[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A123854
Denominators in an asymptotic expansion for the cubic recurrence sequence A123851.
19
1, 4, 32, 128, 2048, 8192, 65536, 262144, 8388608, 33554432, 268435456, 1073741824, 17179869184, 68719476736, 549755813888, 2199023255552, 140737488355328, 562949953421312, 4503599627370496, 18014398509481984, 288230376151711744, 1152921504606846976
OFFSET
0,2
COMMENTS
A cubic analog of the asymptotic expansion A116603 of Somos's quadratic recurrence sequence A052129. Numerators are A123853.
Equals 2^A004134(n); also the denominators in expansion of (1-x)^(-1/4). - Alexander Adamchuk, Oct 27 2006
All terms are powers of 2 and log_2 a(n) = A004134(n) = 3*n - A000120(n). - Alexander Adamchuk, Oct 27 2006 [Edited by Petros Hadjicostas, May 14 2020]
Is this the same sequence as A088802? - N. J. A. Sloane, Mar 21 2007
Almost certainly this is the same as A088802. - Michael Somos, Aug 23 2007
Denominators of Gegenbauer_C(2n,1/4,2). The denominators of Gegenbauer_C(n,1/4,2) give the doubled sequence. - Paul Barry, Apr 21 2009
If the Greubel formula in A088802 and the Luschny formula here are correct (they are the same), the sequence is a duplicate of A088802. - R. J. Mathar, Aug 02 2023
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, Cambridge, 2003, p. 446.
LINKS
T. M. Apostol, On the Lerch zeta function, Pacific J. Math. 1 (1951), 161-167. [In Eq. (3.7), p. 166, the index in the summation for the Apostol-Bernoulli numbers should start at s = 0, not at s = 1. - Petros Hadjicostas, Aug 09 2019]
Jonathan Sondow and Petros Hadjicostas, The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant, arXiv:math/0610499 [math.CA], 2006.
Jonathan Sondow and Petros Hadjicostas, The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant, J. Math. Anal. Appl. 332 (2007), 292-314.
Eric Weisstein's World of Mathematics, Somos's Quadratic Recurrence Constant.
Aimin Xu, Asymptotic expansion related to the Generalized Somos Recurrence constant, International Journal of Number Theory 15(10) (2019), 2043-2055. [The author gives recurrences and other formulas for the coefficients of the asymptotic expansion using the Apostol-Bernoulli numbers (see the reference above) and the Bell polynomials. - Petros Hadjicostas, Aug 09 2019]
FORMULA
From Alexander Adamchuk, Oct 27 2006: (Start)
a(n) = 2^A004134(n).
a(n) = 2^(3n - A000120(n)). (End)
a(n) = denominator(binomial(1/4,n)). - Peter Luschny, Apr 07 2016
EXAMPLE
A123851(n) ~ c^(3^n)*n^(- 1/2)/(1 + 3/(4*n) - 15/(32*n^2) + 113/(128*n^3) - 5397/(2048*n^4) + ...) where c = 1.1563626843322... is the cubic recurrence constant A123852.
MAPLE
f:=proc(t, x) exp(sum(ln(1+m*x)/t^m, m=1..infinity)); end; for j from 0 to 29 do denom(coeff(series(f(3, x), x=0, 30), x, j)); od;
# Alternatively:
A123854 := n -> denom(binomial(1/4, n)):
seq(A123854(n), n=0..25); # Peter Luschny, Apr 07 2016
MATHEMATICA
Denominator[CoefficientList[Series[ 1/Sqrt[Sqrt[1-x]], {x, 0, 25}], x]] (* Robert G. Wilson v, Mar 23 2014 *)
PROG
(Sage) # uses[A000120]
def A123854(n): return 1 << (3*n-A000120(n))
[A123854(n) for n in (0..25)] # Peter Luschny, Dec 02 2012
(PARI) vector(25, n, n--; denominator(binomial(1/4, n)) ) \\ G. C. Greubel, Aug 08 2019
CROSSREFS
KEYWORD
frac,nonn,changed
AUTHOR
STATUS
approved