[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A002546
Denominator of Sum_{i+j+k=n; i,j,k > 0} 1/(i*j*k).
(Formerly M1110 N0424)
2
1, 2, 4, 8, 15, 240, 15120, 672, 8400, 100800, 69300, 4950, 17199000, 22422400, 33633600, 201801600, 467812800, 102918816000, 410646075840, 3555377280, 215100325440, 5162407810560, 30920671782000, 190281057120, 1085315579548200, 562756226432400, 22969641895200
OFFSET
1,2
COMMENTS
Denominators of coefficients for numerical differentiation.
REFERENCES
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).
A. N. Lowan, H. E. Salzer and A. Hillman, A table of coefficients for numerical differentiation, Bull. Amer. Math. Soc., 48 (1942), 920-924.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables) [Annotated scanned copy]
A. N. Lowan, H. E. Salzer and A. Hillman, A table of coefficients for numerical differentiation, Bull. Amer. Math. Soc., 48 (1942), 920-924. [Annotated scanned copy]
FORMULA
G.f.: (-log(1-x))^3 (for fractions A002545(n)/A002546(n)). - Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
A002545(n)/A002546(n) = 6*Stirling_1(n+3, 3)(-1)^n/(n+3)!. - Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
MAPLE
seq(denom(-Stirling1(j, 3)/j!*3!*(-1)^j), j=3..50); # Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
MATHEMATICA
Denominator[Table[Sum[1/i/j/(n-i-j), {i, n-2}, {j, n-i-1}], {n, 3, 100}]] (* Ryan Propper *)
CROSSREFS
Cf. A002545.
Sequence in context: A371351 A026096 A098864 * A289089 A010745 A269266
KEYWORD
nonn,frac
EXTENSIONS
More terms from Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
STATUS
approved