Displaying 1-8 of 8 results found.
page
1
1, 1, 12, 6, 180, 10, 560, 1260, 12600, 1260, 166320, 13860, 2522520, 2702700
Numerator of the n-th harmonic number H(n) divided by (n+1); a(n) = A001008(n) / ((n+1)* A002805(n)).
(Formerly M4765 N2036)
+10
6
1, 1, 11, 5, 137, 7, 363, 761, 7129, 671, 83711, 6617, 1145993, 1171733, 1195757, 143327, 42142223, 751279, 275295799, 55835135, 18858053, 830139, 444316699, 269564591, 34052522467, 34395742267, 312536252003, 10876020307, 9227046511387, 300151059037
COMMENTS
Numerators of coefficients for numerical differentiation.
REFERENCES
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).
A. N. Lowan, H. E. Salzer and A. Hillman, A table of coefficients for numerical differentiation, Bull. Amer. Math. Soc., 48 (1942), 920-924.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
G.f.: (-log(1-x))^2 (for fractions A002547(n)/ A002548(n)). - Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
A002547(n)/ A002548(n) = 2*Stirling_1(n+2, 2)(-1)^n/(n+2)! - Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
Numerator of u(n) = Sum_{k=1..n-1} 1/(k*(n-k)) (u(n) is asymptotic to 2*log(n)/n). - Benoit Cloitre, Apr 12 2003; corrected by Istvan Mezo, Oct 29 2012
a(n) = numerator of 2*Integral_{0..1} x^(n+1)*log(x/(1-x)) dx. - Groux Roland, May 18 2011
EXAMPLE
H(n) = Sum_{k=1..n} 1/k, begins 1, 3/2, 11/6, 25/12, ... so H(n)/(n+1) begins 1/2, 1/2, 11/24, 5/12, ....
a(4) = numerator(H(4)/(4+1)) = 5.
MAPLE
H := proc(a, b) option remember; local m, p, q, r, s;
if b - a <= 1 then return 1, a fi; m := iquo(a + b, 2);
p, q := H(a, m); r, s := H(m, b); p*s + q*r, q*s; end:
A002547 := proc(n) H(1, n+1); numer(%[1]/(%[2]*(n+1))) end:
MATHEMATICA
a[n_]:= Numerator[HarmonicNumber[n]/(n+1)])]; Table[a[n], {n, 35}] (* modified by G. C. Greubel, Jul 03 2019 *)
PROG
(PARI) h(n) = sum(k=1, n, 1/k);
vector(35, n, numerator(h(n)/(n+1))) \\ G. C. Greubel, Jul 03 2019
(Magma) [Numerator(HarmonicNumber(n)/(n+1)): n in [1..35]]; // G. C. Greubel, Jul 03 2019
(Sage) [numerator(harmonic_number(n)/(n+1)) for n in (1..35)] # G. C. Greubel, Jul 03 2019
(GAP) List([1..35], n-> NumeratorRat(Sum([1..n], k-> 1/k)/(n+1))) # G. C. Greubel, Jul 03 2019
EXTENSIONS
More terms from Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
Third column of Lucas bisection triangle (odd part).
+10
5
9, 120, 753, 3612, 15040, 57366, 206115, 709152, 2360943, 7659870, 24340184, 76031100, 234116493, 712166952, 2143779645, 6394719216, 18923041360, 55601888562, 162350117703, 471371537040, 1361642740059
COMMENTS
Numerator of g.f. is row polynomial Sum_{m=0..4} A061187(2,m)*x^m.
FORMULA
G.f.: (3-2*x)*(4*x^3-9*x^2+15*x+3)/(1-3*x+x^2)^3.
MATHEMATICA
CoefficientList[Series[(3-2*x)*(4*x^3-9*x^2+15*x+3)/(1-3*x+x^2)^3, {x, 0, 50}], x] (* or *) LinearRecurrence[{9, -30, 45, -30, 9, -1}, {9, 120, 753, 3612, 15040, 57366}, 30] (* G. C. Greubel, Dec 21 2017 *)
PROG
(PARI) x='x+O('x^30); Vec((3-2*x)*(4*x^3-9*x^2+15*x+3)/(1-3*x+x^2)^3) \\ G. C. Greubel, Dec 21 2017
(Magma) I:=[9, 120, 753, 3612, 15040, 57366]; [n le 6 select I[n] else 9*Self(n-1)-30*Self(n-2)+45*Self(n-3)-30*Self(n-4)+9*Self(n-5) - Self(n-6): n in [1..30]]; // G. C. Greubel, Dec 21 2017
a(n) = (n!)^3 * Sum_{k=1..n-1} 1/(k*(n-k))^3.
+10
5
0, 0, 8, 54, 1240, 70000, 7941968, 1589632128, 512918521344, 249820864339968, 174720109813751808, 168721560082538496000, 217977447876560510976000, 367117517435096337481728000, 788739873984137255456342016000, 2122296978948474538763602624512000
COMMENTS
In general, for m > 1, Sum_{k=1..n-1} 1/(k*(n-k))^m is asymptotic to 2*Zeta(m)/n^m.
FORMULA
Recurrence: n^2*(12*n^4 - 108*n^3 + 354*n^2 - 501*n + 260)*a(n) = 2*(n-1)^2*(24*n^7 - 306*n^6 + 1620*n^5 - 4599*n^4 + 7516*n^3 - 7015*n^2 + 3444*n - 696)*a(n-1) - 6*(n-2)^5*(12*n^7 - 162*n^6 + 906*n^5 - 2700*n^4 + 4583*n^3 - 4378*n^2 + 2163*n - 436)*a(n-2) + 2*(n-3)^5*(n-2)^3*(24*n^7 - 342*n^6 + 2004*n^5 - 6201*n^4 + 10816*n^3 - 10497*n^2 + 5208*n - 1048)*a(n-3) - (n-4)^6*(n-3)^5*(n-2)^3*(12*n^4 - 60*n^3 + 102*n^2 - 69*n + 17)*a(n-4).
a(n) / (n!)^3 ~ 2*Zeta(3)/n^3.
MAPLE
seq(factorial(n)^3*add(1/(k*(n-k))^3, k=1..n-1), n=0..20); # Muniru A Asiru, May 16 2018
MATHEMATICA
Table[n!^3*Sum[1/(k*(n-k))^3, {k, 1, n-1}], {n, 0, 20}]
CoefficientList[Series[PolyLog[3, x]^2, {x, 0, 20}], x] * Range[0, 20]!^3
PROG
(GAP) List([0..20], n->Factorial(n)^3*Sum([1..n-1], k->1/(k*(n-k))^3)); # Muniru A Asiru, May 16 2018
Denominator of Sum_{k=1..n-1} 1/(k*(n-k))^2.
+10
3
1, 1, 1, 2, 144, 72, 64800, 1800, 2822400, 3175200, 317520000, 635040, 11064936960, 15367968, 2545242860160, 14609174580000, 8310997094400, 259718659200, 24319016372851200, 75058692508800, 10838475198270720000, 2389883781218693760, 374701571140216320
EXAMPLE
0, 0, 1, 1/2, 41/144, 13/72, 8009/64800, 161/1800, 190513/2822400, ...
MATHEMATICA
CoefficientList[Series[PolyLog[2, x]^2, {x, 0, 25}], x]//Denominator
Table[Sum[1/(k*(n - k))^2, {k, 1, n - 1}], {n, 0, 25}]//Denominator
Fifth column of Lucas bisection triangle (odd part).
+10
2
15, 545, 7043, 57560, 365045, 1970905, 9520315, 42385132, 177293730, 705980760, 2701362950, 10001654350, 36020160943, 126701700755, 436709397085, 1478813477920, 4930328078835, 16212542696607
COMMENTS
Numerator of g.f. is row polynomial sum( A061187(4,m)*x^m,m=0..7).
FORMULA
G.f.: (3-2*x)*(16*x^6-56*x^5+181*x^4-306*x^3+171*x^2+110*x+5)/(1-3*x+x^2)^5.
Numerators of 1-2*HarmonicNumber(n)/(n+1).
+10
2
0, 0, 1, 1, 43, 3, 197, 499, 5471, 589, 82609, 7243, 1376527, 1530967, 1687123, 217033, 68127937, 1290761, 500679401, 107119657, 38046795, 1756445, 983477669, 622806889, 81955769933, 86074407533, 811851812797, 29280696293
COMMENTS
Expected area of the convex hull of n points picked at random inside a triangle with unit area.
EXAMPLE
0, 0, 1/12, 1/6, 43/180, 3/10, 197/560, 499/1260, 5471/12600, ...
MAPLE
h:= 1:
A[1]:= 0:
for n from 2 to 50 do
h:= h+1/n;
A[n]:= numer(1-2*h/(n+1));
od:
MATHEMATICA
Table[Numerator[1-2HarmonicNumber[n]/(n+1)], {n, 30}] (* Harvey P. Dale, Oct 10 2013 *)
PROG
(PARI) a(n) = numerator(1-2*sum(i=1, n, 1/i)/(n+1)) \\ Felix Fröhlich, Oct 17 2018
One half of sixth column of Lucas bisection triangle (odd part).
+10
1
9, 471, 8268, 85962, 662773, 4215123, 23440212, 118073914, 551281476, 2423731704, 10148667670, 40812739230, 158644493079, 599051383561, 2206150654944, 7949311477362, 28098758599203, 97645872621753
COMMENTS
Numerator of G.f. is one half of row polynomial sum( A061187(5,m)*x^m,m=0..8).
FORMULA
G.f.: (1+x)*(3-2*x)*(12*x^3-35*x^2+29*x+1)*(4*x^3-9*x^2+15*x+3)/(1-3*x+x^2)^6.
Search completed in 0.007 seconds
|