[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A002428
Numerators of coefficients of expansion of arctan(x)^2 = x^2 - 2/3*x^4 + 23/45*x^6 - 44/105*x^8 + 563/1575*x^10 - 3254/10395*x^12 + ...
(Formerly M2131 N0844)
7
0, 1, -2, 23, -44, 563, -3254, 88069, -11384, 1593269, -15518938, 31730711, -186088972, 3788707301, -5776016314, 340028535787, -667903294192, 10823198495797, -5476065119726, 409741429887649, -103505656241356, 17141894231615609
OFFSET
1,3
COMMENTS
|a(n)| = numerator of Sum_{k=1..n} 1/(n*(2*k-1)).
Let f(x) = (1/2)*log((1+sqrt(x))/(1-sqrt(x))) and c(n) = Integral_{x=0..1} f(x)*x^(n-1) dx, then for n>=1, c(n) = |a(n+1)|/A071968(n) and (f(x))^2 = Sum_{n>=1} c(n)*x^n. - Groux Roland, Dec 14 2010
REFERENCES
A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 89.
H. A. Rothe, in C. F. Hindenburg, editor, Sammlung Combinatorisch-Analytischer Abhandlungen, Vol. 2, Chap. XI. Fleischer, Leipzig, 1800, p. 313.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
FORMULA
a(n) = numerator of (-1)^n * Sum_{k=1..n-1} 1/((n-1)*(2*k-1)), for n>=1. - G. C. Greubel, Jul 03 2019
MATHEMATICA
a[n_]:= (-1)^n*Sum[1/((n-1)*(2*k-1)), {k, 1, n-1}]//Numerator; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 04 2013 *)
a[n_]:= SeriesCoefficient[ArcTan[x]^2, {x, 0, 2*n-2}]//Numerator; Table[a[n], {n, 1, 30}] (* G. C. Greubel, Jul 03 2019 *)
PROG
(PARI) vector(30, n, numerator((-1)^n*sum(k=1, n-1, 1/((n-1)*(2*k-1))))) /* corrected by G. C. Greubel, Jul 03 2019 */
(Magma) [0] cat [Numerator((-1)^n*(&+[1/((n-1)*(2*k-1)): k in [1..n-1]])): n in [2..30]]; // G. C. Greubel, Jul 03 2019
(Sage) [numerator((-1)^n*sum(1/((n-1)*(2*k-1)) for k in (1..n-1))) for n in (1..30)] # G. C. Greubel, Jul 03 2019
(GAP) List([1..30], n-> NumeratorRat( (-1)^n*Sum([1..n-1], k-> 1/((n-1)*(2*k-1))) )) # G. C. Greubel, Jul 03 2019
CROSSREFS
KEYWORD
sign,easy,frac
EXTENSIONS
More terms from Jason Earls, Apr 09 2002
Additional comments from Benoit Cloitre, Apr 06 2002
STATUS
approved