[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A004731
a(0) = 1; thereafter a(n) = denominator of (n-2)!! / (n-1)!!.
12
1, 1, 1, 2, 3, 8, 15, 16, 35, 128, 315, 256, 693, 1024, 3003, 2048, 6435, 32768, 109395, 65536, 230945, 262144, 969969, 524288, 2028117, 4194304, 16900975, 8388608, 35102025, 33554432, 145422675, 67108864, 300540195, 2147483648, 9917826435, 4294967296, 20419054425
OFFSET
0,4
COMMENTS
Also numerator of rational part of Haar measure on Grassmannian space G(n,1).
Also rational part of numerator of Gamma(n/2+1)/Gamma(n/2+1/2) (cf. A036039).
Let x(m) = x(m-2) + 1/x(m-1) for m >= 3, with x(1)=x(2)=1. Then the numerator of x(n+2) equals the denominator of n!!/(n+1)!! for n >= 0, where the double factorials are given by A006882. - Joseph E. Cooper III (easonrevant(AT)gmail.com), Nov 07 2010, as corrected in Cooper (2015).
Numerator of (n-1)/( (n-2)/( .../1)), with an empty fraction taken to be 1. - Flávio V. Fernandes, Jan 31 2025
REFERENCES
D. A. Klain and G.-C. Rota, Introduction to Geometric Probability, Cambridge, p. 67.
LINKS
Joseph E. Cooper III, A recurrence for an expression involving double factorials, arXiv:1510.00399 [math.CO], 2015.
Svante Janson, On the traveling fly problem, Graph Theory Notes of New York Vol. XXXI, 17, 1996.
EXAMPLE
1, 1, (1/2)*Pi, 2, (3/4)*Pi, 8/3, (15/16)*Pi, 16/5, (35/32)*Pi, 128/35, (315/256)*Pi, ...
The sequence Gamma(n/2+1)/Gamma(n/2+1/2), n >= 0, begins 1/Pi^(1/2), 1/2*Pi^(1/2), 2/Pi^(1/2), 3/4*Pi^(1/2), 8/3/Pi^(1/2), 15/16*Pi^(1/2), 16/5/Pi^(1/2), ...
MAPLE
if n mod 2 = 0 then k := n/2; 2*k*Pi*binomial(2*k-1, k)/4^k else k := (n-1)/2; 4^k/binomial(2*k, k); fi;
f:=n->simplify(GAMMA(n/2+1)/GAMMA(n/2+1/2));
#
[1, seq(denom(doublefactorial(n-2)/doublefactorial(n-1)), n = 1..36)]; # Peter Luschny, Feb 09 2025
MATHEMATICA
Table[ Denominator[ (n-2)!! / (n-1)!! ], {n, 0, 31}] (* Jean-François Alcover, Jul 16 2012 *)
Denominator[#[[1]]/#[[2]]&/@Partition[Range[-2, 40]!!, 2, 1]] (* Harvey P. Dale, Nov 27 2014 *)
Join[{1}, Table[Numerator[(n/2-1/2)!/((n/2-1)!Sqrt[Pi])], {n, 1, 31}]] (* Peter Luschny, Feb 08 2025 *)
PROG
(Haskell)
import Data.Ratio ((%), numerator)
a004731 0 = 1
a004731 n = a004731_list !! n
a004731_list = map numerator ggs where
ggs = 0 : 1 : zipWith (+) ggs (map (1 /) $ tail ggs) :: [Rational]
-- Reinhard Zumkeller, Dec 08 2011
(Python)
from sympy import gcd, factorial2
def A004731(n):
if n <= 1:
return 1
a, b = factorial2(n-2), factorial2(n-1)
return b//gcd(a, b) # Chai Wah Wu, Apr 03 2021
(PARI) f(n) = prod(i=0, (n-1)\2, n - 2*i); \\ A006882
a(n) = if (n==0, 1, denominator(f(n-2)/f(n-1))); \\ Michel Marcus, Feb 08 2025
CROSSREFS
Cf. A001803, A004730, A006882 (double factorials), A036069.
Sequence in context: A069752 A265694 A238778 * A380909 A135354 A240974
KEYWORD
nonn,easy,nice,frac,changed
EXTENSIONS
Name corrected by Michel Marcus, Feb 08 2025
STATUS
approved