# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a001790 Showing 1-1 of 1 %I A001790 M2508 N0992 #236 Feb 16 2025 08:32:24 %S A001790 1,1,3,5,35,63,231,429,6435,12155,46189,88179,676039,1300075,5014575, %T A001790 9694845,300540195,583401555,2268783825,4418157975,34461632205, %U A001790 67282234305,263012370465,514589420475,8061900920775,15801325804719 %N A001790 Numerators in expansion of 1/sqrt(1-x). %C A001790 Also numerator of e(n-1,n-1) (see Maple line). %C A001790 Leading coefficient of normalized Legendre polynomial. %C A001790 Common denominator of expansions of powers of x in terms of Legendre polynomials P_n(x). %C A001790 Also the numerator of binomial(2*n,n)/2^n. - _T. D. Noe_, Nov 29 2005 %C A001790 This sequence gives the numerators of the Maclaurin series of the Lorentz factor (see Wikipedia link) of 1/sqrt(1-b^2) = dt/dtau where b=u/c is the velocity in terms of the speed of light c, u is the velocity as observed in the reference frame where time t is measured and tau is the proper time. - _Stephen Crowley_, Apr 03 2007 %C A001790 Truncations of rational expressions like those given by the numerator operator are artifacts in integer formulas and have many disadvantages. A pure integer formula follows. Let n$ denote the swinging factorial and sigma(n) = number of '1's in the base-2 representation of floor(n/2). Then a(n) = (2*n)$ / sigma(2*n) = A056040(2*n) / A060632(2*n+1). Simply said: this sequence is the odd part of the swinging factorial at even indices. - _Peter Luschny_, Aug 01 2009 %C A001790 It appears that a(n) = A060818(n)*A001147(n)/A000142(n). - _James R. Buddenhagen_, Jan 20 2010 %C A001790 The convolution of sequence binomial(2*n,n)/4^n with itself is the constant sequence with all terms = 1. %C A001790 a(n) equals the denominator of Hypergeometric2F1[1/2, n, 1 + n, -1] (see Mathematica code below). - _John M. Campbell_, Jul 04 2011 %C A001790 a(n) = numerator of (1/Pi)*Integral_{x=-oo..+oo} 1/(x^2-2*x+2)^n dx. - _Leonid Bedratyuk_, Nov 17 2012 %C A001790 a(n) = numerator of the mean value of cos(x)^(2*n) from x = 0 to 2*Pi. - _Jean-François Alcover_, Mar 21 2013 %C A001790 Constant terms for normalized Legendre polynomials. - _Tom Copeland_, Feb 04 2016 %C A001790 From _Ralf Steiner_, Apr 07 2017: (Start) %C A001790 By analytic continuation to the entire complex plane there exist regularized values for divergent sums: %C A001790 a(n)/A060818(n) = (-2)^n*sqrt(Pi)/(Gamma(1/2 - n)*Gamma(1 + n)). %C A001790 Sum_{k>=0} a(k)/A060818(k) = -i. %C A001790 Sum_{k>=0} (-1)^k*a(k)/A060818(k) = 1/sqrt(3). %C A001790 Sum_{k>=0} (-1)^(k+1)*a(k)/A060818(k) = -1/sqrt(3). %C A001790 a(n)/A046161(n) = (-1)^n*sqrt(Pi)/(Gamma(1/2 - n)*Gamma(1 + n)). %C A001790 Sum_{k>=0} (-1)^k*a(k)/A046161(k) = 1/sqrt(2). %C A001790 Sum_{k>=0} (-1)^(k+1)*a(k)/A046161(k) = -1/sqrt(2). (End) %C A001790 a(n) = numerator of (1/Pi)*Integral_{x=-oo..+oo} 1/(x^2+1)^n dx. (n=1 is the Cauchy distribution.) - Harry Garst, May 26 2017 %C A001790 Let R(n, d) = (Product_{j prime to d} Pochhammer(j / d, n)) / n!. Then the numerators of R(n, 2) give this sequence and the denominators are A046161. For d = 3 see A273194/A344402. - _Peter Luschny_, May 20 2021 %C A001790 Using WolframAlpha, it appears a(n) gives the numerator in the residues of f(z) = 2z choose z at odd negative half integers. E.g., the residues of f(z) at z = -1/2, -3/2, -5/2 are 1/(2*Pi), 1/(16*Pi), and 3/(256*Pi) respectively. - _Nicholas Juricic_, Mar 31 2022 %C A001790 a(n) is the numerator of (1/Pi) * Integral_{x=-oo..+oo} sech(x)^(2*n+1) dx. The corresponding denominator is A046161. - _Mohammed Yaseen_, Jul 29 2023 %C A001790 a(n) is the numerator of (1/Pi) * Integral_{x=0..Pi/2} sin(x)^(2*n) dx. The corresponding denominator is A101926(n). - _Mohammed Yaseen_, Sep 19 2023 %D A001790 P. J. Davis, Interpolation and Approximation, Dover Publications, 1975, p. 372. %D A001790 W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, 2nd ed. New York: Wiley, 1968; Chap. III, Eq. 4.1. %D A001790 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001790 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %D A001790 Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 6, equation 6:14:6 at page 51. %D A001790 J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 102. %H A001790 Robert G. Wilson v, Table of n, a(n) for n = 0..1666 (first 201 terms from T. D. Noe) %H A001790 Horst Alzer and Bent Fuglede, Normalized binomial mid-coefficients and power means, Journal of Number Theory, Volume 115, Issue 2, December 2005, Pages 284-294. %H A001790 C. M. Bender and K. A. Milton, Continued fraction as a discrete nonlinear transform, arXiv:hep-th/9304062, 1993 (see V_n with N=1). %H A001790 W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table [Annotated scanned copy]. %H A001790 W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables). %H A001790 Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Combinatorial Identities Associated with a Multidimensional Polynomial Sequence, J. Int. Seq., Vol. 21 (2018), Article 18.7.4. %H A001790 Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011. %H A001790 V. H. Moll, The evaluation of integrals: a personal story, Notices Amer. Math. Soc., 49 (No. 3, March 2002), 311-317. %H A001790 Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7. %H A001790 H. E. Salzer, Coefficients for expressing the first twenty-four powers in terms of the Legendre polynomials, Math. Comp., 3 (1948), 16-18. %H A001790 J. Ser, Les Calculs Formels des Séries de Factorielles, Gauthier-Villars, Paris, 1933 [Local copy]. %H A001790 J. Ser, Les Calculs Formels des Séries de Factorielles (Annotated scans of some selected pages). %H A001790 Eric Weisstein's World of Mathematics, Binomial Series. %H A001790 Eric Weisstein's World of Mathematics, Legendre Polynomial. %H A001790 Wikipedia, Lorentz Factor. %F A001790 a(n) = numerator( binomial(2*n,n)/4^n ) (cf. A046161). %F A001790 a(n) = A000984(n)/A001316(n) where A001316(n) is the highest power of 2 dividing C(2*n, n) = A000984(n). - _Benoit Cloitre_, Jan 27 2002 %F A001790 a(n) = denominator of (2^n/binomial(2*n,n)). - _Artur Jasinski_, Nov 26 2011 %F A001790 a(n) = numerator(L(n)), with rational L(n):=binomial(2*n,n)/2^n. L(n) is the leading coefficient of the Legendre polynomial P_n(x). %F A001790 L(n) = (2*n-1)!!/n! with the double factorials (2*n-1)!! = A001147(n), n >= 0. %F A001790 Numerator in (1-2t)^(-1/2) = 1 + t + (3/2)t^2 + (5/2)t^3 + (35/8)t^4 + (63/8)t^5 + (231/16)t^6 + (429/16)t^7 + ... = 1 + t + 3*t^2/2! + 15*t^3/3! + 105*t^4/4! + 945*t^5/5! + ... = e.g.f. for double factorials A001147 (cf. A094638). - _Tom Copeland_, Dec 04 2013 %F A001790 From _Ralf Steiner_, Apr 08 2017: (Start) %F A001790 a(n)/A061549(n) = (-1/4)^n*sqrt(Pi)/(Gamma(1/2 - n)*Gamma(1 + n)). %F A001790 Sum_{k>=0} a(k)/A061549(k) = 2/sqrt(3). %F A001790 Sum_{k>=0} (-1)^k*a(k)/A061549(k) = 2/sqrt(5). %F A001790 Sum_{k>=0} (-1)^(k+1)*a(k)/A061549(k) = -2/sqrt(5). %F A001790 a(n)/A123854(n) = (-1/2)^n*sqrt(Pi)/(gamma(1/2 - n)*gamma(1 + n)). %F A001790 Sum_{k>=0} a(k)/A123854(k) = sqrt(2). %F A001790 Sum_{k>=0} (-1)^k*a(k)/A123854(k) = sqrt(2/3). %F A001790 Sum_{k>=0} (-1)^(k+1)*a(k)/A123854(k) = -sqrt(2/3). (End) %F A001790 a(n) = 2^A007814(n)*(2*n-1)*a(n-1)/n. - _John Lawrence_, Jul 17 2020 %F A001790 Sum_{k>=0} A086117(k+3)/a(k+2) = Pi. - _Antonio Graciá Llorente_, Aug 31 2024 %F A001790 a(n) = A001803(n)/(2*n+1). - _G. C. Greubel_, Sep 23 2024 %e A001790 1, 1, 3/2, 5/2, 35/8, 63/8, 231/16, 429/16, 6435/128, 12155/128, 46189/256, ... %e A001790 binomial(2*n,n)/4^n => 1, 1/2, 3/8, 5/16, 35/128, 63/256, 231/1024, 429/2048, 6435/32768, ... %p A001790 e := proc(l,m) local k; add(2^(k-2*m)*binomial(2*m-2*k,m-k)*binomial(m+k,m)*binomial(k,l),k=l..m); end; %p A001790 # From _Peter Luschny_, Aug 01 2009: (Start) %p A001790 swing := proc(n) option remember; if n = 0 then 1 elif irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end: %p A001790 sigma := n -> 2^(add(i,i=convert(iquo(n,2),base,2))): %p A001790 a := n -> swing(2*n)/sigma(2*n); # (End) %p A001790 A001790 := proc(n) binomial(2*n, n)/4^n ; numer(%) ; end proc : # _R. J. Mathar_, Jan 18 2013 %t A001790 Numerator[ CoefficientList[ Series[1/Sqrt[(1 - x)], {x, 0, 25}], x]] %t A001790 Table[Denominator[Hypergeometric2F1[1/2, n, 1 + n, -1]], {n, 0, 34}] (* _John M. Campbell_, Jul 04 2011 *) %t A001790 Numerator[Table[(-2)^n*Sqrt[Pi]/(Gamma[1/2 - n]*Gamma[1 + n]),{n,0,20}]] (* _Ralf Steiner_, Apr 07 2017 *) %t A001790 Numerator[Table[Binomial[2n,n]/2^n, {n, 0, 25}]] (* _Vaclav Kotesovec_, Apr 07 2017 *) %t A001790 Table[Numerator@LegendreP[2 n, 0]*(-1)^n, {n, 0, 25}] (* _Andres Cicuttin_, Jan 22 2018 *) %t A001790 A = {1}; Do[A = Append[A, 2^IntegerExponent[n, 2]*(2*n - 1)*A[[n]]/n], {n, 1, 25}]; Print[A] (* _John Lawrence_, Jul 17 2020 *) %o A001790 (PARI) {a(n) = if( n<0, 0, polcoeff( pollegendre(n), n) * 2^valuation((n\2*2)!, 2))}; %o A001790 (PARI) a(n)=binomial(2*n,n)>>hammingweight(n); \\ _Gleb Koloskov_, Sep 26 2021 %o A001790 (Sage) # uses[A000120] %o A001790 @CachedFunction %o A001790 def swing(n): %o A001790 if n == 0: return 1 %o A001790 return swing(n-1)*n if is_odd(n) else 4*swing(n-1)/n %o A001790 A001790 = lambda n: swing(2*n)/2^A000120(2*n) %o A001790 [A001790(n) for n in (0..25)] # _Peter Luschny_, Nov 19 2012 %o A001790 (Magma) %o A001790 A001790:= func< n | Numerator((n+1)*Catalan(n)/4^n) >; %o A001790 [A001790(n): n in [0..40]]; // _G. C. Greubel_, Sep 23 2024 %Y A001790 Cf. A000142, A000984, A001147, A001316, A001800, A001801, A001803. %Y A001790 Cf. A005187, A007814, A008316, A046161, A056040, A086117, A094638. %Y A001790 Cf. A101926, A123854, A273194, A344402. %Y A001790 Cf. A060818 (denominator of binomial(2*n,n)/2^n), A061549 (denominators). %Y A001790 Cf. A123854 (denominators). %Y A001790 Cf. A161198 (triangle of coefficients for (1-x)^((-1-2*n)/2)). %Y A001790 Cf. A163590 (odd part of the swinging factorial). %Y A001790 First column and diagonal 1 of triangle A100258. %Y A001790 Bisection of A036069. %Y A001790 Bisections give A061548 and A063079. %Y A001790 Inverse Moebius transform of A180403/A046161. %Y A001790 Numerators of [x^n]( (1-x)^(p/2) ): A161202 (p=5), A161200 (p=3), A002596 (p=1), this sequence (p=-1), A001803 (p=-3), A161199 (p=-5), A161201 (p=-7). %K A001790 nonn,easy,nice,frac,changed %O A001790 0,3 %A A001790 _N. J. A. Sloane_ # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE