[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

タグ

関連タグで絞り込む (1)

タグの絞り込みを解除

haskellとadjunctionに関するruiccのブックマーク (2)

  • Haskellと随伴 - Qiita

    随伴 随伴というのは2つの関手の関係のことです. $ F : \mathcal{C} \to \mathcal{D} $, $ G : \mathcal{D} \to \mathcal{C} $があったとき, 随伴$F \dashv G$ とは, 自然同型 $\hom(F\cdot,\cdot) \cong \hom(\cdot,G\cdot)$ のことです(ただしこの同型はhomの左右を同時に固定して, 2変数引数としてみて考えます). 文章で読むより図式を見たほうが早いです. コードにするのも簡単です. 随伴は圏論では重要な概念です. そこでHaskellでの随伴について見ていきます. 例 (残念なことに)Haskellでの随伴の例はそこまで多くないです. というのも, Haskellでよく見る関手(Maybe, List, Either aなど)には随伴が存在しないことが簡単に示せる

    Haskellと随伴 - Qiita
  • 随伴がモテないのはどう考えてもモナドが悪い!(モナドとコモナドの関係が分かる話) - Moon? Shadow! - Misc Memo

    この記事が対象としている読者 コモナドって何となく聞いたことがある人 圏論よく分かんないけど、圏の定義(対象と射と合成と恒等射と……)みたいなことは聞いたことがある人 要するに、モヤモヤしてても問題ないのですけれど、最低限の知識くらいはあった方がいいってことなのですー>ω< また、この記事は深淵なHaskellプログラマのみが書くことを許されると言われるモナドチュートリアルではないのでそういったものを期待されていたら、ごめんなさいなのです>< コモナド(´・ω・`) さて、みなさんはコモナドについてご存知です(・ω・? google:コモナド Haskellで調べると、 こもなど!コモナド!Comonad!! - capriccioso String Creating(Object something){ return My.Expression(something); } という id:

    随伴がモテないのはどう考えてもモナドが悪い!(モナドとコモナドの関係が分かる話) - Moon? Shadow! - Misc Memo
  • 1