2006-05-17 | 2007-11-29 | Nuvasive, Inc. | Surgical trajectory monitoring system and related methods |
US7854612B2 (en) | 2006-05-19 | 2010-12-21 | Spirus Medical, Inc. | Anatomical model |
US8403676B2 (en) | 2006-05-19 | 2013-03-26 | Olympus Endo Technology America Inc. | Anatomical model |
US20080032273A1 (en) | 2006-06-21 | 2008-02-07 | Boston Scientific Scimed, Inc. | Anatomical model |
US20080097501A1 (en) | 2006-06-22 | 2008-04-24 | Tyco Healthcare Group Lp | Ultrasonic probe deflection sensor |
CN101588790A (zh) | 2006-07-06 | 2009-11-25 | 艾博特呼吸有限责任公司 | 超多孔水凝胶 |
US7575434B2 (en) | 2006-08-01 | 2009-08-18 | Palakodeti Ratna K | Surgery practice kit |
US7448525B2 (en) | 2006-08-02 | 2008-11-11 | Ethicon Endo-Surgery, Inc. | Pneumatically powered surgical cutting and fastening instrument with manually operated retraction apparatus |
US7419376B2 (en) | 2006-08-14 | 2008-09-02 | Artahn Laboratories, Inc. | Human tissue phantoms and methods for manufacturing thereof |
US20080064017A1 (en) | 2006-08-29 | 2008-03-13 | Grundmeyer Ramond Iii | Suture training device |
ITMI20061726A1 (it) | 2006-09-11 | 2008-03-12 | Fidia Farmaceutici | Derivati crosslinkati a base di acido ialuronico reticolato via click chemistry |
GB2437763B (en) | 2006-10-05 | 2008-05-07 | Hi Tec Medical Services Ltd | Endotrainer |
US8807414B2 (en) | 2006-10-06 | 2014-08-19 | Covidien Lp | System and method for non-contact electronic articulation sensing |
US8460002B2 (en) | 2006-10-18 | 2013-06-11 | Shyh-Jen Wang | Laparoscopic trainer and method of training |
US8116847B2 (en) | 2006-10-19 | 2012-02-14 | Stryker Corporation | System and method for determining an optimal surgical trajectory |
WO2008048688A2 (en) | 2006-10-20 | 2008-04-24 | Femsuite, Llc | Optical surgical device and methods of use |
EP1915963A1 (en) | 2006-10-25 | 2008-04-30 | The European Atomic Energy Community (EURATOM), represented by the European Commission | Force estimation for a minimally invasive robotic surgery system |
EP1921592B1 (en) | 2006-11-07 | 2011-03-09 | Arthrex, Inc. | Shoulder model for shoulder arthroscopy |
US8408920B2 (en) | 2006-11-10 | 2013-04-02 | Bayer Healthcare Llc | Training aid |
JP2010513977A (ja) | 2006-12-21 | 2010-04-30 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 解剖学的及び機能的に正確な軟組織ファントム並びにその製造方法 |
US8439687B1 (en) | 2006-12-29 | 2013-05-14 | Acclarent, Inc. | Apparatus and method for simulated insertion and positioning of guidewares and other interventional devices |
US20110174861A1 (en) | 2007-01-10 | 2011-07-21 | Shelton Iv Frederick E | Surgical Instrument With Wireless Communication Between Control Unit and Remote Sensor |
US8684253B2 (en) | 2007-01-10 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
US8459520B2 (en) | 2007-01-10 | 2013-06-11 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and remote sensor |
US20080188948A1 (en) | 2007-02-05 | 2008-08-07 | Flatt Terry J | Liner system and liner for prosthetics and method for using and making |
EP2143038A4 (en) | 2007-02-20 | 2011-01-26 | Philip L Gildenberg | VIDEOSTEREREOTAXY- AND AUDIOSTEREOTAXY-ASSISTED SURGICAL PROCEDURES AND METHODS |
US8893946B2 (en) | 2007-03-28 | 2014-11-25 | Ethicon Endo-Surgery, Inc. | Laparoscopic tissue thickness and clamp load measuring devices |
US8647125B2 (en) | 2007-03-30 | 2014-02-11 | Emory University | Apparatuses and methods for simulating microlaryngeal surgery |
US7931471B2 (en) | 2007-05-24 | 2011-04-26 | Anthony Senagore | Surgical training aid apparatus |
CN101313842A (zh) | 2007-05-29 | 2008-12-03 | 高永东 | 腹腔镜阑尾切除切口牵开器 |
US8157145B2 (en) | 2007-05-31 | 2012-04-17 | Ethicon Endo-Surgery, Inc. | Pneumatically powered surgical cutting and fastening instrument with electrical feedback |
WO2009000939A1 (es) | 2007-06-22 | 2008-12-31 | Gmv, S.A. | Simulador para cirugía laparoscópica |
FR2917876B1 (fr) | 2007-06-22 | 2010-01-15 | Michel Bams | Dispositif pedagogique anatomique de type colonne vertebrale qui permet de demontrer et d'enseigner l'importance du role de la souplesse |
US20110046659A1 (en) | 2007-07-09 | 2011-02-24 | Immersion Corporation | Minimally Invasive Surgical Tools With Haptic Feedback |
EP2181441A2 (en) | 2007-07-13 | 2010-05-05 | Koninklijke Philips Electronics N.V. | Phantom for ultrasound guided needle insertion and method for making the phantom |
WO2009017762A2 (en) | 2007-08-02 | 2009-02-05 | Ossur Hf | Liner for prosthetic and orthopedic systems |
US8469715B2 (en) | 2007-09-26 | 2013-06-25 | Rose Marie Ambrozio | Dynamic human model |
US8197464B2 (en) | 2007-10-19 | 2012-06-12 | Cordis Corporation | Deflecting guide catheter for use in a minimally invasive medical procedure for the treatment of mitral valve regurgitation |
WO2009055034A1 (en) | 2007-10-24 | 2009-04-30 | Nuvasive, Inc. | Surgical trajectory monitoring system and related methods |
US8454368B2 (en) | 2007-11-29 | 2013-06-04 | Cedars-Sinai Medical Center | Medical training methods and devices |
JP4580973B2 (ja) | 2007-11-29 | 2010-11-17 | オリンパスメディカルシステムズ株式会社 | 処置具システム |
EP2068294A1 (en) | 2007-12-03 | 2009-06-10 | Endosim Limited | Laparoscopic training apparatus |
WO2009089614A1 (en) | 2008-01-14 | 2009-07-23 | The University Of Western Ontario | Sensorized medical instrument |
EP2237815B1 (en) | 2008-01-22 | 2020-08-19 | Applied Medical Resources Corporation | Surgical instrument access device |
JP2009236963A (ja) | 2008-03-25 | 2009-10-15 | Panasonic Electric Works Co Ltd | 内視鏡手術用トレーニング装置、内視鏡手術用技能評価方法 |
US20090246747A1 (en) | 2008-03-25 | 2009-10-01 | Operative Experience, Inc. | Simulator for major surgical operations |
EP2127604A1 (en) | 2008-05-30 | 2009-12-02 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | An instrument for minimally invasive surgery |
US9280917B2 (en) | 2008-06-03 | 2016-03-08 | Techline Technologies, Inc. | Simulant with vascular element mechanically responsive to a tourniquet |
US8221129B2 (en) | 2008-06-03 | 2012-07-17 | Techline Technologies, Inc. | Wearable wound simulant |
US8491309B2 (en) | 2008-06-03 | 2013-07-23 | Techline Technologies, Inc. | Wearable wound simulant |
US20090314550A1 (en) | 2008-06-18 | 2009-12-24 | Layton Michael D | Touchpad designed in a planar configuration that can be molded to conform to a non-planar object |
US8636520B2 (en) | 2008-07-16 | 2014-01-28 | Waseda University | Mold for producing simulated blood vessel, method of producing simulated blood vessel and simulated blood vessel |
CA2675217C (en) * | 2008-08-13 | 2016-10-04 | National Research Council Of Canada | Tissue-mimicking phantom for prostate cancer brachytherapy |
US9017080B1 (en) | 2008-08-29 | 2015-04-28 | Otto J. Placik | System and method for teaching injection techniques of the human head and face |
US8342851B1 (en) | 2008-09-19 | 2013-01-01 | Devicor Medical Products, Inc. | Tissue model for testing biopsy needles |
US20100248200A1 (en) | 2008-09-26 | 2010-09-30 | Ladak Hanif M | System, Method and Computer Program for Virtual Reality Simulation for Medical Procedure Skills Training |
WO2010043043A2 (en) | 2008-10-14 | 2010-04-22 | Pyng Medical Corporation | Training device for medical procedures |
US20100099067A1 (en) | 2008-10-21 | 2010-04-22 | Felice Eugenio Agro' | Mannequin for Medical Training |
US8083691B2 (en) | 2008-11-12 | 2011-12-27 | Hansen Medical, Inc. | Apparatus and method for sensing force |
CN201364679Y (zh) | 2008-12-05 | 2009-12-16 | 天津市天堰医教科技开发有限公司 | 外阴切开展示模型 |
US8535062B2 (en) | 2008-12-23 | 2013-09-17 | Simskin, Llc | Cutaneous surgical training model of the head, neck and shoulders |
US20100167249A1 (en) | 2008-12-31 | 2010-07-01 | Haptica Ltd. | Surgical training simulator having augmented reality |
US20100167248A1 (en) | 2008-12-31 | 2010-07-01 | Haptica Ltd. | Tracking and training system for medical procedures |
US20100167253A1 (en) | 2008-12-31 | 2010-07-01 | Haptica Ltd. | Surgical training simulator |
US20100167250A1 (en) | 2008-12-31 | 2010-07-01 | Haptica Ltd. | Surgical training simulator having multiple tracking systems |
EP2218570A1 (en) | 2009-01-26 | 2010-08-18 | VKR Holding A/S | Roofing components having vacuum-formed thermoset materials and related manufacturing methods |
FR2941556B1 (fr) | 2009-01-27 | 2023-09-15 | Thierry Mousques | Dispositif pedagogique d'incisions et de sutures |
US8459094B2 (en) | 2009-01-30 | 2013-06-11 | Research In Motion Limited | Method for calibrating an accelerometer of an electronic device, an accelerometer, and an electronic device having an accelerometer with improved calibration features |
WO2010095519A1 (ja) | 2009-02-17 | 2010-08-26 | テルモ株式会社 | 訓練用生体モデルおよび訓練用生体モデルの製造方法 |
US8297982B2 (en) | 2009-02-18 | 2012-10-30 | University Of Maryland, Baltimore | Simulated abdominal wall |
FR2942392B1 (fr) | 2009-02-20 | 2011-04-22 | Commissariat Energie Atomique | Dispositif de connexion par suture de deux tissus biologiques creux. |
US20130066304A1 (en) | 2009-02-27 | 2013-03-14 | Modular Surgical, Inc. | Apparatus and methods for hybrid endoscopic and laparoscopic surgery |
JP5726850B2 (ja) | 2009-03-20 | 2015-06-03 | ザ ジョンズ ホプキンス ユニバーシティ | 技術的技能を定量化する方法及びシステム |
US20100273136A1 (en) | 2009-04-24 | 2010-10-28 | Sangampalyam Vedanayagam Kandasami | Svk's real time turp simulator |
EP2426657B1 (en) | 2009-04-28 | 2016-08-03 | Yuugengaisha Seiwadental | Organ model |
US8360786B2 (en) | 2009-04-29 | 2013-01-29 | Scott Duryea | Polysomnography training apparatus |
SG185988A1 (en) | 2009-05-15 | 2012-12-28 | Univ Nanyang Tech | Composition for manufacturing a scaffold for tissue engineering, and a method of making it |
US8888498B2 (en) | 2009-06-02 | 2014-11-18 | National Research Council Of Canada | Multilayered tissue phantoms, fabrication methods, and use |
US8205779B2 (en) | 2009-07-23 | 2012-06-26 | Tyco Healthcare Group Lp | Surgical stapler with tactile feedback system |
US8641423B2 (en) | 2009-08-14 | 2014-02-04 | Covidien Lp | Circumcision testing and training model |
KR101231565B1 (ko) | 2009-09-04 | 2013-02-08 | 한양대학교 산학협력단 | Dna- 탄소나노튜브 하이드로겔 파이버의 제조방법 및 이에 의해 제조되는 dna- 탄소나노튜브 하이드로겔 파이버 |
KR101103423B1 (ko) | 2009-09-04 | 2012-01-06 | 아주대학교산학협력단 | 생체 주입형 조직 접착성 하이드로젤 및 이의 생의학적 용도 |
CN102473359B (zh) | 2009-09-07 | 2014-08-20 | 学校法人昭和大学 | 小肠内窥镜练习模型 |
WO2011035410A1 (en) | 2009-09-22 | 2011-03-31 | The University Of Western Ontario | Surgical training aids and methods of fabrication thereof |
DE102009042438A1 (de) | 2009-09-22 | 2011-03-31 | Erbe Elektromedizin Gmbh | Chirurgieeinrichtung |
CN102812504B (zh) | 2009-10-15 | 2016-06-15 | 道格拉斯·W·米雅萨基 | 骨盆手术解剖模型 |
JP3162161U (ja) | 2009-11-26 | 2010-08-26 | 株式会社ワインレッド | 内視鏡手術・検査トレーニング用臓器設置装置及び拍動装置 |
US20110200976A1 (en) | 2010-02-12 | 2011-08-18 | Mari Hou | Method and apparatus for in vitro testing for medical devices |
US8500452B2 (en) * | 2010-02-19 | 2013-08-06 | Gaumard Scientific Company, Inc. | Interactive education system for teaching patient care |
US20110218550A1 (en) | 2010-03-08 | 2011-09-08 | Tyco Healthcare Group Lp | System and method for determining and adjusting positioning and orientation of a surgical device |
US20110244436A1 (en) | 2010-04-01 | 2011-10-06 | Campo Theresa M | Incision and drainage simulator |
WO2011127379A2 (en) | 2010-04-09 | 2011-10-13 | University Of Florida Research Foundation Inc. | Interactive mixed reality system and uses thereof |
US8469716B2 (en) | 2010-04-19 | 2013-06-25 | Covidien Lp | Laparoscopic surgery simulator |
FR2959409B1 (fr) | 2010-05-03 | 2012-06-29 | Gen Electric | Procede de determination d'un trajet d'insertion d'un outil dans une matricee tissulaire pouvant se deformer et systeme robotise mettant en oeuvre le procede |
HUE034644T2 (en) | 2010-05-12 | 2018-02-28 | Mondi Halle Gmbh | Bottom pouch made of hot-welded plastic |
EP2577645B1 (en) | 2010-05-31 | 2018-07-18 | Laerdal Medical AS | Iv training system |
US9226799B2 (en) | 2010-06-23 | 2016-01-05 | Mako Surgical Corp. | Inertially tracked objects |
US8613621B2 (en) | 2010-07-15 | 2013-12-24 | Colorado State University Research Foundation | Simulated tissue, body lumens and body wall and methods of making same |
US9959785B2 (en) | 2010-08-24 | 2018-05-01 | Vti Medical, Inc. | Apparatus and method for laparoscopic skills training |
ES2911454T3 (es) | 2010-10-01 | 2022-05-19 | Applied Med Resources | Dispositivo de entrenamiento laparoscópico portátil |
US9345534B2 (en) | 2010-10-04 | 2016-05-24 | Covidien Lp | Vessel sealing instrument |
US9299476B2 (en) | 2010-10-22 | 2016-03-29 | Newsouth Innovations Pty Limited | Polymeric material |
US9782214B2 (en) | 2010-11-05 | 2017-10-10 | Ethicon Llc | Surgical instrument with sensor and powered control |
US9072523B2 (en) | 2010-11-05 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Medical device with feature for sterile acceptance of non-sterile reusable component |
US20120115118A1 (en) | 2010-11-08 | 2012-05-10 | Marshall M Blair | Suture training device |
US20120115117A1 (en) | 2010-11-08 | 2012-05-10 | Marshall M Blair | Suture training device |
US8679279B2 (en) | 2010-11-16 | 2014-03-25 | Allergan, Inc. | Methods for creating foam-like texture |
CN201955979U (zh) | 2010-11-17 | 2011-08-31 | 天津市医学堂科技有限公司 | 腹部手术切开缝合模型 |
US8480703B2 (en) | 2010-11-19 | 2013-07-09 | Covidien Lp | Surgical device |
WO2012080910A1 (en) | 2010-12-14 | 2012-06-21 | Khan, Aslam | Stylus and treatment head for use with a medical device |
JP5550050B2 (ja) | 2010-12-14 | 2014-07-16 | 株式会社ティー・エム・シー | 人体の部分模型 |
WO2012082987A1 (en) | 2010-12-15 | 2012-06-21 | Allergan, Inc. | Anatomical model |
ES2384853B1 (es) | 2010-12-17 | 2013-05-20 | Jesus HERNANDEZ JUANPERA | Dispositivo portable autónomo, en especial aplicable en cirugía, manipulación de micro-componentes y similares |
GB2488994A (en) | 2011-03-14 | 2012-09-19 | Marek Stefan Cynk | Surgical Training Model |
JP2012203153A (ja) * | 2011-03-25 | 2012-10-22 | Terumo Corp | 血管穿刺練習器具 |
US9026247B2 (en) | 2011-03-30 | 2015-05-05 | University of Washington through its Center for Communication | Motion and video capture for tracking and evaluating robotic surgery and associated systems and methods |
CN103153589B (zh) | 2011-03-31 | 2015-05-27 | 国立大学法人神户大学 | 三维造型模具的制作方法以及医疗、医学培训、科研和教育用支持工具 |
US8932063B2 (en) | 2011-04-15 | 2015-01-13 | Ams Research Corporation | BPH laser ablation simulation |
US10354555B2 (en) | 2011-05-02 | 2019-07-16 | Simbionix Ltd. | System and method for performing a hybrid simulation of a medical procedure |
US20140378995A1 (en) | 2011-05-05 | 2014-12-25 | Intuitive Surgical Operations, Inc. | Method and system for analyzing a task trajectory |
WO2012149606A1 (en) | 2011-05-05 | 2012-11-08 | University Of New England | Artificial bowel model |
US20140357977A1 (en) | 2011-05-12 | 2014-12-04 | William Beaumont Hospital | Catheter Placement Detection System and Method for Surgical Procedures |
WO2012168287A1 (en) | 2011-06-06 | 2012-12-13 | Lapskill Medical As | Artificial organs for surgical simulation training and method of producing artificial organs |
WO2012168855A1 (en) | 2011-06-10 | 2012-12-13 | Koninklijke Philips Electronics N.V. | Optical fiber sensing for determining real time changes in applicator geometry for interventional therapy |
GB2492115B (en) | 2011-06-22 | 2014-03-05 | Royal Brompton & Harefield Nhs Foundation Trust | Simulation apparatus |
US9498231B2 (en) | 2011-06-27 | 2016-11-22 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
EP2760491A1 (en) * | 2011-09-26 | 2014-08-06 | Allergan, Inc. | Silicone implant with imprinted texture |
WO2013051918A1 (es) | 2011-10-06 | 2013-04-11 | Quirarte Catano Cesar | Dispositivo simulador de tejidos, para el aprendizaje y entrenamiento de técnicas básicas de cirugía laparoscópica, endoscópica o de mínima invasión |
CN103050040A (zh) | 2011-10-11 | 2013-04-17 | 天津艾劢奇科技有限公司 | 腹腔镜妇科肿瘤手术模拟教学的手术平面模型 |
AU2012325987B2 (en) * | 2011-10-21 | 2017-02-02 | Applied Medical Resources Corporation | Simulated tissue structure for surgical training |
WO2013063523A1 (en) | 2011-10-26 | 2013-05-02 | Weir David W | Cartridge status and presence detection |
TWI452999B (zh) | 2011-10-31 | 2014-09-21 | Iner Aec Executive Yuan | Medical prostheses for medical imaging systems |
US8801438B2 (en) | 2011-11-23 | 2014-08-12 | Christopher Sakezles | Artificial anatomic model |
US8911238B2 (en) | 2011-11-28 | 2014-12-16 | BrachyTech LLC | Prostate brachytherapy simulator |
WO2013085832A1 (en) | 2011-12-06 | 2013-06-13 | Ohio University | Active colonoscopy training model and method of using the same |
JP5865694B2 (ja) | 2011-12-16 | 2016-02-17 | 株式会社 タナック | 模擬臓器設置台及び手術訓練用装置 |
AU2012358851B2 (en) | 2011-12-20 | 2016-08-11 | Applied Medical Resources Corporation | Advanced surgical simulation |
US20130171288A1 (en) | 2011-12-29 | 2013-07-04 | Allergan, Inc. | Device for facilitating molding of breast implant shells |
US9387276B2 (en) | 2012-01-05 | 2016-07-12 | President And Fellows Of Harvard College | Interpenetrating networks with covalent and Ionic Crosslinks |
CN202443680U (zh) | 2012-01-19 | 2012-09-19 | 德州学院 | 腹部手术教学模型 |
US9472123B2 (en) | 2012-01-27 | 2016-10-18 | Gaumard Scientific Company, Inc. | Human tissue models, materials, and methods |
US9123261B2 (en) | 2012-01-28 | 2015-09-01 | Gaumard Scientific Company, Inc. | Surgical simulation models, materials, and methods |
US20130218166A1 (en) | 2012-02-21 | 2013-08-22 | Ranell Elmore | Surgical Angulation Measurement Instrument for Orthopedic Instumentation System |
US9489869B2 (en) | 2012-02-24 | 2016-11-08 | Arizona Board Of Regents, On Behalf Of The University Of Arizona | Portable low cost computer assisted surgical trainer and assessment system |
CN202694651U (zh) | 2012-03-15 | 2013-01-23 | 中国人民解放军第二军医大学 | 一种腹腔镜手术穿刺操作训练器 |
US8740919B2 (en) | 2012-03-16 | 2014-06-03 | Ethicon, Inc. | Devices for dispensing surgical fasteners into tissue while simultaneously generating external marks that mirror the number and location of the dispensed surgical fasteners |
US20130253480A1 (en) | 2012-03-22 | 2013-09-26 | Cory G. Kimball | Surgical instrument usage data management |
PT106230A (pt) | 2012-03-27 | 2013-09-27 | David Serrano Faustino Angelo | Plataforma de treino cirúrgico |
USD699297S1 (en) | 2012-03-30 | 2014-02-11 | Ali Nehme Bahsoun | Laparoscopic trainer |
US20130302771A1 (en) | 2012-04-17 | 2013-11-14 | Suzanne Renee Alderete | Three-dimensional muscle and fascial pieces |
US9788851B2 (en) | 2012-04-18 | 2017-10-17 | Ethicon Llc | Surgical instrument with tissue density sensing |
WO2013165256A1 (en) | 2012-04-30 | 2013-11-07 | Laerdal Global Health As | Postpartum uterus model |
US9008989B2 (en) | 2012-05-02 | 2015-04-14 | Microsoft Technology Licensing, Llc | Wireless controller |
WO2013165529A2 (en) | 2012-05-03 | 2013-11-07 | Poniatowski Lauren H | Systems and methods for analyzing surgical techniques |
CN202563792U (zh) | 2012-05-17 | 2012-11-28 | 北京日正华瑞科技发展有限公司 | 基础腹腔镜模拟器 |
CN202601055U (zh) | 2012-05-17 | 2012-12-12 | 谢梅芳 | 一种会阴切开缝合的仿真教学模型 |
US9681884B2 (en) | 2012-05-31 | 2017-06-20 | Ethicon Endo-Surgery, Llc | Surgical instrument with stress sensor |
US9572592B2 (en) | 2012-05-31 | 2017-02-21 | Ethicon Endo-Surgery, Llc | Surgical instrument with orientation sensing |
JP6129307B2 (ja) | 2012-06-28 | 2017-05-17 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Mr誘導下の間質性インターベンションのための専用のユーザインタフェース |
US20140030682A1 (en) | 2012-07-26 | 2014-01-30 | William Jackson THILENIUS | Training device and method for spaying and/or suturing animals |
EP2880647A1 (en) * | 2012-08-03 | 2015-06-10 | Applied Medical Resources Corporation | Simulated stapling and energy based ligation for surgical training |
WO2014028209A1 (en) | 2012-08-14 | 2014-02-20 | The Trustees Of The University Of Pennsylvania | Stabilizing shear-thinning hydrogels |
US20140051049A1 (en) | 2012-08-17 | 2014-02-20 | Intuitive Surgical Operations, Inc. | Anatomical model and method for surgical training |
US20140081659A1 (en) | 2012-09-17 | 2014-03-20 | Depuy Orthopaedics, Inc. | Systems and methods for surgical and interventional planning, support, post-operative follow-up, and functional recovery tracking |
AU2013323744B2 (en) | 2012-09-26 | 2017-08-17 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
EP3483863B1 (en) * | 2012-09-27 | 2021-04-21 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
WO2014052612A1 (en) | 2012-09-27 | 2014-04-03 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
EP3467805B1 (en) | 2012-09-28 | 2020-07-08 | Applied Medical Resources Corporation | Surgical training model for transluminal laparoscopic procedures |
AU2013323255B2 (en) | 2012-09-28 | 2018-02-08 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
US9713564B2 (en) | 2012-10-05 | 2017-07-25 | Wsm Investment Llc | Model dolls and methods for making the same |
US20140106328A1 (en) | 2012-10-17 | 2014-04-17 | The Cleveland Clinic Foundation | Surgical training apparatus |
BR112015009608A2 (pt) | 2012-10-30 | 2017-07-04 | Truinject Medical Corp | sistema para treinamento cosmético ou terapêutico, ferramentas de teste, aparelho de injeção e métodos para treinar injeção, para usar ferramenta de teste e para classificar injetor |
US9070306B2 (en) | 2012-11-02 | 2015-06-30 | Digital Surgicals Pte. Ltd. | Apparatus, method and system for microsurgical suture training |
JP5904110B2 (ja) | 2012-12-06 | 2016-04-13 | ソニー株式会社 | 造形物の製造方法 |
CN203038549U (zh) | 2012-12-12 | 2013-07-03 | 内蒙古自治区人民医院医学工程处 | 一种腔镜手术操作训练器 |
WO2014093669A1 (en) | 2012-12-13 | 2014-06-19 | Allergan, Inc. | Device and method for making a variable surface breast implant |
US20140170623A1 (en) | 2012-12-19 | 2014-06-19 | John S. Jarstad | Cataract surgical trainer |
EP2938367B1 (en) | 2012-12-28 | 2020-12-16 | Boston Scientific Scimed, Inc. | Methods, compositions and kits for surgical repair |
US10265090B2 (en) | 2013-01-16 | 2019-04-23 | Covidien Lp | Hand held electromechanical surgical system including battery compartment diagnostic display |
CN203013103U (zh) | 2013-01-16 | 2013-06-19 | 黄磊 | 子宫手术教学训练模型 |
US20140212861A1 (en) | 2013-01-29 | 2014-07-31 | Peter Joseph Romano | Educational suturing apparatus |
US9011158B2 (en) | 2013-02-07 | 2015-04-21 | The Johns Hopkins University | Human surrogate neck model |
US20140220527A1 (en) | 2013-02-07 | 2014-08-07 | AZ Board of Regents, a body corporate of the State of AZ, acting for & on behalf of AZ State | Video-Based System for Improving Surgical Training by Providing Corrective Feedback on a Trainee's Movement |
US9358003B2 (en) | 2013-03-01 | 2016-06-07 | Ethicon Endo-Surgery, Llc | Electromechanical surgical device with signal relay arrangement |
EP3660816B1 (en) | 2013-03-01 | 2021-10-13 | Applied Medical Resources Corporation | Advanced surgical simulation constructions and methods |
US9675272B2 (en) | 2013-03-13 | 2017-06-13 | DePuy Synthes Products, Inc. | Methods, systems, and devices for guiding surgical instruments using radio frequency technology |
CA2901175A1 (en) | 2013-03-14 | 2014-09-18 | 7-Sigma, Inc. | Responsive device with sensors |
US10470762B2 (en) | 2013-03-14 | 2019-11-12 | Ethicon Llc | Multi-function motor for a surgical instrument |
MY179739A (en) | 2013-03-15 | 2020-11-12 | Synaptive Medical Inc | Planning, navigation and simulation systems and methods for minimally invasive therapy |
US10105149B2 (en) | 2013-03-15 | 2018-10-23 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
US9117377B2 (en) | 2013-03-15 | 2015-08-25 | SmarTummy, LLC | Dynamically-changeable abdominal simulator system |
US9087458B2 (en) | 2013-03-15 | 2015-07-21 | Smartummy Llc | Dynamically-changeable abdominal simulator system |
GB201304947D0 (en) | 2013-03-18 | 2013-05-01 | Cass Anthony E G | Biomimetic collagen |
JP6670233B2 (ja) | 2013-03-29 | 2020-03-18 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 磁気粘性に基づいたアクチュエータを有する力フィードバックグリップデバイス |
US20140303660A1 (en) | 2013-04-04 | 2014-10-09 | Elwha Llc | Active tremor control in surgical instruments |
KR20140121581A (ko) | 2013-04-08 | 2014-10-16 | 삼성전자주식회사 | 수술 로봇 시스템 |
ES2767073T3 (es) | 2013-05-15 | 2020-06-16 | Applied Med Resources | Modelo de hernia |
US11361678B2 (en) | 2013-06-06 | 2022-06-14 | Board Of Regents Of The University Of Nebraska | Portable camera aided simulator (PortCAS) for minimally invasive surgical training |
EP2811479B1 (en) | 2013-06-07 | 2017-08-02 | Surgical Science Sweden AB | A user interface for a surgical simulation system |
JP6496717B2 (ja) | 2013-06-18 | 2019-04-03 | アプライド メディカル リソーシーズ コーポレイション | 外科的処置を教示すると共に練習するための胆嚢モデル |
CN103396562B (zh) | 2013-07-09 | 2015-07-08 | 西安交通大学 | 一种基于海藻酸钠-聚丙烯酰胺水凝胶的制备方法 |
CN203338651U (zh) | 2013-07-09 | 2013-12-11 | 金黑鹰 | 一种腹腔镜练习器 |
US9666102B2 (en) | 2013-07-18 | 2017-05-30 | Biotras Holdings, Llc | Spinal injection trainer and methods therefor |
US9548002B2 (en) | 2013-07-24 | 2017-01-17 | Applied Medical Resources Corporation | First entry model |
US10198966B2 (en) | 2013-07-24 | 2019-02-05 | Applied Medical Resources Corporation | Advanced first entry model for surgical simulation |
CN203397593U (zh) | 2013-08-22 | 2014-01-15 | 马常兰 | 一种产科会阴切开和缝合技能训练模型 |
EP3049000A4 (en) | 2013-09-25 | 2017-06-21 | Covidien LP | Surgical instrument with magnetic sensor |
US9817019B2 (en) | 2013-11-13 | 2017-11-14 | Intuitive Surgical Operations, Inc. | Integrated fiber bragg grating accelerometer in a surgical instrument |
CN203562128U (zh) | 2013-11-29 | 2014-04-23 | 刘兰峰 | 多孔腹腔镜模拟教具 |
CN103845757B (zh) | 2013-12-13 | 2015-12-09 | 天津大学 | 一种人工关节软骨材料及其制备方法 |
US9801679B2 (en) | 2014-01-28 | 2017-10-31 | Ethicon Llc | Methods and devices for controlling motorized surgical devices |
US9802033B2 (en) | 2014-01-28 | 2017-10-31 | Ethicon Llc | Surgical devices having controlled tissue cutting and sealing |
US10342623B2 (en) | 2014-03-12 | 2019-07-09 | Proximed, Llc | Surgical guidance systems, devices, and methods |
CN103886797B (zh) | 2014-03-13 | 2017-06-20 | 西安交通大学 | 一种高度仿真腹腔镜手术模拟训练器 |
US20150262511A1 (en) | 2014-03-17 | 2015-09-17 | Henry Lin | Systems and methods for medical device simulator scoring |
EP3913602A1 (en) | 2014-03-26 | 2021-11-24 | Applied Medical Resources Corporation | Simulated dissectible tissue |
US9690362B2 (en) | 2014-03-26 | 2017-06-27 | Ethicon Llc | Surgical instrument control circuit having a safety processor |
US20150272582A1 (en) | 2014-03-26 | 2015-10-01 | Ethicon Endo-Surgery, Inc. | Power management control systems for surgical instruments |
US10420577B2 (en) | 2014-03-31 | 2019-09-24 | Covidien Lp | Apparatus and method for tissue thickness sensing |
US10653339B2 (en) | 2014-04-29 | 2020-05-19 | Nxp B.V. | Time and frequency domain based activity tracking system |
US9613545B2 (en) | 2014-05-16 | 2017-04-04 | Kimberly Jean Alexander | Kit for simulated animal spaying |
US9987095B2 (en) | 2014-06-26 | 2018-06-05 | Covidien Lp | Adapter assemblies for interconnecting electromechanical handle assemblies and surgical loading units |
US10369045B2 (en) | 2014-07-29 | 2019-08-06 | The Johns Hopkins University | Micromanipulation systems and methods |
WO2016033337A1 (en) | 2014-08-27 | 2016-03-03 | The Cleveland Clinic Foundation | Biocompatible tissue graft |
US10135242B2 (en) | 2014-09-05 | 2018-11-20 | Ethicon Llc | Smart cartridge wake up operation and data retention |
US10820939B2 (en) | 2014-09-15 | 2020-11-03 | Covidien Lp | Vessel-sealing device including force-balance interface and electrosurgical system including same |
US9830834B2 (en) | 2014-10-09 | 2017-11-28 | Douglas Miyazaki | Pelvic model |
US20160125762A1 (en) | 2014-11-05 | 2016-05-05 | Illinois Tool Works Inc. | System and method for welding system clamp assembly |
KR102518089B1 (ko) | 2014-11-13 | 2023-04-05 | 어플라이드 메디컬 리소시스 코포레이션 | 시뮬레이션된 조직 모델들 및 방법들 |
US9734732B2 (en) | 2014-11-18 | 2017-08-15 | Ibrahim Ihsan Jabbour | Collapsible surgical training apparatus and method for laparoscopic procedures |
JP6806684B2 (ja) | 2015-02-19 | 2021-01-06 | アプライド メディカル リソーシーズ コーポレイション | 模擬組織構造体および方法 |
WO2016138528A1 (en) | 2015-02-27 | 2016-09-01 | Wayne State University | Methods and compositions relating to biocompatible implants |
US10548504B2 (en) | 2015-03-06 | 2020-02-04 | Ethicon Llc | Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression |
WO2016183412A1 (en) | 2015-05-14 | 2016-11-17 | Applied Medical Resources Corporation | Synthetic tissue structures for electrosurgical training and simulation |
EP4057260A1 (en) | 2015-06-09 | 2022-09-14 | Applied Medical Resources Corporation | Hysterectomy model |
EP3103485A1 (en) | 2015-06-11 | 2016-12-14 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Material comprising a polymer capable of forming a hydrogel and nanoparticles |
EP3337523B1 (en) | 2015-08-19 | 2022-04-27 | University of Iowa Research Foundation | Preventative therapy for post-traumatic osteoarthritis |
DK3868416T3 (da) | 2015-09-09 | 2022-10-31 | Eth Zuerich | Injicerbare makroporøse hydrogeler |
CN105194740B (zh) | 2015-09-20 | 2018-06-26 | 哈尔滨工业大学 | 一种术后防粘连水凝胶及其制备方法 |
CN105504166B (zh) | 2016-01-20 | 2018-06-08 | 武汉理工大学 | 一种海藻酸钠-丙烯酰胺复合水凝胶及其制备方法和应用 |
-
2015
- 2015-03-26 EP EP21182654.0A patent/EP3913602A1/en active Pending
- 2015-03-26 EP EP15716930.1A patent/EP3123460B1/en active Active
- 2015-03-26 KR KR1020227029086A patent/KR102581212B1/ko active IP Right Grant
- 2015-03-26 JP JP2016558756A patent/JP6623169B2/ja active Active
- 2015-03-26 ES ES15716930T patent/ES2891756T3/es active Active
- 2015-03-26 CA CA2943197A patent/CA2943197C/en active Active
- 2015-03-26 AU AU2015235994A patent/AU2015235994B2/en active Active
- 2015-03-26 KR KR1020167026613A patent/KR102438168B1/ko active Application Filing
- 2015-03-26 WO PCT/US2015/022774 patent/WO2015148817A1/en active Application Filing
- 2015-10-05 US US14/875,067 patent/US10796606B2/en active Active
-
2019
- 2019-11-25 JP JP2019212414A patent/JP7155095B2/ja active Active
-
2020
- 2020-02-14 AU AU2020201099A patent/AU2020201099B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110207104A1 (en) * | 2010-02-19 | 2011-08-25 | Gaumard Scientific Company, Inc. | Breast tissue models, materials, and methods |
Also Published As
Publication number | Publication date |
---|---|
CA2943197A1 (en) | 2015-10-01 |
AU2015235994A1 (en) | 2016-08-18 |
KR20160138064A (ko) | 2016-12-02 |
JP2023002594A (ja) | 2023-01-10 |
AU2020201099A1 (en) | 2020-03-05 |
EP3123460B1 (en) | 2021-08-25 |
JP7155095B2 (ja) | 2022-10-18 |
WO2015148817A1 (en) | 2015-10-01 |
US10796606B2 (en) | 2020-10-06 |
KR102581212B1 (ko) | 2023-09-21 |
CA2943197C (en) | 2023-04-11 |
AU2020201099B2 (en) | 2022-03-10 |
JP2017509924A (ja) | 2017-04-06 |
KR20220122791A (ko) | 2022-09-02 |
AU2015235994B2 (en) | 2019-11-21 |
ES2891756T3 (es) | 2022-01-31 |
JP2020024473A (ja) | 2020-02-13 |
EP3123460A1 (en) | 2017-02-01 |
US20160027344A1 (en) | 2016-01-28 |
JP6623169B2 (ja) | 2019-12-18 |
EP3913602A1 (en) | 2021-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102438168B1 (ko) | 시뮬레이션된 절개가능 조직 | |
AU2022221430B2 (en) | Simulated dissectible tissue | |
US20210043115A1 (en) | Simulated tissue models and methods | |
JP7566991B2 (ja) | 模擬切開可能組織 | |
JP2022089871A (ja) | 手術シミュレーションシステム及び方法 | |
JP7585269B2 (ja) | 模擬切開可能組織 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
A107 | Divisional application of patent |