WO2009000939A1 - Simulador para cirugía laparoscópica - Google Patents
Simulador para cirugía laparoscópica Download PDFInfo
- Publication number
- WO2009000939A1 WO2009000939A1 PCT/ES2007/000377 ES2007000377W WO2009000939A1 WO 2009000939 A1 WO2009000939 A1 WO 2009000939A1 ES 2007000377 W ES2007000377 W ES 2007000377W WO 2009000939 A1 WO2009000939 A1 WO 2009000939A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- simulator
- laparoscopic surgery
- surgery according
- board
- operating table
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B23/00—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
- G09B23/28—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
- G09B23/285—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine for injections, endoscopy, bronchoscopy, sigmoidscopy, insertion of contraceptive devices or enemas
Definitions
- the present invention relates to a simulator for the training of laparoscopic surgery which aims at the faithful reproduction of the real conditions that a surgeon must face in an operation of this type in order to practice the different techniques, develop the skills precise, etc.
- laparoscopy which consists of performing surgical interventions without opening the patient, only making a small incision called the portal, where it will penetrate the instruments required to perform operations on a specific organ.
- a camera is used that is introduced into the patient, which shows, through an external screen, the images of the different operations and maneuvers that the surgeon performs internally.
- the laparoscopic surgery simulator described below solves the problems outlined above, since it allows a simulation that is faithful reproduction of the real conditions that the surgeon must face, including instruments of real size and location and the possibility of moving the patient on the table and thereby also move the internal organs of the body.
- the simulator object of the present invention basically comprises the following components:
- a physical model of the patient on which the appropriate instruments will be placed such as tweezers, scissors, stapler, separator, etc. with its corresponding haptic device responsible for transmitting to the control unit the position thereof in the X, Y and Z axes, as well as producing a sense of touch through a feedback of forces that will be reflected in the instrument controls. All these devices will be integrated into the physical model of the patient, so that only those that in a real operation will be those that the surgeon finds, that is, the instrument itself and the camera, thus faithfully reproducing reality.
- said instruments will faithfully reproduce all the characteristics of a real instrument, both in size and manageability and in the position they occupy between them and with respect to the patient, so that the simulation reproduces the same characteristics as a real operation.
- the patient's physical model will also faithfully reproduce a human body, both in dimensions and in appearance, being also interchangeable and independent of the operating table (6) to be able to represent different patient models such as adults, children, etc. according to the occasion.
- a camera Ia which simulates a real one in shape, dimensions and functions, so that if the camera penetrates, the objective is close to the object and the virtual result is an approach to the image, otherwise, if the camera is displaced in the axes of coordinates X, Y, or there is a rotation of the Z axis, the latter corresponding to the penetration, the virtual representation reacts in the same dimension and direction in synchronism with the movements of the camera.
- a visualization system whose mission will be to represent on a screen the images virtually collected by the camera, as well as the images generated from the manipulation of the instruments.
- An articulated operating table whose mission is to support the physical model of the patient, as well as on the one hand, incorporate the mechanisms responsible for positioning the board on which said patient model rests according to the surgeon's requirements, and on the other , incorporate the necessary means to measure the position in the space of said board and transmit it to the control unit so that it is in charge of sending the images of the organs to the visualization system as they are affected by the field plane gravitational in relation to the inclination of the tabletop.
- a specific software in charge of the simulation that, from the data provided by the instruments and the operating table, will generate the three-dimensional simulation position of the same with respect to the simulated three-dimensional scenario that will be represented in the visualization system.
- a central processing unit or CPU in charge of controlling all system parameters, housing the necessary databases such as those of anatomical and instrumental models, medical records, etc., as well as running the simulation software and Manage the operation of all devices connected to it.
- the system based on the information stored in the databases used and the movements of the instruments, operating table or others, the system, through the specific software, is capable of generating virtual images that correspond to what would happen in reality. if said instrumental, table, etc. were used in that way, reproducing reality so faithfully and turning the system into a powerful training tool.
- Figure 1 shows a schematic view of the elements comprising the simulator of the present invention.
- Figure 2. Shows a perspective view in which a possible physical model of the patient is represented, which has both the camera and the instruments attached.
- Figure 3 shows a bottom perspective view of the operating table of the simulator of the invention, on which the physical model of the patient has been located.
- Figure 4.- Shows two elevational views of that of the operating table of the simulator of the invention.
- Figure 5. Shows a view 5a of the cavities on which the feet of the haptic devices are placed on the board of the operating table of the simulator of the invention and another 5b of detail of said feet.
- Figure 6. It shows a block diagram where the relationship between the different parts of the simulator managed by the software is schematically represented.
- the simulator for laparoscopic surgery of the invention comprises a physical model (1) of the patient, capable of being exchanged for others of different morphology as it might correspond in real life, on which the instruments are located (2) adequate entering the patient through the corresponding portals (3), as well as the camera (4).
- an articulated operating table (6) which incorporates means (7) to position the board (19) tilting it both transversely and longitudinally, that is, both in a left-right movement around the longitudinal axis as anterior - posterior around the transverse axis.
- said operating table (6) has devices for measuring angular displacement, such as "encoders", position sensors, etc., which will measure the position of the table (6) to be transmitted to the control unit (9) so that the latter is responsible for sending to the monitor (5) the images of the organs as they are affected by the plane of the gravitational field, in relation to the inclination of the board of said table (9).
- the operating table (6) comprises a board (19) preferably made of a rigid material that has a plurality of cavities (20), of different depth , whose purpose is to house the foot (21) of the different haptic devices to place them in the correct position, height and orientation according to the use of the exercise being developed.
- Said cavities (20) are made up of housing cylindrical on which another internal cavity (22) is placed in the form of a rectangular prism as a keyway that serves for the angular orientation of said foot (21) of the haptic device (13).
- the height situation of the haptic device (13) will be a function of the depth of the cavity itself (20), as can be seen in Figure 5 a , where cavities with different depths appear.
- said internal cavity (22) there is at least one presence sensor (23) or the like capable of detecting the occupation of the cavities (20) by a haptic device (13), and even identifying the latter.
- rotating supports (24) preferably located in the longitudinal axis to the board (19) and joined by its axes to a rocker (26) so that allow the rotation around said longitudinal axis, that is, the left-right rotation of said board.
- a device (25) for measuring angular displacement such as an encoder or the like capable of measuring the degree of lateral inclination of said board (19) is also coupled.
- Said rocker (26) also incorporates a pin (31) that serves as a pivot point and mooring at one of the ends of the second actuator (32) or servo responsible for producing an angular displacement of said rocker (26) at the pivot points. (30) so as to allow rotation around the transverse axis of the board (19), that is, the anterior-posterior rotation of said board (19), said angular displacement being measured by a second device (29) integral with the rocker arm (26) and connected to the mentioned pivot points (30).
- control unit (9) or processing unit or CPU it will be in charge of controlling all the system parameters, housing the necessary databases, running the simulation software and managing the operation of all the devices to It is connected, not only to those previously mentioned, but to any other peripherals connected to the system, such as a keyboard (10) to enter data into the system, navigate through menus or screens, or pedals (11) similar to those used in real surgery to be operated by the foot, being responsible for controlling functions such as cauterization, cutting, image capture, etc.
- the user (12) is the person who interacts with the simulator through the simulated physical instruments (2) and who receives visual responses through the visualization system (14) through the PC and haptic sensations through the haptic devices (13 ) real
- One of them is the software application that allows the user (12) to interact with the system by planning the simulation in a visual, interactive and friendly way, counting among its functionalities with that of selecting the exercises, accessing the historical results, interacting with the tutorials and homework descriptions, etc.
- the other functional software entity that incorporates the display system (14) is that of the graphics generator engine, which is a high performance library for the visualization of 3D graphics and the simulation sequence on the monitor (5).
- the simulated physical instrument (2) that mimics the surgical instruments: tweezers, probes, cameras and that is coupled to the haptic devices (13) through which they simulate their operational functionality, being said haptic devices (13) retracted or hidden completely within the physical model (1) so that they do not hinder the surgeon's task and faithfully reproduce a real situation.
- the system also has a simulation core (15) whose function is to direct, control and manage the flow of the simulation at all levels: graphic, haptic and operational. That is, this module coordinates the rest of the remaining modules and elements and acts as an interface between the simulator and the software application that allows the user (12) to plan the simulation.
- a simulation core (15) whose function is to direct, control and manage the flow of the simulation at all levels: graphic, haptic and operational. That is, this module coordinates the rest of the remaining modules and elements and acts as an interface between the simulator and the software application that allows the user (12) to plan the simulation.
- the system also has a touch and sound software module (16) that converts the simulated user actions (12) into haptic and sound responses, that is, it acts as a bridge between the action user simulated (by example, milling) and the sensory response of the hardware (collision sensation of the milling cutter and noise of milling).
- a touch and sound software module (16) that converts the simulated user actions (12) into haptic and sound responses, that is, it acts as a bridge between the action user simulated (by example, milling) and the sensory response of the hardware (collision sensation of the milling cutter and noise of milling).
- the set is completed with an evaluation system (17) that allows monitoring different aspects of the execution of the simulation exercises with the objective of being able to evaluate the actions of the users (12) in the execution of the different exercises.
- training case library of static support for the simulation, that is, databases, XML files or similar, graphic models etc. such as anatomy and / or instrumental models, medical records, teaching sequence and objectives to be fulfilled within a training, etc.
Landscapes
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Computational Mathematics (AREA)
- Mathematical Optimization (AREA)
- Medical Informatics (AREA)
- Medicinal Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Algebra (AREA)
- Radiology & Medical Imaging (AREA)
- Pulmonology (AREA)
- Mathematical Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Mathematical Physics (AREA)
- Pure & Applied Mathematics (AREA)
- Business, Economics & Management (AREA)
- Educational Administration (AREA)
- Educational Technology (AREA)
- Theoretical Computer Science (AREA)
- Instructional Devices (AREA)
Abstract
Simulador para cirugía laparoscópica que tiene por objeto la fiel reproducción de las condiciones reales a las cuales debe enfrentarse un cirujano en una operación de este tipo con el fin de practicar las diferentes técnicas y desarrollar las habilidades precisas, que se estructura básicamente a partir de un modelo físico (1) del paciente sobre el que se sitúa el instrumental (2) y una cámara (4); un monitor (5) a través del cual ver la simulación de la operación; una mesa de operaciones (6) articulada capaz de transmitir su movimiento a las imágenes de los órganos internos del paciente; una unidad de control (9) encargada de controlar todos los parámetros del sistema; y unos periféricos acoplados para introducir datos al sistema.
Description
SIMULADOR PARA CIRUGÍA LAPAROSCÓPICA
D E S C R I P C I Ó N
OBJETO DE LA !NVENCION
La presente invención se refiere a un simulador para el entrenamiento de cirugía laparoscópica que tiene por objeto Ia fiel reproducción de las condiciones reales a las cuales debe enfrentarse un cirujano en una operación de este tipo con el fin de practicar las diferentes técnicas, desarrollar las habilidades precisas, etc.
ANTECEDENTES DE LA INVENCIÓN
Desde hace ya varias décadas existen en el campo de Ia cirugía diferentes técnicas que persiguen Ia curación del paciente a través de intervenciones que, al contrario que las denominadas de cirugía abierta, no requieran practicar una amplia incisión al paciente con el fin de actuar sobre los órganos afectados, permitiendo así una rápida recuperación del mismo, un menor tiempo de hospitalización y un menor riesgo de infecciones.
Una de estas técnicas, las cuales quedan englobadas normalmente dentro del término "mínima invasión" o "cirugía mínimamente invasiva", es Ia laparoscopia, Ia cual consiste en realizar intervenciones quirúrgicas sin abrir al paciente, únicamente practicando una pequeña incisión denominada portal, por dónde penetrará el instrumental requerido para realizar operaciones en un órgano determinado.
Para el seguimiento y control de Ia manipulación del instrumental se utiliza una cámara que es introducida en el paciente, Ia cual muestra, a través de una pantalla externa, las imágenes de las diferentes operaciones y
maniobras que el cirujano lleva a cabo internamente.
Esta técnica quirúrgica, que ofrece evidentes ventajas, necesita sin embargo de un alto grado de especialización y habilidad respecto a Ia cirugía abierta convencional, pues el cirujano debe acostumbrarse a seguir la evolución de su intervención a través de un monitor, a Ia vez que con sus manos maneja el instrumental introducido en el paciente a través de los mencionados portales.
Así, se hace absolutamente necesario un entrenamiento previo para asegurar un correcto manejo del sistema y una adecuación de las habilidades del cirujano a las aptitudes que este tipo de sistemas necesita.
Este entrenamiento se ha llevado a cabo en ocasiones utilizando cadáveres humanos o incluso animales vivos, Io cual, como es evidente, presenta un elevado número de inconvenientes.
Para solucionar los mismos, ya hace algunos años se recurrió a modelos físicos que trataban de reproducir las condiciones de trabajo, y que se estructuraban a partir de una caja o envolvente cerrada que simulaba el cuerpo humano, de Ia cual emergía el instrumental correspondiente, y que en su interior contenía modelos físicos de determinados órganos del cuerpo humano.
Estos primeros simuladores, aunque efectivos desde el punto de vista de adquirir ciertas habilidades manuales y acostumbrarse a Ia presencia de Ia cámara, contaban con multitud de inconvenientes, pues no dejaban de ser toscas reproducciones de las condiciones reales con las que más tarde se enfrentaría el cirujano.
Con objeto de solventar estos inconvenientes y dotar de un mayor
realismo al entrenamiento en los últimos años han aparecido, gracias al notable desarrollo del software, simuladores virtuales capaces de reproducir imágenes del interior del cuerpo y sus órganos y Ia interacción del instrumental médico operando sobre dichos órganos. En otras palabras, sistemas de entrenamiento capaces de simular múltiples escenarios en los cuales pueden reproducirse enfermedades, problemas que puedan surgir durante Ia intervención, etc. permitiendo a su vez que a través de los movimientos que el cirujano imprime al instrumental del simulador el sistema sea capaz de generar imágenes del efecto que dichos movimientos tendrían en los órganos también simulados por el sistema.
Sin embargo, esta nueva técnica aplicada a Ia simulación, aún solucionando los inconvenientes antes señalados, puede adolecer en muchas ocasiones de falta de realismo debido a factores tales como Ia incorrecta posición del instrumental en el modelo físico de paciente, la incorrecta posición o dimensión de dicho modelo físico o incluso el excesivo tamaño de los dispositivos hápticos que colaboran con el instrumental, que sobresalen del modelo físico de paciente dificultando el manejo de dicho instrumental y en definitiva impidiendo que el cirujano los maneje como haría con los utilizados en una operación real, es decir, que no practique con una ergonomía real.
A todo esto hay que sumar el hecho de que los generadores de imágenes de este tipo de simuladores se limitan a proporcionar modelos de los órganos internos en una determinada posición, sin ser posible reproducir movimientos del paciente y ni por Io tanto los movimientos de sus órganos internos con motivo de dicho movimiento. Sin embargo, este movimiento de los pacientes suele ser habitual en las operaciones de cirugía, pues en determinadas ocasiones el cirujano, ayudado por Ia mesa de operaciones, inclina el cuerpo del paciente de forma que uno o varios órganos internos se muevan unos respecto a otros y de esa forma se pueda tener una mejor visión de los mismos, un mejor acceso a ciertas zonas, etc.
- A -
DESCRIPCIÓN DE LA INVENCIÓN
El simulador de cirugía laparoscópica que a continuación se describe resuelve los problemas antes planteados, pues permite una simulación que es fiel reproducción de las condiciones reales a las que debe enfrentarse el cirujano, incluyendo instrumental de tamaño y ubicación real y Ia posibilidad de mover al paciente sobre Ia mesa y con ello mover también los órganos internos del cuerpo.
Concretamente, el simulador objeto de Ia presente invención comprende, básicamente, los siguientes componentes:
- Un modelo físico de paciente sobre el que se situará el instrumental adecuado, tal como pinzas, tijeras, grapadora, separador, etc. con su correspondiente dispositivo háptico encargado de transmitir a Ia unidad de control Ia posición del mismo en los ejes X, Y y Z, así como de producir una sensación de tacto mediante una realimentación de fuerzas que se reflejará en los mandos del instrumental. Todos estos dispositivos, quedarán integrados dentro del modelo físico de paciente, de manera que únicamente sobresalgan aquellos que en una operación real serán los que el cirujano encuentre, es decir, el propio instrumental y Ia cámara, reproduciendo así fielmente Ia realidad.
Además, dicho instrumental reproducirá fielmente todas las características de un instrumental real, tanto en dimensión y manejabilidad como en Ia posición que ocupan entre ellos y respecto al paciente, de forma que Ia simulación reproduzca las mismas características que una operación real. Para ello, además, el modelo físico del paciente también reproducirá fielmente un cuerpo humano, tanto en dimensiones como en aspecto, siendo además intercambiable e independiente de Ia mesa de operaciones (6) para poder representar
diferentes modelos de pacientes tales como adultos, niños, etc. según Ia ocasión.
- Una cámara Ia cual simula una real en forma, dimensiones y funciones, de tal manera que si penetra Ia cámara, el objetivo se acerca al objeto y el resultado virtual es un acercamiento de Ia imagen, de otro modo, si Ia cámara es desplazada en los ejes de coordenadas X, Y, o se produce una rotación del eje Z, correspondiendo este último a Ia penetración, Ia representación virtual reacciona en Ia misma dimensión y sentido en sincronismo con los movimientos de Ia cámara.
- Un sistema de visualización cuya misión será la de representar en una pantalla las imágenes que virtualmente recoge Ia cámara, así como las imágenes generadas a partir de Ia manipulación del instrumental.
- Una mesa de operaciones articulada, cuya misión es la de soportar el modelo físico del paciente, así como por un lado, incorporar los mecanismos encargados de posicionar el tablero sobre el que apoya dicho modelo de paciente según las exigencias del cirujano, y por otro, incorporar los medios necesarios para medir la posición en el espacio de dicho tablero y transmitir la misma a Ia unidad de control para que esta se encargue de enviar al sistema de visualización las imágenes de los órganos según estos se vean afectados por el plano del campo gravitatorio en relación a Ia inclinación del tablero de la mesa.
- Un software específico encargado de Ia simulación que a partir de los datos proporcionados por el instrumental y Ia mesa de operaciones generará Ia posición tridimensional de simulación de los mismos respecto al también escenario tridimensional simulado que será representado en el sistema de visualización.
- Una unidad central de procesamiento o CPU, encargada de controlar todos los parámetros del sistema, albergar las bases de datos necesarias tales como las de los modelos anatómicos y de instrumental, historias clínicas, etc., así como de ejecutar el software de simulación y gestionar el funcionamiento de todos los dispositivos a él conectados.
- Por último, una serie de periféricos para introducir datos al sistema y/o reproducir diversas operaciones o funciones susceptibles de ser llevadas a cabo por el cirujano y existentes también en un quirófano real.
Así, partiendo de Ia información almacenada en las bases de datos utilizadas y de los movimientos del instrumental, mesa de operaciones u otros el sistema, a través del software específico, es capaz de generar imágenes virtuales que se corresponden con Io que sucedería en Ia realidad si dicho instrumental, mesa, etc. se utilizasen de esa manera, reproduciéndose por Io tanto de manera fiel Ia realidad y convirtiendo al sistema en una potente herramienta de entrenamiento.
Por último añadir que el sistema, a través de las bases de datos y el software apropiados, es capaz no solo de reproducir en tiempo real Io que el cirujano está haciendo, sino también los efectos que Io que dicho cirujano hace causa en los órganos del paciente, o incluso Ia simulación de cualquier contingencia inesperada y/o complicación operatoria, así como múltiples factores que podrían tener influencia en Ia operación simulada.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar Ia descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características del invento, de acuerdo con un ejemplo preferente de realización práctica del mismo, se acompaña como parte integrante de dicha descripción, un juego de dibujos en
donde con carácter ilustrativo y no limitativo, se ha representado Io siguiente:
La figura 1.- Muestra una vista esquemática de los elementos que comprende el simulador de Ia presente invención.
La figura 2.- Muestra una vista en perspectiva en la que se representa un posible modelo físico de paciente el cual tiene acoplado tanto Ia cámara como el instrumental.
La figura 3.- Muestra una vista en perspectiva inferior de Ia mesa de operaciones del simulador de Ia invención, sobre Ia que se haya situado el modelo físico del paciente.
La figura 4.- Muestra sendas vistas en alzado de la de Ia mesa de operaciones del simulador de Ia invención.
La figura 5.- Muestra una vista 5a de las cavidades sobre las que se sitúan los pies de los dispositivos hápticos en el tablero de Ia mesa de operaciones del simulador de Ia invención y otra 5b de detalle de dichos pies.
La figura 6.- Muestra un diagrama de bloques en donde se representa de forma esquemática Ia relación entre las diferentes partes del simulador gestionadas por el software.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
Según una posible realización de la invención, el simulador para cirugía laparoscópica de Ia invención comprende un modelo físico (1) del paciente, susceptible de ser intercambiado por otros de diferente morfología según pudiera corresponder en Ia vida real, sobre el que se sitúa el instrumental (2) adecuado que entra en el paciente a través de los
correspondientes portales (3), así como Ia cámara (4).
El sistema, a partir de los movimientos en cualquiera de los tres ejes X, Y, Z o de rotación tanto de Ia cámara (4) como del instrumental (2), así como los movimientos específicos de corte, pinzamiento, etc. del instrumental
(2) genera las imágenes virtuales correspondientes a Io que sería dicho movimiento en Ia realidad, las cuales pueden verse a través del monitor (5), el cual es susceptible además de incorporar una pantalla táctil a modo de periférico.
Para situar dicho modelo físico (1), se utiliza una mesa de operaciones (6) articulada, Ia cual incorpora medios (7) para posicionar el tablero (19) inclinándolo tanto transversal como longitudinalmente, es decir, tanto en un movimiento izquierda - derecha alrededor del eje longitudinal como anterior - posterior alrededor del eje transversal. Igualmente, dicha mesa de operaciones (6) cuenta con dispositivos para medir el desplazamiento angular, como por ejemplo "encoders", sensores de posición, etc., que medirán Ia posición de Ia mesa (6) para ser transmitida a Ia unidad de control (9) para que esta última se encargue de enviar al monitor (5) las imágenes de los órganos según estos se vean afectados por el plano del campo gravitatorio, en relación a Ia inclinación del tablero de dicha mesa (9).
Así, según una realización preferente que puede verse en las figuras 3, 4 y 5 Ia mesa de operaciones (6) comprende un tablero (19) realizado preferentemente en un material rígido que cuenta con una pluralidad de cavidades (20), de diferente profundidad, cuya finalidad consiste en albergar el pie (21) de los diferentes dispositivos hápticos para situarlos en Ia posición, altura y orientación correctas de acuerdo a Ia utilización del ejercicio que se esté desarrollando.
Dichas cavidades (20) están compuestas por alojamientos de forma
cilíndrica sobre las que se sitúa otra cavidad interna (22) en forma de prisma rectangular a modo de chavetero que sirve para Ia orientación angular del referido pie (21) del dispositivo háptico (13). La situación en altura del dispositivo háptico (13) será función de Ia profundidad de Ia propia cavidad (20), tal y como se puede apreciar en Ia figura 5a, en donde aparecen cavidades con diferentes profundidades.
Además, en dicha cavidad interna (22) se sitúa al menos un sensor de presencia (23) o similar capaz de detectar Ia ocupación de las cavidades (20) por un dispositivo háptico (13), e incluso identificar este último.
En cuanto al posicionamiento de Ia mesa de operaciones (6), ésta se sustenta por medio de soportes giratorios (24) situados preferentemente en el eje longitudinal al tablero (19) y unidos por sus ejes a un balancín (26) de forma que se permita el giro alrededor de dicho eje longitudinal, es decir, el giro izquierda - derecha de dicho tablero. En al menos uno de dichos soportes giratorios (24) se encuentra además acoplado un dispositivo (25) para medir el desplazamiento angular tal como un encoder o similar capaz de medir el grado de inclinación lateral de dicho tablero (19).
Igualmente, la acción mecánica del giro longitudinal es suministrada por un primer actuador (27) o servo amarrado por uno de sus extremos al pasador (28) y por el otro a un puente de giro (29) situado en el balancín (26).
Dicho balancín (26) incorpora también un pasador (31) que sirve de punto de giro y amarre en uno de los extremos del segundo actuador (32) o servo encargado de producir un desplazamiento angular de dicho balancín (26) en los puntos de giro (30) de forma que se permita el giro alrededor del eje transversal del tablero (19), es decir, el giro anterior - posterior de dicho tablero (19), siendo dicho desplazamiento angular medido por un segundo
dispositivo (29) solidario al balancín (26) y unido a los mencionados puntos de giro (30) .
De esta forma, a partir de las medidas de desplazamiento angular, que se corresponden con los cambios de posición del tablero (19), entregadas al sistema de control por los dispositivos (25, 29) dicho sistema traduce ese movimiento o desplazamiento enviando al sistema de visualización (14) las imágenes de los órganos según estos se vean afectados por el plano del campo gravitatorio en relación a Ia inclinación del tablero (19) de Ia mesa (6).
En cuanto a Ia unidad de control (9) o unidad de procesamiento o CPU, ésta será Ia encargada de controlar todos los parámetros del sistema, albergar las bases de datos necesarias, ejecutar el software de simulación y gestionar el funcionamiento de todos los dispositivos a él conectados, no solo de los anteriormente comentados, sino de cualesquiera otros periféricos acoplados al sistema, como por ejemplo un teclado (10) para introducir datos al sistema, navegar por los menús o pantallas, o unos pedales (11) similares a los utilizados en cirugía real para ser accionados por el pie, siendo los encargados de controlar funciones como Ia cauterización, el corte, captura de imágenes, etc.
De forma más concreta, y tal y como puede apreciarse en Ia figura 5, en Ia que se muestra de forma esquemática el diagrama de bloques del sistema, se tiene que:
El usuario (12) es Ia persona que interactúa con el simulador a través del instrumental (2) físico simulado y que recibe respuestas visuales mediante el sistema de visualización (14) a través del PC y sensaciones hápticas a través de los dispositivos hápticos (13) reales
Dicho sistema de visualización (14), que incluye tanto Ia cámara (4)
como el monitor (5) comprende a su vez dos entidades funcionales de software. Una de ellas es Ia aplicación software que permite al usuario (12) interactuar con el sistema planificando Ia simulación de forma visual, interactiva y amigable, contando entre sus funcionalidades con Ia de seleccionar los ejercicios, acceder a los históricos de resultados, interactuar con los tutoriales y descripciones de tarea, etc.
La otra entidad funcional de software que incorpora el sistema de visualización (14) es Ia del motor generador de gráficos, que es una librería de alto rendimiento para Ia visualización de gráficos en 3D y de Ia secuencia de simulación en el monitor (5).
Otro elemento es, como ya se ha dicho, el instrumental (2) físico simulado que imita el instrumental quirúrgico: pinzas, palpadores, cámaras y que está acoplado a los dispositivos hápticos (13) a través de los cuales simulan su funcionalidad operacional, estando dichos dispositivos hápticos (13) escamoteados u ocultos totalmente dentro del modelo físico (1) de forma que no dificulten Ia tarea del cirujano y que se reproduzca fielmente una situación real.
El sistema cuenta además con un núcleo de simulación (15) cuya función es Ia de dirigir, controlar y gestionar el flujo de Ia simulación a todos los niveles: gráfico, háptico y operacional. Es decir, este módulo coordina al resto de los módulos y elementos restantes y actúa de interfaz entre el simulador y Ia aplicación software que permite al usuario (12) planificar Ia simulación.
De cara además a conseguir un realismo apropiado del simulador el sistema cuenta también con un módulo software de tacto y sonidos (16) que convierte las acciones simuladas del usuario (12) en respuestas hápticas y sonoras, es decir, actúa de puente entre Ia acción simulada del usuario (por
ejemplo, fresar) y Ia respuesta sensorial del hardware (sensación de colisión de Ia fresa y ruido del fresado).
El conjunto se completa con un sistema de evaluación (17) que permite monitorizar diferentes aspectos de Ia ejecución de los ejercicios de simulación con el objetivo de poder evaluar las actuaciones de los usuarios (12) en Ia ejecución de los diferentes ejercicios.
Por último, se dispone de una biblioteca de casos de entrenamiento (18) de apoyo estático a Ia simulación, es decir, bases de datos, ficheros XML o similares, modelos gráficos etc. tales como modelos de anatomía y/o instrumental, historias clínicas, secuencia didáctica y objetivos a cumplir dentro de un entrenamiento, etc.
Claims
R E I V I N D I C A C I O N E S
1a.- Simulador para cirugía laparoscópica que comprende un modelo físico (1) del paciente sobre el que se sitúa el instrumental (2) acoplado al correspondiente dispositivo háptico (13); una cámara (4) que simula una real; una mesa de operaciones (6) con un tablero (19) sobre el que se sitúa dicho modelo físico (1); una unidad de control (9) encargada de controlar todos los parámetros del sistema, albergar las bases de datos necesarias y el software de ejecución y gestionar todos los dispositivos conectados; periféricos para introducir datos al sistema y/o reproducir funciones existentes en un quirófano real; y un sistema de visualización (14) encargado de representar en un monitor (5) las imágenes generadas por Ia unidad de control (9), caracterizado porque Ia mesa de operaciones (6) comprende medios (J) para inclinar el tablero (19) tanto transversal como longitudinalmente, y dispositivos (25, 29) para medir el desplazamiento angular y/o Ia posición de dicho tablero (19) y enviar dicha medida a Ia unidad de control (9) de forma que ésta Ia procese y envíe al monitor (5) las imágenes de los órganos internos del cuerpo simulados del paciente según estos se vean afectados por el plano del campo gravitatorio, en relación a Ia inclinación de dicho tablero (19).
2a.- Simulador para cirugía laparoscópica según reivindicación primera, caracterizado porque Ia mesa de operaciones (6) se sustenta por medio de soportes giratorios (24) unidos por sus ejes a un balancín (26) de forma que se permita el giro del tablero (19) alrededor de su eje longitudinal y/o transversal.
3a.- Simulador para cirugía laparoscópica según reivindicación segunda, caracterizado porque en al menos uno de los soportes giratorios (24) se acopla un dispositivo (25) para medir el desplazamiento angular o grado de inclinación alrededor del eje longitudinal del tablero (19).
4a.- Simulador para cirugía laparoscópica según reivindicaciones 2 ó 3, caracterizado porque los ejes de los soportes giratorios (24) de Ia mesa de operaciones (6) se sitúan sobre el eje longitudinal del tablero (19).
5a.- Simulador para cirugía laparoscópica según reivindicaciones anteriores, caracterizado porque Ia mesa de operaciones (6) cuenta con un primer actuador (27) amarrado por uno de sus extremos al pasador (28) y por el otro a un puente de giro (29) situado en el balancín (26).
6a.- Simulador para cirugía laparoscópica según reivindicación segunda, caracterizado porque el balancín (26) incorpora un pasador (31) que sirve de punto de giro y amarre en uno de los extremos de un segundo actuador (32) encargado de producir un desplazamiento angular de dicho balancín en los puntos de giro (30).
7a.- Simulador para cirugía laparoscópica según reivindicación 6a caracterizado porque solidario al balancín (26) y unido a los puntos de giro (30) se acopla un segundo dispositivo (29) para medir el desplazamiento angular o grado de inclinación alrededor del eje transversal del tablero (19).
8a.- Simulador para cirugía laparoscópica según reivindicación primera, caracterizado porque el tablero (19) de Ia mesa de operaciones (6) comprende una pluralidad de cavidades (20) de diferente profundidad destinadas a albergar el pie (21) de los diferentes dispositivos hápticos.
9a.- Simulador para cirugía laparoscópica según reivindicación octava, caracterizado porque las cavidades (20) están compuestas por alojamientos de forma cilindrica sobre las que se sitúa otra cavidad interna (22) a modo de chavetero que sirve para Ia orientación angular del referido pie (21) del dispositivo háptico (13).
10a.- Simulador para cirugía laparoscópica según reivindicación novena, caracterizado porque en Ia cavidad interna (22) se sitúa al menos un sensor de presencia (23) para detectar Ia ocupación de las cavidades (20) por el pie (21) de un dispositivo háptico (13) y/o identificar el tipo o características de este último.
11a.- Simulador para cirugía laparoscópica según reivindicación primera, caracterizado porque Ia unidad de control (9) comprende:
- un núcleo de simulación (15) que coordina al resto de los módulos y elementos y actúa de interfaz entre el simulador y Ia aplicación software que permite al usuario (12) planificar Ia simulación;
- Un módulo software de tacto y sonidos (16) que convierte las acciones simuladas del usuario (12) en respuestas hápticas y sonoras;
- un sistema de evaluación (17) para monitorizar Ia ejecución de los ejercicios y evaluar las actuaciones de los usuarios (12); y
- Una biblioteca de casos de entrenamiento (18) de apoyo estático a Ia simulación.
12a.- Simulador para cirugía laparoscópica según reivindicación primera, caracterizado porque el sistema de visualización (14) incluye tanto la cámara (4) como el monitor (5) y además comprende dos entidades funcionales de software, una de ellas que permite al usuario (12) planificar e interactuar con el sistema de forma visual y otra encargada de generar los gráficos en 3D y Ia secuencia de simulación en el monitor (5).
13a.- Simulador para cirugía laparoscópica según reivindicación primera, caracterizado porque los diferentes dispositivos hápticos (13) sobre los que se sitúa el instrumental (2) transmiten a Ia unidad de control (9) Ia posición del mismo en los ejes X, Y y Z, y producen una sensación de tacto mediante una realimentación de fuerzas que se reflejará en los mandos del instrumental (2), y porque quedan integrados dentro del modelo físico (1) de
paciente, de manera que únicamente sobresalga del mismo el instrumental (2) que se encontraría el usuario (12) en una operación real.
14a.- Simulador para cirugía laparoscópica según reivindicación primera caracterizado porque los periféricos comprenden un teclado (10) para introducir datos al sistema y/o unos pedales (11) encargados de controlar funciones propias de Ia operación.
15a.- Simulador para cirugía laparoscópica según reivindicación primera, caracterizado porque el modelo físico (1) del paciente es intercambiable e independiente de Ia mesa de operaciones (6) y reproduce fielmente las dimensiones y aspecto del cuerpo humano.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/ES2007/000377 WO2009000939A1 (es) | 2007-06-22 | 2007-06-22 | Simulador para cirugía laparoscópica |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/ES2007/000377 WO2009000939A1 (es) | 2007-06-22 | 2007-06-22 | Simulador para cirugía laparoscópica |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009000939A1 true WO2009000939A1 (es) | 2008-12-31 |
Family
ID=40185214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2007/000377 WO2009000939A1 (es) | 2007-06-22 | 2007-06-22 | Simulador para cirugía laparoscópica |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2009000939A1 (es) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012044753A3 (en) * | 2010-10-01 | 2012-05-31 | Applied Medical Resources Corporation | Portable laparoscopic trainer |
WO2013096632A1 (en) * | 2011-12-20 | 2013-06-27 | Applied Medical Resources Corporation | Advanced surgical simulation |
CN103976786A (zh) * | 2013-09-04 | 2014-08-13 | 上海市东方医院 | 经脐入路腹腔镜手术操作力学评估平台 |
EP2922048A4 (en) * | 2012-11-13 | 2015-10-07 | Eidos Medicine Llc | HYBRID MEDICAL DRIVE DEVICE FOR LAPAROSCOPY |
US9218753B2 (en) | 2011-10-21 | 2015-12-22 | Applied Medical Resources Corporation | Simulated tissue structure for surgical training |
US9449532B2 (en) | 2013-05-15 | 2016-09-20 | Applied Medical Resources Corporation | Hernia model |
US9548002B2 (en) | 2013-07-24 | 2017-01-17 | Applied Medical Resources Corporation | First entry model |
US9898937B2 (en) | 2012-09-28 | 2018-02-20 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
US9922579B2 (en) | 2013-06-18 | 2018-03-20 | Applied Medical Resources Corporation | Gallbladder model |
US9940849B2 (en) | 2013-03-01 | 2018-04-10 | Applied Medical Resources Corporation | Advanced surgical simulation constructions and methods |
US9959786B2 (en) | 2012-09-27 | 2018-05-01 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
US10081727B2 (en) | 2015-05-14 | 2018-09-25 | Applied Medical Resources Corporation | Synthetic tissue structures for electrosurgical training and simulation |
US10121391B2 (en) | 2012-09-27 | 2018-11-06 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
US10198965B2 (en) | 2012-08-03 | 2019-02-05 | Applied Medical Resources Corporation | Simulated stapling and energy based ligation for surgical training |
US10198966B2 (en) | 2013-07-24 | 2019-02-05 | Applied Medical Resources Corporation | Advanced first entry model for surgical simulation |
US10223936B2 (en) | 2015-06-09 | 2019-03-05 | Applied Medical Resources Corporation | Hysterectomy model |
US10332425B2 (en) | 2015-07-16 | 2019-06-25 | Applied Medical Resources Corporation | Simulated dissectible tissue |
US10354556B2 (en) | 2015-02-19 | 2019-07-16 | Applied Medical Resources Corporation | Simulated tissue structures and methods |
US10395559B2 (en) | 2012-09-28 | 2019-08-27 | Applied Medical Resources Corporation | Surgical training model for transluminal laparoscopic procedures |
PL424841A1 (pl) * | 2018-03-09 | 2019-09-23 | Laparo Spółka Z Ograniczoną Odpowiedzialnością | Człon manipulacyjno-pomiarowy trenażera laparoskopowego |
US10490105B2 (en) | 2015-07-22 | 2019-11-26 | Applied Medical Resources Corporation | Appendectomy model |
US10535281B2 (en) | 2012-09-26 | 2020-01-14 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
US10679520B2 (en) | 2012-09-27 | 2020-06-09 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
US10706743B2 (en) | 2015-11-20 | 2020-07-07 | Applied Medical Resources Corporation | Simulated dissectible tissue |
US10720084B2 (en) | 2015-10-02 | 2020-07-21 | Applied Medical Resources Corporation | Hysterectomy model |
US10796606B2 (en) | 2014-03-26 | 2020-10-06 | Applied Medical Resources Corporation | Simulated dissectible tissue |
US10818201B2 (en) | 2014-11-13 | 2020-10-27 | Applied Medical Resources Corporation | Simulated tissue models and methods |
US10847057B2 (en) | 2017-02-23 | 2020-11-24 | Applied Medical Resources Corporation | Synthetic tissue structures for electrosurgical training and simulation |
CN112535533A (zh) * | 2020-12-06 | 2021-03-23 | 西安交通大学 | 一种利用3d打印病灶模型帮助远程手术的配套装置 |
US11030922B2 (en) | 2017-02-14 | 2021-06-08 | Applied Medical Resources Corporation | Laparoscopic training system |
US11120708B2 (en) | 2016-06-27 | 2021-09-14 | Applied Medical Resources Corporation | Simulated abdominal wall |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0691118A2 (de) * | 1994-07-04 | 1996-01-10 | Stierlen-Maquet Aktiengesellschaft | Stützsäule zur Halterung einer Patientenlagerfläche |
WO1999025303A1 (en) * | 1997-11-19 | 1999-05-27 | Officina Di Protesi Trento S.P.A. | Multifunctional operating table |
WO2002032312A1 (en) * | 2000-10-16 | 2002-04-25 | Ge Medical Systems Global Technology Company Llc | Mobile imaging table pivot mechanism |
WO2003030802A2 (en) * | 2001-10-08 | 2003-04-17 | Eschmann Holdings Limited | Surgical tables |
US20050142525A1 (en) * | 2003-03-10 | 2005-06-30 | Stephane Cotin | Surgical training system for laparoscopic procedures |
US20070166682A1 (en) * | 2003-01-22 | 2007-07-19 | Realsim Systems, Llc. | Medical training apparatus |
-
2007
- 2007-06-22 WO PCT/ES2007/000377 patent/WO2009000939A1/es active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0691118A2 (de) * | 1994-07-04 | 1996-01-10 | Stierlen-Maquet Aktiengesellschaft | Stützsäule zur Halterung einer Patientenlagerfläche |
WO1999025303A1 (en) * | 1997-11-19 | 1999-05-27 | Officina Di Protesi Trento S.P.A. | Multifunctional operating table |
WO2002032312A1 (en) * | 2000-10-16 | 2002-04-25 | Ge Medical Systems Global Technology Company Llc | Mobile imaging table pivot mechanism |
WO2003030802A2 (en) * | 2001-10-08 | 2003-04-17 | Eschmann Holdings Limited | Surgical tables |
US20070166682A1 (en) * | 2003-01-22 | 2007-07-19 | Realsim Systems, Llc. | Medical training apparatus |
US20050142525A1 (en) * | 2003-03-10 | 2005-06-30 | Stephane Cotin | Surgical training system for laparoscopic procedures |
Non-Patent Citations (2)
Title |
---|
"Diversas divulgaciones in congresos and eventos the May of 2004 a January of 2007", PRESENTACION DE THE PRODUCTO REALIZADA IN INVESCOT V, CONGRESO NACIONAL, SALAMANCA, January 2005 (2005-01-01), Retrieved from the Internet <URL:http://www.insightmist.com/img_eventos/presentacion-INVESCOT.pdf> * |
"Simulador avanzado of entrenamiento al servicio de the adquisicion of destrezas in tecnicas of cirugia minimamente invasivas", GMV INNOVATING SOLUTIONS, Retrieved from the Internet <URL:http://www.insightmist.com> * |
Cited By (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9472121B2 (en) | 2010-10-01 | 2016-10-18 | Applied Medical Resources Corporation | Portable laparoscopic trainer |
WO2012044753A3 (en) * | 2010-10-01 | 2012-05-31 | Applied Medical Resources Corporation | Portable laparoscopic trainer |
EP3392863A1 (en) * | 2010-10-01 | 2018-10-24 | Applied Medical Resources Corporation | Portable laparoscopic trainer |
US10854112B2 (en) | 2010-10-01 | 2020-12-01 | Applied Medical Resources Corporation | Portable laparoscopic trainer |
US12014652B2 (en) | 2011-10-21 | 2024-06-18 | Applied Medical Resources Corporation | Simulated tissue structure for surgical training |
US9218753B2 (en) | 2011-10-21 | 2015-12-22 | Applied Medical Resources Corporation | Simulated tissue structure for surgical training |
US11158212B2 (en) | 2011-10-21 | 2021-10-26 | Applied Medical Resources Corporation | Simulated tissue structure for surgical training |
US8961190B2 (en) | 2011-12-20 | 2015-02-24 | Applied Medical Resources Corporation | Advanced surgical simulation |
US11403968B2 (en) | 2011-12-20 | 2022-08-02 | Applied Medical Resources Corporation | Advanced surgical simulation |
WO2013096632A1 (en) * | 2011-12-20 | 2013-06-27 | Applied Medical Resources Corporation | Advanced surgical simulation |
US10198965B2 (en) | 2012-08-03 | 2019-02-05 | Applied Medical Resources Corporation | Simulated stapling and energy based ligation for surgical training |
US11514819B2 (en) | 2012-09-26 | 2022-11-29 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
US10535281B2 (en) | 2012-09-26 | 2020-01-14 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
US10121391B2 (en) | 2012-09-27 | 2018-11-06 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
US11361679B2 (en) | 2012-09-27 | 2022-06-14 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
US11990055B2 (en) | 2012-09-27 | 2024-05-21 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
US9959786B2 (en) | 2012-09-27 | 2018-05-01 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
US11869378B2 (en) | 2012-09-27 | 2024-01-09 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
US10679520B2 (en) | 2012-09-27 | 2020-06-09 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
US9898937B2 (en) | 2012-09-28 | 2018-02-20 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
US10395559B2 (en) | 2012-09-28 | 2019-08-27 | Applied Medical Resources Corporation | Surgical training model for transluminal laparoscopic procedures |
EP2922048A4 (en) * | 2012-11-13 | 2015-10-07 | Eidos Medicine Llc | HYBRID MEDICAL DRIVE DEVICE FOR LAPAROSCOPY |
US9940849B2 (en) | 2013-03-01 | 2018-04-10 | Applied Medical Resources Corporation | Advanced surgical simulation constructions and methods |
US10991270B2 (en) | 2013-03-01 | 2021-04-27 | Applied Medical Resources Corporation | Advanced surgical simulation constructions and methods |
US10140889B2 (en) | 2013-05-15 | 2018-11-27 | Applied Medical Resources Corporation | Hernia model |
US9449532B2 (en) | 2013-05-15 | 2016-09-20 | Applied Medical Resources Corporation | Hernia model |
US11049418B2 (en) | 2013-06-18 | 2021-06-29 | Applied Medical Resources Corporation | Gallbladder model |
US9922579B2 (en) | 2013-06-18 | 2018-03-20 | Applied Medical Resources Corporation | Gallbladder model |
US11735068B2 (en) | 2013-06-18 | 2023-08-22 | Applied Medical Resources Corporation | Gallbladder model |
US11450236B2 (en) | 2013-07-24 | 2022-09-20 | Applied Medical Resources Corporation | Advanced first entry model for surgical simulation |
US10026337B2 (en) | 2013-07-24 | 2018-07-17 | Applied Medical Resources Corporation | First entry model |
US11854425B2 (en) | 2013-07-24 | 2023-12-26 | Applied Medical Resources Corporation | First entry model |
US10198966B2 (en) | 2013-07-24 | 2019-02-05 | Applied Medical Resources Corporation | Advanced first entry model for surgical simulation |
US9548002B2 (en) | 2013-07-24 | 2017-01-17 | Applied Medical Resources Corporation | First entry model |
US10657845B2 (en) | 2013-07-24 | 2020-05-19 | Applied Medical Resources Corporation | First entry model |
CN103976786A (zh) * | 2013-09-04 | 2014-08-13 | 上海市东方医院 | 经脐入路腹腔镜手术操作力学评估平台 |
US10796606B2 (en) | 2014-03-26 | 2020-10-06 | Applied Medical Resources Corporation | Simulated dissectible tissue |
US10818201B2 (en) | 2014-11-13 | 2020-10-27 | Applied Medical Resources Corporation | Simulated tissue models and methods |
US11887504B2 (en) | 2014-11-13 | 2024-01-30 | Applied Medical Resources Corporation | Simulated tissue models and methods |
US12131664B2 (en) | 2015-02-19 | 2024-10-29 | Applied Medical Resources Corporation | Simulated tissue structures and methods |
US11100815B2 (en) | 2015-02-19 | 2021-08-24 | Applied Medical Resources Corporation | Simulated tissue structures and methods |
US10354556B2 (en) | 2015-02-19 | 2019-07-16 | Applied Medical Resources Corporation | Simulated tissue structures and methods |
US11034831B2 (en) | 2015-05-14 | 2021-06-15 | Applied Medical Resources Corporation | Synthetic tissue structures for electrosurgical training and simulation |
US10081727B2 (en) | 2015-05-14 | 2018-09-25 | Applied Medical Resources Corporation | Synthetic tissue structures for electrosurgical training and simulation |
US10223936B2 (en) | 2015-06-09 | 2019-03-05 | Applied Medical Resources Corporation | Hysterectomy model |
US11721240B2 (en) | 2015-06-09 | 2023-08-08 | Applied Medical Resources Corporation | Hysterectomy model |
US10733908B2 (en) | 2015-06-09 | 2020-08-04 | Applied Medical Resources Corporation | Hysterectomy model |
US12087179B2 (en) | 2015-07-16 | 2024-09-10 | Applied Medical Resources Corporation | Simulated dissectible tissue |
US10755602B2 (en) | 2015-07-16 | 2020-08-25 | Applied Medical Resources Corporation | Simulated dissectible tissue |
US10332425B2 (en) | 2015-07-16 | 2019-06-25 | Applied Medical Resources Corporation | Simulated dissectible tissue |
US11587466B2 (en) | 2015-07-16 | 2023-02-21 | Applied Medical Resources Corporation | Simulated dissectible tissue |
US10490105B2 (en) | 2015-07-22 | 2019-11-26 | Applied Medical Resources Corporation | Appendectomy model |
US11721242B2 (en) | 2015-10-02 | 2023-08-08 | Applied Medical Resources Corporation | Hysterectomy model |
US10720084B2 (en) | 2015-10-02 | 2020-07-21 | Applied Medical Resources Corporation | Hysterectomy model |
US10706743B2 (en) | 2015-11-20 | 2020-07-07 | Applied Medical Resources Corporation | Simulated dissectible tissue |
US11830378B2 (en) | 2016-06-27 | 2023-11-28 | Applied Medical Resources Corporation | Simulated abdominal wall |
US11120708B2 (en) | 2016-06-27 | 2021-09-14 | Applied Medical Resources Corporation | Simulated abdominal wall |
US11030922B2 (en) | 2017-02-14 | 2021-06-08 | Applied Medical Resources Corporation | Laparoscopic training system |
US10847057B2 (en) | 2017-02-23 | 2020-11-24 | Applied Medical Resources Corporation | Synthetic tissue structures for electrosurgical training and simulation |
PL424841A1 (pl) * | 2018-03-09 | 2019-09-23 | Laparo Spółka Z Ograniczoną Odpowiedzialnością | Człon manipulacyjno-pomiarowy trenażera laparoskopowego |
CN112535533A (zh) * | 2020-12-06 | 2021-03-23 | 西安交通大学 | 一种利用3d打印病灶模型帮助远程手术的配套装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009000939A1 (es) | Simulador para cirugía laparoscópica | |
ES2597809T3 (es) | Sistema de simulación para adiestramiento en cirugía artroscópica | |
EP1609431B1 (en) | Haptic device for use in surgical simulation systems | |
JP6794008B2 (ja) | 神経内視鏡ボックストレーナー | |
US8956165B2 (en) | Devices and methods for implementing endoscopic surgical procedures and instruments within a virtual environment | |
Tuggy | Virtual reality flexible sigmoidoscopy simulator training: impact on resident performance | |
Cohen et al. | Virtual reality simulation: basic concepts and use in endoscopic neurosurgery training | |
US5704791A (en) | Virtual surgery system instrument | |
Mathew et al. | Role of immersive (XR) technologies in improving healthcare competencies: a review | |
WO1999042978A1 (en) | Method and apparatus for surgical training and simulating surgery | |
US20120280988A1 (en) | Interactive mixed reality system and uses thereof | |
ES2938437T3 (es) | Simulador laparoscópico | |
US20210312834A1 (en) | Vibrotactile Method, Apparatus and System for Training and Practicing Dental Procedures | |
CA3126623A1 (en) | Medical learning device based on integrating physical and virtual reality with the aim of studying and simulating surgical approaches at anatomical locations | |
ES2534140B1 (es) | Procedimiento y dispositivo para el aprendizaje y entrenamiento de operaciones de cirugía laparoscópica e intervenciones similares | |
US20220319355A1 (en) | Apparatuses for simulating dental procedures and methods | |
KR102562058B1 (ko) | 카메라 네비게이션 트레이닝 시스템 | |
DK180682B1 (en) | Apparatus for simulating medical procedures and methods | |
ES2346025B2 (es) | Sistema para la simulacion de practicas quirurgicas. | |
Haider et al. | APPLICATIONS OF VIRTUAL AND AUGMENTED REALITY IN DENTISTRY EDUCATION | |
WO2023225768A1 (es) | Simulador basado en realidad virtual inmersiva para entrenamiento de procedimientos quirúrgicos | |
KR20230129707A (ko) | 실감형 초음파 검사 시뮬레이션 프로그램 및 시스템 | |
Obeid | Development and Validation of a Hybrid Virtual/Physical Nuss Procedure Surgical Trainer | |
Espadero et al. | Advanced Athroscopy Training Simulator insightMIST | |
Sweet et al. | VIRTUAL REALITY AND SIMULATION IN UROLOGY■ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07788625 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07788625 Country of ref document: EP Kind code of ref document: A1 |