[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a002548 -id:a002548
     Sort: relevance | references | number | modified | created      Format: long | short | data
Duplicate of A002548.
+20
0
1, 1, 12, 6, 180, 10, 560, 1260, 12600, 1260, 166320, 13860, 2522520, 2702700
OFFSET
1,3
KEYWORD
dead
STATUS
approved
Numerator of the n-th harmonic number H(n) divided by (n+1); a(n) = A001008(n) / ((n+1)*A002805(n)).
(Formerly M4765 N2036)
+10
6
1, 1, 11, 5, 137, 7, 363, 761, 7129, 671, 83711, 6617, 1145993, 1171733, 1195757, 143327, 42142223, 751279, 275295799, 55835135, 18858053, 830139, 444316699, 269564591, 34052522467, 34395742267, 312536252003, 10876020307, 9227046511387, 300151059037
OFFSET
1,3
COMMENTS
Numerators of coefficients for numerical differentiation.
REFERENCES
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).
A. N. Lowan, H. E. Salzer and A. Hillman, A table of coefficients for numerical differentiation, Bull. Amer. Math. Soc., 48 (1942), 920-924.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. F. Hasler, Table of n, a(n) for n = 1..2000 (first 700 terms from Alois P. Heinz)
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables) [Annotated scanned copy]
A. N. Lowan, H. E. Salzer and A. Hillman, A table of coefficients for numerical differentiation, Bull. Amer. Math. Soc., 48 (1942), 920-924. [Annotated scanned copy]
Eric Weisstein's World of Mathematics, Harmonic Number
FORMULA
G.f.: (-log(1-x))^2 (for fractions A002547(n)/A002548(n)). - Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
A002547(n)/A002548(n) = 2*Stirling_1(n+2, 2)(-1)^n/(n+2)! - Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
Numerator of u(n) = Sum_{k=1..n-1} 1/(k*(n-k)) (u(n) is asymptotic to 2*log(n)/n). - Benoit Cloitre, Apr 12 2003; corrected by Istvan Mezo, Oct 29 2012
a(n) = numerator of 2*Integral_{0..1} x^(n+1)*log(x/(1-x)) dx. - Groux Roland, May 18 2011
a(n) = numerator of A001008(n)/(n+1), since A001008(n)/A002805(n) are already in lowest terms. - M. F. Hasler, Jul 03 2019
EXAMPLE
H(n) = Sum_{k=1..n} 1/k, begins 1, 3/2, 11/6, 25/12, ... so H(n)/(n+1) begins 1/2, 1/2, 11/24, 5/12, ....
a(4) = numerator(H(4)/(4+1)) = 5.
MAPLE
H := proc(a, b) option remember; local m, p, q, r, s;
if b - a <= 1 then return 1, a fi; m := iquo(a + b, 2);
p, q := H(a, m); r, s := H(m, b); p*s + q*r, q*s; end:
A002547 := proc(n) H(1, n+1); numer(%[1]/(%[2]*(n+1))) end:
seq(A002547(n), n=1..30); # Peter Luschny, Jul 11 2019
MATHEMATICA
a[n_]:= Numerator[HarmonicNumber[n]/(n+1)])]; Table[a[n], {n, 35}] (* modified by G. C. Greubel, Jul 03 2019 *)
PROG
(PARI) h(n) = sum(k=1, n, 1/k);
vector(35, n, numerator(h(n)/(n+1))) \\ G. C. Greubel, Jul 03 2019
(PARI) A002547(n)=numerator(A001008(n)/(n+1)) \\ M. F. Hasler, Jul 03 2019
(Magma) [Numerator(HarmonicNumber(n)/(n+1)): n in [1..35]]; // G. C. Greubel, Jul 03 2019
(Sage) [numerator(harmonic_number(n)/(n+1)) for n in (1..35)] # G. C. Greubel, Jul 03 2019
(GAP) List([1..35], n-> NumeratorRat(Sum([1..n], k-> 1/k)/(n+1))) # G. C. Greubel, Jul 03 2019
CROSSREFS
KEYWORD
nonn,frac,changed
EXTENSIONS
More terms from Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
Simpler definition from Alexander Adamchuk, Oct 31 2004
Offset corrected by Gary Detlefs, Sep 08 2011
Definition corrected by M. F. Hasler, Jul 03 2019
STATUS
approved
Third column of Lucas bisection triangle (odd part).
+10
5
9, 120, 753, 3612, 15040, 57366, 206115, 709152, 2360943, 7659870, 24340184, 76031100, 234116493, 712166952, 2143779645, 6394719216, 18923041360, 55601888562, 162350117703, 471371537040, 1361642740059
OFFSET
0,1
COMMENTS
Numerator of g.f. is row polynomial Sum_{m=0..4} A061187(2,m)*x^m.
FORMULA
a(n) = A060924(n+2, 2).
G.f.: (3-2*x)*(4*x^3-9*x^2+15*x+3)/(1-3*x+x^2)^3.
MATHEMATICA
CoefficientList[Series[(3-2*x)*(4*x^3-9*x^2+15*x+3)/(1-3*x+x^2)^3, {x, 0, 50}], x] (* or *) LinearRecurrence[{9, -30, 45, -30, 9, -1}, {9, 120, 753, 3612, 15040, 57366}, 30] (* G. C. Greubel, Dec 21 2017 *)
PROG
(PARI) x='x+O('x^30); Vec((3-2*x)*(4*x^3-9*x^2+15*x+3)/(1-3*x+x^2)^3) \\ G. C. Greubel, Dec 21 2017
(Magma) I:=[9, 120, 753, 3612, 15040, 57366]; [n le 6 select I[n] else 9*Self(n-1)-30*Self(n-2)+45*Self(n-3)-30*Self(n-4)+9*Self(n-5) - Self(n-6): n in [1..30]]; // G. C. Greubel, Dec 21 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Apr 20 2001
STATUS
approved
a(n) = (n!)^3 * Sum_{k=1..n-1} 1/(k*(n-k))^3.
+10
5
0, 0, 8, 54, 1240, 70000, 7941968, 1589632128, 512918521344, 249820864339968, 174720109813751808, 168721560082538496000, 217977447876560510976000, 367117517435096337481728000, 788739873984137255456342016000, 2122296978948474538763602624512000
OFFSET
0,3
COMMENTS
In general, for m > 1, Sum_{k=1..n-1} 1/(k*(n-k))^m is asymptotic to 2*Zeta(m)/n^m.
LINKS
Eric Weisstein's World of Mathematics, Polylogarithm.
FORMULA
Recurrence: n^2*(12*n^4 - 108*n^3 + 354*n^2 - 501*n + 260)*a(n) = 2*(n-1)^2*(24*n^7 - 306*n^6 + 1620*n^5 - 4599*n^4 + 7516*n^3 - 7015*n^2 + 3444*n - 696)*a(n-1) - 6*(n-2)^5*(12*n^7 - 162*n^6 + 906*n^5 - 2700*n^4 + 4583*n^3 - 4378*n^2 + 2163*n - 436)*a(n-2) + 2*(n-3)^5*(n-2)^3*(24*n^7 - 342*n^6 + 2004*n^5 - 6201*n^4 + 10816*n^3 - 10497*n^2 + 5208*n - 1048)*a(n-3) - (n-4)^6*(n-3)^5*(n-2)^3*(12*n^4 - 60*n^3 + 102*n^2 - 69*n + 17)*a(n-4).
a(n) / (n!)^3 ~ 2*Zeta(3)/n^3.
MAPLE
seq(factorial(n)^3*add(1/(k*(n-k))^3, k=1..n-1), n=0..20); # Muniru A Asiru, May 16 2018
MATHEMATICA
Table[n!^3*Sum[1/(k*(n-k))^3, {k, 1, n-1}], {n, 0, 20}]
CoefficientList[Series[PolyLog[3, x]^2, {x, 0, 20}], x] * Range[0, 20]!^3
PROG
(GAP) List([0..20], n->Factorial(n)^3*Sum([1..n-1], k->1/(k*(n-k))^3)); # Muniru A Asiru, May 16 2018
KEYWORD
nonn,changed
AUTHOR
Vaclav Kotesovec, May 15 2018
STATUS
approved
Denominator of Sum_{k=1..n-1} 1/(k*(n-k))^2.
+10
3
1, 1, 1, 2, 144, 72, 64800, 1800, 2822400, 3175200, 317520000, 635040, 11064936960, 15367968, 2545242860160, 14609174580000, 8310997094400, 259718659200, 24319016372851200, 75058692508800, 10838475198270720000, 2389883781218693760, 374701571140216320
OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Dilogarithm.
Eric Weisstein's World of Mathematics, Polylogarithm.
EXAMPLE
0, 0, 1, 1/2, 41/144, 13/72, 8009/64800, 161/1800, 190513/2822400, ...
MATHEMATICA
CoefficientList[Series[PolyLog[2, x]^2, {x, 0, 25}], x]//Denominator
Table[Sum[1/(k*(n - k))^2, {k, 1, n - 1}], {n, 0, 25}]//Denominator
CROSSREFS
KEYWORD
nonn,frac,changed
AUTHOR
Vaclav Kotesovec, May 15 2018
STATUS
approved
Fifth column of Lucas bisection triangle (odd part).
+10
2
15, 545, 7043, 57560, 365045, 1970905, 9520315, 42385132, 177293730, 705980760, 2701362950, 10001654350, 36020160943, 126701700755, 436709397085, 1478813477920, 4930328078835, 16212542696607
OFFSET
0,1
COMMENTS
Numerator of g.f. is row polynomial sum(A061187(4,m)*x^m,m=0..7).
FORMULA
a(n)=A060924(n+4, 4).
G.f.: (3-2*x)*(16*x^6-56*x^5+181*x^4-306*x^3+171*x^2+110*x+5)/(1-3*x+x^2)^5.
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Apr 20 2001
STATUS
approved
Numerators of 1-2*HarmonicNumber(n)/(n+1).
+10
2
0, 0, 1, 1, 43, 3, 197, 499, 5471, 589, 82609, 7243, 1376527, 1530967, 1687123, 217033, 68127937, 1290761, 500679401, 107119657, 38046795, 1756445, 983477669, 622806889, 81955769933, 86074407533, 811851812797, 29280696293
OFFSET
1,5
COMMENTS
Expected area of the convex hull of n points picked at random inside a triangle with unit area.
LINKS
Eric Weisstein's World of Mathematics, Triangle Point Picking
Eric Weisstein's World of Mathematics, Simplex Simplex Picking
EXAMPLE
0, 0, 1/12, 1/6, 43/180, 3/10, 197/560, 499/1260, 5471/12600, ...
MAPLE
h:= 1:
A[1]:= 0:
for n from 2 to 50 do
h:= h+1/n;
A[n]:= numer(1-2*h/(n+1));
od:
seq(A[i], i=1..50); # Robert Israel, Oct 17 2018
MATHEMATICA
Table[Numerator[1-2HarmonicNumber[n]/(n+1)], {n, 30}] (* Harvey P. Dale, Oct 10 2013 *)
PROG
(PARI) a(n) = numerator(1-2*sum(i=1, n, 1/i)/(n+1)) \\ Felix Fröhlich, Oct 17 2018
CROSSREFS
Cf. A002548.
KEYWORD
nonn,frac,changed
AUTHOR
Eric W. Weisstein, Apr 15 2004
STATUS
approved
One half of sixth column of Lucas bisection triangle (odd part).
+10
1
9, 471, 8268, 85962, 662773, 4215123, 23440212, 118073914, 551281476, 2423731704, 10148667670, 40812739230, 158644493079, 599051383561, 2206150654944, 7949311477362, 28098758599203, 97645872621753
OFFSET
0,1
COMMENTS
Numerator of G.f. is one half of row polynomial sum(A061187(5,m)*x^m,m=0..8).
FORMULA
a(n)= A060924(n+5, 5)/2.
G.f.: (1+x)*(3-2*x)*(12*x^3-35*x^2+29*x+1)*(4*x^3-9*x^2+15*x+3)/(1-3*x+x^2)^6.
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Apr 20 2001
STATUS
approved

Search completed in 0.007 seconds