%I M2133 N0846 #23 Oct 16 2023 23:50:51
%S 1,1,2,24,48,5760,11520,35840,215040,51609600,103219200,13624934400,
%T 5449973760,1322526965760,3606891724800,158703235891200,
%U 105802157260800,14800210341396480,29600420682792960,3749386619820441600
%N Denominators of coefficients in Taylor series expansion of log(1+x)^2/sqrt(1+x).
%C Old title: Denominators of coefficients for numerical differentiation.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Vincenzo Librandi, <a href="/A002552/b002552.txt">Table of n, a(n) for n = 1..200</a>
%H W. G. Bickley and J. C. P. Miller, <a href="http://dx.doi.org/10.1080/14786444208521334">Numerical differentiation near the limits of a difference table</a>, Phil. Mag., 33 (1942), 1-12 (plus tables).
%H W. G. Bickley and J. C. P. Miller, <a href="/A002551/a002551.pdf">Numerical differentiation near the limits of a difference table</a>, Phil. Mag., 33 (1942), 1-12 (plus tables). [Annotated scanned copy]
%t Denominator[CoefficientList[Series[Log[1 + x]^2/Sqrt[1 + x]/x, {x, 0, 40}], x]] (* _Vincenzo Librandi_, Mar 25 2014 *)
%Y Cf. A002551.
%K nonn,frac
%O 1,3
%A _N. J. A. Sloane_
%E More terms from _Sean A. Irvine_, Mar 24 2014