Cf. A000142, A000984, A001147, A001316, A001800, A001801, A008316, A046161A001803.
Cf. A005187, A007814, A008316, A046161, A056040, A086117, A094638.
Cf. A101926, A123854, A273194, A344402.
Cf. A060818 (denominator of binomial(2*n,n)/2^n), A061549 (denominators).
Cf. A123854 (denominators).
Cf. A161198 (triangle of coefficients for (1-x)^((-1-2*n)/2)).
Cf. A163590 (odd part of the swinging factorial).
Cf. A005187, A060818(n)= denominator(L(n)). Bisections give A061548 and A063079.
From Johannes W. Meijer, Jun 08 2009: (Start)
Cf. A001803 [(1-x)^(-3/2)], A161199 [(1-x)^(-5/2)] and A161201 [(1-x)^(-7/2)].
A161198 triangle related to the series expansions of (1-x)^((-1-2*n)/2) for all values of n.
(End)
A163590 is the odd part of the swinging factorial, A001803 at odd indices.
Inverse Moebius transform of A180403/A046161. - _Mats Granvik_, Sep 04, 2010
Cf. A123854 (denominators), A061549 (denominators). - Ralf Steiner, Apr 08 2017
Numerators of [x^n]( (1-x)^(p/2) ): A161202 (p=5), A161200 (p=3), A002596 (p=1), this sequence (p=-1), A001803 (p=-3), A161199 (p=-5), A161201 (p=-7).