editing
approved
editing
approved
1, 3, 7, 15, 29, 469, 29531, 1303, 16103, 190553, 128977, 9061, 30946717, 39646461, 58433327, 344499373, 784809203, 169704792667, 665690574539, 5667696059, 337284946763, 7964656853269, 46951444927823, 284451446729, 1597747168263479, 816088653136373
with(combinat):seq(numer(stirling1-Stirling1(j+3, , 3)/(j+3)!*3!*(-1)^j), j=03..50); # Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
proposed
editing
editing
proposed
Numerator of sum 1/(Sum_{i*+j*+k) for =n; i,j,k > 0 and } 1/(i+*j+*k=n).
For prime p >= 5, a(p) == -2*Bernoulli(p-3) (mod p). (see See Zhao link). ) - Michel Marcus, Feb 05 2016
Table[Sum[1/i/j/(n-i-j), {i, n-2}, {j, n-i-1}], {n, 3, 100}] (* _Ryan Propper _ *)
approved
editing
editing
approved
For prime p>=5, a(p) == -2*Bernoulli(p-3) (mod p). (see Zhao link). - Michel Marcus, Feb 05 2016
For prime p>=5, a(p) = -2*Bernoulli(p-3) mod p. (see Zhao link). - Michel Marcus, Feb 05 2016
approved
editing
editing
approved
For prime p>=5, a(p) == -2*Bernoulli(p-3) mod p for p prime >= 5 . (see Zhao link). - Michel Marcus, Feb 05 2016
approved
editing
editing
approved