[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a002551 -id:a002551
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = (2n+1)!/n!^2.
(Formerly M4198 N1752)
+0
144
1, 6, 30, 140, 630, 2772, 12012, 51480, 218790, 923780, 3879876, 16224936, 67603900, 280816200, 1163381400, 4808643120, 19835652870, 81676217700, 335780006100, 1378465288200, 5651707681620, 23145088600920, 94684453367400, 386971244197200, 1580132580471900
OFFSET
0,2
COMMENTS
Expected number of matches remaining in Banach's modified matchbox problem (counted when last match is drawn from one of the two boxes), multiplied by 4^(n-1). - Michael Steyer, Apr 13 2001
Hankel transform is (-1)^n*A014480(n). - Paul Barry, Apr 26 2009
Convolved with A000108: (1, 1, 1, 5, 14, 42, ...) = A000531: (1, 7, 38, 187, 874, ...). - Gary W. Adamson, May 14 2009
Convolution of A000302 and A000984. - Philippe Deléham, May 18 2009
1/a(n) is the integral of (x(1-x))^n on interval [0,1]. Apparently John Wallis computed these integrals for n=0,1,2,3,.... A004731, shifted left by one, gives numerators/denominators of related integrals (1-x^2)^n on interval [0,1]. - Marc van Leeuwen, Apr 14 2010
Extend the triangular peaks of Dyck paths of semilength n down to the baseline forming (possibly) larger and overlapping triangles. a(n) = sum of areas of these triangles. Also a(n) = triangular(n) * Catalan(n). - David Scambler, Nov 25 2010
Let H be the n X n Hilbert matrix H(i,j) = 1/(i+j-1) for 1 <= i,j <= n. Let B be the inverse matrix of H. The sum of the elements in row n of B equals a(n-1). - T. D. Noe, May 01 2011
Apparently the number of peaks in all symmetric Dyck paths with semilength 2n+1. - David Scambler, Apr 29 2013
Denominator of central elements of Leibniz's Harmonic Triangle A003506.
Central terms of triangle A116666. - Reinhard Zumkeller, Nov 02 2013
Number of distinct strings of length 2n+1 using n letters A, n letters B, and 1 letter C. - Hans Havermann, May 06 2014
Number of edges in the Hasse diagram of the poset of partitions in the n X n box ordered by containment (from Havermann's comment above, C represents the square added in the edge). - William J. Keith, Aug 18 2015
Let V(n, r) denote the volume of an n-dimensional sphere with radius r then V(n, 1/2^n) = V(n-1, 1/2^n) / a((n-1)/2) for all odd n. - Peter Luschny, Oct 12 2015
a(n) is the result of processing the n+1 row of Pascal's triangle A007318 with the method of A067056. Example: Let n=3. Given the 4th row of Pascal's triangle 1,4,6,4,1, we get 1*(4+6+4+1) + (1+4)*(6+4+1) + (1+4+6)*(4+1) + (1+4+6+4)*1 = 15+55+55+15 = 140 = a(3). - J. M. Bergot, May 26 2017
a(n) is the number of (n+1) X 2 Young tableaux with a two horizontal walls between the first and second column. If there is a wall between two cells, the entries may be decreasing; see [Banderier, Wallner 2021] and A000984 for one horizontal wall. - Michael Wallner, Jan 31 2022
a(n) is the number of facets of the symmetric edge polytope of the cycle graph on 2n+1 vertices. - Mariel Supina, May 12 2022
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 159.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 83, Problem 25; p. 168, #30.
W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I.
C. Jordan, Calculus of Finite Differences. Röttig and Romwalter, Budapest, 1939; Chelsea, NY, 1965, p. 449.
M. Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990; see pp. 127-129.
C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 514.
A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 92.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
J. Wallis, Operum Mathematicorum, pars altera, Oxford, 1656, pp 31,34 [Marc van Leeuwen, Apr 14 2010]
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 [Terms 0 to 200 computed by T. D. Noe; terms 201 to 1000 by G. C. Greubel, Jan 14 2017]
Cyril Banderier and Michael Wallner, Young Tableaux with Periodic Walls: Counting with the Density Method, Séminaire Lotharingien de Combinatoire, 85B (2021), Art. 47, 12 pp.
Alexander Barg, Stolarsky's invariance principle for finite metric spaces, arXiv:2005.12995 [math.CO], 2020.
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables) [Annotated scanned copy]
Sara C. Billey, Matjaž Konvalinka, and Joshua P. Swanson, Asymptotic normality of the major index on standard tableaux, arXiv:1905.00975 [math.CO], 2019.See p. 15, Remark 4.2
R. Chapman, Moments of Dyck paths, Discrete Math., 204 (1999), 113-117.
Ömür Deveci and Anthony G. Shannon, Some aspects of Neyman triangles and Delannoy arrays, Mathematica Montisnigri (2021) Vol. L, 36-43.
F. Disanto, A. Frosini, R. Pinzani and S. Rinaldi, A closed formula for the number of convex permutominoes, arXiv:math/0702550 [math.CO], 2007.
Luca Ferrari and Emanuele Munarini, Enumeration of edges in some lattices of paths, arXiv preprint arXiv:1203.6792 [math.CO], 2012 and J. Int. Seq. 17 (2014) #14.1.5.
Nikita Gogin and Mika Hirvensalo, On the Moments of Squared Binomial Coefficients, (2020).
P.-Y. Huang, S.-C. Liu, and Y.-N. Yeh, Congruences of Finite Summations of the Coefficients in certain Generating Functions, The Electronic Journal of Combinatorics, 21 (2014), #P2.45.
Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
C. Jordan, Calculus of Finite Differences, Budapest, 1939. [Annotated scans of pages 448-450 only]
Bahar Kuloğlu, Engin Özkan, and Marin Marin, Fibonacci and Lucas Polynomials in n-gon, An. Şt. Univ. Ovidius Constanţa (Romania 2023) Vol. 31, No 2, 127-140.
C. Lanczos, Applied Analysis (Annotated scans of selected pages)
A. Petojevic and N. Dapic, The vAm(a,b,c;z) function, Preprint 2013.
H. E. Salzer, Coefficients for numerical differentiation with central differences, J. Math. Phys., 22 (1943), 115-135.
H. E. Salzer, Coefficients for numerical differentiation with central differences, J. Math. Phys., 22 (1943), 115-135. [Annotated scanned copy]
J. Ser, Les Calculs Formels des Séries de Factorielles, Gauthier-Villars, Paris, 1933 [Local copy].
J. Ser, Les Calculs Formels des Séries de Factorielles (Annotated scans of some selected pages)
L. W. Shapiro, W.-J. Woan and S. Getu, Runs, slides and moments, SIAM J. Alg. Discrete Methods, 4 (1983), 459-466.
Andrei K. Svinin, On some class of sums, arXiv:1610.05387 [math.CO], 2016. See p. 5.
T. R. Van Oppolzer, Lehrbuch zur Bahnbestimmung der Kometen und Planeten, Vol. 2, Engelmann, Leipzig, 1880, p. 21.
Eric Weisstein's World of Mathematics, Central Beta Function
Eric Weisstein's World of Mathematics, Pi Formulas
FORMULA
G.f.: (1-4x)^(-3/2) = 1F0(3/2;;4x).
a(n-1) = binomial(2*n, n)*n/2 = binomial(2*n-1, n)*n.
a(n-1) = 4^(n-1)*Sum_{i=0..n-1} binomial(n-1+i, i)*(n-i)/2^(n-1+i).
a(n) ~ 2*Pi^(-1/2)*n^(1/2)*2^(2*n)*{1 + 3/8*n^-1 + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 21 2001
(2*n+2)!/(2*n!*(n+1)!) = (n+n+1)!/(n!*n!) = 1/beta(n+1, n+1) in A061928.
Sum_{i=0..n} i * binomial(n, i)^2 = n*binomial(2*n, n)/2. - Yong Kong (ykong(AT)curagen.com), Dec 26 2000
a(n) ~ 2*Pi^(-1/2)*n^(1/2)*2^(2*n). - Joe Keane (jgk(AT)jgk.org), Jun 07 2002
a(n) = 1/Integral_{x=0..1} x^n (1-x)^n dx. - Fred W. Helenius (fredh(AT)ix.netcom.com), Jun 10 2003
E.g.f.: exp(2*x)*((1+4*x)*BesselI(0, 2*x) + 4*x*BesselI(1, 2*x)). - Vladeta Jovovic, Sep 22 2003
a(n) = Sum_{i+j+k=n} binomial(2i, i)*binomial(2j, j)*binomial(2k, k). - Benoit Cloitre, Nov 09 2003
a(n) = (2*n+1)*A000984(n) = A005408(n)*A000984(n). - Zerinvary Lajos, Dec 12 2010
a(n-1) = Sum_{k=0..n} A039599(n,k)*A000217(k), for n >= 1. - Philippe Deléham, Jun 10 2007
Sum of (n+1)-th row terms of triangle A132818. - Gary W. Adamson, Sep 02 2007
Sum_{n>=0} 1/a(n) = 2*Pi/3^(3/2). - Jaume Oliver Lafont, Mar 07 2009
a(n) = Sum_{k=0..n} binomial(2k,k)*4^(n-k). - Paul Barry, Apr 26 2009
a(n) = A000217(n) * A000108(n). - David Scambler, Nov 25 2010
a(n) = f(n, n-3) where f is given in A034261.
a(n) = A005430(n+1)/2 = A002011(n)/4.
a(n) = binomial(2n+2, 2) * binomial(2n, n) / binomial(n+1, 1), a(n) = binomial(n+1, 1) * binomial(2n+2, n+1) / binomial(2, 1) = binomial(2n+2, n+1) * (n+1)/2. - Rui Duarte, Oct 08 2011
G.f.: (G(0) - 1)/(4*x) where G(k) = 1 + 2*x*((2*k + 3)*G(k+1) - 1)/(k + 1). - Sergei N. Gladkovskii, Dec 03 2011 [Edited by Michael Somos, Dec 06 2013]
G.f.: 1 - 6*x/(G(0)+6*x) where G(k) = 1 + (4*x+1)*k - 6*x - (k+1)*(4*k-2)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Aug 13 2012
G.f.: Q(0), where Q(k) = 1 + 4*(2*k + 1)*x*(2*k + 2 + Q(k+1))/(k+1). - Sergei N. Gladkovskii, May 10 2013 [Edited by Michael Somos, Dec 06 2013]
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 4*x*(2*k+3)/(4*x*(2*k+3) + 2*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 06 2013
a(n) = 2^(4n)/Sum_{k=0..n} (-1)^k*C(2n+1,n-k)/(2k+1). - Mircea Merca, Nov 12 2013
a(n) = (2*n)!*[x^(2*n)] HeunC(0,0,-2,-1/4,7/4,4*x^2) where [x^n] f(x) is the coefficient of x^n in f(x) and HeunC is the Heun confluent function. - Peter Luschny, Nov 22 2013
0 = a(n) * (16*a(n+1) - 2*a(n+2)) + a(n+1) * (a(n+2) - 6*a(n+1)) for all n in Z. - Michael Somos, Dec 06 2013
a(n) = 4^n*binomial(n+1/2, 1/2). - Peter Luschny, Apr 24 2014
a(n) = 4^n*hypergeom([-2*n,-2*n-1,1/2],[-2*n-2,1],2)*(n+1)*(2*n+1). - Peter Luschny, Sep 22 2014
a(n) = 4^n*hypergeom([-n,-1/2],[1],1). - Peter Luschny, May 19 2015
a(n) = 2*4^n*Gamma(3/2+n)/(sqrt(Pi)*Gamma(1+n)). - Peter Luschny, Dec 14 2015
Sum_{n >= 0} 2^(n+1)/a(n) = Pi, related to Newton/Euler's Pi convergence transformation series. - Tony Foster III, Jul 28 2016. See the Weisstein Pi link, eq. (23). - Wolfdieter Lang, Aug 26 2016
Boas-Buck recurrence: a(n) = (6/n)*Sum_{k=0..n-1} 4^(n-k-1)*a(k), n >= 1, and a(0) = 1. Proof from a(n) = A046521(n+1,1). See comment in A046521. - Wolfdieter Lang, Aug 10 2017
a(n) = (1/3)*Sum_{i = 0..n+1} C(n+1,i)*C(n+1,2*n+1-i)*C(3*n+2-i,n+1) = (1/3)*Sum_{i = 0..2*n+1} (-1)^(i+1)*C(2*n+1,i)*C(n+i+1,i)^2. - Peter Bala, Feb 07 2018
a(n) = (2*n+1)*binomial(2*n, n). - Kolosov Petro, Apr 16 2018
a(n) = (-4)^n*binomial(-3/2, n). - Peter Luschny, Oct 23 2018
a(n) = 1 / Sum_{s=0..n} (-1)^s * binomial(n, s) / (n+s+1). - Kolosov Petro, Jan 22 2019
a(n) = Sum_{k = 0..n} (2*k + 1)*binomial(2*n + 1, n - k). - Peter Bala, Feb 25 2019
4^n/a(n) = Integral_{x=0..1} (1 - x^2)^n. - Michael Somos, Jun 13 2019
D-finite with recurrence: 0 = a(n)*(6 + 4*n) - a(n+1)*(n + 1) for all n in Z. - Michael Somos, Jun 13 2019
Sum_{n>=0} (-1)^n/a(n) = 4*arcsinh(1/2)/sqrt(5). - Amiram Eldar, Sep 10 2020
From Jianing Song, Apr 10 2022: (Start)
G.f. for {1/a(n)}: 4*arcsin(sqrt(x)/2) / sqrt(x*(4-x)).
E.g.f. for {1/a(n)}: exp(x/4)*sqrt(Pi/x)*erf(sqrt(x)/2). (End)
G.f. for {1/a(n)}: 4*arctan(sqrt(x/(4-x))) / sqrt(x*(4-x)). - Michael Somos, Jun 17 2023
a(n) = Sum_{k = 0..n} (-1)^(n+k) * (n + 2*k + 1)*binomial(n+k, k). This is the particular case m = 1 of the identity Sum_{k = 0..m*n} (-1)^k * (n + 2*k + 1) * binomial(n+k, k) = (-1)^(m*n) * (m*n + 1) * binomial((m+1)*n+1, n). Cf. A090816 and A306290. - Peter Bala, Nov 02 2024
a(n) = (1/Pi)*(2*n + 1)*(2^(2*n + 1))*Integral_{x=0..oo} 1/(x^2 + 1)^(n + 1) dx. - Velin Yanev, Jan 28 2025
EXAMPLE
G.f. = 1 + 6*x + 30*x^2 + 140*x^3 + 630*x^4 + 2772*x^5 + 12012*x^6 + 51480*x^7 + ...
MAPLE
A002457:=n->(n+1) * binomial(2*(n+1), (n+1)) / 2; seq(A002457(n), n=0..50);
seq((2*n)!*coeff(series(HeunC(0, 0, -2, -1/4, 7/4, 4*x^2), x, 2*n+1), x, 2*n), n=0..22); # Peter Luschny, Nov 22 2013
MATHEMATICA
a[n_]:=(2*n+1)!/n!^2; Array[f, 23, 0] (* Vladimir Joseph Stephan Orlovsky, Dec 13 2008 *)
PROG
(PARI) {a(n) = if( n<0, 0, (2*n + 1)! / n!^2)}; /* Michael Somos, Dec 09 2002 */
(PARI) a(n) = (2*n+1)*binomial(2*n, n); \\ Altug Alkan, Apr 16 2018
(Haskell)
a002457 n = a116666 (2 * n + 1) (n + 1)
-- Reinhard Zumkeller, Nov 02 2013
(Sage)
A002457 = lambda n: binomial(n+1/2, 1/2)<<2*n
[A002457(n) for n in range(23)] # Peter Luschny, Sep 22 2014
(Magma) [Factorial(2*n+1)/Factorial(n)^2: n in [0..25]]; // Vincenzo Librandi, Oct 12 2015
CROSSREFS
Cf. A000531 (Banach's original match problem).
Cf. A033876, A000984, A001803, A132818, A046521 (second column).
A diagonal of A331430.
The rightmost diagonal of the triangle A331431.
KEYWORD
nonn,easy,nice,changed
STATUS
approved
Numerators in expansion of 1/sqrt(1-x).
(Formerly M2508 N0992)
+0
76
1, 1, 3, 5, 35, 63, 231, 429, 6435, 12155, 46189, 88179, 676039, 1300075, 5014575, 9694845, 300540195, 583401555, 2268783825, 4418157975, 34461632205, 67282234305, 263012370465, 514589420475, 8061900920775, 15801325804719
OFFSET
0,3
COMMENTS
Also numerator of e(n-1,n-1) (see Maple line).
Leading coefficient of normalized Legendre polynomial.
Common denominator of expansions of powers of x in terms of Legendre polynomials P_n(x).
Also the numerator of binomial(2*n,n)/2^n. - T. D. Noe, Nov 29 2005
This sequence gives the numerators of the Maclaurin series of the Lorentz factor (see Wikipedia link) of 1/sqrt(1-b^2) = dt/dtau where b=u/c is the velocity in terms of the speed of light c, u is the velocity as observed in the reference frame where time t is measured and tau is the proper time. - Stephen Crowley, Apr 03 2007
Truncations of rational expressions like those given by the numerator operator are artifacts in integer formulas and have many disadvantages. A pure integer formula follows. Let n$ denote the swinging factorial and sigma(n) = number of '1's in the base-2 representation of floor(n/2). Then a(n) = (2*n)$ / sigma(2*n) = A056040(2*n) / A060632(2*n+1). Simply said: this sequence is the odd part of the swinging factorial at even indices. - Peter Luschny, Aug 01 2009
It appears that a(n) = A060818(n)*A001147(n)/A000142(n). - James R. Buddenhagen, Jan 20 2010
The convolution of sequence binomial(2*n,n)/4^n with itself is the constant sequence with all terms = 1.
a(n) equals the denominator of Hypergeometric2F1[1/2, n, 1 + n, -1] (see Mathematica code below). - John M. Campbell, Jul 04 2011
a(n) = numerator of (1/Pi)*Integral_{x=-oo..+oo} 1/(x^2-2*x+2)^n dx. - Leonid Bedratyuk, Nov 17 2012
a(n) = numerator of the mean value of cos(x)^(2*n) from x = 0 to 2*Pi. - Jean-François Alcover, Mar 21 2013
Constant terms for normalized Legendre polynomials. - Tom Copeland, Feb 04 2016
From Ralf Steiner, Apr 07 2017: (Start)
By analytic continuation to the entire complex plane there exist regularized values for divergent sums:
a(n)/A060818(n) = (-2)^n*sqrt(Pi)/(Gamma(1/2 - n)*Gamma(1 + n)).
Sum_{k>=0} a(k)/A060818(k) = -i.
Sum_{k>=0} (-1)^k*a(k)/A060818(k) = 1/sqrt(3).
Sum_{k>=0} (-1)^(k+1)*a(k)/A060818(k) = -1/sqrt(3).
a(n)/A046161(n) = (-1)^n*sqrt(Pi)/(Gamma(1/2 - n)*Gamma(1 + n)).
Sum_{k>=0} (-1)^k*a(k)/A046161(k) = 1/sqrt(2).
Sum_{k>=0} (-1)^(k+1)*a(k)/A046161(k) = -1/sqrt(2). (End)
a(n) = numerator of (1/Pi)*Integral_{x=-oo..+oo} 1/(x^2+1)^n dx. (n=1 is the Cauchy distribution.) - Harry Garst, May 26 2017
Let R(n, d) = (Product_{j prime to d} Pochhammer(j / d, n)) / n!. Then the numerators of R(n, 2) give this sequence and the denominators are A046161. For d = 3 see A273194/A344402. - Peter Luschny, May 20 2021
Using WolframAlpha, it appears a(n) gives the numerator in the residues of f(z) = 2z choose z at odd negative half integers. E.g., the residues of f(z) at z = -1/2, -3/2, -5/2 are 1/(2*Pi), 1/(16*Pi), and 3/(256*Pi) respectively. - Nicholas Juricic, Mar 31 2022
a(n) is the numerator of (1/Pi) * Integral_{x=-oo..+oo} sech(x)^(2*n+1) dx. The corresponding denominator is A046161. - Mohammed Yaseen, Jul 29 2023
a(n) is the numerator of (1/Pi) * Integral_{x=0..Pi/2} sin(x)^(2*n) dx. The corresponding denominator is A101926(n). - Mohammed Yaseen, Sep 19 2023
REFERENCES
P. J. Davis, Interpolation and Approximation, Dover Publications, 1975, p. 372.
W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, 2nd ed. New York: Wiley, 1968; Chap. III, Eq. 4.1.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 6, equation 6:14:6 at page 51.
J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 102.
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 0..1666 (first 201 terms from T. D. Noe)
Horst Alzer and Bent Fuglede, Normalized binomial mid-coefficients and power means, Journal of Number Theory, Volume 115, Issue 2, December 2005, Pages 284-294.
C. M. Bender and K. A. Milton, Continued fraction as a discrete nonlinear transform, arXiv:hep-th/9304062, 1993 (see V_n with N=1).
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table [Annotated scanned copy].
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).
Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Combinatorial Identities Associated with a Multidimensional Polynomial Sequence, J. Int. Seq., Vol. 21 (2018), Article 18.7.4.
V. H. Moll, The evaluation of integrals: a personal story, Notices Amer. Math. Soc., 49 (No. 3, March 2002), 311-317.
Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
J. Ser, Les Calculs Formels des Séries de Factorielles, Gauthier-Villars, Paris, 1933 [Local copy].
J. Ser, Les Calculs Formels des Séries de Factorielles (Annotated scans of some selected pages).
Eric Weisstein's World of Mathematics, Binomial Series.
Eric Weisstein's World of Mathematics, Legendre Polynomial.
Wikipedia, Lorentz Factor.
FORMULA
a(n) = numerator( binomial(2*n,n)/4^n ) (cf. A046161).
a(n) = A000984(n)/A001316(n) where A001316(n) is the highest power of 2 dividing C(2*n, n) = A000984(n). - Benoit Cloitre, Jan 27 2002
a(n) = denominator of (2^n/binomial(2*n,n)). - Artur Jasinski, Nov 26 2011
a(n) = numerator(L(n)), with rational L(n):=binomial(2*n,n)/2^n. L(n) is the leading coefficient of the Legendre polynomial P_n(x).
L(n) = (2*n-1)!!/n! with the double factorials (2*n-1)!! = A001147(n), n >= 0.
Numerator in (1-2t)^(-1/2) = 1 + t + (3/2)t^2 + (5/2)t^3 + (35/8)t^4 + (63/8)t^5 + (231/16)t^6 + (429/16)t^7 + ... = 1 + t + 3*t^2/2! + 15*t^3/3! + 105*t^4/4! + 945*t^5/5! + ... = e.g.f. for double factorials A001147 (cf. A094638). - Tom Copeland, Dec 04 2013
From Ralf Steiner, Apr 08 2017: (Start)
a(n)/A061549(n) = (-1/4)^n*sqrt(Pi)/(Gamma(1/2 - n)*Gamma(1 + n)).
Sum_{k>=0} a(k)/A061549(k) = 2/sqrt(3).
Sum_{k>=0} (-1)^k*a(k)/A061549(k) = 2/sqrt(5).
Sum_{k>=0} (-1)^(k+1)*a(k)/A061549(k) = -2/sqrt(5).
a(n)/A123854(n) = (-1/2)^n*sqrt(Pi)/(gamma(1/2 - n)*gamma(1 + n)).
Sum_{k>=0} a(k)/A123854(k) = sqrt(2).
Sum_{k>=0} (-1)^k*a(k)/A123854(k) = sqrt(2/3).
Sum_{k>=0} (-1)^(k+1)*a(k)/A123854(k) = -sqrt(2/3). (End)
a(n) = 2^A007814(n)*(2*n-1)*a(n-1)/n. - John Lawrence, Jul 17 2020
Sum_{k>=0} A086117(k+3)/a(k+2) = Pi. - Antonio Graciá Llorente, Aug 31 2024
a(n) = A001803(n)/(2*n+1). - G. C. Greubel, Sep 23 2024
EXAMPLE
1, 1, 3/2, 5/2, 35/8, 63/8, 231/16, 429/16, 6435/128, 12155/128, 46189/256, ...
binomial(2*n,n)/4^n => 1, 1/2, 3/8, 5/16, 35/128, 63/256, 231/1024, 429/2048, 6435/32768, ...
MAPLE
e := proc(l, m) local k; add(2^(k-2*m)*binomial(2*m-2*k, m-k)*binomial(m+k, m)*binomial(k, l), k=l..m); end;
# From Peter Luschny, Aug 01 2009: (Start)
swing := proc(n) option remember; if n = 0 then 1 elif irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
sigma := n -> 2^(add(i, i=convert(iquo(n, 2), base, 2))):
a := n -> swing(2*n)/sigma(2*n); # (End)
A001790 := proc(n) binomial(2*n, n)/4^n ; numer(%) ; end proc : # R. J. Mathar, Jan 18 2013
MATHEMATICA
Numerator[ CoefficientList[ Series[1/Sqrt[(1 - x)], {x, 0, 25}], x]]
Table[Denominator[Hypergeometric2F1[1/2, n, 1 + n, -1]], {n, 0, 34}] (* John M. Campbell, Jul 04 2011 *)
Numerator[Table[(-2)^n*Sqrt[Pi]/(Gamma[1/2 - n]*Gamma[1 + n]), {n, 0, 20}]] (* Ralf Steiner, Apr 07 2017 *)
Numerator[Table[Binomial[2n, n]/2^n, {n, 0, 25}]] (* Vaclav Kotesovec, Apr 07 2017 *)
Table[Numerator@LegendreP[2 n, 0]*(-1)^n, {n, 0, 25}] (* Andres Cicuttin, Jan 22 2018 *)
A = {1}; Do[A = Append[A, 2^IntegerExponent[n, 2]*(2*n - 1)*A[[n]]/n], {n, 1, 25}]; Print[A] (* John Lawrence, Jul 17 2020 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( pollegendre(n), n) * 2^valuation((n\2*2)!, 2))};
(PARI) a(n)=binomial(2*n, n)>>hammingweight(n); \\ Gleb Koloskov, Sep 26 2021
(Sage) # uses[A000120]
@CachedFunction
def swing(n):
if n == 0: return 1
return swing(n-1)*n if is_odd(n) else 4*swing(n-1)/n
A001790 = lambda n: swing(2*n)/2^A000120(2*n)
[A001790(n) for n in (0..25)] # Peter Luschny, Nov 19 2012
(Magma)
A001790:= func< n | Numerator((n+1)*Catalan(n)/4^n) >;
[A001790(n): n in [0..40]]; // G. C. Greubel, Sep 23 2024
CROSSREFS
Cf. A060818 (denominator of binomial(2*n,n)/2^n), A061549 (denominators).
Cf. A123854 (denominators).
Cf. A161198 (triangle of coefficients for (1-x)^((-1-2*n)/2)).
Cf. A163590 (odd part of the swinging factorial).
First column and diagonal 1 of triangle A100258.
Bisection of A036069.
Bisections give A061548 and A063079.
Inverse Moebius transform of A180403/A046161.
Numerators of [x^n]( (1-x)^(p/2) ): A161202 (p=5), A161200 (p=3), A002596 (p=1), this sequence (p=-1), A001803 (p=-3), A161199 (p=-5), A161201 (p=-7).
KEYWORD
nonn,easy,nice,frac,changed
STATUS
approved
a(n) = binomial(2*n+1,n)*(n+1)^2.
(Formerly M4855 N2075)
+0
16
1, 12, 90, 560, 3150, 16632, 84084, 411840, 1969110, 9237800, 42678636, 194699232, 878850700, 3931426800, 17450721000, 76938289920, 337206098790, 1470171918600, 6379820115900, 27569305764000, 118685861314020, 509191949220240, 2177742427450200, 9287309860732800
OFFSET
0,2
COMMENTS
Coefficients for numerical differentiation.
Take the first n integers 1,2,3..n and find all combinations with repetitions allowed for the first n of them. Find the sum of each of these combinations to get this sequence. Example for 1 and 2: 1,2,1+1,1+2,2+2 gives sum of 12=a(2). - J. M. Bergot, Mar 08 2016
Let cos(x) = 1 -x^2/2 +x^4/4!-x^6/6!.. = Sum_i (-1)^i x^(2i)/(2i)! be the standard power series of the cosine, and y = 2*(1-cos(x)) = 4*sin^2(x/2) = x^2 -x^4/12 +x^6/360 ...= Sum_i 2*(-1)^(i+1) x^(2i)/(2i)! be a closely related series. Then this sequence represents the reversion x^2 = Sum_i 1/a(i) *y^(i+1). - R. J. Mathar, May 03 2022
REFERENCES
C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 514.
J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 92.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables) [Annotated scanned copy]
Ömür Deveci and Anthony G. Shannon, Some aspects of Neyman triangles and Delannoy arrays, Mathematica Montisnigri (2021) Vol. L, 36-43.
C. Lanczos, Applied Analysis (Annotated scans of selected pages)
A. Petojevic and N. Dapic, The vAm(a,b,c;z) function, Preprint 2013.
H. E. Salzer, Coefficients for numerical differentiation with central differences, J. Math. Phys., 22 (1943), 115-135.
H. E. Salzer, Coefficients for numerical differentiation with central differences, J. Math. Phys., 22 (1943), 115-135. [Annotated scanned copy]
J. Ser, Les Calculs Formels des Séries de Factorielles, Gauthier-Villars, Paris, 1933 [Local copy].
J. Ser, Les Calculs Formels des Séries de Factorielles (Annotated scans of some selected pages)
R. Shenton and A. W. Kemp, An S-fraction and ln^2(1+x), Journal of Computational and Applied Mathematics, 26 (1989) 367-370 North-Holland.
T. R. Van Oppolzer, Lehrbuch zur Bahnbestimmung der Kometen und Planeten, Vol. 2, Engelmann, Leipzig, 1880, p. 21.
Mats Vermeeren, A dynamical solution to the Basel problem, arXiv preprint arXiv:1506.05288 [math.CA], 2015.
FORMULA
G.f.: (1 + 2x)/(1 - 4x)^(5/2).
a(n-1) = sum(i_1 + i_2 + ... + i_n) where the sum is over 0 <= i_1 <= i_2 <= ... <= i_n <= n; a(n) = (n+1)^2 C(2n+1, n). - David Callan, Nov 20 2003
a(n) = (n+1)^2 * binomial(2*n+2,n+1)/2. - Zerinvary Lajos, May 31 2006
Asymptotics: a(n)-> (1/64) * (128*n^2+176*n+41) * 4^n * n^(-1/2)/(sqrt(Pi)), for n->infinity. - Karol A. Penson, Aug 05 2013
G.f.: 2F1(3/2,2;1;4x). - R. J. Mathar, Aug 09 2015
a(n) = A002457(n)*(n+1). - R. J. Mathar, Aug 09 2015
a(n) = A000217(n)*A000984(n). - J. M. Bergot, Mar 10 2016
a(n-1) = A001791(n)*n*(n+1)/2. - Anton Zakharov, Jul 04 2016
From Ilya Gutkovskiy, Jul 04 2016: (Start)
E.g.f.: ((1 + 2*x)*(1 + 8*x)*BesselI(0,2*x) + 2*x*(3 + 8*x)*BesselI(1,2*x))*exp(2*x).
Sum_{n>=0} 1/a(n) = Pi^2/9 = A100044. (End)
From Peter Bala, Apr 18 2017: (Start)
With x = y^2/(1 + y) we have log^2(1 + y) = Sum_{n >= 0} (-1)^n*x^(n+1)/a(n). See Shenton and Kemp.
Series reversion ( Sum_{n >= 0} (-1)^n*x^(n+1)/a(n) ) = Sum_{n >= 1} 2*x^n/(2*n)! = Sum_{n >= 1} x^n/A002674(n). (End)
D-finite with recurrence n^2*a(n) -2*(n+1)*(2*n+1)*a(n-1)=0. - R. J. Mathar, Feb 08 2021
Sum_{n>=0} (-1)^n/a(n) = 4*arcsinh(1/2)^2 = A202543^2. - Amiram Eldar, May 14 2022
MAPLE
seq((n+1)^2*(binomial(2*n+2, n+1))/2, n=0..29); # Zerinvary Lajos, May 31 2006
MATHEMATICA
Table[Binomial[2n+1, n](n+1)^2, {n, 0, 20}] (* Harvey P. Dale, Mar 23 2011 *)
PROG
(PARI) a(n)=binomial(2*n+1, n)*(n+1)^2
(PARI) x='x+O('x^99); Vec((1+2*x)/(1-4*x)^(5/2)) \\ Altug Alkan, Jul 09 2016
(Python)
from sympy import binomial
def a(n): return binomial(2*n + 1, n)*(n + 1)**2 # Indranil Ghosh, Apr 18 2017
CROSSREFS
Equals A002736/2.
A diagonal of A331430.
KEYWORD
nonn,easy,nice
STATUS
approved
Denominators of coefficients for numerical differentiation.
(Formerly M4822 N2063)
+0
9
1, 1, 12, 6, 180, 10, 560, 1260, 12600, 1260, 166320, 13860, 2522520, 2702700, 2882880, 360360, 110270160, 2042040, 775975200, 162954792, 56904848, 2586584, 1427794368, 892371480, 116008292400, 120470149800, 1124388064800
OFFSET
2,3
COMMENTS
Denominator of 1 - 2*HarmonicNumber(n-1)/n. - Eric W. Weisstein, Apr 15 2004
Denominator of u(n) = sum( k=1, n-1, 1/(k(n-k)) ) (u(n) is asymptotic to 2*log(n)/n). - Benoit Cloitre, Apr 12 2003; corrected by Istvan Mezo, Oct 29 2012
Expected area of the convex hull of n points picked at random inside a triangle with unit area. - Eric W. Weisstein, Apr 15 2004
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables) [Annotated scanned copy]
A. N. Lowan, H. E. Salzer and A. Hillman, A table of coefficients for numerical differentiation, Bull. Amer. Math. Soc., 48 (1942), 920-924.
A. N. Lowan, H. E. Salzer and A. Hillman, A table of coefficients for numerical differentiation, Bull. Amer. Math. Soc., 48 (1942), 920-924. [Annotated scanned copy]
Eric Weisstein's World of Mathematics, Triangle Point Picking
Eric Weisstein's World of Mathematics, Simplex Simplex Picking
FORMULA
G.f.: (-log(1-x))^2 (for fractions A002547(n)/A002548(n)).
A002547(n)/a(n) = 2*Stirling_1(n+2, 2)(-1)^n/(n+2)!.
EXAMPLE
0, 0, 1/12, 1/6, 43/180, 3/10, 197/560, 499/1260, 5471/12600, ...
MAPLE
seq(denom(Stirling1(j+2, 2)/(j+2)!*2!*(-1)^j), j=0..50);
MATHEMATICA
Table[Denominator[1 - 2*HarmonicNumber[n - 1]/n], {n, 2, 30}] (* Wesley Ivan Hurt, Mar 24 2014 *)
CROSSREFS
KEYWORD
nonn,frac,changed
EXTENSIONS
More terms, GF, formula, Maple code from Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 16 2007
STATUS
approved
Numerator of the n-th harmonic number H(n) divided by (n+1); a(n) = A001008(n) / ((n+1)*A002805(n)).
(Formerly M4765 N2036)
+0
6
1, 1, 11, 5, 137, 7, 363, 761, 7129, 671, 83711, 6617, 1145993, 1171733, 1195757, 143327, 42142223, 751279, 275295799, 55835135, 18858053, 830139, 444316699, 269564591, 34052522467, 34395742267, 312536252003, 10876020307, 9227046511387, 300151059037
OFFSET
1,3
COMMENTS
Numerators of coefficients for numerical differentiation.
REFERENCES
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).
A. N. Lowan, H. E. Salzer and A. Hillman, A table of coefficients for numerical differentiation, Bull. Amer. Math. Soc., 48 (1942), 920-924.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. F. Hasler, Table of n, a(n) for n = 1..2000 (first 700 terms from Alois P. Heinz)
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables) [Annotated scanned copy]
A. N. Lowan, H. E. Salzer and A. Hillman, A table of coefficients for numerical differentiation, Bull. Amer. Math. Soc., 48 (1942), 920-924. [Annotated scanned copy]
Eric Weisstein's World of Mathematics, Harmonic Number
FORMULA
G.f.: (-log(1-x))^2 (for fractions A002547(n)/A002548(n)). - Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
A002547(n)/A002548(n) = 2*Stirling_1(n+2, 2)(-1)^n/(n+2)! - Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
Numerator of u(n) = Sum_{k=1..n-1} 1/(k*(n-k)) (u(n) is asymptotic to 2*log(n)/n). - Benoit Cloitre, Apr 12 2003; corrected by Istvan Mezo, Oct 29 2012
a(n) = numerator of 2*Integral_{0..1} x^(n+1)*log(x/(1-x)) dx. - Groux Roland, May 18 2011
a(n) = numerator of A001008(n)/(n+1), since A001008(n)/A002805(n) are already in lowest terms. - M. F. Hasler, Jul 03 2019
EXAMPLE
H(n) = Sum_{k=1..n} 1/k, begins 1, 3/2, 11/6, 25/12, ... so H(n)/(n+1) begins 1/2, 1/2, 11/24, 5/12, ....
a(4) = numerator(H(4)/(4+1)) = 5.
MAPLE
H := proc(a, b) option remember; local m, p, q, r, s;
if b - a <= 1 then return 1, a fi; m := iquo(a + b, 2);
p, q := H(a, m); r, s := H(m, b); p*s + q*r, q*s; end:
A002547 := proc(n) H(1, n+1); numer(%[1]/(%[2]*(n+1))) end:
seq(A002547(n), n=1..30); # Peter Luschny, Jul 11 2019
MATHEMATICA
a[n_]:= Numerator[HarmonicNumber[n]/(n+1)])]; Table[a[n], {n, 35}] (* modified by G. C. Greubel, Jul 03 2019 *)
PROG
(PARI) h(n) = sum(k=1, n, 1/k);
vector(35, n, numerator(h(n)/(n+1))) \\ G. C. Greubel, Jul 03 2019
(PARI) A002547(n)=numerator(A001008(n)/(n+1)) \\ M. F. Hasler, Jul 03 2019
(Magma) [Numerator(HarmonicNumber(n)/(n+1)): n in [1..35]]; // G. C. Greubel, Jul 03 2019
(Sage) [numerator(harmonic_number(n)/(n+1)) for n in (1..35)] # G. C. Greubel, Jul 03 2019
(GAP) List([1..35], n-> NumeratorRat(Sum([1..n], k-> 1/k)/(n+1))) # G. C. Greubel, Jul 03 2019
CROSSREFS
KEYWORD
nonn,frac,changed
EXTENSIONS
More terms from Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
Simpler definition from Alexander Adamchuk, Oct 31 2004
Offset corrected by Gary Detlefs, Sep 08 2011
Definition corrected by M. F. Hasler, Jul 03 2019
STATUS
approved
Numerator of Sum_{i+j+k=n; i,j,k > 0} 1/(i*j*k).
(Formerly M2651 N1058)
+0
4
1, 3, 7, 15, 29, 469, 29531, 1303, 16103, 190553, 128977, 9061, 30946717, 39646461, 58433327, 344499373, 784809203, 169704792667, 665690574539, 5667696059, 337284946763, 7964656853269, 46951444927823, 284451446729, 1597747168263479, 816088653136373
OFFSET
3,2
COMMENTS
Numerators of coefficients for numerical differentiation.
a(n)/A002546(n) = 3*int(x^(n-1)*log^2(x/(1-x)),x=0..1)-(Pi^2)/n. - Groux Roland, Nov 13 2009
For prime p >= 5, a(p) == -2*Bernoulli(p-3) (mod p). (See Zhao link.) - Michel Marcus, Feb 05 2016
REFERENCES
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).
A. N. Lowan, H. E. Salzer and A. Hillman, A table of coefficients for numerical differentiation, Bull. Amer. Math. Soc., 48 (1942), 920-924.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables) [Annotated scanned copy]
A. N. Lowan, H. E. Salzer and A. Hillman, A table of coefficients for numerical differentiation, Bull. Amer. Math. Soc., 48 (1942), 920-924. [Annotated scanned copy]
Jianqiang Zhao, Bernoulli numbers, Wolstenholme's theorem, and p^5 variations of Lucas' theorem, Journal of Number Theory, Volume 123, Issue 1, March 2007, Pages 18-26. See Corollary 4.2 p. 25.
FORMULA
G.f.: (-log(1-x))^3 (for fractions A002545(n)/A002546(n)). - Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
A002545(n)/A002546(n) = 6*Stirling_1(n+3, 3)*(-1)^n/(n+3)!. - Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
MAPLE
seq(numer(-Stirling1(j, 3)/j!*3!*(-1)^j), j=3..50); # Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
MATHEMATICA
Table[Sum[1/i/j/(n-i-j), {i, n-2}, {j, n-i-1}], {n, 3, 100}] (* Ryan Propper *)
CROSSREFS
Cf. A002546.
KEYWORD
nonn,frac
EXTENSIONS
More terms from Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
STATUS
approved
Denominators of coefficients in Taylor series expansion of log(1+x)^2/sqrt(1+x).
(Formerly M2133 N0846)
+0
3
1, 1, 2, 24, 48, 5760, 11520, 35840, 215040, 51609600, 103219200, 13624934400, 5449973760, 1322526965760, 3606891724800, 158703235891200, 105802157260800, 14800210341396480, 29600420682792960, 3749386619820441600
OFFSET
1,3
COMMENTS
Old title: Denominators of coefficients for numerical differentiation.
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables). [Annotated scanned copy]
MATHEMATICA
Denominator[CoefficientList[Series[Log[1 + x]^2/Sqrt[1 + x]/x, {x, 0, 40}], x]] (* Vincenzo Librandi, Mar 25 2014 *)
CROSSREFS
Cf. A002551.
KEYWORD
nonn,frac
EXTENSIONS
More terms from Sean A. Irvine, Mar 24 2014
STATUS
approved
Denominators of coefficients for numerical differentiation.
(Formerly M5177 N2249)
+0
3
1, 24, 5760, 322560, 51609600, 13624934400, 19837904486400, 2116043145216, 20720294477955072, 15747423803245854720, 131978409017679544320, 72852081777759108464640, 151532330097738945606451200, 2828603495157793651320422400, 19687080326298243813190139904000
OFFSET
1,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables) [Annotated scanned copy]
T. R. Van Oppolzer, Lehrbuch zur Bahnbestimmung der Kometen und Planeten, Vol. 2, Engelmann, Leipzig, 1880, p. 23.
FORMULA
a(n) is the denominator of (-1)^(n-1)*Cn-1{1^2..(2n-1)^2}/((2n)!*2^(2n-3)), where Cn{1^2..(2n+1)^2} is equal to 1 when n=0, otherwise, it is the sum of the products of all possible combinations, of size n, of the numbers (2k+1)^2 with k=0,1,..,n. - Ruperto Corso, Dec 15 2011
a(n) = denominator(A001824(n-1)*(-1)^(n-1)/(2^(2*n-3)*(2*n)!)). - Sean A. Irvine, Mar 29 2014
MAPLE
with(combinat): a:=n->add(mul(k, k=j), j=choose([seq((2*i-1)^2, i=1..n)], n-1))*(-1)^(n-1)/(2^(2*n-3)*(2*n)!): seq(denom(a(n)), n=1..20); # Ruperto Corso, Dec 15 2011
CROSSREFS
KEYWORD
nonn,frac
EXTENSIONS
More terms from Ruperto Corso, Dec 15 2011
STATUS
approved
Denominator of Sum_{i+j+k=n; i,j,k > 0} 1/(i*j*k).
(Formerly M1110 N0424)
+0
2
1, 2, 4, 8, 15, 240, 15120, 672, 8400, 100800, 69300, 4950, 17199000, 22422400, 33633600, 201801600, 467812800, 102918816000, 410646075840, 3555377280, 215100325440, 5162407810560, 30920671782000, 190281057120, 1085315579548200, 562756226432400, 22969641895200
OFFSET
1,2
COMMENTS
Denominators of coefficients for numerical differentiation.
REFERENCES
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).
A. N. Lowan, H. E. Salzer and A. Hillman, A table of coefficients for numerical differentiation, Bull. Amer. Math. Soc., 48 (1942), 920-924.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables) [Annotated scanned copy]
A. N. Lowan, H. E. Salzer and A. Hillman, A table of coefficients for numerical differentiation, Bull. Amer. Math. Soc., 48 (1942), 920-924. [Annotated scanned copy]
FORMULA
G.f.: (-log(1-x))^3 (for fractions A002545(n)/A002546(n)). - Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
A002545(n)/A002546(n) = 6*Stirling_1(n+3, 3)(-1)^n/(n+3)!. - Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
MAPLE
seq(denom(-Stirling1(j, 3)/j!*3!*(-1)^j), j=3..50); # Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
MATHEMATICA
Denominator[Table[Sum[1/i/j/(n-i-j), {i, n-2}, {j, n-i-1}], {n, 3, 100}]] (* Ryan Propper *)
CROSSREFS
Cf. A002545.
KEYWORD
nonn,frac
EXTENSIONS
More terms from Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
STATUS
approved
Numerators of coefficients of log(1+x)/sqrt(1+x).
(Formerly M5128 N2223)
+0
2
1, 1, 23, 11, 563, 1627, 88069, 1423, 1593269, 7759469, 31730711, 46522243, 3788707301, 2888008157, 340028535787, 41743955887, 10823198495797, 2738032559863, 409741429887649, 25876414060339, 17141894231615609
OFFSET
1,3
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables) [Annotated scanned copy]
PROG
(PARI) x='x+O('x^66); abs(apply(t->numerator(t), Vec(log(1+x)/sqrt(1+x)))) \\ Joerg Arndt, Apr 18 2014
CROSSREFS
KEYWORD
nonn,frac
EXTENSIONS
More terms from Benoit Cloitre, Mar 29 2002
a(15) corrected by Sean A. Irvine, Mar 24 2014
a(18) corrected by Sean A. Irvine, Apr 17 2014
STATUS
approved

Search completed in 0.018 seconds