[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2013149761A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2013149761A
JP2013149761A JP2012008529A JP2012008529A JP2013149761A JP 2013149761 A JP2013149761 A JP 2013149761A JP 2012008529 A JP2012008529 A JP 2012008529A JP 2012008529 A JP2012008529 A JP 2012008529A JP 2013149761 A JP2013149761 A JP 2013149761A
Authority
JP
Japan
Prior art keywords
conductivity type
type region
semiconductor device
region
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012008529A
Other languages
English (en)
Inventor
Dawei Cao
大為 曹
Yasuhiko Onishi
泰彦 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2012008529A priority Critical patent/JP2013149761A/ja
Priority to CN201210533176.4A priority patent/CN103219339B/zh
Priority to US13/711,856 priority patent/US8957502B2/en
Publication of JP2013149761A publication Critical patent/JP2013149761A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8611Planar PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

【課題】半導体装置において耐電荷性を向上させること。
【解決手段】素子活性部1には第1の並列pn層12が設けられ、素子周縁部3には第2の並列pn層15が設けられている。第2の並列pn層15と第1主面との間にn-表面領域19が設けられている。n-表面領域19の第1主面側に2以上のp型ガードリング領域20a〜20eが互いに離れて設けられている。各p型ガードリング領域20a〜20eには、それぞれ第1のフィールドプレート電極22a〜22eおよび第2のフィールドプレート電極25a〜25eが電気的に接続されている。第2のフィールドプレート電極25a〜25dは、それぞれ第2の絶縁膜24を介して第1のフィールドプレート電極22b〜22eの間の第1主面を覆うように、隣り合う第1のフィールドプレート電極22b〜22eを覆う。
【選択図】図5

Description

この発明は、半導体装置に関する。
一般に、半導体装置は、電極が半導体基板の片面に形成された横型の素子と、半導体基板の両面に電極を有する縦型の素子に分類される。縦型半導体装置は、オン状態のときにドリフト電流が流れる方向と、オフ状態のときに逆バイアス電圧による空乏層が伸びる方向とが同じである。通常のプレーナ型のnチャネル縦型MOSFET(絶縁ゲート型電界効果トランジスタ)では、高抵抗のn-ドリフト層の部分は、オン状態のときに、縦方向にドリフト電流を流す領域として働く。従って、このn-ドリフト層の電流経路を短くすれば、ドリフト抵抗が低くなるので、MOSFETの実質的なオン抵抗を下げることができるという効果が得られる。
その一方で、高抵抗のn-ドリフト層の部分は、オフ状態のときには空乏化して耐圧を高める。従って、n-ドリフト層が薄くなると、Pベース領域とn-ドリフト層との間のpn接合から進行するドレイン−ベース間空乏層の広がる幅が狭くなり、シリコンの臨界電界強度に速く達するため、耐圧が低下してしまう。逆に、耐圧の高い半導体装置では、n-ドリフト層が厚いため、オン抵抗が大きくなり、損失が増えてしまう。このように、オン抵抗と耐圧との間には、トレードオフ関係がある。
このトレードオフ関係は、IGBTやバイポーラトランジスタやダイオード等の半導体装置においても同様に成立することが知られている。また、このトレードオフ関係は、オン状態のときにドリフト電流が流れる方向と、オフ状態のときの逆バイアスによる空乏層の伸びる方向とが異なる横型半導体装置にも共通である。
上述したトレードオフ関係による問題の解決法として、ドリフト層を、不純物濃度を高めたn型領域とp型領域とを交互に繰り返し接合した構成の並列pn構造とした超接合半導体装置が公知である。このような構造の半導体装置では、並列pn構造のn型領域とp型領域との総不純物量を概ね同じにすることによって、耐圧を保持しつつ低オン抵抗を得ることができる。このため、このような構造の半導体装置において耐圧を保持するためには、並列pn構造のn型領域とp型領域との総不純物量を精度よく制御する必要がある。
一方、半導体装置の高耐圧化を実現するためには、素子周縁部構造が必要である。素子終端構造がないと、ドリフト層の終端で電界が高くなり耐圧が低下してしまうため、高耐圧を実現することが困難となる。この問題を解決するための構造として、素子活性部の並列pn構造の外周において、その表面側の領域に、素子活性部の並列pn構造よりもピッチの小さい並列pn構造を配置することが提案されている(例えば、下記特許文献1参照。)。この提案によれば、素子活性部付近の表面電界が緩和され、高耐圧が保持される。
また、高耐圧が保持されたとしても、耐電荷性がない半導体装置では、時間の経過に伴って耐圧が低下してしまうため、耐圧の信頼性を保証することが困難となる。この問題を解決するための構造として、素子周縁部の並列pn構造の表面側の領域にn-表面領域を配置し、このn-表面領域表面に、n-表面領域内に設けたp型ガードリング領域に電気的に接続するフィールドプレート電極を配置することが提案されている(例えば、下記特許文献2参照。)。この提案によれば、正電荷および負電荷によって耐圧が低下するのを抑制することができる。
このようなp型ガードリング領域およびフィールドプレート電極を備えた半導体装置として、順逆耐圧構造部が表面層に、内周側の、深い第1FLRと、外周側の、浅い第2FLRと、それぞれ複数の第1、第2FLR間の表面を覆う絶縁膜を備えると共に、複数のFLRの表面に接触する導電性フィールドプレートが複数のFLR間に位置する絶縁膜の表面に張り出す構成を有する半導体装置が提案されている(例えば、下記特許文献3参照。)。また、別の装置として、一方の導電型の半導体部の上面領域内に、他方の導電型の保護リングが設けられており、保護リングは、フィールドプレートと接続されている半導体装置が提案されている(例えば、下記特許文献4,5参照。)。
特開2003−224273号公報 国際公開第2011/013379号 特開2009−187994号公報 特開2000−101082号公報 米国特許第6274904号明細書
しかしながら、耐電荷性の低い半導体装置では、初期の耐圧を確保することができても、時間の経過に伴って耐圧が低下してしまうため、耐圧の信頼性を保証することが困難であるという問題点がある。例えば、前記特許文献1に開示された半導体装置では、フィールドプレート電極とチャネルストッパー電極との間の酸化膜上に正電荷が存在すると、空乏層が広がりにくくなり、フィールドプレート端での電界が高くなるため、耐圧が低下してしまうという問題点がある。上記特許文献3〜5に開示された半導体装置では、素子周縁部に並列pn層が設けられていないため、高耐圧化を図るのは困難であるという問題点がある。
また、例えば、上記特許文献2に開示された半導体装置では、次のような問題がある。図23は、従来の半導体装置の構成を示す断面図である。図23は、上記特許文献2に開示された超接合半導体装置である。図23に示すように、従来の半導体装置は、第1主面側に素子の表面構造が設けられた素子活性部1を有し、素子活性部1の外側に素子活性部1を囲む素子周縁部130が設けられている。素子周縁部130の第1主面側には、n-表面領域119が設けられている。n-表面領域119の第1主面側には、3本のp型ガードリング領域120a,120b,120cが互いに離れて設けられている。p型ガードリング領域120a,120b,120cの不純物濃度は、n-表面領域119の不純物濃度よりも高い。
このような従来の半導体装置では、n-表面領域119およびp型ガードリング領域120a,120b,120cを設けることにより、フィールドプレート電極122とチャネルストッパー電極123との間の酸化膜121上に正電荷(正イオン)が存在することによる素子活性部1の外周付近における高電界が緩和される。従って、正電荷によって耐圧が変動するのを抑制することができる。しかしながら、フィールドプレート電極122とチャネルストッパー電極123との間に+1.0×1012cm-2以上の正電荷が存在する場合、第1主面側にn-表面領域119が設けられていても空乏層が広がりにくくなる。このため、フィールドプレート電極122端で電界が高くなり、耐圧が低下してしまう。
一方、フィールドプレート電極122とチャネルストッパー電極123との間に負電荷(負イオン)が存在するときには、最も外側に位置するp型ガードリング領域120cに接続されたフィールドプレート電極122により、空乏層が素子周縁部130の終端へリーチスルーするのが回避される。従って、負電荷によって耐圧が低下するのを抑制することができる。しかしながら、フィールドプレート電極122とチャネルストッパー電極123との間に−1.0×1012cm-2以下の負電荷が存在する場合、第1主面側にn-表面領域119が設けられていることにより空乏層がチャネルストッパー電極123端まで広がりやすくなる。このため、チャネルストッパー電極123端で電界が高くなり、耐圧が低下してしまう。
このように、上記特許文献2に開示された半導体装置では、耐圧の耐電荷性は考慮されているが、表面電荷量Qssが−1.0×1012cm-2以上+1.0×1012cm-2以下である場合の耐電荷性しか確保されていない。このため、不純物イオン濃度が高いモールド樹脂に対しては、耐圧の耐電荷性が十分に考慮されておらず、耐圧が低下する虞がある。従って、耐圧が低下することを回避し、信頼性の高い超接合半導体装置を提供するためには、さらなる耐電荷性の向上が必要となる。
この発明は、上述した従来技術による問題点を解消するため、耐電荷性を向上させることができる半導体装置を提供することを目的とする。
上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置は、以下の特徴を有する。第1主面側に素子活性部が設けられている。第2主面側に低抵抗層が設けられている。第1主面と前記低抵抗層との間に、第1導電型領域および第2導電型領域が交互に配置された並列pn層が設けられている。素子活性部を囲む素子周縁部における並列pn層と第1主面との間に、第3の第1導電型領域が設けられている。第3の第1導電型領域の第1主面側に互いに離れて、2以上の第3の第2導電型領域が設けられている。第3の第2導電型領域の第1主面側に接続された2以上の第1の導電層が設けられている。2以上の第1の導電層は、素子周縁部における第1主面を部分的に覆う。第3の第2導電型領域にそれぞれ電気的に接続されるとともに、絶縁層を介して前記第1の導電層の間の前記第1主面を覆うように、それぞれ隣り合う第1の導電層を覆う2以上の第2の導電層が設けられている。
この発明によれば、素子周縁部の第1主面側にリング状の第3の第2導電型領域が設けられ、かつ第3の第2導電型領域に電気的に接続する第1,2の導電層により素子周縁部の第1主面が完全に覆われる。このため、素子周縁部の絶縁膜上に電荷(イオン)が来ても、第1,2の導電層により耐圧に対する電荷の影響はほぼ遮断される。従って、素子内部の電位や電界などの分布に影響は生じず、容易に高耐電荷性が実現される。
また、この発明にかかる半導体装置は、上述した発明において、さらに、以下の特徴を有する。素子周縁部における並列pn層の繰り返しピッチは、素子活性部における並列pn層の繰り返しピッチよりも狭くてもよい。具体的には、素子活性部と低抵抗層との間に、第1の第1導電型領域および第1の第2導電型領域が交互に配置された第1の並列pn層が設けられている。素子周縁部に、第1の第1導電型領域および第1の第2導電型領域の繰り返しピッチよりも狭いピッチで第2の第1導電型領域および第2の第2導電型領域が交互に配置された第2の並列pn層が設けられている。
この発明によれば、素子周縁部に配置された第2の並列pn層の繰り返しピッチが第1の並列pn層の繰り返しピッチよりも狭いため、素子周縁部において空乏層が広がりやすくなる。従って、高耐圧化することができる。
また、この発明にかかる半導体装置は、上述した発明において、隣り合う第3の第2導電型領域の間隔が素子周縁部の終端へ向かうに連れて広くなっていてもよい。
この発明によれば、電荷(イオン)の影響を受けやすい素子活性部の外周付近の高電界を緩和することができるので、耐圧の耐電荷性が向上する。
また、この発明にかかる半導体装置は、上述した発明において、第1の導電層の、当該第1の導電層が電気的に接続された第3の第2導電型領域に接続する第2の導電層よりも素子活性部側の部分の幅が素子周縁部の終端へ向かうに連れて広くなっていてもよい。
また、この発明にかかる半導体装置は、上述した発明において、第2の導電層の幅が前記素子周縁部の終端へ向かうに連れて広くなっていてもよい。
また、この発明にかかる半導体装置は、上述した発明において、第3の第1導電型領域には、第3の第1導電型領域よりも不純物濃度が高い第4の第1導電型領域が設けられていることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、第4の第1導電型領域は、隣り合う第3の第2導電型領域の間に設けられていることを特徴とする。
この発明によれば、各第3の第2導電型領域の間にかかる各電位を均一に分担させることができる。
また、この発明にかかる半導体装置は、上述した発明において、さらに、以下の特徴を有する。第1の第1導電型領域および第1の第2導電型領域の平面形状はストライプ状である。第2の第1導電型領域および第2の第2導電型領域の平面形状はストライプ状であってもよいし、第2の第1導電型領域および第2の第2導電型領域のいずれか一方の平面形状が正方形状または多角形状であってもよい。
この発明によれば、並列pn層の平面形状がストライプ状であっても、正方形状や多角形状であっても、耐圧の耐電荷性が向上する。
また、この発明にかかる半導体装置は、上述した発明において、第3の第1導電型領域の不純物濃度は、2×1014cm-3以上8×1014cm-3以下であることを特徴とする。
また、上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置は、以下の特徴を有する。第1主面側に素子活性部が設けられている。第2主面側に低抵抗層が設けられている。素子活性部と低抵抗層との間に、第1の第1導電型領域および第1の第2導電型領域が交互に配置された第1の並列pn層が設けられている。素子活性部を囲む素子周縁部に、第1の第1導電型領域および第1の第2導電型領域の繰り返しピッチよりも狭いピッチで第2の第1導電型領域および第2の第2導電型領域が交互に配置された第2の並列pn層が設けられている。第2の並列pn層の第1主面側に互いに離れて、2以上の第3の第2導電型領域が設けられている。第3の第2導電型領域の第1主面側にそれぞれ電気的に接続された2以上の第1の導電層が設けられている。2以上の第1の導電層は、素子周縁部における前記第1主面を部分的に覆う。第3の第2導電型領域にそれぞれ電気的に接続されるとともに、絶縁層を介して前記第1の導電層の間の前記第1主面を覆うように、それぞれ隣り合う第1の導電層を覆う2以上の第2の導電層が設けられている。第1の第1導電型領域および第1の第2導電型領域の平面形状がストライプ状である。第2の第1導電型領域および第2の第2導電型領域のいずれか一方の平面形状が正方形状または多角形状である。
この発明によれば、素子周縁部の第1主面側にリング状の第3の第2導電型領域が設けられ、かつ第3の第2導電型領域に電気的に接続する第1,2の導電層により素子周縁部の第1主面が完全に覆われる。このため、素子周縁部の絶縁膜上に電荷(イオン)が来ても、第1,2の導電層により耐圧に対する電荷の影響はほぼ遮断される。従って、素子内部の電位や電界などの分布に影響は生じず、耐圧の耐電荷性が向上する。また、素子周縁部の第2の並列pn層を構成する第2の第1導電型領域および第2の第2導電型領域のいずれか一方の平面形状が正方形状または多角形状とすることにより、素子周縁部の第1主面側に第3の第1導電型領域を設けなくても耐圧の耐電荷性が向上する。このため、第3の第1導電型領域を形成するための工程を減らすことができ、安価な半導体装置を提供することができる。
また、この発明にかかる半導体装置は、上述した発明において、第2の第1導電型領域および前記第2の第2導電型領域のいずれか一方の平面形状が格子状であってもよい。
この発明によれば、素子周縁部の第1主面側に第3の第1導電型領域を設けなくても耐圧の耐電荷性が向上する。このため、第3の第1導電型領域を形成するための工程を減らすことができ、安価な半導体装置を提供することができる。
また、この発明にかかる半導体装置は、上述した発明において、隣り合う前記第3の第2導電型領域の間隔が前記素子周縁部の終端へ向かうに連れて広くなっていてもよい。
この発明によれば、電荷(イオン)の影響を受けやすい素子活性部の外周付近の高電界を緩和することができるので、耐圧の耐電荷性が向上する。
また、この発明にかかる半導体装置は、上述した発明において、第1の導電層の、当該第1の導電層が電気的に接続された第3の第2導電型領域に接続する第2の導電層よりも素子活性部側の部分の幅が素子周縁部の終端へ向かうに連れて広くなっていてもよい。
また、この発明にかかる半導体装置は、上述した発明において、第2の導電層の幅が前記素子周縁部の終端へ向かうに連れて広くなっていてもよい。
また、この発明にかかる半導体装置は、上述した発明において、2以上の第1の導電層および2以上の前記第2の導電層により、前記素子周縁部の前記第1主面全体が覆われていてもよい。
この発明によれば、各第3の第2導電型領域の間にかかる各電位を均一に分担させることができる。
本発明にかかる半導体装置によれば、耐電荷性を向上させることができるという効果を
奏する。
実施の形態1にかかる半導体装置の平面図である。 実施の形態1にかかる半導体装置の横断面図である。 実施の形態1にかかる半導体装置の図1A−A’における縦断面図である。 実施の形態1にかかる半導体装置の図1B−B’における縦断面図である。 実施の形態1にかかる半導体装置の図1C−C’における縦断面図である。 実施の形態1にかかる半導体装置の素子周縁部の構成を詳細に示す部分拡大断面図である。 実施の形態1の半導体装置における耐圧の表面電荷依存性のシミュレーション結果を示す特性図である。 実施の形態2にかかる半導体装置の平面図である。 実施の形態2にかかる半導体装置の図8A−A’における縦断面図である。 実施の形態2にかかる半導体装置の図8C−C’における縦断面図である。 実施の形態3にかかる半導体装置の平面図である。 実施の形態3にかかる半導体装置の図11A−A’における縦断面図である。 実施の形態3にかかる半導体装置の図11B−B’における縦断面図である。 実施の形態3にかかる半導体装置の図11C−C’における縦断面図である。 実施の形態4にかかる半導体装置の横断面図である。 実施の形態4にかかる半導体装置の図15A−A’における縦断面図である。 実施の形態4にかかる半導体装置の図15B−B’における縦断面図である。 実施の形態5にかかる半導体装置の平面図である。 実施の形態5にかかる半導体装置の図18A−A’における縦断面図である。 実施の形態5にかかる半導体装置の図18B−B’における縦断面図である。 実施の形態5にかかる半導体装置の図18C−C’における縦断面図である。 実施の形態6にかかる半導体装置の縦断面図である。 従来の半導体装置の構成を示す断面図である。
以下に添付図面を参照して、この発明にかかる半導体装置の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および−は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。
(実施の形態1)
図1は、実施の形態1にかかる半導体装置の平面図である。図2は、実施の形態1にかかる半導体装置の横断面図である。図3は、実施の形態1にかかる半導体装置の図1A−A’における縦断面図である。図4は、実施の形態1にかかる半導体装置の図1B−B’における縦断面図である。図5は、実施の形態1にかかる半導体装置の図1C−C’における縦断面図である。なお、図1および図2には、半導体装置の1/4の部分が示されている(図8、図11、図15、図18においても同じ)。図6は、実施の形態1にかかる半導体装置の素子周縁部の構成を詳細に示す部分拡大断面図である。
図1には、並列pn層、最も外側のpベース領域、p型ガードリング領域およびn型チャネルストッパー領域のそれぞれの第1主面における形状が示されている(図11、図18においても同じ)。図2には、素子活性部および素子周縁部のいずれにおいても並列pn層を横切る断面、例えば素子活性部の並列pn層の1/2の深さでの断面における形状が示されている(図8、図15においても同じ)。また、図2には、素子活性部と素子周縁部との配置を明確にするために、素子活性部の最も外側のpベース領域を点線で示す。
図1〜図5に示すように、半導体装置は、第1主面側に素子活性部1を有し、第2主面側にn+ドレイン領域(低抵抗層)2を有する。素子活性部1の外側には、素子活性部1を囲む素子周縁部3が設けられている。素子活性部1の第1主面側には、素子の表面構造として、n+ソース領域4、pベース領域5、p+コンタクト領域6、ソース電極7、層間絶縁膜8、ゲート絶縁膜9およびゲート電極10が設けられている。第2主面には、ドレイン電極11が設けられている。
素子活性部1とn+ドレイン領域2との間には、第1の並列pn層12が設けられている。第1の並列pn層12は、第1のn型領域(第1の第1導電型領域)13と第1のp型領域(第1の第2導電型領域)14とが交互に繰り返し接合されてできている。第1のn型領域13および第1のp型領域14の平面形状は、ストライプ状である。第1のn型領域13は、第1主面から第2主面に向かって均一な不純物濃度分布を有する。第1のp型領域14は、第1主面から第2主面に向かって低くなる不純物濃度分布を有する。このため、第1のp型領域14は、第1主面側で第1のn型領域13よりも不純物濃度が高く、第2主面側で第1のn型領域13よりも不純物濃度が低くなっている。
素子周縁部3には、第2の並列pn層15が設けられている。第2の並列pn層15は、第2のn型領域(第2の第1導電型領域)16と第2のp型領域(第2の第2導電型領域)17とが交互に繰り返し接合されてできている。第2のn型領域16および第2のp型領域17の平面形状は、ストライプ状である。第2の並列pn層15のストライプの向きは、第1の並列pn層12のストライプの向きと同じである。第2のn型領域16および第2のp型領域17の繰り返しピッチP2は、第1のn型領域13および第1のp型領域14の繰り返しピッチP1と等しい。第2のn型領域16の不純物濃度および不純物濃度分布は、第1のn型領域13の不純物濃度および不純物濃度分布と等しい。第2のp型領域17の不純物濃度および不純物濃度分布は、第1のp型領域14の不純物濃度および不純物濃度分布と等しい。
第1の並列pn層12とn+ドレイン領域2との間には、nバッファー層18が設けられている。nバッファー層18の不純物濃度は、第1のn型領域13の不純物濃度よりも低い。第2の並列pn層15と第1主面との間には、n-表面領域(第3の第1導電型領域)19が設けられている。n-表面領域19は、第1の並列pn層12を囲む。n-表面領域19の不純物濃度は、第1のn型領域13の不純物濃度よりも低い。n-表面領域19は、素子活性部1の素子周縁部3に隣接する部分まで伸びている。
-表面領域19の第1主面側には、2本以上のp型ガードリング領域(第3の第2導電型領域)が互いに離れて設けられている。以降、例えば、5本のp型ガードリング領域20a,20b,20c,20d,20eが設けられている場合を例に説明する。p型ガードリング領域20a,20b,20c,20d,20eの不純物濃度は、n-表面領域19の不純物濃度よりも高い。例えば、隣り合うp型ガードリング領域20a,20b,20c,20d,20eの間隔は、素子周縁部3の終端へ向かうに連れて広くなっている。その理由は、電界が素子活性部1の外周から素子周縁部3の外周へ向かうに連れて低くなるからである。
また、素子周縁部3のコーナー部31におけるp型ガードリング領域20a,20b,20c,20d,20eの幅は、素子周縁部3のコーナー部31以外の直線状の部分(以下、直線部とする)32におけるp型ガードリング領域20a,20b,20c,20d,20eの幅よりも広くなっている。その理由は、素子周縁部3の直線部32におけるp型ガードリング領域20a,20b,20c,20d,20eの幅の増加を抑えつつ、後述するフィールドプレート電極とのコンタクトを形成することができ、素子全体に占める素子周縁部3の割合を抑えることができるからである。p型ガードリング領域の幅とは、第1のn型領域13と第1のp型領域14とが繰り返し接合される方向の幅である(後述する幅w2,w4〜w6においても同じ)。
-表面領域19は、第1の絶縁膜21で覆われている。第1の絶縁膜21は、例えば、酸化膜である。第1の絶縁膜21上(第1の絶縁膜21のn-表面領域19側の面に対して反対側の面)には、2以上の第1のフィールドプレート電極(第1の導電層)22a,22b,22c,22d,22eが互いに離れて設けられている。第1のフィールドプレート電極(第1の導電層)22a,22b,22c,22d,22eは、第1の絶縁膜21を部分的に覆う。また、第1の絶縁膜21上には、第1のフィールドプレート電極(第1の導電層)22a,22b,22c,22d,22eと離れて第1のチャネルストッパー電極23が設けられている。第1のフィールドプレート電極22a,22b,22c,22d,22eおよび第1のチャネルストッパー電極23は、例えば、ポリシリコン(poly−Si)でできており、例えば、素子活性部1のゲート電極10と同時に形成される。
第1の絶縁膜21は、例えばp型ガードリング領域20a,20b,20c,20d,20eを形成する際のセルフアラインによるイオン注入および熱処理のマスクとして用いられる。このため、第1の絶縁膜21には、p型ガードリング領域20a,20b,20c,20d,20eを形成するための開口部27a−1,27b−1,27c−1,27d−1,27e−1が設けられる。第1の絶縁膜21に開口部27a−1,27b−1,27c−1,27d−1,27e−1を形成する際の例えばエッチングにより、各第1のフィールドプレート電極22a,22b,22c,22d,22eは、それぞれ第1の絶縁膜21に開口部27a−1,27b−1,27c−1,27d−1,27e−1を挟んで内周側(素子活性部1側)および外周側(素子周縁部3の終端側)に分割されている。
第1のフィールドプレート電極22a,22b,22c,22d,22eおよび第1のチャネルストッパー電極23は、第2の絶縁膜(絶縁層)24で覆われている。また、第2の絶縁膜24は、第1の絶縁膜21の各開口部27a−1,27b−1,27c−1,27d−1,27e−1内に埋め込まれている。第1の絶縁膜24は、例えば、BPSG(Boro−Phospho Silicate Glass)膜である。第2の絶縁膜24上(第2の絶縁膜24のn-表面領域19側の面に対して反対側の面)には、2以上の第2のフィールドプレート電極25a,25b,25c,25d,25e(第2の導電層)が互いに離れて設けられている。また、第2の絶縁膜24上には、第2のフィールドプレート電極25a,25b,25c,25d,25eと離れて第2のチャネルストッパー電極26が設けられている。
各第2のフィールドプレート電極25a,25b,25c,25d,25eは、素子周縁部3のコーナー部31において、それぞれ、p型ガードリング領域20a,20b,20c,20d,20eと電気的に接続されている。具体的には、素子周縁部3のコーナー部31には、第1の絶縁膜21の開口部27a−1,27b−1,27c−1,27d−1,27e−1内に埋め込まれた第2の絶縁膜24を貫通し、それぞれp型ガードリング領域20a,20b,20c,20d,20eに達するコンタクト部27a−2,27b−2,27c−2,27d−2,27e−2が設けられている。そして、各第2のフィールドプレート電極25a,25b,25c,25d,25eは、それぞれコンタクト部27a−2,27b−2,27c−2,27d−2,27e−2を介してp型ガードリング領域20a,20b,20c,20d,20eと接続されている。また、各第2のフィールドプレート電極25a,25b,25c,25d,25eは、それぞれコンタクト部27a−2,27b−2,27c−2,27d−2,27e−2を介して第1のフィールドプレート電極22a,22b,22c,22d,22eと接続されている。
最も内側に位置する第2のフィールドプレート電極25aは、電気的に接続するp型ガードリング領域20aとn-表面領域19との第1主面における接合部よりも内周方向へ張り出している。また、各第2のフィールドプレート電極25a,25b,25c,25d,25eは、それぞれが電気的に接続するp型ガードリング領域20a,20b,20c,20d,20eとn-表面領域19とに跨って設けられている。具体的には、各第2のフィールドプレート電極25a,25b,25c,25d,25eは、それぞれが電気的に接続するp型ガードリング領域20a,20b,20c,20d,20eとn-表面領域19との第1主面における接合部よりも外周方向へ張り出している。そして、最も外側に位置する第2のフィールドプレート電極25e以外の第2のフィールドプレート電極25a,25b,25c,25dは、それぞれ、第2の絶縁膜24を介して第1のフィールドプレート電極22b,22c,22d,22e間の第1主面を覆うように、外周方向に隣り合う第1のフィールドプレート電極22b,22c,22d,22eを覆う。また、最も外側に位置する第2のフィールドプレート電極25eは、第2の絶縁膜24を介して第1のフィールドプレート電極22eと第1のチャネルストッパー電極23との間の第1主面を覆うように、第1のチャネルストッパー電極23を覆う。すなわち、各第2のフィールドプレート電極25a,25b,25c,25d,25eは、それぞれ、第2の絶縁膜24を介して、外周方向に隣り合う第1のフィールドプレート電極22b,22c,22d,22e、第1のチャネルストッパー電極23の一部と重なり合っている。
このように、素子周縁部3の第1主面側において、第2のフィールドプレート電極25a,25b,25c,25d,25eが配置されていない部分には、第1のフィールドプレート電極22a,22b,22c,22d,22eが配置される。これにより、素子周縁部3の第1主面全体が、第1のフィールドプレート電極22a,22b,22c,22d,22eおよび第2のフィールドプレート電極25a,25b,25c,25d,25eにより完全に覆われる。第1のフィールドプレート電極22a,22b,22c,22d,22eおよび第2のフィールドプレート電極25a,25b,25c,25d,25eにより電荷(イオン)の影響を遮断することができるため、耐圧の耐電荷性が大幅に向上される。
隣り合う第2のフィールドプレート電極25a,25b,25c,25dの間隔w1は、それぞれ、各第2のフィールドプレート電極25a,25b,25c,25dが外周側に隣り合う第1のフィールドプレート電極22b,22c,22d,22eを覆う部分の幅w2よりも広くなっている。第2のフィールドプレート電極25eと第2のチャネルストッパー電極26との間隔は、第2のフィールドプレート電極25eと第1のチャネルストッパー電極23とが重なり合う部分の幅よりも広くなっている。その理由は、第2のフィールドプレート電極25a,25b,25c,25dと外周方向に隣り合う第1のフィールドプレート電極22b,22c,22d,22e、また、第2のフィールドプレート電極25eと第1のチャネルストッパー電極23とが重なり合うことによって高くなる電界を緩和することができるからである。
隣り合う第1のフィールドプレート電極22a,22b,22c,22d,22eの間隔w3は、第1のフィールドプレート電極22aと第2のフィールドプレート電極25aとに挟まれた第2の絶縁膜24の厚さt1の寸法以上となっている。その理由は、隣り合うp型ガードリング領域20a,20b,20c,20d,20e間に印加される電圧により絶縁破壊が生じることを回避することができるからである。第1の絶縁膜21の開口部27a−1,27b−1,27c−1,27d−1,27e−1を挟むように位置する各第1のフィールドプレート電極22a,22b,22c,22d,22eのうち、それぞれ第1の絶縁膜21の開口部27a−1,27b−1,27c−1,27d−1,27e−1の素子活性部1側に位置する第1のフィールドプレート電極22a,22b,22c,22d,22eの幅w4は、素子周縁部3の終端へ向かうに連れて広くなっている。その理由は、素子活性部1の外周付近から素子周縁部3の終端へ向かうに連れて低くなっていく電界分布を素子周縁部3全体において均一化することができるからである。
素子周縁部3の終端領域には、n型チャネルストッパー領域28が設けられている。n型チャネルストッパー領域28の第1主面側には、p型最外周領域29が設けられている。第2のチャネルストッパー電極26は、p型最外周領域29に電気的に接続されている。また、第2のチャネルストッパー電極26は、第1のチャネルストッパー電極23に接続されている。p型ガードリング領域の数は、隣り合うp型ガードリング領域20a,20b,20c,20d,20e間の電界集中がそれぞれほぼ等しくなるように、かつ隣り合うp型ガードリング領域20a,20b,20c,20d,20e間の電位差を絶縁耐圧以下に保持することができるように設定される。また、p型ガードリング領域の数は、例えば、最も電界が集中する第1のフィールドプレート電極22aと第2のフィールドプレート電極25aとに挟まれた第2の絶縁膜24の厚さt1によって決定される。
具体的には、例えば、p型ガードリング領域の数は、耐圧が600Vクラスである場合に5本、耐圧が1200Vクラスである場合に12本であるのが好ましい。例えば耐圧が600Vクラスである場合に5本のp型ガードリング領域を設けることにより、第1のフィールドプレート電極22aと第2のフィールドプレート電極25aとに挟まれた第2の絶縁膜24の厚さt1を1.1μm程度と薄くすることができ、かつ隣り合うp型ガードリング領域20a,20b,20c,20d,20e間の電位差をそれぞれ絶縁破壊が生じない例えば200V以下とすることができる。また、第1のフィールドプレート電極22aと第2のフィールドプレート電極25aとに挟まれた第2の絶縁膜24の厚さt1を薄くすることができるため、コストを低減することができる。
特に限定しないが、例えば実施の形態1の半導体装置が縦型MOSFETであり、耐圧が600Vクラスである場合には、各部の寸法および不純物濃度は次の値をとる。ドリフト領域の厚さ(第1の並列pn層12の厚さ)は36.0μm、第1のn型領域13および第2のn型領域16の幅は6.0μm、第1のn型領域13および第2のn型領域16の不純物濃度は3.0×1015cm-3である。第1のp型領域14および第2のp型領域17の幅は6.0μmである。第1の並列pn層12の繰り返しピッチP1は12.0μm、第2の並列pn層15の繰り返しピッチP2は12.0μmである。
第1のp型領域14は、第2主面側から第1主面側に向かって段階的に2.46×1015cm-3、2.82×1015cm-3、3.18×1015cm-3、3.54×1015cm-3、3.9×1015cm-3である。第2のp型領域17の不純物濃度は、第2主面側から第1主面側に向かって段階的に2.46×1015cm-3、2.82×1015cm-3、3.18×1015cm-3、3.54×1015cm-3である。この場合、素子活性部1には、例えば、第2主面から第1主面に向かって順に下層よりも不純物濃度が高い5層のエピタキシャル層が積層されてなる第1のp型領域14が配置される。第1のp型領域14をなす5層目(第1主面側)のエピタキシャル層には素子構造が形成される。素子周縁部3には、第2主面から第1主面に向かって順に下層よりも不純物濃度が高い4層のエピタキシャル層が積層されてなる第2のp型領域17が配置される。第2のp型領域17の第1主面側に積層される5層目のエピタキシャル層はn-表面領域19をなす。n-表面領域19の不純物濃度は、2×1014cm-3以上8×1014cm-3以下であり、好ましくは5.0×1014cm-3である。n-表面領域19の深さは5μmである。p型ガードリング領域20a,20b,20c,20d,20eの拡散深さは3.0μm、p型ガードリング領域20a,20b,20c,20d,20eの表面不純物濃度は1.8×1017cm-3である。pウェル領域(pベース領域5)の拡散深さは3.0μm、pウェル領域の表面不純物濃度は1.8×1017cm-3である。
+ソース領域4の拡散深さは0.5μm、n+ソース領域4の表面不純物濃度は3.0×1020cm-3である。表面のn型ドリフト領域(図3〜図5においてpベース領域5間の破線よりもソース電極7側のn型領域)14aの拡散深さは2.5μm、表面のn型ドリフト領域14aの表面不純物濃度は2.0×1016cm-3である。nバッファー層18の厚さは5μm、nバッファー層18の不純物濃度は、1.0×1015cm-3である。n+ドレイン領域2の厚さは300μm、n+ドレイン領域2の不純物濃度は2.0×1018cm-3である。n型チャネルストッパー領域28の不純物濃度は4.0×1015cm-3である。p型最外周領域29の不純物濃度は1.8×1017cm-3である。
隣り合う第2のフィールドプレート電極25a,25b,25c,25d,25eの間隔w1は3μmである。第2のフィールドプレート電極25a,25b,25c,25dと外側に隣り合う第1のフィールドプレート電極22b,22c,22d,22e、また、第2のフィールドプレート電極25eと第1のチャネルストッパー電極23とが重なり合う幅w2は2μmである。第1の絶縁膜21に設けられたp型ガードリング領域20a,20b,20c,20d,20eを形成するための開口部の幅w5は4μmである。
第1のフィールドプレート電極22a,22b,22c,22d,22eは、第1の絶縁膜21にp型ガードリング領域20a,20b,20c,20d,20eを形成するための開口部を形成する際に選択的に除去され、この開口部を挟んで分割される。第1の絶縁膜21の開口端部と、第1のフィールドプレート電極22a,22b,22c,22d,22eの開口部側の端部との間隔w6は1μmである。
図7は、実施の形態1の半導体装置における耐圧の表面電荷依存性のシミュレーション結果を示す特性図である。このシミュレーション結果の実施例は、実施の形態1に従って作製された半導体装置であり、5本のp型ガードリング領域20a,20b,20c,20d,20eが、それぞれ第1のフィールドプレート電極22a,22b,22c,22d,22eおよび第2のフィールドプレート電極25a,25b,25c,25d,25eに電気的に接続する構成のものである。また、このシミュレーション結果の従来例は、図23に示すように3本のp型ガードリング領域を設け、フィールドプレート電極を最も外側に位置するp型ガードリング領域に電気的に接続する構成のものである。
図7に示すように、実施例においては、フィールドプレート電極とチャネルストッパー電極との間の第1の絶縁膜21上に+1.0×1012cm-2以上の正電荷(正イオン)があっても、−1.0×1012cm-2以下の負電荷(負イオン)があっても、耐圧は殆ど変動しない。一方、従来例では、フィールドプレート電極とチャネルストッパー電極との間の第1の絶縁膜21上に+1.0×1012cm-2以上の正電荷がある場合、および、−1.0×1012cm-2以下の負電荷がある場合に、耐圧が変動している。すなわち、実施の形態1にかかる半導体装置は、従来例よりも高耐圧であり、かつ耐圧の耐電荷性が向上していることがわかる。
実施の形態1によれば、素子周縁部3に来る電荷やイオンが第1のフィールドプレート電極22a,22b,22c,22d,22eと第2のフィールドプレート電極25a,25b,25c,25d,25eとで収集される。このため、フィールドプレート電極とチャネルストッパー電極との間に正電荷があっても第1のフィールドプレート電極22a,22b,22c,22d,22eの端部に電界が集中せず、負電荷があっても、第1,2のチャネルストッパー電極23,26の端部に電界が集中しない。これにより、素子周縁部3における電界を緩和しアバランシェの発生を抑えるように空乏層の広がりを制御することができるため、耐圧に対する電荷(イオン)の影響を小さくすることができ、耐電荷性が大幅に向上する。従って、電荷によって耐圧が変動するのを抑制することができる。
具体的には、p型ガードリング領域20a,20b,20c,20d,20eの不純物濃度がn-表面領域19の不純物濃度よりも高いので、電圧が印加されたときに、p型ガードリング領域20a,20b,20c,20d,20eに中性領域が残り、p型ガードリング領域20a,20b,20c,20d,20eの電位が固定される。従って、第2のフィールドプレート電極25a,25b,25c,25d,25eの外周側の張り出した部分にあたる順方向メタルプレート端部と、外側に隣り合う第1のフィールドプレート電極22a,22b,22c,22d,22eの内周側にあたる逆方向メタルプレート端部とが重なり合う部分で素子周縁部3にかかる電界が分担される。これにより、第1のフィールドプレート電極22a,22b,22c,22dと第2フィールドプレート電極25a,25b,25c,25dとの間または第2フィールドプレート電極25eと第1,2チャネルストッパー電極23,26との間に電荷が存在するときに、表面電位が変動するのを抑制することができるので、耐圧の耐電荷性が向上する。
また、第1のフィールドプレート電極22aと第2のフィールドプレート電極25aとに挟まれた第2の絶縁膜24の厚さt1が薄いほど、素子周縁部3にかかる電界が高くなるので、第2の絶縁膜24に欠陥が存在する場合に素子不良となる虞がある。このため、実施の形態1によれば、隣り合うp型ガードリング領域20a,20b,20c,20d,20eの間隔を素子周縁部3の終端へ向かうに連れて広くすることにより、隣接する各p型ガードリング領域20a,20b,20c,20d,20e間の電位差を平均化し、特定のp型ガードリング領域間に他のp型ガードリング領域間よりも大きな電位差が生じないようにすることができる。また、このように隣接する各p型ガードリング領域20a,20b,20c,20d,20e間の電位差を均一化する場合、素子周縁部3の電界分布が素子活性部1の外周付近から素子周縁部3の終端へ向かって低くなっていくことにより、素子周縁部3が長くなり、コストが増大してしまう。そこで、実施の形態1によれば、さらに、第1のフィールドプレート電極22a,22b,22c,22d,22eの幅w3を素子周縁部3の終端へ向かうに連れて広くすることにより、素子周縁部3を長くせずに、素子活性部1の外周付近から素子周縁部3の終端へ向かって低くなっていく電界分布を緩和し、隣接する各p型ガードリング領域20a,20b,20c,20d,20e間の電位差を均一化することができる。
(実施の形態2)
図8は、実施の形態2にかかる半導体装置の平面図である。図9は、実施の形態2にかかる半導体装置の図8A−A’における縦断面図である。図10は、実施の形態2にかかる半導体装置の図8C−C’における縦断面図である。図8B−B’における縦断面図は、図4に示す縦断面図と同様である。図8〜図10に示すように、実施の形態2が実施の形態1と異なるのは、第2のn型領域16および第2のp型領域17の繰り返しピッチP2が、第1のn型領域13および第1のp型領域14の繰り返しピッチP1よりも狭い2点である。
第2のn型領域16および第2のp型領域17の幅は、それぞれ、第1のn型領域13および第1のp型領域14の幅の2/3であるのが好ましい。その理由は、第1の並列pn層12と第2の並列pn層15との配置を容易に設計することができるからである。並列pn層のピッチの変わり目、すなわち第1の並列pn層12と第2の並列pn層15との境界がn-表面領域19の下にある。第2のn型領域16は、第1主面から第2主面に向かって均一な不純物濃度分布を有する。第2のp型領域17は、第1主面から第2主面に向かって低くなる不純物濃度分布を有する。このため、第2のp型領域17は、第1主面側で第2のn型領域16よりも不純物濃度が高く、第2主面側で第2のn型領域16よりも不純物濃度が低くなっている。その他の構成は、実施の形態1と同様である。
特に限定しないが、例えば、実施の形態2の半導体装置の各部の寸法および不純物濃度は次の値をとる。第2のn型領域16の幅は4.0μm、第2のn型領域16の不純物濃度は1.0×1015cm-3である。第2のp型領域17の幅は4.0μmである。第2の並列pn層15の繰り返しピッチP2は8.0μmである。第2のp型領域17の不純物濃度は、第2主面側から第1主面側に向かって段階的に0.7×1015cm-3、0.9×1015cm-3、1.1×1015cm-3、1.3×1015cm-3である。その他の構成は、実施の形態1と同様である。
実施の形態2によれば、実施の形態1と同様の効果が得られる。また、実施の形態2によれば、第1の並列pn層12よりも繰り返しピッチの狭い第2の並列pn層15が設けられているので、素子周縁部3において空乏層が伸びやすくなる。このため、素子周縁部3において素子活性部1よりも高い耐圧を保持することができる。従って、容易に高耐圧化することができる。
(実施の形態3)
図11は、実施の形態3にかかる半導体装置の平面図である。図12は、実施の形態3にかかる半導体装置の図11A−A’における縦断面図である。図13は、実施の形態3にかかる半導体装置の図11B−B’における縦断面図である。図14は、実施の形態3にかかる半導体装置の図11C−C’における縦断面図である。図11〜図14に示すように、実施の形態3が実施の形態2と異なるのは、n-表面領域19に、n-表面領域19よりも不純物濃度が高いn+高濃度領域41を設けた点である。
+高濃度領域41は、例えば、p型ガードリング領域20dとp型ガードリング領域20eとの間、およびp型ガードリング領域20eと第1のチャネルストッパー電極23との間に設けられている。n+高濃度領域41は、第1主面側からn-表面領域19を貫通して第2のp型領域17に達している。特に限定しないが、例えば、n+高濃度領域41の拡散深さは5.0μmであり、n+高濃度領域41の中心不純物濃度は1.0×1016cm-3である。その他の構成は、実施の形態2と同様である。
実施の形態3によれば、実施の形態1と同様の効果が得られる。また、実施の形態3によれば、n+高濃度領域41の不純物濃度がn-表面領域19の不純物濃度よりも高いため、素子周縁部3の外周付近における空乏層の広がりを抑制することができる。このため、内周方向へ張り出す第1のフィールドプレート22c,22d,22eの長さを短くしてもp型ガードリング領域20a,20b,20c,20d,20e間にかかる電圧を均一化することができる。すなわち、実施の形態3によれば、隣り合うp型ガードリング領域20a,20b,20c,20d,20eの間隔を素子周縁部3の終端へ向かうに連れて広くすること、およびn-表面領域19にn+高濃度領域41を設けることにより、耐圧の耐電荷性を向上することができる。
(実施の形態4)
図15は、実施の形態4にかかる半導体装置の横断面図である。図16は、実施の形態4にかかる半導体装置の図15A−A’における縦断面図である。図17は、実施の形態4にかかる半導体装置の図15B−B’における縦断面図である。図15C−C’ における縦断面図は、図10に示す縦断面図と同様である。図15〜図17に示すように、実施の形態3が実施の形態2と異なるのは、第2の並列pn層15のストライプの向きが第1の並列pn層12のストライプの向きと異なることである。例えば、第2の並列pn層15のストライプの向きは、第1の並列pn層12のストライプの向きと直交していてもよい。その他の構成は、実施の形態2と同様である。
実施の形態4によれば、実施の形態2と同様の効果が得られる。すなわち、第1の並列pn層12と第2の並列pn層15とで並列pn層の向きが異なっていても、素子周縁部3の構造が同じであれば、実施の形態2と同様に耐圧の耐電荷性の効果が得られる。また、第2の並列pn層15に平面形状が正方形状や多角形状、円形状のp型領域が配置された構成の並列pn層であっても、素子周縁部3の構造が同じであれば、実施の形態2と同様に耐圧の耐電荷性の効果が得られる。実施の形態4の構成を、実施の形態1,3に適用してもよい。
(実施の形態5)
図18は、実施の形態5にかかる半導体装置の平面図である。図19は、実施の形態5にかかる半導体装置の図18A−A’における縦断面図である。図20は、実施の形態5にかかる半導体装置の図18B−B’における縦断面図である。図21は、実施の形態5にかかる半導体装置の図18C−C’における縦断面図である。図18〜図21に示すように、実施の形態5が実施の形態2と異なるのは、次の2点である。第1の点は、n型領域52に平面形状が正方形状または多角形状のp型領域53が配置された構成の第2の並列pn層51を設けていることである。p型領域53はマトリクス状に配置され、n型領域52は格子状の平面形状をなす。第2の点は、第2の並列pn層51と第1主面との間にn-表面領域が設けられていないことである。素子周縁部3には、素子活性部1と同様に、第1主面まで第2の並列pn層51が形成されている。図18には、第2の並列pn層51を点線で示す。
特に限定しないが、例えば、実施の形態5の各部の寸法および不純物濃度は次の値をとる。第2のp型領域17の不純物濃度は、第2主面側から第1主面側に向かって段階的に0.7×1015cm-3、0.9×1015cm-3、1.1×1015cm-3、1.3×1015cm-3、1.5×1015cm-3である。素子周縁部3において、第2のp型領域17と第1主面側との間にn-表面領域が設けられていないため、第2のp型領域17は、第2主面から第1主面に向かって不純物濃度が5段階高くなる不純物濃度分布を有する。p型ガードリング領域20a,20b,20c,20d,20eの表面不純物濃度は3.0×1017cm-3である。pウェル領域(pベース領域5)の表面不純物濃度は3.0×1017cm-3である。n型チャネルストッパー領域28の幅は28.0μmである。p型最外周領域29の不純物濃度は3.0×1017cm-3である。その他の構成は、実施の形態2と同様である。
実施の形態5においても、図7に示す実施例と同様に、フィールドプレート電極とチャネルストッパー電極との間の第1の絶縁膜21上に+1.0×1012cm-2以上の正電荷(正イオン)があっても、−1.0×1012cm-2以下の負電荷(負イオン)があっても、耐圧は殆ど変動しない。従って、実施の形態5にかかる半導体装置は、従来例よりも高耐圧であり、かつ耐圧の耐電荷性が向上していることがわかる。
実施の形態5によれば、実施の形態2と同様の効果が得られる。また、実施の形態5によれば、素子周縁部3のn型領域52に平面形状が正方形状のp型領域53がマトリクス状に配置された構成の第2の並列pn層51であるため、空乏層は素子周縁部3の外周へ向かって均一に広がり易くなる。従って、n-表面領域は設けなくても、耐圧を確保することができ、かつ耐圧の耐電荷性を大幅に向上することができる。
(実施の形態6)
図22は、実施の形態6にかかる半導体装置の縦断面図である。図22に示す縦断面図は、例えば、図22に示すように、図8A−A’における縦断面図である。実施の形態6が実施の形態2と異なるのは、第2のフィールドプレート電極61a,61b,61c,61d,61eが、電気的に接続するp型ガードリング領域20a,20b,20c,20d,20eとn-表面領域19との第1主面における接合部よりも内周方向へ張り出していることである。第2のフィールドプレート電極61a,61b,61c,61d,61eは、それぞれ、第2の絶縁膜24を介して、内周方向に隣り合う第1のフィールドプレート電極22a,22b,22c,22dと重なり合っている。また、第2のチャネルストッパー電極62は、第2の絶縁膜24を介して、第1のチャネルストッパー電極23と重なり合っている。第1のフィールドプレート電極22a,22b,22c,22d,22eの各幅は等しく、素子周縁部3の終端へ向かうに連れて広くなっていない。その他の構成は、実施の形態2と同様である。また、実施の形態6は実施の形態1,3〜5にも適用可能である。実施の形態6によれば、第2のフィールドプレート電極61a,61b,61c,61d,61eを内周側に張り出させることにより実施の形態1〜5と同様の効果が得られる。図22に示す縦断面図では、第2のフィールドプレート電極61a,61b,61c,61d,61eとp型ガードリング領域20a,20b,20c,20d,20eとを接続するコンタクト部63a,63b,63c,63d,63eを素子周縁部3の直線部に設けているが、実施の形態1〜5と同様に素子周縁部3のコーナー部に設けてもよい。
以上において本発明は、上述した実施の形態に限らず、種々変更可能である。例えば、実施の形態中に記載した寸法や濃度などは一例であり、本発明はそれらの値に限定されるものではない。また、各実施の形態では第1導電型をn型とし、第2導電型をp型としたが、本発明は第1導電型をp型とし、第2導電型をn型としても同様に成り立つ。また、本発明は、MOSFETに限らず、IGBT、バイポーラトランジスタ、FWD(Free Wheeling Diode、フリーホイールダイオード)またはショットキーダイオード等にも適用可能である。
以上のように、本発明にかかる半導体装置は、大電力用半導体装置に有用であり、特に、並列pn構造をドリフト部に有するMOSFET、IGBT、バイポーラトランジスタ、FWDまたはショットキーダイオード等の高耐圧化と大電流容量化を両立させることのできる半導体装置に適している。
1 素子活性部
2 n+ドレイン領域(低抵抗層)
3 素子周縁部
4 n+ソース領域
5 pベース領域
6 p+コンタクト領域
7 ソース電極
8 層間絶縁膜
9 ゲート絶縁膜
10 ゲート電極
11 ドレイン電極
12 第1の並列pn層
13 第1のn型領域
14 第1のp型領域
15 第2の並列pn層
16 第2のn型領域
17 第2のp型領域
18 nバッファー層
19 n-表面領域
20a,20b,20c,20d,20e p型ガードリング領域
21 第1の絶縁膜
22a,22b,22c,22d,22e 第1のフィールドプレート電極
23 第1のチャネルストッパー電極
24 第2の絶縁膜
25a,25b,25c,25d,25e 第2のフィールドプレート電極
26 第2のチャネルストッパー電極
27a−2,27b−2,27c−2,27d−2,27e−2 コンタクト部
28 n型チャネルストッパー領域
29 p型最外周領域
31 素子周縁部のコーナー部

Claims (15)

  1. 第1主面側に設けられた素子活性部と、
    第2主面側に設けられた低抵抗層と、
    前記第1主面と前記低抵抗層との間に設けられた、第1導電型領域および第2導電型領域が交互に配置された並列pn層と、
    前記素子活性部を囲む素子周縁部における前記並列pn層と前記第1主面との間に設けられた第3の第1導電型領域と、
    前記第3の第1導電型領域の前記第1主面側に互いに離れて設けられた2以上の第3の第2導電型領域と、
    前記第3の第2導電型領域の前記第1主面側にそれぞれ電気的に接続され、前記素子周縁部における前記第1主面を部分的に覆う2以上の第1の導電層と、
    前記第3の第2導電型領域にそれぞれ電気的に接続されるとともに、絶縁層を介して前記第1の導電層の間の前記第1主面を覆うように、それぞれ隣り合う前記第1の導電層を覆う2以上の第2の導電層と、
    を備えることを特徴とする半導体装置。
  2. 前記並列pn層は、
    前記素子活性部に設けられた、第1の第1導電型領域および第1の第2導電型領域が交互に配置された第1の並列pn層と、
    前記素子周縁部に設けられた、前記第1の第1導電型領域および前記第1の第2導電型領域の繰り返しピッチよりも狭いピッチで第2の第1導電型領域および第2の第2導電型領域が交互に配置された第2の並列pn層と、を有することを特徴とする請求項1に記載の半導体装置。
  3. 隣り合う前記第3の第2導電型領域の間隔が前記素子周縁部の終端へ向かうに連れて広くなることを特徴とする請求項1または2に記載の半導体装置。
  4. 前記第1の導電層の、当該第1の導電層が電気的に接続された前記第3の第2導電型領域に接続する前記第2の導電層よりも前記素子活性部側の部分の幅が前記素子周縁部の終端へ向かうに連れて広くなることを特徴とする請求項1〜3のいずれか一つに記載の半導体装置。
  5. 前記第2の導電層の幅が前記素子周縁部の終端へ向かうに連れて広くなることを特徴とする請求項1〜4のいずれか一つに記載の半導体装置。
  6. 前記第3の第1導電型領域には、前記第3の第1導電型領域よりも不純物濃度が高い第4の第1導電型領域が設けられていることを特徴とする請求項1〜5のいずれか一つに記載の半導体装置。
  7. 前記第4の第1導電型領域は、隣り合う前記第3の第2導電型領域の間に設けられていることを特徴とする請求項6に記載の半導体装置。
  8. 前記第1の第1導電型領域および前記第1の第2導電型領域の平面形状がストライプ状であり、前記第2の第1導電型領域および前記第2の第2導電型領域の平面形状がストライプ状であるか、前記第2の第1導電型領域および前記第2の第2導電型領域のいずれか一方の平面形状が正方形状または多角形状であることを特徴とする請求項1〜7のいずれか一つに記載の半導体装置。
  9. 前記第3の第1導電型領域の不純物濃度は、2×1014cm-3以上8×1014cm-3以下であることを特徴とする請求項1〜8のいずれか一つに記載の半導体装置。
  10. 第1主面側に設けられた素子活性部と、
    第2主面側に設けられた低抵抗層と、
    前記素子活性部と前記低抵抗層との間に設けられた、第1の第1導電型領域および第1の第2導電型領域が交互に配置された第1の並列pn層と、
    前記素子活性部を囲む素子周縁部に設けられた、前記第1の第1導電型領域および前記第1の第2導電型領域の繰り返しピッチよりも狭いピッチで第2の第1導電型領域および第2の第2導電型領域が交互に配置された第2の並列pn層と、
    前記第2の並列pn層の前記第1主面側に互いに離れて設けられた2以上の第3の第2導電型領域と、
    前記第3の第2導電型領域の前記第1主面側にそれぞれ電気的に接続され、前記素子周縁部における前記第1主面を部分的に覆う2以上の第1の導電層と、
    前記第3の第2導電型領域にそれぞれ電気的に接続されるとともに、絶縁層を介して前記第1の導電層の間の前記第1主面を覆うように、それぞれ隣り合う前記第1の導電層を覆う2以上の第2の導電層と、
    を備え、
    前記第1の第1導電型領域および前記第1の第2導電型領域の平面形状がストライプ状であり、前記第2の第1導電型領域および前記第2の第2導電型領域のいずれか一方の平面形状が正方形状または多角形状であることを特徴とする半導体装置。
  11. 前記第2の第1導電型領域および前記第2の第2導電型領域のいずれか一方の平面形状が格子状であることを特徴とする請求項10に記載の半導体装置。
  12. 隣り合う前記第3の第2導電型領域の間隔が前記素子周縁部の終端へ向かうに連れて広
    くなることを特徴とする請求項10または11に記載の半導体装置。
  13. 前記第1の導電層の、当該第1の導電層が電気的に接続された前記第3の第2導電型領域に接続する前記第2の導電層よりも前記素子活性部側の部分の幅が前記素子周縁部の終端へ向かうに連れて広くなることを特徴とする請求項10〜12のいずれか一つに記載の半導体装置。
  14. 前記第2の導電層の幅が前記素子周縁部の終端へ向かうに連れて広くなることを特徴とする請求項10〜13のいずれか一つに記載の半導体装置。
  15. 前記第1の導電層および前記第2の導電層により、前記素子周縁部の前記第1主面側全体が覆われていることを特徴とする請求項1〜14のいずれか一つに記載の半導体装置。
JP2012008529A 2012-01-18 2012-01-18 半導体装置 Pending JP2013149761A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012008529A JP2013149761A (ja) 2012-01-18 2012-01-18 半導体装置
CN201210533176.4A CN103219339B (zh) 2012-01-18 2012-12-11 半导体器件
US13/711,856 US8957502B2 (en) 2012-01-18 2012-12-12 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012008529A JP2013149761A (ja) 2012-01-18 2012-01-18 半導体装置

Publications (1)

Publication Number Publication Date
JP2013149761A true JP2013149761A (ja) 2013-08-01

Family

ID=48779410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012008529A Pending JP2013149761A (ja) 2012-01-18 2012-01-18 半導体装置

Country Status (3)

Country Link
US (1) US8957502B2 (ja)
JP (1) JP2013149761A (ja)
CN (1) CN103219339B (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013172087A (ja) * 2012-02-22 2013-09-02 Toyota Motor Corp 半導体装置
JP2016062944A (ja) * 2014-09-16 2016-04-25 株式会社東芝 半導体装置
JP2016225363A (ja) * 2015-05-27 2016-12-28 トヨタ自動車株式会社 半導体装置
WO2018105310A1 (ja) * 2016-12-08 2018-06-14 株式会社デンソー 半導体装置
JP2020017673A (ja) * 2018-07-26 2020-01-30 ラピスセミコンダクタ株式会社 半導体装置
JP2020167229A (ja) * 2019-03-28 2020-10-08 ローム株式会社 半導体装置
JP2020174170A (ja) * 2019-04-12 2020-10-22 富士電機株式会社 超接合半導体装置および超接合半導体装置の製造方法
US11430862B2 (en) 2019-04-12 2022-08-30 Fuji Electric Co., Ltd. Superjunction semiconductor device including parallel PN structures and method of manufacturing thereof
WO2024203121A1 (ja) * 2023-03-30 2024-10-03 ローム株式会社 半導体装置
WO2024203119A1 (ja) * 2023-03-30 2024-10-03 ローム株式会社 半導体装置

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6197294B2 (ja) * 2013-01-16 2017-09-20 富士電機株式会社 半導体素子
KR101932776B1 (ko) * 2013-09-17 2018-12-27 매그나칩 반도체 유한회사 초접합 반도체 소자
JP6237064B2 (ja) * 2013-09-30 2017-11-29 サンケン電気株式会社 半導体装置
JP5918288B2 (ja) * 2014-03-03 2016-05-18 トヨタ自動車株式会社 半導体装置
JP2016035989A (ja) * 2014-08-04 2016-03-17 株式会社東芝 半導体装置
CN104377233A (zh) * 2014-11-05 2015-02-25 中国东方电气集团有限公司 一种采用多晶截止场板的半导体器件终端结构
TWI562378B (en) * 2015-06-24 2016-12-11 Episil Technologies Inc Semiconductor device
DE102016207117A1 (de) * 2016-04-27 2017-11-02 Robert Bosch Gmbh Leistungshalbleiterbauelement und Verfahren zur Herstellung des Leistungshalbleiterbauelements
WO2018012159A1 (ja) * 2016-07-15 2018-01-18 富士電機株式会社 炭化珪素半導体装置
JP6747195B2 (ja) * 2016-09-08 2020-08-26 富士電機株式会社 半導体装置および半導体装置の製造方法
CN108574012B (zh) * 2017-03-08 2021-12-24 无锡华润华晶微电子有限公司 超结vdmos器件及其制备方法
CN107093626A (zh) * 2017-04-28 2017-08-25 北京芯长征科技有限公司 超结终端结构及其制备方法
EP3460856B1 (en) * 2017-09-26 2020-12-02 ams AG Schottky barrier diode with improved schottky contact for high voltages
DE102017123285B4 (de) * 2017-10-06 2024-10-10 Infineon Technologies Austria Ag Hochspannungsabschlussstruktur einer Leistungshalbleitervorrichtung
IT201700113926A1 (it) * 2017-10-10 2019-04-10 St Microelectronics Srl Dispositivo mosfet di potenza e relativo procedimento di fabbricazione
EP3490006A1 (en) 2017-11-24 2019-05-29 Nexperia B.V. Semiconductor device with edge termination structure and method of manufacture
JP6935351B2 (ja) * 2018-03-20 2021-09-15 株式会社東芝 半導体装置
CN108511516A (zh) * 2018-06-04 2018-09-07 中山汉臣电子科技有限公司 一种具有新型终端结构的功率半导体器件
US10813607B2 (en) * 2018-06-27 2020-10-27 Prismatic Sensors Ab X-ray sensor, method for constructing an x-ray sensor and an x-ray imaging system comprising such an x-ray sensor
WO2020042221A1 (zh) * 2018-08-29 2020-03-05 无锡新洁能股份有限公司 一种高浪涌电流能力碳化硅二极管及其制作方法
JP7345354B2 (ja) * 2019-10-25 2023-09-15 三菱電機株式会社 半導体装置
US11955513B2 (en) * 2019-11-08 2024-04-09 Nisshinbo Micro Devices Inc. Semiconductor device
CN111092123A (zh) * 2019-12-10 2020-05-01 杰华特微电子(杭州)有限公司 横向双扩散晶体管及其制造方法
CN111446290A (zh) * 2020-05-11 2020-07-24 厦门理工学院 一种功率半导体器件及其边缘终端区结构和加工方法
CN111627984B (zh) * 2020-06-04 2021-12-03 绍兴中芯集成电路制造股份有限公司 超结器件及其制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0888346A (ja) * 1994-09-20 1996-04-02 Hitachi Ltd 半導体装置及びそれを使った電力変換装置
JP2003347547A (ja) * 2002-05-27 2003-12-05 Mitsubishi Electric Corp 電力用半導体装置及びその製造方法
JP2005203565A (ja) * 2004-01-15 2005-07-28 Fuji Electric Holdings Co Ltd 半導体装置およびその製造方法
JP2008227236A (ja) * 2007-03-14 2008-09-25 Toyota Central R&D Labs Inc 半導体装置
WO2011013379A1 (en) * 2009-07-31 2011-02-03 Fuji Electric Systems Co., Ltd. Semiconductor apparatus
JP2011171552A (ja) * 2010-02-19 2011-09-01 Fuji Electric Co Ltd 半導体装置およびその製造方法
JP2011228490A (ja) * 2010-04-20 2011-11-10 Denso Corp 縦型半導体素子を備えた半導体装置およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19839970C2 (de) 1998-09-02 2000-11-02 Siemens Ag Randstruktur und Driftbereich für ein Halbleiterbauelement sowie Verfahren zu ihrer Herstellung
JP4774580B2 (ja) * 1999-08-23 2011-09-14 富士電機株式会社 超接合半導体素子
JP4126915B2 (ja) 2002-01-30 2008-07-30 富士電機デバイステクノロジー株式会社 半導体装置
DE102005023026B4 (de) * 2005-05-13 2016-06-16 Infineon Technologies Ag Leistungshalbleiterbauelement mit Plattenkondensator-Struktur
JP5358963B2 (ja) 2008-02-04 2013-12-04 富士電機株式会社 半導体装置およびその製造方法
US8901652B2 (en) * 2009-09-01 2014-12-02 Stmicroelectronics S.R.L. Power MOSFET comprising a plurality of columnar structures defining the charge balancing region
US8476698B2 (en) * 2010-02-19 2013-07-02 Alpha And Omega Semiconductor Incorporated Corner layout for superjunction device
US8786010B2 (en) * 2011-04-27 2014-07-22 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0888346A (ja) * 1994-09-20 1996-04-02 Hitachi Ltd 半導体装置及びそれを使った電力変換装置
JP2003347547A (ja) * 2002-05-27 2003-12-05 Mitsubishi Electric Corp 電力用半導体装置及びその製造方法
JP2005203565A (ja) * 2004-01-15 2005-07-28 Fuji Electric Holdings Co Ltd 半導体装置およびその製造方法
JP2008227236A (ja) * 2007-03-14 2008-09-25 Toyota Central R&D Labs Inc 半導体装置
WO2011013379A1 (en) * 2009-07-31 2011-02-03 Fuji Electric Systems Co., Ltd. Semiconductor apparatus
JP2011171552A (ja) * 2010-02-19 2011-09-01 Fuji Electric Co Ltd 半導体装置およびその製造方法
JP2011228490A (ja) * 2010-04-20 2011-11-10 Denso Corp 縦型半導体素子を備えた半導体装置およびその製造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013172087A (ja) * 2012-02-22 2013-09-02 Toyota Motor Corp 半導体装置
JP2016062944A (ja) * 2014-09-16 2016-04-25 株式会社東芝 半導体装置
JP2016225363A (ja) * 2015-05-27 2016-12-28 トヨタ自動車株式会社 半導体装置
WO2018105310A1 (ja) * 2016-12-08 2018-06-14 株式会社デンソー 半導体装置
JP7201288B2 (ja) 2018-07-26 2023-01-10 ラピスセミコンダクタ株式会社 半導体装置
JP2020017673A (ja) * 2018-07-26 2020-01-30 ラピスセミコンダクタ株式会社 半導体装置
JP7378947B2 (ja) 2019-03-28 2023-11-14 ローム株式会社 半導体装置
JP2020167229A (ja) * 2019-03-28 2020-10-08 ローム株式会社 半導体装置
US11430862B2 (en) 2019-04-12 2022-08-30 Fuji Electric Co., Ltd. Superjunction semiconductor device including parallel PN structures and method of manufacturing thereof
JP2020174170A (ja) * 2019-04-12 2020-10-22 富士電機株式会社 超接合半導体装置および超接合半導体装置の製造方法
JP7524527B2 (ja) 2019-04-12 2024-07-30 富士電機株式会社 超接合半導体装置および超接合半導体装置の製造方法
WO2024203121A1 (ja) * 2023-03-30 2024-10-03 ローム株式会社 半導体装置
WO2024203119A1 (ja) * 2023-03-30 2024-10-03 ローム株式会社 半導体装置

Also Published As

Publication number Publication date
US20130181328A1 (en) 2013-07-18
US8957502B2 (en) 2015-02-17
CN103219339B (zh) 2017-08-08
CN103219339A (zh) 2013-07-24

Similar Documents

Publication Publication Date Title
JP2013149761A (ja) 半導体装置
JP5509908B2 (ja) 半導体装置およびその製造方法
JP5741567B2 (ja) 半導体装置
JP4289123B2 (ja) 半導体装置
JP3751463B2 (ja) 高耐圧半導体素子
JP5048273B2 (ja) 絶縁ゲート型半導体装置
JP6009731B2 (ja) 半導体装置
US9159846B2 (en) SiC semiconductor device
JP6415749B2 (ja) 炭化珪素半導体装置
US10276654B2 (en) Semiconductor device with parallel PN structures
JP2008085189A (ja) 絶縁ゲート型半導体装置
JP2002280555A (ja) 半導体装置
JP2006073987A (ja) 半導体素子
JP7505217B2 (ja) 超接合半導体装置および超接合半導体装置の製造方法
US10707301B2 (en) Semiconductor device and method of manufacturing semiconductor device
USRE48259E1 (en) Semiconductor device
US11049964B2 (en) Silicon carbide semiconductor device
CN115241268A (zh) 半导体装置
JP5680460B2 (ja) 電力用半導体装置
JP6058712B2 (ja) 半導体装置
JP5774744B2 (ja) 半導体装置
JP2016062944A (ja) 半導体装置
JP7524527B2 (ja) 超接合半導体装置および超接合半導体装置の製造方法
TW202327108A (zh) 半導體裝置
JP2012142322A (ja) 絶縁ゲート型半導体装置およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161004