[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a002547 -id:a002547
     Sort: relevance | references | number | modified | created      Format: long | short | data
Denominators of coefficients for numerical differentiation.
(Formerly M4822 N2063)
+10
9
1, 1, 12, 6, 180, 10, 560, 1260, 12600, 1260, 166320, 13860, 2522520, 2702700, 2882880, 360360, 110270160, 2042040, 775975200, 162954792, 56904848, 2586584, 1427794368, 892371480, 116008292400, 120470149800, 1124388064800
OFFSET
2,3
COMMENTS
Denominator of 1 - 2*HarmonicNumber(n-1)/n. - Eric W. Weisstein, Apr 15 2004
Denominator of u(n) = sum( k=1, n-1, 1/(k(n-k)) ) (u(n) is asymptotic to 2*log(n)/n). - Benoit Cloitre, Apr 12 2003; corrected by Istvan Mezo, Oct 29 2012
Expected area of the convex hull of n points picked at random inside a triangle with unit area. - Eric W. Weisstein, Apr 15 2004
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables) [Annotated scanned copy]
A. N. Lowan, H. E. Salzer and A. Hillman, A table of coefficients for numerical differentiation, Bull. Amer. Math. Soc., 48 (1942), 920-924.
A. N. Lowan, H. E. Salzer and A. Hillman, A table of coefficients for numerical differentiation, Bull. Amer. Math. Soc., 48 (1942), 920-924. [Annotated scanned copy]
Eric Weisstein's World of Mathematics, Triangle Point Picking
Eric Weisstein's World of Mathematics, Simplex Simplex Picking
FORMULA
G.f.: (-log(1-x))^2 (for fractions A002547(n)/A002548(n)).
A002547(n)/a(n) = 2*Stirling_1(n+2, 2)(-1)^n/(n+2)!.
EXAMPLE
0, 0, 1/12, 1/6, 43/180, 3/10, 197/560, 499/1260, 5471/12600, ...
MAPLE
seq(denom(Stirling1(j+2, 2)/(j+2)!*2!*(-1)^j), j=0..50);
MATHEMATICA
Table[Denominator[1 - 2*HarmonicNumber[n - 1]/n], {n, 2, 30}] (* Wesley Ivan Hurt, Mar 24 2014 *)
CROSSREFS
KEYWORD
nonn,frac,changed
EXTENSIONS
More terms, GF, formula, Maple code from Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 16 2007
STATUS
approved
a(n) = (n!)^3 * Sum_{k=1..n-1} 1/(k*(n-k))^3.
+10
5
0, 0, 8, 54, 1240, 70000, 7941968, 1589632128, 512918521344, 249820864339968, 174720109813751808, 168721560082538496000, 217977447876560510976000, 367117517435096337481728000, 788739873984137255456342016000, 2122296978948474538763602624512000
OFFSET
0,3
COMMENTS
In general, for m > 1, Sum_{k=1..n-1} 1/(k*(n-k))^m is asymptotic to 2*Zeta(m)/n^m.
LINKS
Eric Weisstein's World of Mathematics, Polylogarithm.
FORMULA
Recurrence: n^2*(12*n^4 - 108*n^3 + 354*n^2 - 501*n + 260)*a(n) = 2*(n-1)^2*(24*n^7 - 306*n^6 + 1620*n^5 - 4599*n^4 + 7516*n^3 - 7015*n^2 + 3444*n - 696)*a(n-1) - 6*(n-2)^5*(12*n^7 - 162*n^6 + 906*n^5 - 2700*n^4 + 4583*n^3 - 4378*n^2 + 2163*n - 436)*a(n-2) + 2*(n-3)^5*(n-2)^3*(24*n^7 - 342*n^6 + 2004*n^5 - 6201*n^4 + 10816*n^3 - 10497*n^2 + 5208*n - 1048)*a(n-3) - (n-4)^6*(n-3)^5*(n-2)^3*(12*n^4 - 60*n^3 + 102*n^2 - 69*n + 17)*a(n-4).
a(n) / (n!)^3 ~ 2*Zeta(3)/n^3.
MAPLE
seq(factorial(n)^3*add(1/(k*(n-k))^3, k=1..n-1), n=0..20); # Muniru A Asiru, May 16 2018
MATHEMATICA
Table[n!^3*Sum[1/(k*(n-k))^3, {k, 1, n-1}], {n, 0, 20}]
CoefficientList[Series[PolyLog[3, x]^2, {x, 0, 20}], x] * Range[0, 20]!^3
PROG
(GAP) List([0..20], n->Factorial(n)^3*Sum([1..n-1], k->1/(k*(n-k))^3)); # Muniru A Asiru, May 16 2018
KEYWORD
nonn,changed
AUTHOR
Vaclav Kotesovec, May 15 2018
STATUS
approved
Numerator of Sum_{k=1..n-1} 1/(k*(n-k))^2.
+10
3
0, 0, 1, 1, 41, 13, 8009, 161, 190513, 167101, 13371157, 21857, 316786853, 371449, 52598187029, 260957190289, 129548894873, 3562512061, 295728132584141, 814542451061, 105590441859671453, 21013691164284241, 2988054680665783, 5623939943287, 1567371864703176307
OFFSET
0,5
COMMENTS
Sum_{k=1..n-1} 1/(k*(n-k))^2 is asymptotic to Pi^2/(3*n^2) + 4*log(n)/n^3.
LINKS
Eric Weisstein's World of Mathematics, Dilogarithm.
Eric Weisstein's World of Mathematics, Polylogarithm.
EXAMPLE
0, 0, 1, 1/2, 41/144, 13/72, 8009/64800, 161/1800, 190513/2822400, ...
MATHEMATICA
CoefficientList[Series[PolyLog[2, x]^2, {x, 0, 25}], x]//Numerator
Table[Sum[1/(k*(n - k))^2, {k, 1, n - 1}], {n, 0, 25}]//Numerator
CROSSREFS
KEYWORD
nonn,frac,changed
AUTHOR
Vaclav Kotesovec, May 15 2018
STATUS
approved
Largest prime factor of Stirling numbers of first kind s(n,2) = A000254(n).
+10
2
3, 11, 5, 137, 7, 11, 761, 7129, 61, 863, 509, 919, 1117, 41233, 8431, 1138979, 39541, 7440427, 11167027, 18858053, 227, 583859, 467183, 312408463, 34395742267, 215087, 375035183, 4990290163, 17783, 2667653736673, 535919, 199539368321, 15088528003, 137121586897, 9059
OFFSET
2,1
LINKS
FORMULA
a(n) = Max[FactorInteger[Sum[1/i,{i,1,n}]/Product[1/i,{i,1,n}]]].
a(n) = gpf(A096617(n)), where gpf = A006530 is the greatest prime factor, and A096617 is a "reduced" variant of A001008 and thus A000254. [Conjectured; true if this gpf is always > n.] - M. F. Hasler, Jul 04 2019
MATHEMATICA
Table[Max[FactorInteger[Sum[1/i, {i, 1, n}]/Product[1/i, {i, 1, n}]]], {n, 2, 40}]
FactorInteger[#][[-1, 1]]&/@StirlingS1[Range[3, 40], 2] (* Harvey P. Dale, May 10 2018 *)
PROG
(PARI) A120299(n)=A006530(A000254(n)) \\ Probably A000254 can be replaced by (much smaller) A096617. - M. F. Hasler, Jul 04 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Jul 11 2006
EXTENSIONS
More terms from M. F. Hasler, Jul 04 2019
STATUS
approved
First bisection of harmonic numbers (numerators).
+10
2
1, 11, 137, 363, 7129, 83711, 1145993, 1195757, 42142223, 275295799, 18858053, 444316699, 34052522467, 312536252003, 9227046511387, 290774257297357, 53676090078349, 54437269998109, 2040798836801833, 2066035355155033, 85691034670497533
OFFSET
1,2
COMMENTS
Numerator of H(2n+1), where H(n) = sum_{k=1..n} 1/k.
It can be noted that the second row of the Akiyama-Tanigawa transform of the fractions A232180/A232181 has a simple expression: -5/6, -9/10, -13/14, -17/18, -21/22, ... are of the form -(4*k+5)/(4*k+6).
FORMULA
a(n) ~ exp(2n).
MATHEMATICA
a[n_] := HarmonicNumber[2*n-1] // Numerator; Table[a[n], {n, 1, 25}]
PROG
(Magma) [Numerator(HarmonicNumber(2*n-1)): n in [1..30]]; // Bruno Berselli, Nov 20 2013
CROSSREFS
Cf. A001008, A002547, A093158, A175441, A232181 (denominators).
KEYWORD
nonn,frac,easy
AUTHOR
STATUS
approved

Search completed in 0.005 seconds