OFFSET
0,2
COMMENTS
A cubic analog of the asymptotic expansion A116603 of Somos's quadratic recurrence sequence A052129. Numerators are A123853.
Equals 2^A004134(n); also the denominators in expansion of (1-x)^(-1/4). - Alexander Adamchuk, Oct 27 2006
All terms are powers of 2 and log_2 a(n) = A004134(n) = 3*n - A000120(n). - Alexander Adamchuk, Oct 27 2006 [Edited by Petros Hadjicostas, May 14 2020]
Is this the same sequence as A088802? - N. J. A. Sloane, Mar 21 2007
Almost certainly this is the same as A088802. - Michael Somos, Aug 23 2007
Denominators of Gegenbauer_C(2n,1/4,2). The denominators of Gegenbauer_C(n,1/4,2) give the doubled sequence. - Paul Barry, Apr 21 2009
If the Greubel formula in A088802 and the Luschny formula here are correct (they are the same), the sequence is a duplicate of A088802. - R. J. Mathar, Aug 02 2023
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, Cambridge, 2003, p. 446.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
T. M. Apostol, On the Lerch zeta function, Pacific J. Math. 1 (1951), 161-167. [In Eq. (3.7), p. 166, the index in the summation for the Apostol-Bernoulli numbers should start at s = 0, not at s = 1. - Petros Hadjicostas, Aug 09 2019]
Jonathan Sondow and Petros Hadjicostas, The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant, arXiv:math/0610499 [math.CA], 2006.
Jonathan Sondow and Petros Hadjicostas, The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant, J. Math. Anal. Appl. 332 (2007), 292-314.
Eric Weisstein's World of Mathematics, Somos's Quadratic Recurrence Constant.
Aimin Xu, Asymptotic expansion related to the Generalized Somos Recurrence constant, International Journal of Number Theory 15(10) (2019), 2043-2055. [The author gives recurrences and other formulas for the coefficients of the asymptotic expansion using the Apostol-Bernoulli numbers (see the reference above) and the Bell polynomials. - Petros Hadjicostas, Aug 09 2019]
FORMULA
From Alexander Adamchuk, Oct 27 2006: (Start)
a(n) = 2^A004134(n).
a(n) = 2^(3n - A000120(n)). (End)
a(n) = denominator(binomial(1/4,n)). - Peter Luschny, Apr 07 2016
EXAMPLE
MAPLE
f:=proc(t, x) exp(sum(ln(1+m*x)/t^m, m=1..infinity)); end; for j from 0 to 29 do denom(coeff(series(f(3, x), x=0, 30), x, j)); od;
# Alternatively:
A123854 := n -> denom(binomial(1/4, n)):
seq(A123854(n), n=0..25); # Peter Luschny, Apr 07 2016
MATHEMATICA
Denominator[CoefficientList[Series[ 1/Sqrt[Sqrt[1-x]], {x, 0, 25}], x]] (* Robert G. Wilson v, Mar 23 2014 *)
PROG
(Sage) # uses[A000120]
[A123854(n) for n in (0..25)] # Peter Luschny, Dec 02 2012
(PARI) vector(25, n, n--; denominator(binomial(1/4, n)) ) \\ G. C. Greubel, Aug 08 2019
CROSSREFS
KEYWORD
frac,nonn,changed
AUTHOR
Petros Hadjicostas and Jonathan Sondow, Oct 15 2006
STATUS
approved