[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a002544 -id:a002544
     Sort: relevance | references | number | modified | created      Format: long | short | data
T(n,k) = binomial(n,k)*binomial(n+k,k), 0 <= k <= n, triangle read by rows.
+10
64
1, 1, 2, 1, 6, 6, 1, 12, 30, 20, 1, 20, 90, 140, 70, 1, 30, 210, 560, 630, 252, 1, 42, 420, 1680, 3150, 2772, 924, 1, 56, 756, 4200, 11550, 16632, 12012, 3432, 1, 72, 1260, 9240, 34650, 72072, 84084, 51480, 12870, 1, 90, 1980, 18480, 90090, 252252, 420420, 411840, 218790, 48620
OFFSET
0,3
COMMENTS
T(n,k) is the number of compatible k-sets of cluster variables in Fomin and Zelevinsky's Cluster algebra of finite type B_n. Take a row of this triangle regarded as a polynomial in x and rewrite as a polynomial in y := x+1. The coefficients of the polynomial in y give a row of triangle A008459 (squares of binomial coefficients). For example, x^2+6*x+6 = y^2+4*y+1. - Paul Boddington, Mar 07 2003
T(n,k) is the number of lattice paths from (0,0) to (n,n) using steps E=(1,0), N=(0,1) and D=(1,1) (i.e., bilateral Schroeder paths), having k N=(0,1) steps. E.g. T(2,0)=1 because we have DD; T(2,1) = 6 because we have NED, NDE, EDN, END, DEN and DNE; T(2,2)=6 because we have NNEE, NENE, NEEN, EENN, ENEN and ENNE. - Emeric Deutsch, Apr 20 2004
Another version of [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] DELTA [0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...] = 1; 1, 0; 1, 2, 0; 1, 6, 6, 0; 1, 12, 30, 20, 0; ..., where DELTA is the operator defined in A084938. - Philippe Deléham Apr 15 2005
Terms in row n are the coefficients of the Legendre polynomial P(n,2x+1) with increasing powers of x.
From Peter Bala, Oct 28 2008: (Start)
Row n of this triangle is the f-vector of the simplicial complex dual to an associahedron of type B_n (a cyclohedron) [Fomin & Reading, p.60]. See A008459 for the corresponding h-vectors for associahedra of type B_n and A001263 and A033282 respectively for the h-vectors and f-vectors for associahedra of type A_n.
An alternative description of this triangle in terms of f-vectors is as follows. Let A_n be the root lattice generated as a monoid by {e_i - e_j: 0 <= i,j <= n+1}. Let P(A_n) be the polytope formed by the convex hull of this generating set. Then the rows of this array are the f-vectors of a unimodular triangulation of P(A_n) [Ardila et al.]. A008459 is the corresponding array of h-vectors for these type A_n polytopes. See A127674 (without the signs) for the array of f-vectors for type C_n polytopes and A108556 for the array of f-vectors associated with type D_n polytopes.
The S-transform on the ring of polynomials is the linear transformation of polynomials that is defined on the basis monomials x^k by S(x^k) = binomial(x,k) = x(x-1)...(x-k+1)/k!. Let P_n(x) denote the S-transform of the n-th row polynomial of this array. In the notation of [Hetyei] these are the Stirling polynomials of the type B associahedra. The first few values are P_1(x) = 2*x + 1, P_2(x) = 3*x^2 + 3*x + 1 and P_3(x) = (10*x^3 + 15*x^2 + 11*x + 3)/3. These polynomials have their zeros on the vertical line Re x = -1/2 in the complex plane, that is, the polynomials P_n(-x) satisfy a Riemann hypothesis. See A142995 for further details. The sequence of values P_n(k) for k = 0,1,2,3, ... produces the n-th row of A108625. (End)
This is the row reversed version of triangle A104684. - Wolfdieter Lang, Sep 12 2016
T(n, k) is also the number of (n-k)-dimensional faces of a convex n-dimensional Lipschitz polytope of real functions f defined on the set X = {1, 2, ..., n+1} which satisfy the condition f(n+1) = 0 (see Gordon and Petrov). - Stefano Spezia, Sep 25 2021
The rows seem to give (up to sign) the coefficients in the expansion of the integer-valued polynomial ((x+1)*(x+2)*(x+3)*...*(x+n) / n!)^2 in the basis made of the binomial(x+i,i). - F. Chapoton, Oct 09 2022
Chapoton's observation above is correct: the precise expansion is ((x+1)*(x+2)*(x+3)*...*(x+n)/ n!)^2 = Sum_{k = 0..n} (-1)^k*T(n,n-k)*binomial(x+2*n-k, 2*n-k), as can be verified using the WZ algorithm. For example, n = 3 gives ((x+1)*(x+2)*(x+3)/3!)^2 = 20*binomial(x+6,6) - 30*binomial(x+5,5) + 12*binomial(x+4,4) - binomial(x+3,3). - Peter Bala, Jun 24 2023
REFERENCES
J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 366.
J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, Table I, p. 92.
D. Zagier, Integral solutions of Apery-like recurrence equations, in: Groups and Symmetries: from Neolithic Scots to John McKay, CRM Proc. Lecture Notes 47, Amer. Math. Soc., Providence, RI, 2009, pp. 349-366.
LINKS
F. Ardila, M. Beck, S. Hosten, J. Pfeifle and K. Seashore, Root polytopes and growth series of root lattices, arXiv:0809.5123 [math.CO], 2008.
Cyril Banderier, Combinatoire analytique des chemins et des cartes, Thesis (2001), page 49.
David Callan, A bijection for Delannoy paths, arXiv:2202.04649 [math.CO], 2022.
F. Chapoton, Enumerative properties of generalized associahedra, Séminaire Lotharingien de Combinatoire, B51b (2004), 16 pp.
Johann Cigler, Some remarks and conjectures related to lattice paths in strips along the x-axis, arXiv:1501.04750 [math.CO], 2015-2016.
Mark Dukes and Chris D. White, Web Matrices: Structural Properties and Generating Combinatorial Identities, arXiv:1603.01589 [math.CO], 2016.
Mark Dukes and Chris D. White, Web Matrices: Structural Properties and Generating Combinatorial Identities, Electronic Journal Of Combinatorics, 23(1) (2016), #P1.45.
S. Fomin and N. Reading, Root systems and generalized associahedra, Lecture notes for IAS/Park-City 2004; arXiv:math/0505518 [math.CO], 2005-2008.
S. Fomin and A. Zelevinsky, Cluster algebras I: Foundations, J. Amer. Math. Soc. 15(2) (2002), 497-529.
S. Fomin and A. Zelevinsky, Y-systems and generalized associahedra, Ann. of Math. (2) 158 (2003), no. 3, 977-1018.
J. Gordon and F. Petrov, Combinatorics of the Lipschitz Polytope, Arnold Mathematical Journal (2016).
G. Hetyei, Face enumeration using generalized binomial coefficients. This is the draft version of Hetyei's paper referenced below. [Archived version]
Gabor Hetyei, The Stirling polynomial of a simplicial complex Discrete and Computational Geometry 35(3) (2006), 437-455.
Hsien-Kuei Hwang and Satoshi Kuriki, Integrated empirical measures and generalizations of classical goodness-of-fit statistics, arXiv:2404.06040 [math.ST], 2024. See p. 11.
C. Lanczos, Applied Analysis (Annotated scans of selected pages). See page 514.
T. Manneville and V. Pilaud, Compatibility fans for graphical nested complexes, arXiv preprint arXiv:1501.07152 [math.CO], 2015.
Thomas Selig, Combinatorial aspects of sandpile models on wheel and fan graphs, arXiv:2202.06487 [math.CO], 2022.
J. Ser, Les Calculs Formels des Séries de Factorielles, Gauthier-Villars, Paris, 1933 [Local copy].
J. Ser, Les Calculs Formels des Séries de Factorielles (Annotated scans of some selected pages) See Table I, page 92.
V. Strehl, Recurrences and Legendre transform, Séminaire Lotharingien de Combinatoire, B29b (1992), 22 pp.
R. A. Sulanke, Objects counted by the central Delannoy numbers., J. Integer Seq. 6 (2003), no. 1, Article 03.1.5.
FORMULA
T(n, k) = (n+k)!/(k!^2*(n-k)!) = T(n-1, k)*(n+k)/(n-k) = T(n, k-1)*(n+k)*(n-k+1)/k^2 = T(n-1, k-1)*(n+k)*(n+k-1)/k^2.
binomial(x, n)^2 = Sum_{k>=0} T(n,k) * binomial(x, n+k). - Michael Somos, May 11 2012
T(n, k) = A109983(n, k+n). - Michael Somos, Sep 22 2013
G.f.: G(t, z) = 1/sqrt(1-2*z-4*t*z+z^2). Row generating polynomials = P_n(1+2z), i.e., T(n, k) = [z^k] P_n(1+2*z), where P_n are the Legendre polynomials. - Emeric Deutsch, Apr 20 2004
Sum_{k>=0} T(n, k)*A000172(k) = Sum_{k>=0} T(n, k)^2 = A005259(n). - Philippe Deléham, Jun 08 2005
1 + z*d/dz(log(G(t,z)) = 1 + (1 + 2*t)*z + (1 + 8*t + 8*t^2)*z^2 + ... is the o.g.f. for a signed version of A127674. - Peter Bala, Sep 02 2015
If R(n,t) denotes the n-th row polynomial then x^3 * exp( Sum_{n >= 1} R(n,t)*x^n/n ) = x^3 + (1 + 2*t)*x^4 + (1 + 5*t + 5*t^2)*x^5 + (1 + 9*t + 21*t^2 + 14*t^3)*x^6 + ... is an o.g.f for A033282. - Peter Bala, Oct 19 2015
P(n,x) := 1/(1 + x)*Integral_{t = 0..x} R(n,t) dt are (modulo differences of offset) the row polynomials of A033282. - Peter Bala, Jun 23 2016
From Peter Bala, Mar 09 2018: (Start)
R(n,x) = Sum_{k = 0..n} binomial(2*k,k)*binomial(n+k,n-k)*x^k.
R(n,x) = Sum_{k = 0..n} binomial(n,k)^2*x^k*(1 + x)^(n-k).
n*R(n,x) = (1 + 2*x)*(2*n - 1)*R(n-1,x) - (n - 1)*R(n-2,x).
R(n,x) = (-1)^n*R(n,-1 - x).
R(n,x) = 1/n! * (d/dx)^n ((x^2 + x)^n). (End)
The row polynomials are R(n,x) = hypergeom([-n, n + 1], [1], -x). - Peter Luschny, Mar 09 2018
T(n,k) = C(n+1,k)*A009766(n,k). - Bob Selcoe, Jan 18 2020 (Connects this triangle with the Catalan triangle. - N. J. A. Sloane, Jan 18 2020)
If we let A(n,k) = (-1)^(n+k)*(2*k+1)*(n*(n-1)*...*(n-(k-1)))/((n+1)*...*(n+(k+1))) for n >= 0 and k = 0..n, and we consider both T(n,k) and A(n,k) as infinite lower triangular arrays, then they are inverses of one another. (Empty products are by definition 1.) See the example below. The rational numbers |A(n,k)| appear in Table II on p. 92 in Ser's (1933) book. - Petros Hadjicostas, Jul 11 2020
From Peter Bala, Nov 28 2021: (Start)
Row polynomial R(n,x) = Sum_{k >= n} binomial(k,n)^2 * x^(k-n)/(1+x)^(k+1) for x > -1/2.
R(n,x) = 1/(1 + x)^(n+1) * hypergeom([n+1, n+1], [1], x/(1 + x)).
R(n,x) = (1 + x)^n * hypergeom([-n, -n], [1], x/(1 + x)).
R(n,x) = hypergeom([(n+1)/2, -n/2], [1], -4*x*(1 + x)).
If we set R(-1,x) = 1, we can run the recurrence n*R(n,x) = (1 + 2*x)*(2*n - 1)*R(n-1,x) - (n - 1)*R(n-2,x) backwards to give R(-n,x) = R(n-1,x).
R(n,x) = [t^n] ( (1 + t)*(1 + x*(1 + t)) )^n. (End)
n*T(n,k) = (2*n-1)*T(n-1,k) + (4*n-2)*T(n-1,k-1) - (n-1)*T(n-2,k). - Fabián Pereyra, Jun 30 2022
From Peter Bala, Oct 07 2024: (Start)
n-th row polynomial R(n,x) = Sum_{k = 0..n} binomial(n, k) * x^k o (1 + x)^(n-k), where o denotes the black diamond product of power series as defined by Dukes and White (see Bala, Section 4.4, exercise 3).
Denote this triangle by T. Then T * transpose(T) = A143007, the square array of crystal ball sequences for the A_n X A_n lattices.
Let S denote the triangle ((-1)^(n+k)*T(n, k))n,k >= 0, a signed version of this triangle. Then S^(-1) * T = A007318, Pascal's triangle; it appears that T * S^(-1) = A110098.
T = A007318 * A115951. (End)
EXAMPLE
The triangle T(n, k) starts:
n\k 0 1 2 3 4 5 6 7
0: 1
1: 1 2
2: 1 6 6
3: 1 12 30 20
4: 1 20 90 140 70
5: 1 30 210 560 630 252
6: 1 42 420 1680 3150 2772 924
7: 1 56 756 4200 11550 16632 12012 3432
row n = 8: 1 72 1260 9240 34650 72072 84084 51480 12870,
row n = 9: 1 90 1980 18480 90090 252252 420420 411840 218790 48620,
row n = 10: 1 110 2970 34320 210210 756756 1681680 2333760 1969110 923780 184756.
... reformatted by Wolfdieter Lang, Sep 12 2016
From Petros Hadjicostas, Jul 11 2020: (Start)
Its inverse (from Table II, p. 92, in Ser's book) is
1;
-1/2, 1/2;
1/3, -1/2, 1/6;
-1/4, 9/20, -1/4, 1/20;
1/5, -2/5, 2/7, -1/10, 1/70;
-1/6, 5/14, -25/84, 5/36, -1/28, 1/252;
1/7, -9/28, 25/84, -1/6, 9/154, -1/84, 1/924;
... (End)
MAPLE
p := (n, x) -> orthopoly[P](n, 1+2*x): seq(seq(coeff(p(n, x), x, k), k=0..n), n=0..9);
MATHEMATICA
Flatten[Table[Binomial[n, k]Binomial[n + k, k], {n, 0, 10}, {k, 0, n}]] (* Harvey P. Dale, Dec 24 2011 *)
Table[CoefficientList[Hypergeometric2F1[-n, n + 1, 1, -x], x], {n, 0, 9}] // Flatten
(* Peter Luschny, Mar 09 2018 *)
PROG
(PARI) {T(n, k) = local(t); if( n<0, 0, t = (x + x^2)^n; for( k=1, n, t=t'); polcoeff(t, k) / n!)} /* Michael Somos, Dec 19 2002 */
(PARI) {T(n, k) = binomial(n, k) * binomial(n+k, k)} /* Michael Somos, Sep 22 2013 */
(PARI) {T(n, k) = if( k<0 || k>n, 0, (n+k)! / (k!^2 * (n-k)!))} /* Michael Somos, Sep 22 2013 */
(Haskell)
a063007 n k = a063007_tabl !! n !! k
a063007_row n = a063007_tabl !! n
a063007_tabl = zipWith (zipWith (*)) a007318_tabl a046899_tabl
-- Reinhard Zumkeller, Nov 18 2014
(Magma) /* As triangle: */ [[Binomial(n, k)*Binomial(n+k, k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 03 2015
CROSSREFS
See A331430 for an essentially identical triangle, except with signed entries.
Columns include A000012, A002378, A033487 on the left and A000984, A002457, A002544 on the right.
Main diagonal is A006480.
Row sums are A001850. Alternating row sums are A033999.
Cf. A033282 (f-vectors type A associahedra), A108625, A080721 (f-vectors type D associahedra).
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
KEYWORD
nonn,tabl,nice,easy
AUTHOR
Henry Bottomley, Jul 02 2001
STATUS
approved
a(n) = (2n)!/2.
(Formerly M4879 N2092)
+10
30
1, 12, 360, 20160, 1814400, 239500800, 43589145600, 10461394944000, 3201186852864000, 1216451004088320000, 562000363888803840000, 310224200866619719680000, 201645730563302817792000000, 152444172305856930250752000000, 132626429906095529318154240000000
OFFSET
1,2
COMMENTS
Right side of the binomial sum n-> sum( (-1)^i * (n-i)^(2*n) * binomial(2*n, i), i=0..n). - Yong Kong (ykong(AT)curagen.com), Dec 28 2000
a(n) is the number of ways to display n distinct flags on n distinct poles and then linearly order all (including any empty) poles. - Geoffrey Critzer, Dec 16 2009
Product of the partition parts of 2n into exactly two parts. - Wesley Ivan Hurt, Jun 03 2013
Let f(x) be a polynomial in x. The expansion (2*sinh(x/2))^2 = x^2 + (1/12)*x^4 + (1/360)*x^6 + ... leads to the second central difference formula f(x+1) - 2*f(x) + f(x-1) = (2*sinh(D/2))^2(f(x)) = D^2(f(x)) + (1/12)*D^4(f(x)) + (1/360)* D^6(f(x)) + ..., where D denotes the differential operator d/dx. - Peter Bala, Oct 03 2019
REFERENCES
A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.2.33)
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Ronald P. Nordgren, Compound Lucas Magic Squares, arXiv:2103.04774 [math.GM], 2021. See Table 2 p. 12.
H. E. Salzer, Tables of coefficients for obtaining central differences from the derivatives, Journal of Mathematics and Physics (this journal is also called Studies in Applied Mathematics), 42 (1963), 162-165, plus several inserted tables.
Eric Weisstein's World of Mathematics, Central Difference.
FORMULA
4*sinh(x/2)^2 = Sum_{k>=1} x^(2k)/a(k). - Benoit Cloitre, Dec 08 2002
E.g.f.: (hypergeom([1/2, 1], [], 4*x)-1)/2 (cf. A090438).
a(n) = n*(2n-1)!. - Geoffrey Critzer, Dec 16 2009
a(n) = A010050(n)/2. - Wesley Ivan Hurt, Aug 22 2013
a(n) = Product_{k=0..n-1} (n^2 - k^2). - Stanislav Sykora, Jul 14 2014
Series reversion ( Sum_{n >= 1} x^n/a(n) ) = Sum_{n >= 1} (-1)^n*x^n/b(n-1), where b(n) = A002544(n). - Peter Bala, Apr 18 2017
From Amiram Eldar, Jul 09 2020: (Start)
Sum_{n>=1} 1/a(n) = 2*(cosh(1) - 1).
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(1 - cos(1)). (End)
EXAMPLE
a(3) = 360, since 2(3) = 6 has exactly 3 partitions into two parts: (5,1), (4,2), (3,3). Multiplying all the parts in the partitions, we get 5! * 3 = 360. - Wesley Ivan Hurt, Jun 03 2013
MAPLE
seq((2*k)!/2, k=1..20); # Wesley Ivan Hurt, Aug 22 2013
MATHEMATICA
Table[n! Pochhammer[n, n], {n, 0, 10}] (* Geoffrey Critzer, Dec 16 2009 *)
Table[(2 n)! / 2, {n, 1, 15}] (* Vincenzo Librandi, Aug 23 2013 *)
PROG
(Magma) [n*Factorial(2*n-1): n in [1..15]]; // Vincenzo Librandi, Aug 23 2013
(PARI) a(n) = (2*n)!/2; \\ Indranil Ghosh, Apr 18 2017
CROSSREFS
a(n) = A090438(n, 2), n >= 1 (first column of (4, 2)-Stirling2 array).
KEYWORD
nonn,easy,changed
STATUS
approved
a(n) = (2n+2)!/(n!*2^(n+1)).
(Formerly M4251 N1775)
+10
21
1, 6, 45, 420, 4725, 62370, 945945, 16216200, 310134825, 6547290750, 151242416325, 3794809718700, 102776096548125, 2988412653476250, 92854250304440625, 3070380543400170000, 107655217802968460625, 3989575718580595893750, 155815096120119939628125
OFFSET
0,2
COMMENTS
From Wolfdieter Lang, Oct 06 2008: (Start)
a(n) is the denominator of the n-th approximant to the continued fraction 1^2/(6+3^2/(6+5^2/(6+... for Pi-3. W. Lang, Oct 06 2008, after an e-mail from R. Rosenthal. Cf. A142970 for the corresponding numerators.
The e.g.f. g(x)=(1+x)/(1-2*x)^(5/2) satisfies (1-4*x^2)*g''(x) - 2*(8*x+3)*g'(x) -9*g(x) = 0 (from the three term recurrence given below). Also g(x)=hypergeom([2,3/2],[1],2*x). (End)
Number of descents in all fixed-point-free involutions of {1,2,...,2(n+1)}. A descent of a permutation p is a position i such that p(i) > p(i+1). Example: a(1)=6 because the fixed-point-free involutions 2143, 3412, and 4321 have 2, 1, and 3 descents, respectively. - Emeric Deutsch, Jun 05 2009
First differences of A193651. - Vladimir Reshetnikov, Apr 25 2016
a(n-2) is the number of maximal elements in the absolute order of the Coxeter group of type D_n. - Jose Bastidas, Nov 01 2021
REFERENCES
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77 (Problem 10, values of Bessel polynomials).
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Reinis Cirpons, James East, and James D. Mitchell, Transformation representations of diagram monoids, arXiv:2411.14693 [math.RA], 2024. See pp. 3, 33.
Selden Crary, Richard Diehl Martinez and Michael Saunders, The Nu Class of Low-Degree-Truncated Rational Multifunctions. Ib. Integrals of Matern-correlation functions for all odd-half-integer class parameters, arXiv:1707.00705 [stat.ME], 2017, Table 1.
Alexander Kreinin, Integer Sequences and Laplace Continued Fraction, Preprint 2016.
FORMULA
E.g.f.: (1+x)/(1-2*x)^(5/2).
a(n)*n = a(n-1)*(2n+1)*(n+1); a(n) = a(n-1)*(2n+4)-a(n-2)*(2n-1), if n>0. - Michael Somos, Feb 25 2004
From Wolfdieter Lang, Oct 06 2008: (Start)
a(n) = (n+1)*(2*n+1)!! with the double factorials (2*n+1)!!=A001147(n+1).
D-finite with recurrence a(n) = 6*a(n-1) + ((2*n-1)^2)*a(n-2), a(-1)=0, a(0)=1. (End)
With interpolated 0's, e.g.f.: B(A(x)) where B(x)= x exp(x) and A(x)=x^2/2.
G.f.: - G(0)/2 where G(k) = 1 - (2*k+3)/(1 - x/(x - (k+1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 06 2012
G.f.: (1-x)/(2*x^2*Q(0)) - 1/(2*x^2), where Q(k)= 1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 20 2013
From Karol A. Penson, Jul 12 2013: (Start)
Integral representation as n-th moment of a signed function w(x) of bounded variation on (0,infinity),
w(x) = -(1/4)*sqrt(2)*sqrt(x)*(1-x)*exp(-x/2)/sqrt(Pi):
a(n) = Integral_{x>=0} x^n*w(x), n>=0.
For x>1, w(x)>0. w(0)=w(1)=limit(w(x),x=infinity)=0. For x<1, w(x)<0.
Asymptotics: a(n)->(1/576)*2^(1/2+n)*(1152*n^2+1680*n+505)*exp(-n)*(n)^(n), for n->infinity. (End)
G.f.: 2F0(3/2,2;;2x). - R. J. Mathar, Aug 08 2015
MAPLE
restart: G(x):=(1-x)/(1-2*x)^(1/2): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1], x) od:x:=0:seq(f[n], n=2..20); # Zerinvary Lajos, Apr 04 2009
MATHEMATICA
Table[(2n+2)!/(n!2^(n+1)), {n, 0, 20}] (* Vincenzo Librandi, Nov 22 2011 *)
PROG
(PARI) a(n)=if(n<0, 0, (2*n+2)!/n!/2^(n+1))
(Magma) [Factorial(2*n+2)/(Factorial(n)*2^(n+1)): n in [0..20]]; // Vincenzo Librandi, Nov 22 2011
CROSSREFS
Second column of triangle A001497. Equals (A001147(n+1)-A001147(n))/2.
Equals row sums of A163938.
KEYWORD
nonn,easy
EXTENSIONS
Entry revised Aug 31 2004 (thanks to Ralf Stephan and Michael Somos)
E.g.f. in comment line corrected by Wolfdieter Lang, Nov 21 2011
STATUS
approved
Decimal expansion of Pi^2/4.
+10
20
2, 4, 6, 7, 4, 0, 1, 1, 0, 0, 2, 7, 2, 3, 3, 9, 6, 5, 4, 7, 0, 8, 6, 2, 2, 7, 4, 9, 9, 6, 9, 0, 3, 7, 7, 8, 3, 8, 2, 8, 4, 2, 4, 8, 5, 1, 8, 1, 0, 1, 9, 7, 6, 5, 6, 6, 0, 3, 3, 3, 7, 3, 4, 4, 0, 5, 5, 0, 1, 1, 2, 0, 5, 6, 0, 4, 8, 0, 1, 3, 1, 0, 7, 5, 0, 4, 4, 3, 3, 5, 0, 9, 2, 9, 6, 3, 8, 0, 5, 7, 9, 5
OFFSET
1,1
LINKS
Ben Hambrecht and Grant Sanderson, The stunning geometry behind this surprising equation, 3Blue1Brown video (2018).
Josef Hofbauer, A simple proof of 1 + 1/2^2 + 1/3^2 + ... = Pi^2/6 and related identities, The American Mathematical Monthly 109:2 (2002), pp. 196-200.
Michael Penn, Neat ways to solve complicated limits., YouTube video, 2023.
Eric Weisstein's World of Mathematics, Definite Integral
H. Wilf, Accelerated  series for universal constants, by the WZ method, Discrete Mathematics and Theoretical Computer Science 3(4) (1999), 189-192.
FORMULA
Equals Integral_{x=0..Pi} x*sin(x)/(1+cos(x)^2) dx.
Equals Integral_{x=0..1} log((1+x)/(1-x))/x dx. - Jean-François Alcover, May 13 2013
Equals Integral_{x=0..oo} K_0(x)^2 dx, where K_0 is a modified Bessel function (see Gradstein-Ryshik 6.576.4). - R. J. Mathar, Oct 09 2015
Equals A003881 * A000796. - R. J. Mathar, Oct 09 2015
Equals ... + (-5)^-2 + (-3)^-2 + (-1)^-2 + 1^-2 + 3^-2 + 5^-2 + .... - Charles R Greathouse IV, Mar 02 2018
From A.H.M. Smeets, Sep 18 2018: (Start)
Equals A102753/2.
Equals 2*Sum_{k > 0} 1/(2*k - 1)^2. (End)
Pi^2/4 = Integral_{x = 0..oo} x/sinh(x) dx. More generally, Pi^2/4 = 2*(1 + 1/3^2 + ... + 1/(2*n-1)^2) + Integral_{x = 0..oo} exp(-2*n*x)*x/sinh(x). - Peter Bala, Nov 05 2019
Equals Integral_{x=0..oo} log(x)/(x^2 - 1) dx. - Amiram Eldar, Aug 12 2020
Equals Sum_{n >= 0} 2^(n+1)/((n+1)^2*binomial(2*n+1,n)). See my entry in A002544 dated Apr 18 2017. Cf. A253191. - Peter Bala, Jan 30 2023
From Peter Bala, Nov 16 2023: (Start)
Pi^2/4 = 16*Sum_{k >= 1} k^2/(4*k^2 - 1)^2 = (2*16^2)*Sum_{k >= 1} k^2/((4*k^2 - 1)*(4*k^2 - 9))^2.
The general result, which can be proved using the WZ method (see Wilf for examples of this method), is that for n >= 0 there holds
Pi^2/4 = 16^(n+1)*(2*n + 1)*(2*n)!^4/(4*n)! * Sum_{k >= 1} k^2/( (4*k^2 - 1)*(4*k^2 - 9)*...*(4*k^2 - (2*n+1)^2) )^2. (End)
Equals Re(Polylog(2, 2)). - Mohammed Yaseen, Jul 03 2024
EXAMPLE
2.46740110027233965470862274996903778...
MAPLE
evalf(Pi^2/4, 120); # Muniru A Asiru, Sep 18 2018
MATHEMATICA
First[RealDigits[Pi^2/4, 10, 100]] (* Paolo Xausa, Oct 31 2023 *)
PROG
(PARI) Pi^2/4 \\ Charles R Greathouse IV, Mar 02 2018
(PARI) 2*sumpos(n=1, (2*n-1)^-2) \\ Charles R Greathouse IV, Mar 02 2018
CROSSREFS
KEYWORD
nonn,cons,changed
AUTHOR
Eric W. Weisstein, Jan 13 2004
STATUS
approved
Triangle read by rows giving number of partitions of k (k=0 .. n^2) with Ferrers plot fitting in an n X n box.
+10
12
1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 3, 3, 3, 2, 1, 1, 1, 1, 2, 3, 5, 5, 7, 7, 8, 7, 7, 5, 5, 3, 2, 1, 1, 1, 1, 2, 3, 5, 7, 9, 11, 14, 16, 18, 19, 20, 20, 19, 18, 16, 14, 11, 9, 7, 5, 3, 2, 1, 1, 1, 1, 2, 3, 5, 7, 11, 13, 18, 22, 28, 32, 39, 42, 48, 51, 55, 55, 58, 55, 55, 51, 48, 42, 39, 32, 28
OFFSET
0,6
COMMENTS
Seems to approximate a Gaussian distribution, the sum of all 1+n^2 terms in a row equals the central binomial coefficients.
a(n,k) is the number of sequences of n 0's and n 1's having major index equal to k (the major index is the sum of the positions of the 1's that are immediately followed by 0's). Equivalently, a(n,k) is the number of Grand Dyck paths of length 2n for which the sum of the positions of the valleys is k. Example: a(3,7)=2 because the only sequences of three 0's and three 1's with major index 7 are 010110 and 110010. The corresponding Grand Dyck paths are obtained by replacing a 0 by a U=(1,1) step and a 1 by a D=(1,-1) step. - Emeric Deutsch, Oct 02 2007
Also, number of n-multisets in [0..n] whose elements sum up to n. - M. F. Hasler, Apr 12 2012
Let P be the poset [n] X [n] ordered by the product order. Let J(P) be the set of all order ideals of P, ordered by inclusion. Then J(P) is a finite sublattice of Young's lattice and T(n,k) is the number of elements in J(P) that have rank k. - Geoffrey Critzer, Mar 26 2020
REFERENCES
G. E. Andrews and K. Eriksson, Integer partitions, Cambridge Univ. Press, 2004, pp. 67-69.
D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; exercise 3.2.3.
A. V. Yurkin, New binomial and new view on light theory, (book), 2013, 78 pages, no publisher listed.
LINKS
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009, page 45.
A. V. Yurkin, On similarity of systems of geometrical and arithmetic triangles, in Mathematics, Computing, Education Conference XIX, 2012.
A. V. Yurkin, New view on the diffraction discovered by Grimaldi and Gaussian beams, arXiv preprint arXiv:1302.6287 [physics.optics], 2013.
FORMULA
Table[T[k, n, n], {n, 0, 9}, {k, 0, n^2}] with T[ ] defined as in A047993.
G.f.: Consider a function; f(n) = 1 + sum(i_1=1, n, sum(i_2=0, i_1, ..., sum(i_n=0, i_(n-1), x^(sum(j=1, n, i_j))*(1+...+x^i_n))...)) Then the GF is f(1)+x^3.f(2)+x^8.f(3)+..., where after x^3 the increase is n^2+1 from f(n). - Jon Perry, Jul 13 2004
G.f. for n-th row is obtained if we set x(i) = 1+x^i+x^(2*i)+...+x^(n*i), i=1, 2, ..., n, in the cycle index Z(S(n);x(1), x(2), ..., x(n)) of the symmetric group S(n) of degree n. - Vladeta Jovovic, Dec 17 2004
G.f. of row n: the q-binomial coefficient [2n,n]. - Emeric Deutsch, Apr 23 2007
T(n,k)=1 for k=0,1,n^2-1,n^2. For all m>n, T(m,n)=T(n,n)=A000041(n), i.e., below the diagonal the columns remain constant, because there cannot be more than n nonzero elements with sum <= n. - M. F. Hasler, Apr 12 2012
T(n,2n) = A128552(n-2). - Geoffrey Critzer, Sep 27 2013
From Alois P. Heinz, Jan 09 2025: (Start)
Sum_{k=0..n} T(n,k) = A000070(n).
Sum_{k=0..n} k * T(n,k) = A182738(n).
Sum_{k=0..n^2} k * T(n,k) = A002544(n-1) for n>=1.
Sum_{k=0..n^2} (-1)^k * T(n,k) = A126869(n). (End)
EXAMPLE
From M. F. Hasler, Apr 12 2012: (Start)
The table reads:
n=0: 1 _ (k=0)
n=1: 1 1 _ (k=0..1)
n=2: 1 1 2 1 1 _ (k=0..4)
n=3: 1 1 2 3 3 3 3 2 1 1 _ (k=0..9)
n=4: 1 1 2 3 5 5 7 7 8 7 7 5 5 3 2 1 1 _ (k=0..16)
n=5: 1 1 2 3 5 7 9 11 14 16 18 19 20 20 19 18 16 ... _ (k=0..25)
etc. (End)
Cycle index of S(3) is (1/6)*(x(1)^3+3*x(1)*x(2)+2*x(3)), so g.f. for 3rd row is (1/6)*((1+x+x^2+x^3)^3+3*(1+x+x^2+x^3)*(1+x^2+x^4+x^6)+2*(1+x^3+x^6+x^9)) = x^9+x^8+2*x^7+3*x^6+3*x^5+3*x^4+3*x^3+2*x^2+x+1.
a(3,7)=2 because the only partitions of 7 with Ferrers plot fitting into a 3 X 3 box are [3,3,1] and [3,2,2].
MAPLE
for n from 0 to 15 do QBR[n]:=sum(q^i, i=0..n-1) od: for n from 0 to 15 do QFAC[n]:=product(QBR[j], j=1..n) od: qbin:=(n, k)->QFAC[n]/QFAC[k]/QFAC[n-k]: for n from 0 to 7 do P[n]:=sort(expand(simplify(qbin(2*n, n)))) od: for n from 0 to 7 do seq(coeff(P[n], q, j), j=0..n^2) od; # yields sequence in triangular form - Emeric Deutsch, Apr 23 2007
# second Maple program:
b:= proc(n, i, k) option remember;
`if`(n=0, 1, `if`(i<1 or k<1, 0, b(n, i-1, k)+
`if`(i>n, 0, b(n-i, i, k-1))))
end:
T:= n-> seq(b(k, min(n, k), n), k=0..n^2):
seq(T(n), n=0..8); # Alois P. Heinz, Apr 05 2012
MATHEMATICA
Table[nn=n^2; CoefficientList[Series[Product[(1-x^(n+i))/(1-x^i), {i, 1, n}], {x, 0, nn}], x], {n, 0, 6}]//Grid (* Geoffrey Critzer, Sep 27 2013 *)
Table[CoefficientList[QBinomial[2n, n, q] // FunctionExpand, q], {n, 0, 6}] // Flatten (* Peter Luschny, Jul 22 2016 *)
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1 || k < 1, 0, b[n, i - 1, k] + If[i > n, 0, b[n - i, i, k - 1]]]];
T[n_] := Table[b[k, Min[n, k], n], {k, 0, n^2}];
Table[T[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Nov 27 2020, after Alois P. Heinz *)
PROG
(PARI) T(n, k)=polcoeff(prod(i=0, n, sum(j=0, n, x^(j*i*(n^2+n+1)+j), O(x^(k*(n^2+n+1)+n+1)))), k*(n^2+n+1)+n) /* Based on a more general formula due to R. Gerbicz. M. F. Hasler, Apr 12 2012 */
CROSSREFS
Row lengths are given by A002522. - M. F. Hasler, Apr 14 2012
Antidiagonal sums are given by A260894.
Row sums give A000984.
KEYWORD
nonn,tabf
AUTHOR
Wouter Meeussen, Aug 14 2001
STATUS
approved
Numerators of unsigned columns of triangle A110504: a(n) = n!*A110504(n,0) = (-1)^k*n!*A110504(n+k,k) for all k >= 0.
+10
11
0, 1, 3, 7, 30, 144, 876, 6084, 48816, 438624, 4389120, 48263040, 579242880, 7529552640, 105417365760, 1581231456000, 25299906508800, 430096581734400, 7741753102540800, 147093162635059200, 2941864569520128000
OFFSET
0,3
COMMENTS
Triangle A110504 equals the matrix logarithm of triangle A110503.
Triangle A110503 shifts one column left under matrix inverse.
Lim_{n->infinity} a(n)/n! = Pi*2*sqrt(3)/9 = 1.209199576...
LINKS
FORMULA
E.g.f.: (2+x-x^2)/(2*(1-x)) * arccos(1-x^2/2) / sqrt(1-x^2/4).
E.g.f. A(x) satisfies:
(1) A(x)*A(-x) = -arccos(1-1/2*x^2)^2 = Sum_{n>=0} -x^(2*n+2)/( C(2*n+1, n)*(n+1)^2 ).
(2) 1/(1-x) = Sum_{n>=1} A(x)^floor((n+1)/2) * A(-x)^floor(n/2)/n!.
a(2*n+1) = (2*n+1)!*(1 + Sum_{k=1..n} (1/binomial(2*k+1, k))/(k+1)).
a(2*n+2) = (2*n+2)!*(1 + 1/2 - Sum_{k=1..n} 1/binomial(2*k+2, k)/k) = n!*(1 + 1/2 - 1/3 + 1/12 - 1/20 + 1/60 - 1/105 + 1/280 -+ ...).
Recurrence: 4*a(n) = 2*(2*n-1)*a(n-1) + (n-2)*(n+1)*a(n-2) - (n-3)*(n-2)*n*a(n-3). - Vaclav Kotesovec, May 09 2014
EXAMPLE
E.g.f.: A(x) = x + 3*x^2/2! + 7*x^3/3! + 30*x^4/4! + 144*x^5/5! + 876*x^6/6! + ...
where A(x) satisfies: A(x)*A(-x) = -arccos(1-1/2*x^2)^2, and
arccos(1-1/2*x^2)^2 = Sum_{n>=0} x^(2*n+2)/( C(2*n+1, n)*(n+1)^2 ) = x^2 + 1/12*x^4 + 1/90*x^6 + 1/560*x^8 + 1/3150*x^10 + ...
PROG
(PARI) /* From relation to unsigned columns of triangle A110504: */
{a(n)=local(M=matrix(n+1, n+1, r, c, if(r>=c, if(r==c || c%2==1, 1, if(r%2==0 && r==c+2, -2, -1))))); n!*sum(i=1, #M, -(M^0-M)^i/i)[n+1, 1]}
for(n=0, 30, print1(a(n), ", "))
(PARI) /* As Partial Sums of Series: */
a(n)=if(n<1, 0, n!*(1+sum(n=2, n, (-1)^n/(binomial(n-2, n\2-1)*n*(n-1)/((n+1)\2)))))
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A110503 (triangular matrix), A110504 (matrix logarithm), A002544.
KEYWORD
frac,nonn
AUTHOR
Paul D. Hanna, Jul 23 2005
STATUS
approved
Decimal expansion of log(2)^2.
+10
9
4, 8, 0, 4, 5, 3, 0, 1, 3, 9, 1, 8, 2, 0, 1, 4, 2, 4, 6, 6, 7, 1, 0, 2, 5, 2, 6, 3, 2, 6, 6, 6, 4, 9, 7, 1, 7, 3, 0, 5, 5, 2, 9, 5, 1, 5, 9, 4, 5, 4, 5, 5, 8, 6, 8, 6, 6, 8, 6, 4, 1, 3, 3, 6, 2, 3, 6, 6, 5, 3, 8, 2, 2, 5, 9, 8, 3, 4, 4, 7, 2, 1, 9, 9, 9, 4, 8, 2, 6, 3, 4, 4, 3, 9, 2, 6, 9, 9, 0, 9, 3, 2, 7
OFFSET
0,1
LINKS
David H. Bailey, Jonathan M. Borwein and Richard E. Crandall, On the Khintchine Constant, Mathematics of Computation, Vol. 66, No. 217 (1997), pp. 417-431, see p. 419; alternative link, p. 4.
FORMULA
Integral_{0..1} log(1-x^2)/(x*(1+x)) dx = -log(2)^2.
Integral_{0..1} log(log(1/x))/(x+sqrt(x)) dx = log(2)^2.
Equals Sum_{k>=1} H(k)/(2^k * (k+1)) = 2 * Sum_{k>=1} (-1)^(k+1) * H(k)/(k+1), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, Aug 05 2020
Equals Sum_{n >= 0} (-1)^n/(2^(n+1)*(n+1)^2*binomial(2*n+1,n)). See my entry in A002544 dated Apr 18 2017. Cf. A091476. - Peter Bala, Jan 30 2023
EXAMPLE
0.480453013918201424667102526326664971730552951594545586866864...
MATHEMATICA
RealDigits[Log[2]^2, 10, 103] // First
PROG
(PARI) log(2)^2 \\ Charles R Greathouse IV, Apr 20 2016
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved
a(n) = binomial(2n+1, n+1)*binomial(n+2, 2).
+10
7
1, 9, 60, 350, 1890, 9702, 48048, 231660, 1093950, 5080790, 23279256, 105462084, 473227300, 2106121500, 9307051200, 40873466520, 178520875830, 775924068150, 3357800061000, 14473885526100, 62168784497820, 266168518910580
OFFSET
0,2
LINKS
FORMULA
From David Callan, Nov 20 2003: (Start)
a(n-1) = Sum_{1<=i1<=i2<=...<=in<=n} (i1 + i2 + ... + in).
G.f.: (1 - x)/(1 - 4*x)^(5/2). (End)
a(n) = A119578(n+1)/2. - Zerinvary Lajos, Jun 19 2008
From Amiram Eldar, May 14 2022: (Start)
Sum_{n>=0} 1/a(n) = 4*Pi^2/9 - 4*Pi/sqrt(3) + 4.
Sum_{n>=0} (-1)^n/a(n) = 8*sqrt(5)*log(phi) - 16*log(phi)^2 - 4, where phi = A001622 is the golden ratio. (End)
MATHEMATICA
Table[Binomial[2n+1, n+1]Binomial[n+2, 2], {n, 0, 30}]
PROG
(PARI) a(n)=binomial(2*n+1, n+1)*binomial(n+2, 2)
(Magma) [Binomial(2*n+1, n+1)*Binomial(n+2, 2): n in [0..30]]; // G. C. Greubel, Feb 12 2019
(Sage) [binomial(2*n+1, n+1)*binomial(n+2, 2) for n in (0..30)] # G. C. Greubel, Feb 12 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Jun 26 2003
STATUS
approved
Triangle read by rows: T(n, k) = (-1)^(k+1)*binomial(n,k)*binomial(n+k,k) (n >= k >= 0).
+10
7
-1, -1, 2, -1, 6, -6, -1, 12, -30, 20, -1, 20, -90, 140, -70, -1, 30, -210, 560, -630, 252, -1, 42, -420, 1680, -3150, 2772, -924, -1, 56, -756, 4200, -11550, 16632, -12012, 3432, -1, 72, -1260, 9240, -34650, 72072, -84084, 51480, -12870, -1, 90, -1980, 18480, -90090, 252252, -420420, 411840, -218790, 48620, -1, 110, -2970, 34320, -210210, 756756, -1681680, 2333760, -1969110, 923780, -184756
OFFSET
0,3
COMMENTS
This is Table I of Ser (1933), page 92.
From Petros Hadjicostas, Jul 09 2020: (Start)
Essentially Ser (1933) in his book (and in particular for Tables I-IV) finds triangular arrays that allow him to express the coefficients of various kinds of series in terms of the coefficients of other series.
He uses Newton's series (or some variation of it), factorial series, and inverse factorial series. Unfortunately, he uses unusual notation, and as a result it is difficult to understand what he is actually doing.
Rivoal (2008, 2009) essentially uses factorial series and transformations to other kinds of series to provide new proofs of the irrationality of log(2), zeta(2), and zeta(3). As a result, the triangular array T(n,k) appears in various parts of his papers.
We believe Table I (p. 92) in Ser (1933), regarding the numbers T(n,k), corresponds to four different formulas. We have deciphered the first two of them. (End)
REFERENCES
J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, pp. 92-93.
LINKS
A. Buhl, Book review: J. Ser - Les calculs formels des séries de factorielles, L'Enseignement Mathématique, 32 (1933), p. 275.
L. A. MacColl, Review: J. Ser, Les calculs formels des séries de factorielles, Bull. Amer. Math. Soc., 41(3) (1935), p. 174.
L. M. Milne-Thomson, Review of Les calculs formels des séries de factorielles. By J. Ser. Pp. vii, 98. 20 fr. 1933. (Gauthier-Villars), The Mathematical Gazette, Vol. 18, No. 228 (May, 1934), pp. 136-137.
J. Ser, Les Calculs Formels des Séries de Factorielles, Gauthier-Villars, Paris, 1933 [Local copy].
J. Ser, Les Calculs Formels des Séries de Factorielles (Annotated scans of some selected pages)
Tanguy Rivoal, Applications arithmétiques de l'interpolation lagrangienne, preprint (2008); see pp. 1 and 15.
Tanguy Rivoal, Applications arithmétiques de l'interpolation lagrangienne, Int. J. Number Theory 5.2 (2009), 185-208; see pp. 185 and 199.
FORMULA
T(n,k) can also be written as (-1)^(k+1)*(n+k)!/(k!*k!*(n-k)!).
From Petros Hadjicostas, Jul 09 2020: (Start)
Ser's first formula from his Table I (p. 92) is the following:
Sum_{k=0..n} T(n,k)*k!/(x*(x+1)*...*(x+k)) = -(x-1)*(x-2)*...*(x-n)/(x*(x+1)*...*(x+n)).
As a result, Sum_{k=0..n} T(n,k)/binomial(m+k, k) = 0 for m = 1..n.
Ser's second formula from his Table I appears also in Rivoal (2008, 2009) in a slightly different form:
Sum_{k=0..n} T(n,k)/(x + k) = (-1)^(n+1)*(x-1)*(x-2)*...*(x-n)/(x*(x+1)*...*(x+n)).
As a result, for m = 1..n, Sum_{k=0..n} T(n,k)/(m + k) = 0. (End)
T(n,k) = (-1)^(k+1)*FallingFactorial(n+k,2*k)/(k!)^2. - Peter Luschny, Jul 09 2020
From Petros Hadjicostas, Jul 10 2020: (Start)
Peter Luschny's formula above is essentially the way the numbers T(n,k) appear in Eq. (7) on p. 86 of Ser's (1933) book. Eq. (7) is essentially equivalent to the first formula above (related to Table I on p. 92).
By inverting that formula (in some way), he gets
n!/(x*(x+1)*...*(x+n)) = Sum_{p=0..n} (-1)^p*(2*p+1)*f_p(n+1)*f_p(x), where f_p(x) = (x-1)*...*(x-p)/(x*(x+1)*...*(x+p)). This is equivalent to Eq. (8) on p. 86 of Ser's book.
The rational coefficients A(n,p) = (2*p+1)*f_p(n+1) = (2*p+1)*(n*(n-1)*...*(n+1-p))/((n+1)*...*(n+1+p)) appear in Table II on p. 92 of Ser's book.
If we consider the coefficients T(n,k) and (-1)^(p+1)*A(n,p) as infinite lower triangular matrices, then they are inverses of one another (see the example below). This means that, for m >= s,
Sum_{k=s..m} T(m,k)*(-1)^(s+1)*A(k,s) = I(s=m) = Sum_{k=s..m} (-1)^(k+1)*A(m,k)*T(k,s), where I(s=m) = 1, if s = m, and = 0, otherwise.
Without the (-1)^p, we get the formula
1/(x+n) = Sum_{p=0..n} (2*p+1)*f_p(n+1)*f_p(x),
which apparently is the inversion of the second of Ser's formulas (related to Table I on p. 92).
In all of the above formulas, an empty product is by definition 1, so f_0(x) = 1/x. (End)
EXAMPLE
Triangle T(n,k) (with rows n >= 0 and columns k=0..n) begins:
-1;
-1, 2;
-1, 6, -6;
-1, 12, -30, 20;
-1, 20, -90, 140, -70;
-1, 30, -210, 560, -630, 252;
-1, 42, -420, 1680, -3150, 2772, -924;
-1, 56, -756, 4200, -11550, 16632, -12012, 3432;
...
From Petros Hadjicostas, Jul 11 2020: (Start)
Its inverse (from Table II, p. 92) is
-1;
-1/2, 1/2;
-1/3, 1/2, -1/6;
-1/4, 9/20, -1/4, 1/20;
-1/5, 2/5, -2/7, 1/10, -1/70;
-1/6, 5/14, -25/84, 5/36, -1/28, 1/252;
-1/7, 9/28, -25/84, 1/6, -9/154, 1/84, -1/924;
... (End)
MATHEMATICA
Table[CoefficientList[-Hypergeometric2F1[-n, n + 1, 1, x], x], {n, 0, 9}] // Flatten (* Georg Fischer, Jan 18 2020 after Peter Luschny in A063007 *)
PROG
(Magma) /* As triangle: */ [[(-1)^(k+1) * Factorial(n+k) / (Factorial(k) * Factorial(k) * Factorial(n-k)): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Jan 19 2020
(SageMath)
def T(n, k): return (-1)^(k+1)*falling_factorial(n+k, 2*k)/factorial(k)^2
flatten([[T(n, k) for k in (0..n)] for n in (0..10)]) # Peter Luschny, Jul 09 2020
CROSSREFS
A063007 is the same triangle without the minus signs, and has much more information.
Columns 1 and 2 are A002378 and A033487; the last three diagonals are A002544, A002457, A000984.
KEYWORD
sign,tabl
AUTHOR
N. J. A. Sloane, Jan 17 2020
EXTENSIONS
Thanks to Bob Selcoe, who noticed a typo in one of the entries, which, when corrected, led to an explicit formula for the whole of Ser's Table I.
STATUS
approved
Matrix log of triangle A111940, which shifts columns left and up under matrix inverse; these terms are the result of multiplying each element in row n and column k by (n-k)!.
+10
6
0, 1, 0, -1, -1, 0, 1, 1, 1, 0, -2, -1, -1, -1, 0, 4, 2, 1, 1, 1, 0, -12, -4, -2, -1, -1, -1, 0, 36, 12, 4, 2, 1, 1, 1, 0, -144, -36, -12, -4, -2, -1, -1, -1, 0, 576, 144, 36, 12, 4, 2, 1, 1, 1, 0, -2880, -576, -144, -36, -12, -4, -2, -1, -1, -1, 0, 14400, 2880, 576, 144, 36, 12, 4, 2, 1, 1, 1, 0, -86400, -14400, -2880, -576, -144, -36
OFFSET
0,11
FORMULA
T(n, k) = (-1)^k*T(n-k, 0) = (-1)^k*A111942(n-k) for n>=k>=0.
EXAMPLE
Triangle begins:
0;
1, 0;
-1, -1, 0;
1, 1, 1, 0;
-2, -1, -1, -1, 0;
4, 2, 1, 1, 1, 0;
-12, -4, -2, -1, -1, -1, 0;
36, 12, 4, 2, 1, 1, 1, 0;
-144, -36, -12, -4, -2, -1, -1, -1, 0;
576, 144, 36, 12, 4, 2, 1, 1, 1, 0;
-2880, -576, -144, -36, -12, -4, -2, -1, -1, -1, 0;
14400, 2880, 576, 144, 36, 12, 4, 2, 1, 1, 1, 0;
-86400, -14400, -2880, -576, -144, -36, -12, -4, -2, -1, -1, -1, 0;
518400, 86400, 14400, 2880, 576, 144, 36, 12, 4, 2, 1, 1, 1, 0;
-3628800, -518400, -86400, -14400, -2880, -576, -144, -36, -12, -4, -2, -1, -1, -1, 0; ...
where, apart from signs, the columns are all the same (A111942).
...
Triangle A111940 begins:
1;
1, 1;
-1, -1, 1;
0, 0, 1, 1;
0, 0, -1, -1, 1;
0, 0, 0, 0, 1, 1;
0, 0, 0, 0, -1, -1, 1;
0, 0, 0, 0, 0, 0, 1 ,1;
0, 0, 0, 0, 0, 0, -1, -1, 1; ...
where the matrix inverse shifts columns left and up one place.
...
The matrix log of A111940, with factorial denominators, begins:
0;
1/1!, 0;
-1/2!, -1/1!, 0;
1/3!, 1/2!, 1/1!, 0;
-2/4!, -1/3!, -1/2!, -1/1!, 0;
4/5!, 2/4!, 1/3!, 1/2!, 1/1!, 0;
-12/6!, -4/5!, -2/4!, -1/3!, -1/2!, -1/1!, 0;
36/7!, 12/6!, 4/5!, 2/4!, 1/3!, 1/2!, 1/1!, 0;
-144/8!, -36/7!, -12/6!, -4/5!, -2/4!, -1/3!, -1/2!, -1/1!, 0;
576/9!, 144/8!, 36/7!, 12/6!, 4/5!, 2/4!, 1/3!, 1/2!, 1/1!, 0;
-2880/10!, -576/9!, -144/8!, -36/7!, -12/6!, -4/5!, -2/4!, -1/3!, -1/2!, -1/1!, 0;
14400/11!, 2880/10!, 576/9!, 144/8!, 36/7!, 12/6!, 4/5!, 2/4!, 1/3!, 1/2!, 1/1!, 0; ...
Note that the square of the matrix log of A111940 begins:
0;
0, 0;
-1, 0, 0;
0, -1, 0, 0;
-1/12, 0, -1, 0, 0;
0, -1/12, 0, -1, 0, 0;
-1/90, 0, -1/12, 0, -1, 0, 0;
0, -1/90, 0, -1/12, 0, -1, 0, 0;
-1/560, 0, -1/90, 0, -1/12, 0, -1, 0, 0;
0, -1/560, 0, -1/90, 0, -1/12, 0, -1, 0, 0;
-1/3150, 0, -1/560, 0, -1/90, 0, -1/12, 0, -1, 0, 0;
0, -1/3150, 0, -1/560, 0, -1/90, 0, -1/12, 0, -1, 0, 0;
-1/16632, 0, -1/3150, 0, -1/560, 0, -1/90, 0, -1/12, 0, -1, 0, 0; ...
where nonzero terms are negative unit fractions with denominators given by A002544:
[1, 12, 90, 560, 3150, 16632, 84084, 411840, ..., C(2*n+1,n)*(n+1)^2, ...].
PROG
(PARI) {T(n, k, q=-1) = local(A=Mat(1), B); if(n<k||k<0, 0, for(m=1, n+1, B = matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i, j]=1, if(j==1, B[i, j] = (A^q)[i-1, 1], B[i, j] = (A^q)[i-1, j-1])); )); A=B); B=sum(i=1, #A, -(A^0-A)^i/i); return((n-k)!*B[n+1, k+1]))}
for(n=0, 16, for(k=0, n, print1(T(n, k, -1), ", ")); print(""))
CROSSREFS
Cf. A111940 (triangle), A111942 (column 0), A110504 (variant).
KEYWORD
frac,sign,tabl
AUTHOR
Paul D. Hanna, Aug 23 2005
STATUS
approved

Search completed in 0.017 seconds