[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a049600 -id:a049600
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = Sum_{k=0..n-1} binomial(n-1,k)*binomial(n+k,k). Also a(n) = T(n,n), array T as in A049600.
+20
21
0, 1, 4, 19, 96, 501, 2668, 14407, 78592, 432073, 2390004, 13286043, 74160672, 415382397, 2333445468, 13141557519, 74174404608, 419472490257, 2376287945572, 13482186743203, 76598310928096, 435730007006341, 2481447593848524, 14146164790774359
OFFSET
0,3
COMMENTS
Also main diagonal of array: m(i,1)=1, m(1,j)=j, m(i,j)=m(i,j-1)+m(i-1,j-1)+m(i-1,j): 1 2 3 4 ... / 1 4 9 16 ... / 1 6 19 44 ... / 1 8 33 96 ... /. - Benoit Cloitre, Aug 05 2002
This array is now listed as A142978, where some conjectural congruences for the present sequence are given. - Peter Bala, Nov 13 2008
Convolution of central Delannoy numbers A001850 and little Schroeder numbers A001003. Hankel transform is 2^C(n+1,2)*A007052(n). - Paul Barry, Oct 07 2009
Define a finite triangle T(r,c) with T(r,0) = binomial(n,r) for 0 <= r <= n and the other terms recursively with T(r,c) = T(r-1,c-1) + 2*T(r,c-1). The sum of the last terms in the rows is Sum_{r=0..n} T(r,r) = a(n+1). Example: For n=4 the triangle has the rows 1; 4 9; 6 16 41; 4 14 44 129; 1 6 26 96 321 having sum of last terms 1 + 9 + 41 + 129 + 321 = 501 = a(5). - J. M. Bergot, Feb 15 2013
a(n) = A049600(2*n,n), when A049600 is seen as a triangle read by rows. - Reinhard Zumkeller, Apr 15 2014
a(n-1) for n > 1 is the number of assembly trees with the connected gluing rule for cycle graphs with n vertices. - Nick Mayers, Aug 16 2018
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1000 (terms 0..200 from T. D. Noe)
A. Bacher, Directed and multi-directed animals on the square lattice with next nearest neighbor edges, arXiv preprint arXiv:1301.1365 [math.CO], 2013. See D(t). - From N. J. A. Sloane, Feb 14 2013
C. Banderier and P. Hitczenko, Enumeration and asymptotics of restricted compositions having the same number of parts, Disc. Appl. Math. 160 (18) (2012) 2542-2554. Table 2.
M. Bona and A. Vince, The Number of Ways to Assemble a Graph, arXiv preprint arXiv:1204.3842 [math.CO], 2012.
F. D. Cunden, F. Mezzadri, N. Simm and P. Vivo, Correlators for the Wigner-Smith time-delay matrix of chaotic cavities, arXiv:1601.06690 [math-ph], 2016.
A. Dougherty, N. Mayers, and R. Short, How to Build a Graph in n Days: Some Variants on Graph Assembly, arXiv preprint arXiv:1807.08079 [math.CO], 2018.
Steffen Eger, On the Number of Many-to-Many Alignments of N Sequences, arXiv:1511.00622 [math.CO], 2015.
Steffen Eger, The Combinatorics of Weighted Vector Compositions, arXiv:1704.04964 [math.CO], 2017.
G. Rutledge and R. D. Douglass, Integral functions associated with certain binomial coefficient sums, Amer. Math. Monthly, 43 (1936), 27-32.
FORMULA
D-finite with recurrence n*(2*n-3)*a(n) - (12*n^2-24*n+8)*a(n-1) + (2*n-1)*(n-2)*a(n-2) = 0. - Vladeta Jovovic, Aug 29 2004
a(n+1) = Sum_{k=0..n} binomial(n, k)*binomial(n+1, k+1)*2^k. - Paul Barry, Sep 20 2004
a(n) = Sum_{k=0..n} T(n, k), array T as in A008288.
If shifted one place left, the third binomial transform of A098660. - Paul Barry, Sep 20 2004
G.f.: ((1+x)/sqrt(1-6x+x^2)-1)/4. - Paul Barry, Sep 20 2004, simplified by M. F. Hasler, Oct 09 2012
E.g.f. for sequence shifted left: Sum_{n>=0} a(n+1)*x^n/n! = exp(3*x)*(BesselI(0, 2*sqrt(2)*x)+BesselI(1, 2*sqrt(2)*x)/sqrt(2)). - Paul Barry, Sep 20 2004
a(n) = Sum_{k=0..n-1} C(n,k)*C(n-1,k)*2^(n-k-1); a(n+1) = 2^n*Hypergeometric2F1(-n,-n-1;1;1/2). - Paul Barry, Feb 08 2011
a(n) ~ 2^(1/4)*(3+2*sqrt(2))^n/(4*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 08 2012
Recurrence (an alternative): n*a(n) = (6-n)*a(n-6) + 2*(5*n-27)*a(n-5) + (84-15*n)*a(n-4) + 52*(3-n)*a(n-3) + 3*(2-5*n)*a(n-2) + 2*(5*n-3)*a(n-1), n >= 7. - Fung Lam, Feb 05 2014
a(n) = A241023(n) / 4. - Reinhard Zumkeller, Apr 15 2014
a(n) = Hyper2F1([-n, n], [1], -1)/2 for n > 0. - Peter Luschny, Aug 02 2014
n^2*a(n) = Sum_{k=0..n-1} (2*k^2+2*k+1)*binomial(n-1,k)*binomial(n+k,k). By the Zeilberger algorithm, both sides of the equality satisfy the same recurrence. - Zhi-Wei Sun, Aug 30 2014
a(n) = [x^n] (1/2) * ((1+x)/(1-x))^n for n > 0. - Seiichi Manyama, Jun 07 2018
MAPLE
a := proc(n) local k; add(binomial(n-1, k)*binomial(n+k, k), k=0..n-1); end;
MATHEMATICA
Table[SeriesCoefficient[x*((1+x)-Sqrt[1-6*x+x^2])/(4*x*Sqrt[1-6*x+x^2]), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 08 2012 *)
a[n_] := Hypergeometric2F1[1-n, n+1, 1, -1]; a[0] = 0; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Feb 26 2013 *)
a[n_] := Sum[ Binomial[n - 1, k] Binomial[n + k, k], {k, 0, n - 1}]; Array[a, 25] (* Robert G. Wilson v, Aug 08 2018 *)
PROG
(Maxima) makelist(if n=0 then 0 else sum(binomial(n-1, k)*binomial(n+k, k), k, 0, n-1), n, 0, 22); \\ Bruno Berselli, May 19 2011
(Magma) [n eq 0 select 0 else &+[Binomial(n-1, k)*Binomial(n+k, k): k in [0..n-1]]: n in [0..22]]; // Bruno Berselli, May 19 2011
(PARI) A047781(n)=polcoeff((1+x)/sqrt(1+(O(x^n)-6)*x+x^2), n)\4 \\ M. F. Hasler, Oct 09 2012
(Haskell)
a047781 n = a049600 (2 * n) n -- Reinhard Zumkeller, Apr 15 2014
(Python)
from sympy import binomial
def a(n):
return sum(binomial(n - 1, k) * binomial(n + k, k) for k in range(n))
print([a(n) for n in range(51)]) # Indranil Ghosh, Apr 18 2017
(Python)
from math import comb
def A047781(n): return sum(comb(n, k)**2*k<<k-1 for k in range(1, n+1))//n if n else 0 # Chai Wah Wu, Mar 22 2023
CROSSREFS
Cf. A002003. Column 1 of A296129.
KEYWORD
nonn
STATUS
approved
a(n) = T(n,2), array T as in A049600.
+20
20
0, 1, 4, 13, 38, 104, 272, 688, 1696, 4096, 9728, 22784, 52736, 120832, 274432, 618496, 1384448, 3080192, 6815744, 15007744, 32899072, 71827456, 156237824, 338690048, 731906048, 1577058304, 3388997632, 7264534528, 15535702016
OFFSET
0,3
COMMENTS
Refer to A089378 and A075729 for the definition of hierarchies, subhierarchies and one-step transitions. - Thomas Wieder, Feb 28 2004
We may ask for the number of one-step transitions (NOOST) between all unlabeled hierarchies of n elements with the restriction that no subhierarchies are allowed. As an example, consider n = 4 and the hierarchy H1 = [[2,2]] with two elements on level 1 and two on level 2. Starting from H1 the hierarchies [[1, 3]], [[2, 1, 1]], [[1, 2, 1]] can be reached by moving one element only, but [[1, 1, 2]] cannot be reached in a one-step transitition. The solution is n = 1, NOOST = 0; n = 2, NOOST = 1; n = 3, NOOST = 4; n = 4, NOOST = 13; n = 5, NOOST = 38; n = 6, NOOST = 104; n = 7, NOOST = 272; n = 8, NOOST = 688; n = 9, NOOST = 1696. This is sequence A049611. - Thomas Wieder, Feb 28 2004
If X_1,X_2,...,X_n are 2-blocks of a (2n+2)-set X then, for n>=1, a(n+1) is the number of (n+2)-subsets of X intersecting each X_i, (i=1,2,...,n). - Milan Janjic, Nov 18 2007
In each composition (ordered partition) of the integer n, circle the first summand once, circle the second summand twice, etc. a(n) is the total number of circles in all compositions of n (that is, add k*(k+1)/2 for each composition into k parts). Note the O.g.f. is B(A(x)) where A(x)= x/(1-x) and B(x)= x/(1-x)^3.
This is the Riordan transform with the Riordan matrix A097805 (of the associated type) of the triangular number sequence A000217. See a Feb 17 2017 comment on A097805. - Wolfdieter Lang, Feb 17 2017
LINKS
Robert Davis, Greg Simay, Further Combinatorics and Applications of Two-Toned Tilings, arXiv:2001.11089 [math.CO], 2020.
M. Janjic, On a class of polynomials with integer coefficients, JIS 11 (2008) 08.5.2.
M. Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From N. J. A. Sloane, Feb 13 2013
S. Kitaev, J. Remmel, p-Ascent Sequences, arXiv:1503.00914 [math.CO], 2015.
Sergey Kitaev, J. B. Remmel, A note on p-Ascent Sequences, Preprint, 2016.
Igor Makhlin, Gröbner fans of Hibi ideals, generalized Hibi ideals and flag varieties, arXiv:2003.02916 [math.CO], 2020.
Agustín Moreno Cañadas, Hernán Giraldo, Gabriel Bravo Rios, On the Number of Sections in the Auslander-Reiten Quiver of Algebras of Dynkin Type, Far East Journal of Mathematical Sciences (FJMS), Vol. 101, No. 8 (2017), pp. 1631-1654.
FORMULA
G.f.: x*(1-x)^2/(1-2*x)^3.
Binomial transform of quarter squares A002620(n+1): a(n) = Sum_{k=0..n} binomial(n, k)*floor((k+1)^2/4). - Paul Barry, May 27 2003
a(n) = 2^(n-4)*(n^2+5*n+2) - 0^n/8. - Paul Barry, Jun 09 2003
a(n+2) = A001787(n+2) + A001788(n). - Creighton Dement, Aug 02 2005
a(n) = Hyper2F1([-n+1, 3], [1], -1) for n>0. - Peter Luschny, Aug 02 2014
a(n) = Sum_{k=0..n-1} Sum_{j=0..n-1} Sum_{i=0..n-1} binomial(n-1, i+j+k). - Yalcin Aktar, Aug 27 2023
MATHEMATICA
CoefficientList[Series[x (1-x)^2/(1-2x)^3, {x, 0, 40}], x] (* Harvey P. Dale, Sep 24 2013 *)
PROG
(PARI) concat(0, Vec(x*(1-x)^2/(1-2*x)^3+O(x^99))) \\ Charles R Greathouse IV, Jun 12 2015
CROSSREFS
a(n+1)= A055252(n, 0), n >= 0. Row sums of triangle A055249.
KEYWORD
nonn,easy
STATUS
approved
a(n) = T(n,3), array T as in A049600.
+20
11
0, 1, 5, 19, 63, 192, 552, 1520, 4048, 10496, 26624, 66304, 162560, 393216, 940032, 2224128, 5214208, 12124160, 27983872, 64159744, 146210816, 331350016, 747110400, 1676673024, 3746562048, 8338276352, 18488492032
OFFSET
0,3
COMMENTS
If X_1, X_2, ..., X_n are 2-blocks of a (2n+3)-set X then, for n >= 1, a(n+1) is the number of (n+3)-subsets of X intersecting each X_i, (i=1,2,...,n). - Milan Janjic, Nov 18 2007
REFERENCES
Robert Cori, Gabor Hetyei, Genus one partitions, in 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), 2014, Chicago, United States. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AT, pp. 333-344, <hal-01207612>
LINKS
R. Cori and G. Hetyei, Counting genus one partitions and permutations, arXiv preprint arXiv:1306.4628 [math.CO], 2013.
R. Cori and G. Hetyei, How to count genus one partitions, FPSAC 2014, Chicago, Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France, 2014, 333-344.
S. Kitaev and J. Remmel, p-Ascent Sequences, arXiv preprint arXiv:1503.00914 [math.CO], 2015.
Sergey Kitaev and Jeffrey Remmel, A note on p-ascent sequences, preprint, 2016.
FORMULA
G.f.: x*(1-x)^3 /(1-2*x)^4.
a(n) = Sum_{k=0..floor((n+3)/2)} C(n+3, 2k)*C(k+1, 3). - Paul Barry, May 15 2003
a(n+1) = 2^n*n^3/48 + 5*2^n*n^2/16 + 7*2^n*n/6 + 2^n, n>=1. - Milan Janjic, Nov 18 2007
Binomial transform of the tetrahedral numbers A000292 when omitting the initial 0 in both sequences. - Carl Najafi, Sep 08 2011
MATHEMATICA
CoefficientList[Series[x (1-x)^3/(1-2x)^4, {x, 0, 30}], x] (* or *) Join[ {0}, LinearRecurrence[{8, -24, 32, -16}, {1, 5, 19, 63}, 30]] (* Harvey P. Dale, Jan 07 2014 *)
CROSSREFS
Cf. A049600.
Row sums of triangle A055252. a(n+1) = A055584(n, 0), n >= 0.
KEYWORD
nonn
STATUS
approved
Triangle with columns built from row sums of the partial row sums triangles obtained from Pascal's triangle A007318. Essentially A049600 formatted differently.
+20
9
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 8, 4, 1, 1, 16, 20, 13, 5, 1, 1, 32, 48, 38, 19, 6, 1, 1, 64, 112, 104, 63, 26, 7, 1, 1, 128, 256, 272, 192, 96, 34, 8, 1, 1, 256, 576, 688, 552, 321, 138, 43, 9, 1, 1, 512, 1280, 1696, 1520, 1002, 501, 190, 53, 10, 1, 1, 1024, 2816, 4096
OFFSET
0,5
COMMENTS
In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as matrix, belongs to the Riordan-group. The G.f. for the row polynomials p(n,x) (increasing powers of x) is 1/((1-z)*(1-x*z*(1-z)/(1-2*z))).
Column m (without leading zeros) is obtained from convolution of A000012 (powers of 1) with m-fold convoluted A011782.
FORMULA
a(n, m)= Am(n, 0) if n >= m >= 0 and a(n, m) := 0 if n<m; i.e. first column of the lower triangular matrix Am := prs^(m)(A007318) with the lower triangular matrix A007318 (Pascal triangle) and prs^(m) is the partial row sums (prs) mapping for triangular matrices applied m times. See e.g. A055584 for m=4.
G.f. for column m: (1/(1-x))*(x*(1-x)/(1-2*x))^m, m >= 0.
T(n, k) = sum_{j=0..n-k} C(n-k, j)*C(k+j-1, k-1). - Paul D. Hanna, Jan 14 2004
EXAMPLE
{1}; {1, 1}; {1, 2, 1}; {1, 4, 3, 1}; {1, 8, 8, 4, 1}; ...
Fourth row polynomial (n=3): p(3,x)= 1+4*x+3*x^2+x^3
MATHEMATICA
t[n_, k_] := Hypergeometric2F1[k, k-n, 1, -1]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 05 2014, after Paul D. Hanna *)
PROG
(PARI) {T(n, k) = if( n<0 || k<0, 0, polcoeff( polcoeff( 1 / ((1 - z) * (1 - x*z * (1 - z) / (1 - 2*z) + z * O(z^n) + x * O(x^k))), k), n))}; /* Michael Somos, Sep 30 2003 */
(PARI) {T(n, k)=if(k>n||n<0||k<0, 0, if(k==0||k==n, 1, sum(j=0, n-k, binomial(n-k, j)*binomial(k+j-1, k-1)); ); )} (Hanna)
CROSSREFS
Cf. A049600, column sequences are A000012 (powers of 1), A000079 (powers of 2), A001792, A049611, A049612, A055589, A055852-5 for m=0..9, row sums: A055588.
KEYWORD
easy,nonn,tabl
AUTHOR
Wolfdieter Lang, May 30 2000
STATUS
approved
Number of loopless rooted planar maps with 3 faces and n vertices and no isthmuses. Also a(n)=T(4,n-3), array T as in A049600.
(Formerly M4490)
+20
4
1, 8, 20, 38, 63, 96, 138, 190, 253, 328, 416, 518, 635, 768, 918, 1086, 1273, 1480, 1708, 1958, 2231, 2528, 2850, 3198, 3573, 3976, 4408, 4870, 5363, 5888, 6446, 7038, 7665, 8328, 9028, 9766, 10543, 11360, 12218, 13118, 14061, 15048
OFFSET
2,2
COMMENTS
If Y_i (i=1,2,3) are 2-blocks of an n-set X then, for n>=6, a(n-3) is the number of (n-3)-subsets of X intersecting each Y_i (i=1,2,3). - Milan Janjic, Nov 09 2007
a(n) is also the number of triangle subgraphs in a complete graph on n+3 vertices, minus 3 non-incident edges, for n > 2. - Robert H Cowen, Jun 23 2018
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
T. R. S. Walsh, A. B. Lehman, Counting rooted maps by genus. III: Nonseparable maps, J. Combinatorial Theory Ser. B 18 (1975), 222-259.
FORMULA
G.f.: x^2*(1+4*x-6*x^2+2*x^3)/(1-x)^4.
a(n-3) = (1/6)*n^3-(1/2)*n^2-(8/3)*n+6, n=6,7,... - Milan Janjic, Nov 09 2007
a(2)=1, a(3)=8, a(4)=20, a(5)=38, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Harvey P. Dale, Aug 25 2013
a(n+2) = Hyper2F1([-3, n], [1], -1). - Peter Luschny, Aug 02 2014
a(n) = binomial(n+3, 3) - 3*(n+1). - Robert H Cowen, Jun 23 2018
MAPLE
A006416:=(1+4*z-6*z**2+2*z**3)/(z-1)**4; # Conjectured by Simon Plouffe in his 1992 dissertation.
a := n -> hypergeom([-3, n-2], [1], -1);
seq(round(evalf(a(n), 32)), n=2..41); # Peter Luschny, Aug 02 2014
MATHEMATICA
f[n_]:=Sum[i+i^2-6, {i, 1, n}]/2; Table[f[n], {n, 3, 5!}] (* Vladimir Joseph Stephan Orlovsky, Mar 08 2010 *)
CoefficientList[Series[(1+4x-6x^2+2x^3)/(1-x)^4, {x, 0, 50}], x] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 8, 20, 38}, 50] (* Harvey P. Dale, Aug 25 2013 *)
f[n_]:= Binomial[n, 3] - 3(n-2); Table[{n, f[n]}, {n, 5, 100}]//TableForm (* Robert H Cowen, Jun 23 2018 *)
PROG
(PARI) Vec((1+4*x-6*x^2+2*x^3)/(1-x)^4 + O(x^40)) \\ Andrew Howroyd, Jul 15 2018
CROSSREFS
Column k=3 of A342980.
Cf. A049600.
KEYWORD
nonn,easy,nice
EXTENSIONS
Name clarified by Andrew Howroyd, Apr 01 2021
STATUS
approved
a(n)=Sum{T(2i,n-2i): i=0,1,...,[ n/2 ]}, array T as in A049600.
+20
1
0, 0, 2, 3, 12, 25, 76, 182, 504, 1275, 3410, 8811, 23256, 60580, 159094, 415715, 1089648, 2850645, 7466468, 19541994, 51170460, 133951675, 350713222, 918141623, 2403786672, 6293097000, 16475700746, 43133687427, 112925875764
OFFSET
0,3
FORMULA
G.f.: x^2*(-2+x) / ( (x^2-x-1)*(x^2-3*x+1) ).
a(n) = (Fibonacci(2*n)+(-1)^n*Fibonacci(n))/2. - Vladeta Jovovic, Aug 30 2004
CROSSREFS
Cf. A049602.
KEYWORD
nonn,easy
STATUS
approved
a(n)=T(n,n+2), array T as in A049600.
+20
1
0, 1, 6, 34, 190, 1059, 5908, 33028, 185076, 1039525, 5851626, 33006438, 186519138, 1055789511, 5985405000, 33979107336, 193143097288
OFFSET
0,3
FORMULA
Conjecture: (n-1)*(2*n-1)*(n+2)*a(n) -12*n*(n-1)*(n+1)*a(n-1) +(n-2)*(2*n+1)*(n+1)*a(n-2)=0. - R. J. Mathar, Oct 26 2015
KEYWORD
nonn
STATUS
approved
a(n)=T(n,n+3), array T as in A049600.
+20
0
0, 1, 7, 43, 253, 1462, 8378, 47818, 272422, 1550927, 8829033, 50276013, 286430763, 1632808572, 9313861092, 53163187748, 303653552188
OFFSET
0,3
FORMULA
Conjecture: -(n+3)*(n-1)*a(n) +(7*n^2+8*n-9)*a(n-1) +(-7*n^2+8*n+9)*a(n-2) +(n+1)*(n-3)*a(n-3)=0. - R. J. Mathar, Oct 26 2015
Conjecture: +n*(n+3)*(n-1)*a(n) -(2*n+1)*(3*n^2+3*n-4)*a(n-1) +(n-2)*(n+2)*(n+1)*a(n-2)=0. - R. J. Mathar, Oct 26 2015
KEYWORD
nonn
STATUS
approved
a(n) = (n+2)*2^(n-1).
(Formerly M2739 N1100)
+10
211
1, 3, 8, 20, 48, 112, 256, 576, 1280, 2816, 6144, 13312, 28672, 61440, 131072, 278528, 589824, 1245184, 2621440, 5505024, 11534336, 24117248, 50331648, 104857600, 218103808, 452984832, 939524096, 1946157056, 4026531840, 8321499136, 17179869184, 35433480192
OFFSET
0,2
COMMENTS
Number of parts in all compositions (ordered partitions) of n + 1. For example, a(2) = 8 because in 3 = 2 + 1 = 1 + 2 = 1 + 1 + 1 we have 8 parts. Also number of compositions (ordered partitions) of 2n + 1 with exactly 1 odd part. For example, a(2) = 8 because the only compositions of 5 with exactly 1 odd part are 5 = 1 + 4 = 2 + 3 = 3 + 2 = 4 + 1 = 1 + 2 + 2 = 2 + 1 + 2 = 2 + 2 + 1. - Emeric Deutsch, May 10 2001
Binomial transform of natural numbers [1, 2, 3, 4, ...].
For n >= 1 a(n) is also the determinant of the n X n matrix with 3's on the diagonal and 1's elsewhere. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 06 2001
The arithmetic mean of first n terms of the sequence is 2^(n-1). - Amarnath Murthy, Dec 25 2001, corrected by M. F. Hasler, Dec 17 2016
Also the number of "winning paths" of length n across an n X n Hex board. Satisfies the recursion a(n) = 2a(n-1) + 2^(n-2). - David Molnar (molnar(AT)stolaf.edu), Apr 10 2002
Diagonal in A053218. - Benoit Cloitre, May 08 2002
Let M_n be the n X n matrix m_(i, j) = 1 + abs(i-j) then det(M_n) = (-1)^(n-1)*a(n-1). - Benoit Cloitre, May 28 2002
Absolute value of determinant of n X n matrix of form: [1 2 3 4 5 / 2 1 2 3 4 / 3 2 1 2 3 / 4 3 2 1 2 / 5 4 3 2 1]. - Benoit Cloitre, Jun 20 2002
Number of ones in all (n+1)-bit integers (cf. A000120). - Ralf Stephan, Aug 02 2003
This sequence also emerges as a floretion force transform of powers of 2 (see program code). Define a(-1) = 0 (as the sequence is returned by FAMP). Then a(n-1) + A098156(n+1) = 2*a(n) (conjecture). - Creighton Dement, Mar 14 2005
This sequence gives the absolute value of the determinant of the Toeplitz matrix with first row containing the first n integers. - Paul Max Payton, May 23 2006
Equals sums of rows right of left edge of A102363 divided by three, + 2^K. - David G. Williams (davidwilliams(AT)paxway.com), Oct 08 2007
If X_1, X_2, ..., X_n are 2-blocks of a (2n+1)-set X then, for n >= 1, a(n) is the number of (n+1)-subsets of X intersecting each X_i, (i = 1, 2, ..., n). - Milan Janjic, Nov 18 2007
Also, a(n-1) is the determinant of the n X n matrix with A[i, j] = n - |i-j|. - M. F. Hasler, Dec 17 2008
1/2 the number of permutations of 1 .. (n+2) arranged in a circle with exactly one local maximum. - R. H. Hardin, Apr 19 2009
The first corrector line for transforming 2^n offset 0 with a leading 1 into the Fibonacci sequence. - Al Hakanson (hawkuu(AT)gmail.com), Jun 01 2009
a(n) is the number of runs of consecutive 1's in all binary sequences of length (n+1). - Geoffrey Critzer, Jul 02 2009
Let X_j (0 < j <= 2^n) all the subsets of N_n; m(i, j) := if {i} in X_j then 1 else 0. Let A = transpose(M).M; Then a(i, j) = (number of elements)|X_i intersect X_j|. Determinant(X*I-A) = (X-(n+1)*2^(n-2))*(X-2^(n-2))^(n-1)*X^(2^n-n).
Eigenvector for (n+1)*2^(n-2) is V_i=|X_i|.
Sum_{k=1..2^n} |X_i intersect X_k|*|X_k| = (n+1)*2^(n-2)*|X_i|.
Eigenvectors for 2^(n-2) are {line(M)[i] - line(M)[j], 1 <= i, j <= n}. - CLARISSE Philippe (clarissephilippe(AT)yahoo.fr), Mar 24 2010
The sequence b(n) = 2*A001792(n), for n >= 1 with b(0) = 1, is an elephant sequence, see A175655. For the central square four A[5] vectors, with decimal values 187, 190, 250 and 442, lead to the b(n) sequence. For the corner squares these vectors lead to the companion sequence A134401. - Johannes W. Meijer, Aug 15 2010
Equals partial sums of A045623: (1, 2, 5, 12, 28, ...); where A045623 = the convolution square of (1, 1, 2, 4, 8, 16, 32, ...). - Gary W. Adamson, Oct 26 2010
Equals (1, 2, 4, 8, 16, ...) convolved with (1, 1, 2, 4, 8, 16, ...); e.g., a(3) = 20 = (1, 1, 2, 4) dot (8, 4, 2, 1) = (8 + 4 + 4 + 4). - Gary W. Adamson, Oct 26 2010
This sequence seems to give the first x+1 nonzero terms in the sequence derived by subtracting the m-th term in the x_binacci sequence (where the first term is one and the y-th term is the sum of x terms immediately preceding it) from 2^(m-2). - Dylan Hamilton, Nov 03 2010
Recursive formulas for a(n) are in many cases derivable from its property wherein delta^k(a(n)) - a(n) = k*2^n where delta^k(a(n)) represents the k-th forward difference of a(n). Provable with a difference table and a little induction. - Ethan Beihl, May 02 2011
Let f(n,k) be the sum of numbers in the subsets of size k of {1, 2, ..., n}. Then a(n-1) is the average of the numbers f(n, 0), ... f(n, n). Example: (f(3, 1), f(3, 2), f(3, 3)) = (6, 12, 6), with average (6+12+6)/3. - Clark Kimberling, Feb 24 2012
a(n) is the number of length-2n binary sequences that contain a subsequence of ones with length n or more. To derive this result, note that there are 2^n sequences where the initial one of the subsequence occurs at entry one. If the initial one of the subsequence occurs at entry 2, 3, ..., or n + 1, there are 2^(n-1) sequences since a zero must precede the initial one. Hence a(n) = 2^n + n*2^(n-1)=(n+2)2^(n-1). An example is given in the example section below. - Dennis P. Walsh, Oct 25 2012
As the total number of parts in all compositions of n+1 (see the first line in Comments) the equivalent sequence for partitions is A006128. On the other hand, as the first differences of A001787 (see the first line in Crossrefs) the equivalent sequence for partitions is A138879. - Omar E. Pol, Aug 28 2013
a(n) is the number of spanning trees of the complete tripartite graph K_{n,1,1}. - James Mahoney, Oct 24 2013
a(n-1) = denominator of the mean (2n/(n+1), after reduction), of the compositions of n; numerator is given by A022998(n). - Clark Kimberling, Mar 11 2014
From Tom Copeland, Nov 09 2014: (Start)
The shifted array belongs to an interpolated family of arrays associated to the Catalan A000108 (t=1), and Riordan, or Motzkin sums A005043 (t=0), with the interpolating o.g.f. (1-sqrt(1-4x/(1+(1-t)x)))/2 and inverse x(1-x)/(1+(t-1)x(1-x)). See A091867 for more info on this family. Here the interpolation is t=-3 (mod signs in the results).
Let C(x) = (1 - sqrt(1-4x))/2, an o.g.f. for the Catalan numbers A000108, with inverse Cinv(x) = x*(1-x) and P(x,t) = x/(1+t*x) with inverse P(x,-t).
Shifted o.g.f: G(x) = x*(1-x)/(1 - 4x*(1-x)) = P[Cinv(x),-4].
Inverse o.g.f: Ginv(x) = [1 - sqrt(1 - 4*x/(1+4x))]/2 = C[P(x, 4)] (signed shifted A001700). Cf. A030528. (End)
For n > 0, element a(n) of the sequence is equal to the gradients of the (n-1)-th row of Pascal triangle multiplied with the square of the integers from n+1,...,1. I.e., row 3 of Pascal's triangle 1,3,3,1 has gradients 1,2,0,-2,-1, so a(4) = 1*(5^2) + 2*(4^2) + 0*(3^2) - 2*(2^2) - 1*(1^2) = 48. - Jens Martin Carlsson, May 18 2017
Number of self-avoiding paths connecting all the vertices of a convex (n+2)-gon. - Ivaylo Kortezov, Jan 19 2020
a(n-1) is the total number of elements of subsets of {1,2,..,n} that contain n. For example, for n = 3, a(2) = 8, and the subsets of {1,2,3} that contain 3 are {3}, {1,3}, {2,3}, {1,2,3}, with a total of 8 elements. - Enrique Navarrete, Aug 01 2020
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A. M. Stepin and A. T. Tagi-Zade, Words with restrictions, pp. 67-74 of Kvant Selecta: Combinatorics I, Amer. Math. Soc., 2001 (G_n on p. 70).
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Marco Abrate, Stefano Barbero, Umberto Cerruti and Nadir Murru, Colored compositions, Invert operator and elegant compositions with the "black tie", Discrete Math., Vol. 335 (2014), pp. 1-7. MR3248794.
Marco Abrate, Stefano Barbero, Umberto Cerruti, and Nadir Murru, Colored compositions, Invert operator and elegant compositions with the "black tie", arXiv:1409.6454 [math.NT], 2014.
Milica Andelic, C. M. da Fonseca and A. Pereira, The mu-permanent, a new graph labeling, and a known integer sequence, arXiv preprint arXiv:1609.04208 [math.CO], 2016.
Félix Balado and Guénolé C. M. Silvestre, Runs of Ones in Binary Strings, arXiv:2302.11532 [math.CO], 2023. See pp. 6-7.
Jean-Luc Baril and Nathanaël Hassler, Intervals in a family of Fibonacci lattices, Univ. de Bourgogne (France, 2024). See p. 7.
Neil J. Calkin, A curious binomial identity, Discr. Math., Vol. 131, No. 1-3 (1994), pp. 335-337.
Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs., Vol. 3 (2000), #00.1.5.
Filippo Disanto and Simone Rinaldi, Symmetric convex permutominoes and involutions, PU. M. A., Vol. 22, No. 1 (2011), pp. 39-60.
David Eppstein, Non-crossing Hamiltonian Paths and Cycles in Output-Polynomial Time, arXiv:2303.00147 [cs.CG], 2023, pp. 2, 19.
Guillermo Esteban, Clemens Huemer and Rodrigo I. Silveira, New production matrices for geometric graphs, arXiv:2003.00524 [math.CO], 2020.
M. Hirschhorn, Calkin's binomial identity, Discr. Math., Vol. 159, No. 1-3 (1996), pp. 273-278.
Milan Janjić and Boris Petković, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013.
Milan Janjić and Boris Petković, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5
C. W. Jones, J. C. P. Miller, J. F. C. Conn and R. C. Pankhurst, Tables of Chebyshev polynomials, Proc. Roy. Soc. Edinburgh. Sect. A., Vol. 62, No. 2 (1946), pp. 187-203.
Sergey Kitaev and Jeffrey B. Remmel, A note on p-Ascent Sequences, Preprint, 2016.
Sergey Kitaev and Jeffrey Remmel, p-Ascent Sequences, arXiv preprint arXiv:1503.00914 [math.CO], 2015.
Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Maohua Le, Two Classes of Smarandache Determinants, Scientia Magna, Vol. 2, No. 1 (2006), pp. 20-25.
Donatella Merlini and Massimo Nocentini, Algebraic Generating Functions for Languages Avoiding Riordan Patterns, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.3.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
Silvana Ramaj, New Results on Cyclic Compositions and Multicompositions, Master's Thesis, Georgia Southern Univ., 2021.
John Riordan and N. J. A. Sloane, Correspondence, 1974.
N. J. A. Sloane, Transforms.
I. Tasoulas, K. Manes, and A. Sapounakis, Hamiltonian intervals in the lattice of binary paths, Elect. J. Comb. (2024) Vol. 31, Issue 1, P1.39.
Jun Wang and Zhizheng Zhang, On extensions of Calkin's binomial identities, Discrete Math., Vol. 274 (2004), 331-342.
FORMULA
a(n) = (n+2)*2^(n-1).
G.f.: (1 - x)/(1 - 2*x)^2 = 2F1(1,3;2;2x).
a(n) = 4*a(n-1) - 4*a(n-2).
G.f. (-1 + (1-2*x)^(-2))/(x*2^2). - Wolfdieter Lang
a(n) = A018804(2^n). - Matthew Vandermast, Mar 01 2003
a(n) = Sum_{k=0..n+2} binomial(n+2, 2k)*k. - Paul Barry, Mar 06 2003
a(n) = (1/4)*A001787(n+2). - Emeric Deutsch, May 24 2003
With a leading 0, this is ((n+1)2^n - 0^n)/4 = Sum_{m=0..n} binomial(n - 1, m - 1)*m, the binomial transform of A004526(n+1). - Paul Barry, Jun 05 2003
a(n) = Sum_{k=0..n} binomial(n, k)*(k + 1). - Lekraj Beedassy, Jun 24 2004
a(n) = A000244(n) - A066810(n). - Ross La Haye, Apr 29 2006
Row sums of triangle A130585. - Gary W. Adamson, Jun 06 2007
Equals A125092 * [1/1, 1/2, 1/3, ...]. - Gary W. Adamson, Nov 16 2007
a(n) = (n+1)*2^n - n*2^(n-1). Equals A128064 * A000079. - Gary W. Adamson, Dec 28 2007
G.f.: F(3, 1; 2; 2x). - Paul Barry, Sep 03 2008
a(n) = 1 + Sum_{k=1..n} (n - k + 4)2^(n - k - 1). This follows from the result that the number of parts equal to k in all compositions of n is (n - k + 3)2^(n - k - 2) for 0 < k < n. - Geoffrey Critzer, Sep 21 2008
a(n) = 2^(n-1) + 2 a(n-1) ; a(n-1) = det(n - |i - j|)_{i, j = 1..n}. - M. F. Hasler, Dec 17 2008
a(n) = 2*a(n-1) + 2^(n-1). - Philippe Deléham, Apr 19 2009
a(n) = A164910(2^n). - Gary W. Adamson, Aug 30 2009
a(n) = Sum_{i=1..2^n} gcd(i, 2^n) = A018804(2^n). So we have: 2^0 * phi(2^n) + ... + 2^n * phi(2^0) = (n + 2)*2^(n-1), where phi is the Euler totient function. - Jeffrey R. Goodwin, Nov 11 2011
a(n) = Sum_{j=0..n} Sum_{i=0..n} binomial(n, i + j). - Yalcin Aktar, Jan 17 2012
Eigensequence of an infinite lower triangular matrix with 2^n as the left border and the rest 1's. - Gary W. Adamson, Jan 30 2012
G.f.: 1 + 2*x*U(0) where U(k) = 1 + (k + 1)/(2 - 8*x/(4*x + (k + 1)/U(k + 1))); (continued fraction, 3 - step). - Sergei N. Gladkovskii, Oct 19 2012
a(n) = Sum_{k=0..n} Sum_{j=0..k} binomial(n,j). - Peter Luschny, Dec 03 2013
a(n) = Hyper2F1([-n, 2], [1], -1). - Peter Luschny, Aug 02 2014
G.f.: 1 / (1 - 3*x / (1 + x / (3 - 4*x))). - Michael Somos, Aug 26 2015
a(n) = -A053120(2+n, n), n >= 0, the negative of the third (sub)diagonal of the triangle of Chebyshev's T polynomials. - Wolfdieter Lang, Nov 26 2019
From Amiram Eldar, Jan 12 2021: (Start)
Sum_{n>=0} 1/a(n) = 8*log(2) - 4.
Sum_{n>=0} (-1)^n/a(n) = 4 - 8*log(3/2). (End)
E.g.f.: exp(2*x)*(1 + x). - Stefano Spezia, Jun 11 2021
EXAMPLE
a(0) = 1, a(1) = 2*1 + 1 = 3, a(2) = 2*3 + 2 = 8, a(3) = 2*8 + 4 = 20, a(4) = 2*20 + 8 = 48, a(5) = 2*48 + 16 = 112, a(6) = 2*112 + 32 = 256, ... - Philippe Deléham, Apr 19 2009
a(2) = 8 since there are 8 length-4 binary sequences with a subsequence of ones of length 2 or more, namely, 1111, 1110, 1101, 1011, 0111, 1100, 0110, and 0011. - Dennis P. Walsh, Oct 25 2012
G.f. = 1 + 3*x + 8*x^2 + 20*x^3 + 48*x^4 + 112*x^5 + 256*x^6 + 576*x^7 + ...
MAPLE
A001792 := n-> (n+2)*2^(n-1);
spec := [S, {B=Set(Z, 0 <= card), S=Prod(Z, B, B)}, labeled]: seq(combstruct[count](spec, size=n)/4, n=2..30); # Zerinvary Lajos, Oct 09 2006
A001792:=-(-3+4*z)/(2*z-1)^2; # Simon Plouffe in his 1992 dissertation, which gives the sequence without the initial 1
G(x):=1/exp(2*x)*(1-x): f[0]:=G(x): for n from 1 to 54 do f[n]:=diff(f[n-1], x) od: x:=0: seq(abs(f[n]), n=0..28 ); # Zerinvary Lajos, Apr 17 2009
a := n -> hypergeom([-n, 2], [1], -1);
seq(round(evalf(a(n), 32)), n=0..31); # Peter Luschny, Aug 02 2014
MATHEMATICA
matrix[n_Integer /; n >= 1] := Table[Abs[p - q] + 1, {q, n}, {p, n}]; a[n_Integer /; n >= 1] := Abs[Det[matrix[n]]] (* Josh Locker (joshlocker(AT)macfora.com), Apr 29 2004 *)
g[n_, m_, r_] := Binomial[n - 1, r - 1] Binomial[m + 1, r] r; Table[1 + Sum[g[n, k - n, r], {r, 1, k}, {n, 1, k - 1}], {k, 1, 29}] (* Geoffrey Critzer, Jul 02 2009 *)
a[n_] := (n + 2)*2^(n - 1); a[Range[0, 40]] (* Vladimir Joseph Stephan Orlovsky, Feb 09 2011 *)
LinearRecurrence[{4, -4}, {1, 3}, 40] (* Harvey P. Dale, Aug 29 2011 *)
CoefficientList[Series[(1 - x) / (1 - 2 x)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Nov 10 2014 *)
b[i_]:=i; a[n_]:=Abs[Det[ToeplitzMatrix[Array[b, n], Array[b, n]]]]; Array[a, 40] (* Stefano Spezia, Sep 25 2018 *)
a[n_]:=Hypergeometric2F1[2, -n+1, 1, -1]; Array[a, 32] (* Giorgos Kalogeropoulos, Jan 04 2022 *)
PROG
(Octave, MATLAB) abs(det(toeplitz(1:n))) % Paul Max Payton, May 23 2006
(PARI) A001792(n)=(n+2)<<(n-1) \\ M. F. Hasler, Dec 17 2008
(Haskell)
a001792 n = a001792_list !! n
a001792_list = scanl1 (+) a045623_list
-- Reinhard Zumkeller, Jul 21 2013
(Magma) [(n+2)*2^(n-1): n in [0..40]]; // Vincenzo Librandi, Nov 10 2014
(GAP) List([0..35], n->(n+2)*2^(n-1)); # Muniru A Asiru, Sep 25 2018
(Python) for n in range(0, 40): print(int((n+2)*2**(n-1)), end=' ') # Stefano Spezia, Oct 16 2018
CROSSREFS
First differences of A001787.
a(n) = A049600(n, 1), a(n) = A030523(n + 1, 1).
Cf. A053113.
Row sums of triangles A008949 and A055248.
a(n) = -A039991(n+2, 2).
If the exponent E in a(n) = Sum_{m=0..n} (Sum_{k=0..m} C(n,k))^E is 1, 2, 3, 4, 5 we get A001792, A003583, A007403, A294435, A294436 respectively.
KEYWORD
nonn,easy,nice,changed
STATUS
approved
Central Delannoy numbers: a(n) = Sum_{k=0..n} C(n,k)*C(n+k,k).
(Formerly M2942 N1184)
+10
190
1, 3, 13, 63, 321, 1683, 8989, 48639, 265729, 1462563, 8097453, 45046719, 251595969, 1409933619, 7923848253, 44642381823, 252055236609, 1425834724419, 8079317057869, 45849429914943, 260543813797441, 1482376214227923, 8443414161166173, 48141245001931263
OFFSET
0,2
COMMENTS
Number of paths from (0,0) to (n,n) in an n X n grid using only steps north, northeast and east (i.e., steps (1,0), (1,1), and (0,1)).
Also the number of ways of aligning two sequences (e.g., of nucleotides or amino acids) of length n, with at most 2*n gaps (-) inserted, so that while unnecessary gappings: - -a a- - are forbidden, both b- and -b are allowed. (If only other of the latter is allowed, then the sequence A000984 gives the number of alignments.) There is an easy bijection from grid walks given by Dickau to such set of alignments (e.g., the straight diagonal corresponds to the perfect alignment with no gaps). - Antti Karttunen, Oct 10 2001
Also main diagonal of array A008288 defined by m(i,1) = m(1,j) = 1, m(i,j) = m(i-1,j-1) + m(i-1,j) + m(i,j-1). - Benoit Cloitre, May 03 2002
So, as a special case of Dmitry Zaitsev's Dec 10 2015 comment on A008288, a(n) is the number of points in Z^n that are L1 (Manhattan) distance <= n from any given point. These terms occur in the crystal ball sequences: a(n) here is the n-th term in the sequence for the n-dimensional cubic lattice. See A008288 for a list of crystal ball sequences (rows or columns of A008288). - Shel Kaphan, Dec 26 2022
a(n) is the number of n-matchings of a comb-like graph with 2*n teeth. Example: a(2) = 13 because the graph consisting of a horizontal path ABCD and the teeth Aa, Bb, Cc, Dd has 13 2-matchings: any of the six possible pairs of teeth and {Aa, BC}, {Aa, CD}, {Bb, CD}, {Cc, AB}, {Dd, AB}, {Dd, BC}, {AB, CD}. - Emeric Deutsch, Jul 02 2002
Number of ordered trees with 2*n+1 edges, having root of odd degree, nonroot nodes of outdegree at most 2 and branches of odd length. - Emeric Deutsch, Aug 02 2002
The sum of the first n coefficients of ((1 - x) / (1 - 2*x))^n is a(n-1). - Michael Somos, Sep 28 2003
Row sums of A063007 and A105870. - Paul Barry, Apr 23 2005
The Hankel transform (see A001906 for definition) of this sequence is A036442: 1, 4, 32, 512, 16384, ... . - Philippe Deléham, Jul 03 2005
Also number of paths from (0,0) to (n,0) using only steps U = (1,1), H = (1,0) and D =(1,-1), U can have 2 colors and H can have 3 colors. - N-E. Fahssi, Jan 27 2008
Equals row sums of triangle A152250 and INVERT transform of A109980: (1, 2, 8, 36, 172, 852, ...). - Gary W. Adamson, Nov 30 2008
Number of overpartitions in the n X n box (treat a walk of the type in the first comment as an overpartition, by interpreting a NE step as N, E with the part thus created being overlined). - William J. Keith, May 19 2017
Diagonal of rational functions 1/(1 - x - y - x*y), 1/(1 - x - y*z - x*y*z). - Gheorghe Coserea, Jul 03 2018
Dimensions of endomorphism algebras End(R^{(n)}) in the Delannoy category attached to the oligomorphic group of order preserving self-bijections of the real line. - Noah Snyder, Mar 22 2023
REFERENCES
Frits Beukers, Arithmetic properties of Picard-Fuchs equations, Séminaire de Théorie des nombres de Paris, 1982-83, Birkhäuser Boston, Inc.
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 593.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
L. Moser and W. Zayachkowski, Lattice paths with diagonal steps, Scripta Math., 26 (1961), 223-229.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 2, 1999; see Example 6.3.8 and Problem 6.49.
D. B. West, Combinatorial Mathematics, Cambridge, 2021, p. 28.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 0..1308 (all terms < 10^1000, first 201 terms from T. D. Noe)
M. Abrate, S. Barbero, U. Cerruti, and N. Murru, Fixed Sequences for a Generalization of the Binomial Interpolated Operator and for some Other Operators, J. Int. Seq. 14 (2011), #11.8.1.
B. Adamczewski, J. P. Bell, and E. Delaygue, Algebraic independence of G-functions and congruences "à la Lucas", arXiv:1603.04187 [math.NT], 2016.
J.-M. Autebert, A.-M. Décaillot, and S. R. Schwer, H.-A. Delannoy et les oeuvres posthumes d'Édouard Lucas, Gazette des Mathématiciens - no 95, Jan 2003 (in French).
J.-M. Autebert, M. Latapy, and S. R. Schwer, Le treillis des Chemins de Delannoy, Discrete Math., 258 (2002), 225-234.
J.-M. Autebert and S. R. Schwer, On generalized Delannoy paths, SIAM J. Discrete Math., 16(2) (2003), 208-223.
Cyril Banderier and Sylviane Schwer, Why Delannoy numbers?, arXiv:math/0411128 [math.CO], 2004.
Cyril Banderier and Sylviane Schwer, Why Delannoy numbers?, Journal of Statistical Planning and Inference, 135(1) (2005), 40-54.
Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, 9 (2006), #06.2.4.
Paul Barry, On the Central Coefficients of Riordan Matrices, Journal of Integer Sequences, 16 (2013), #13.5.1.
Paul Barry, On the Inverses of a Family of Pascal-Like Matrices Defined by Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.5.6.
Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19 (2016), #16.3.5.
Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, 15 (2012), #12.4.8.
Paul Barry, Moment sequences, transformations, and Spidernet graphs, arXiv:2307.00098 [math.CO], 2023.
Thomas Baruchel and C. Elsner, On error sums formed by rational approximations with split denominators, arXiv:1602.06445 [math.NT], 2016.
H. Bateman, Some problems in potential theory, Messenger Math., 52 (1922), 71-78. [Annotated scanned copy]
Raymond A. Beauregard and Vladimir A. Dobrushkin, Powers of a Class of Generating Functions, Mathematics Magazine, 89(5) (2016), 359-363.
Hacène Belbachir and Abdelghani Mehdaoui, Recurrence relation associated with the sums of square binomial coefficients, Quaestiones Mathematicae (2021) Vol. 44, Issue 5, 615-624.
Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., 22 (2019), #19.3.5.
A. Bostan, S. Boukraa, J.-M. Maillard, and J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv:1507.03227 [math-ph], 2015.
J. S. Caughman et al., A note on lattice chains and Delannoy numbers, Discrete Math., 308 (2008), 2623-2628.
Jia-Yu Chen and Chen Wang, Congruences concerning generalized central trinomial coefficients, arXiv:2012.04523 [math.NT], 2020.
Johann Cigler, Some nice Hankel determinants, arXiv:1109.1449 [math.CO], 2011.
Johann Cigler and Christian Krattenthaler, Hankel determinants of linear combinations of moments of orthogonal polynomials, arXiv:2003.01676 [math.CO], 2020.
M. Coster, Email, Nov 1990.
F. D. Cunden, Statistical distribution of the Wigner-Smith time-delay matrix for chaotic cavities, arXiv:1412.2172 [cond-mat.mes-hall], 2014.
Emeric Deutsch and B. E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, J. Num. Theory 117 (2006), 191-215.
Ömür Deveci and Anthony G. Shannon, Some aspects of Neyman triangles and Delannoy arrays, Mathematica Montisnigri (2021) Vol. L, 36-43.
R. M. Dickau, Delannoy and Motzkin Numbers [Many illustrations].
T. Doslic, Seven lattice paths to log-convexity, Acta Appl. Mathem. 110(3) (2010), 1373-1392.
Tomislav Došlic and Darko Veljan, Logarithmic behavior of some combinatorial sequences, Discrete Math. 308(11) (2008), 2182-2212. MR2404544 (2009j:05019) - N. J. A. Sloane, May 01 2012
D. Drake, Bijections from Weighted Dyck Paths to Schröder Paths, J. Int. Seq. 13 (2010), #10.9.2.
Rui Duarte and António Guedes de Oliveira, Generating functions of lattice paths, Univ. do Porto (Portugal 2023).
M. Dziemianczuk, Generalizing Delannoy numbers via counting weighted lattice paths, INTEGERS, 13 (2013), #A54.
M. Dziemianczuk, On Directed Lattice Paths With Additional Vertical Steps, arXiv:1410.5747 [math.CO], 2014.
James East and Nicholas Ham, Lattice paths and submonoids of Z^2, arXiv:1811.05735 [math.CO], 2018.
Steffen Eger, On the Number of Many-to-Many Alignments of N Sequences, arXiv:1511.00622 [math.CO], 2015.
Luca Ferrari and Emanuele Munarini, Enumeration of edges in some lattices of paths, arXiv:1203.6792 [math.CO], 2012.
Luca Ferrari and Emanuele Munarini, Enumeration of edges in some lattices of paths, J. Int. Seq. 17 (2014), #14.1.5.
Seth Finkelstein, Letter to N. J. A. Sloane, Mar 24 1990, with attachments.
S. Garrabrant and I. Pak, Counting with irrational tiles, arXiv:1407.8222 [math.CO], 2014.
Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
Taras Goy and Mark Shattuck, Determinant identities for the Catalan, Motzkin and Schröder numbers, Art Disc. Appl. Math. (2023).
Nate Harman, Andrew Snowden, and Noah Snyder, The Delannoy Category, arxiv:2211.15392 [math.RT], 2023.
Tian-Xiao He, One-pth Riordan Arrays in the Construction of Identities, arXiv:2011.00173 [math.CO], 2020.
M. D. Hirschhorn, How many ways can a king cross the board?, Austral. Math. Soc. Gaz., 27 (2000), 104-106.
P.-Y. Huang, S.-C. Liu, and Y.-N. Yeh, Congruences of Finite Summations of the Coefficients in certain Generating Functions, The Electronic Journal of Combinatorics, 21 (2014), #P2.45.
Svante Janson, Patterns in random permutations avoiding some sets of multiple patterns, arXiv:1804.06071 [math.PR], 2018.
S. Kaparthi and H. R. Rao, Higher dimensional restricted lattice paths with diagonal steps, Discr. Appl. Math., 31 (1991), 279-289.
D. E. Knuth and N. J. A. Sloane, Correspondence, December 1999.
Daniel Krenn and Jeffrey Shallit, Strongly k-recursive sequences, arXiv:2401.14231 [cs.FL], 2024.
D. F. Lawden, On the Solution of Linear Difference Equations, Math. Gaz., 36 (1952), 193-196.
Huyile Liang, Yanni Pei, and Yi Wang, Analytic combinatorics of coordination numbers of cubic lattices, arXiv:2302.11856 [math.CO], 2023. See p. 4.
Huyile Liang, Jeffrey Remmel, and Sainan Zheng, Stieltjes moment sequences of polynomials, arXiv:1710.05795 [math.CO], 2017, see page 18.
Max A. Little and Ugur Kayas, Polymorphic dynamic programming by algebraic shortcut fusion, arXiv:2107.01752 [cs.DS], 2021.
Lily L. Liu, Positivity of three-term recurrence sequences, Electronic J. Combinatorics, 17 (2010), #R57.
R. Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878-2014), arXiv preprint arXiv:1409.3820 [math.NT], 2014.
Lili Mu and Sai-nan Zheng, On the Total Positivity of Delannoy-Like Triangles, Journal of Integer Sequences, 20 (2017), #17.1.6.
Leo Moser, Note 2487: King paths on a chessboard, Math. Gaz., 39 (1955), 54 (one page only).
Emanuele Munarini, Combinatorial properties of the antichains of a garland, Integers, 9 (2009), 353-374.
Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, 9 (2006), #06.2.7.
P. Peart and W.-J. Woan, Generating Functions via Hankel and Stieltjes Matrices, J. Integer Seqs., 3 (2000), #00.2.1.
R. Pemantle and M. C. Wilson, Asymptotics of multivariate sequences, I: smooth points of the singular variety, arXiv:math/0003192 [math.CO], 2000.
C. de Jesús Pita Ruiz Velasco, Convolution and Sulanke Numbers, JIS 13 (2010), #10.1.8.
F. Qi, X.-T. Shi and B.-N. Guo, Some properties of the Schroder numbers, Indian J. Pure Appl. Math 47 (4) (2016) 717-732.
J. L. Ramírez and V. F. Sirvent, A Generalization of the k-Bonacci Sequence from Riordan Arrays, The Electronic Journal of Combinatorics, 22(1) (2015), #P1.38
J. Riordan, Letter, Jul 06 1978.
John Riordan, Letter to N. J. A. Sloane, Sep 26 1980 with notes on the 1973 Handbook of Integer Sequences. Note that the sequences are identified by their N-numbers, not their A-numbers.
S. Samieinia, The number of continuous curves in digital geometry, Research Reports in Mathematics, Number 3, 2008.
S. R. Schwer and J.-M. Auterbert, Henri-Auguste Delannoy, une biographie, Math. & Sci. hum. / Mathematical Social Sciences, 43e année, no. 174 (2006), 25-67.
Seunghyun Seo, The Catalan Threshold Arrangement, Journal of Integer Sequences, 20 (2017), #17.1.1.
M. Shattuck, On the zeros of some polynomials with combinatorial coefficients, Annales Mathematicae et Informaticae, 42 (2013), 93-101.
Zhao Shen, On the 3-adic valuation of a class of Apery-like numbers, arXiv:2112.11135 [math.NT], 2021.
J. B. Slowinski, The Number of Multiple Alignments, Molecular Phylogenetics and Evolution, 10(2) (1998), 264-266.
J. B. Slowinski, The Number of Multiple Alignments, Molecular Phylogenetics and Evolution, 10(2) (1998), 264-266.
R. G. Stanton and D. D. Cowan, Note on a "square" functional equation, SIAM Rev., 12 (1970), 277-279.
R. A. Sulanke, Moments of generalized Motzkin paths, J. Integer Sequences, 3 (2000), #00.1.
R. A. Sulanke, Objects Counted by the Central Delannoy Numbers, Journal of Integer Sequences, 5 (2002), #03.1.5.
R. A. Sulanke et al., Another description of the central Delannoy numbers, Problem 10894, Amer. Math. Monthly, 110(5) (2003), 443-444.
Zhi-Wei Sun, On Delannoy numbers and Schroeder numbers, Journal of Number Theory 131(12) (2011), 2387-2397. doi:10.1016/j.jnt.2011.06.005
Marius Tarnauceanu, The number of fuzzy subgroups of finite cyclic groups and Delannoy numbers, European Journal of Combinatorics 30(1) (2009), 283-287.
Bernhard Von Stengel, New maximal numbers of equilibria in bimatrix games, Discrete & Computational Geometry 21(4) (1999), 557-568. See Eq. (3.7).
Yi Wang, Sai-Nan Zheng, and Xi Chen, Analytic aspects of Delannoy numbers, Discrete Mathematics 342.8 (2019): 2270-2277.
Eric Weisstein's World of Mathematics, Delannoy Number.
Eric Weisstein's World of Mathematics, Schmidt's Problem.
W.-J. Woan, Hankel Matrices and Lattice Paths, J. Integer Sequences, 4 (2001), #01.1.2.
E. X. W. Xia and O. X. M. Yao, A Criterion for the Log-Convexity of Combinatorial Sequences, The Electronic Journal of Combinatorics, 20 (2013), #P3.
Lin Yang, Yu-Yuan Zhang, and Sheng-Liang Yang, The halves of Delannoy matrix and Chung-Feller properties of the m-Schröder paths, Linear Alg. Appl. (2024).
FORMULA
a(n) = P_n(3), where P_n is n-th Legendre polynomial.
G.f.: 1 / sqrt(1 - 6*x + x^2).
a(n) = a(n-1) + 2*A002002(n) = Sum_{j} A063007(n, j). - Henry Bottomley, Jul 02 2001
Dominant term in asymptotic expansion is binomial(2*n, n)/2^(1/4)*((sqrt(2) + 1)/2)^(2*n + 1)*(1 + c_1/n + c_2/n^2 + ...). - Michael David Hirschhorn
a(n) = Sum_{i=0..n} (A000079(i)*A008459(n, i)) = Sum_{i=0..n} (2^i * C(n, i)^2). - Antti Karttunen, Oct 10 2001
a(n) = Sum_{k=0..n} C(n+k, n-k)*C(2*k, k). - Benoit Cloitre, Feb 13 2003
a(n) = Sum_{k=0..n} C(n, k)^2 * 2^k. - Michael Somos, Oct 08 2003
a(n - 1) = coefficient of x^n in A120588(x)^n if n>=0. - Michael Somos, Apr 11 2012
G.f. of a(n-1) = 1 / (1 - x / (1 - 2*x / (1 - 2*x / (1 - x / (1 - 2*x / (1 - x / ...)))))). - Michael Somos, May 11 2012
INVERT transform is A109980. BINOMIAL transform is A080609. BINOMIAL transform of A006139. PSUM transform is A089165. PSUMSIGN transform is A026933. First backward difference is A110170. - Michael Somos, May 11 2012
E.g.f.: exp(3*x)*BesselI(0, 2*sqrt(2)*x). - Vladeta Jovovic, Mar 21 2004
a(n) = Sum_{k=0..n} C(2*n-k, n)*C(n, k). - Paul Barry, Apr 23 2005
a(n) = Sum_{k>=n} binomial(k, n)^2/2^(k+1). - Vladeta Jovovic, Aug 25 2006
a(n) = a(-1 - n) for all n in Z. - Michael Somos, Sep 23 2006
D-finite with recurrence: a(-1) = a(0) = 1; n*a(n) = 3*(2*n-1)*a(n-1) - (n-1)*a(n-2). Eq (4) in T. D. Noe's article in JIS 9 (2006) #06.2.7.
Define general Delannoy numbers by (i,j > 0): d(i,0) = d(0,j) = 1 =: d(0,0) and d(i,j) = d(i-1,j-1) + d(i-2,j-1) + d(i-1,j). Then a(k) = Sum_{j >= 0} d(k,j)^2 + d(k-1,j)^2 = A026933(n)+A026933(n-1). This is a special case of the following formula for general Delannoy numbers: d(k,j) = Sum_{i >= 0, p=0..n} d(p, i) * d(n-p, j-i) + d(p-1, i) * d(n-p-1, j-i-1). - Peter E John, Oct 19 2006
Coefficient of x^n in (1 + 3*x + 2*x^2)^n. - N-E. Fahssi, Jan 11 2008
a(n) = A008288(A046092(n)). - Philippe Deléham, Apr 08 2009
G.f.: 1/(1 - x - 2*x/(1 - x - x/(1 - x - x/(1 - x - x/(1 - ... (continued fraction). - Paul Barry, May 28 2009
G.f.: d/dx log(1/(1 - x*A001003(x))). - Vladimir Kruchinin, Apr 19 2011
G.f.: 1/(2*Q(0) + x - 1) where Q(k) = 1 + k*(1-x) - x - x*(k + 1)*(k + 2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Mar 14 2013
a(n) = Sum_{k=0..n} C(n,k) * C(n+k,k). - Joerg Arndt, May 11 2013
G.f.: G(0), where G(k) = 1 + x*(6 - x)*(4*k + 1)/(4*k + 2 - 2*x*(6-x)*(2*k + 1)*(4*k + 3)/(x*(6 - x)*(4*k + 3) + 4*(k + 1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 22 2013
G.f.: 2/G(0), where G(k) = 1 + 1/(1 - x*(6 - x)*(2*k - 1)/(x*(6 - x)*(2*k - 1) + 2*(k + 1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 16 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(6 - x)*(2*k + 1)/(x*(6 - x)*(2*k + 1) + 2*(k + 1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jul 17 2013
a(n)^2 = Sum_{k=0..n} 2^k * C(2*k, k)^2 * C(n+k, n-k) = A243949(n). - Paul D. Hanna, Aug 17 2014
a(n) = hypergeom([-n, -n], [1], 2). - Peter Luschny, Nov 19 2014
a(n) = Sum_{k=0..n/2} C(n-k,k) * 3^(n-2*k) * 2^k * C(n,k). - Vladimir Kruchinin, Jun 29 2015
a(n) = A049600(n, n-1).
a(n) = Sum_{0 <= j, k <= n} (-1)^(n+j)*C(n,k)*C(n,j)*C(n+k,k)*C(n+k+j,k+j). Cf. A126086 and A274668. - Peter Bala, Jan 15 2020
a(n) ~ c * (3 + 2*sqrt(2))^n / sqrt(n), where c = 1/sqrt(4*Pi*(3*sqrt(2)-4)) = 0.572681... (Banderier and Schwer, 2005). - Amiram Eldar, Jun 07 2020
a(n+1) = 3*a(n) + 2*Sum_{l=1..n} A006318(l)*a(n-l). [Eq. (1.16) in Qi-Shi-Guo (2016)]
a(n) ~ (1 + sqrt(2))^(2*n+1) / (2^(5/4) * sqrt(Pi*n)). - Vaclav Kotesovec, Jan 09 2023
a(n-1) + a(n) = A241023(n) for n >= 1. - Peter Bala, Sep 18 2024
EXAMPLE
G.f. = 1 + 3*x + 13*x^2 + 63*x^3 + 321*x^4 + 1683*x^5 + 8989*x^6 + ...
MAPLE
seq(add(multinomial(n+k, n-k, k, k), k=0..n), n=0..20); # Zerinvary Lajos, Oct 18 2006
seq(orthopoly[P](n, 3), n=0..100); # Robert Israel, Nov 03 2015
MATHEMATICA
f[n_] := Sum[ Binomial[n, k] Binomial[n + k, k], {k, 0, n}]; Array[f, 21, 0] (* Or *)
a[0] = 1; a[1] = 3; a[n_] := a[n] = (3(2 n - 1)a[n - 1] - (n - 1)a[n - 2])/n; Array[a, 21, 0] (* Or *)
CoefficientList[ Series[1/Sqrt[1 - 6x + x^2], {x, 0, 20}], x] (* Robert G. Wilson v *)
Table[LegendreP[n, 3], {n, 0, 22}] (* Jean-François Alcover, Jul 16 2012, from first formula *)
a[n_] := Hypergeometric2F1[-n, n+1, 1, -1]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Feb 26 2013 *)
a[ n_] := With[ {m = If[n < 0, -1 - n, n]}, SeriesCoefficient[ (1 - 6 x + x^2)^(-1/2), {x, 0, m}]]; (* Michael Somos, Jun 10 2015 *)
PROG
(PARI) {a(n) = if( n<0, n = -1 - n); polcoeff( 1 / sqrt(1 - 6*x + x^2 + x * O(x^n)), n)}; /* Michael Somos, Sep 23 2006 */
(PARI) {a(n) = if( n<0, n = -1 - n); subst( pollegendre(n), x, 3)}; /* Michael Somos, Sep 23 2006 */
(PARI) {a(n) = if( n<0, n = -1 - n); n++; subst( Pol(((1 - x) / (1 - 2*x) + O(x^n))^n), x, 1); } /* Michael Somos, Sep 23 2006 */
(PARI) a(n)=if(n<0, 0, polcoeff((1+3*x+2*x^2)^n, n)) \\ Paul Barry, Aug 22 2007
(PARI) /* same as in A092566 but use */
steps=[[1, 0], [0, 1], [1, 1]]; /* Joerg Arndt, Jun 30 2011 */
(PARI) a(n)=sum(k=0, n, binomial(n, k)*binomial(n+k, k)); \\ Joerg Arndt, May 11 2013
(PARI) x='x+O('x^100); Vec(1/sqrt(1 - 6*x + x^2)) \\ Altug Alkan, Oct 17 2015
(Python) # from Nick Hobson.
def f(a, b):
if a == 0 or b == 0:
return 1
return f(a, b - 1) + f(a - 1, b) + f(a - 1, b - 1)
[f(n, n) for n in range(7)]
(Python)
from gmpy2 import divexact
A001850 = [1, 3]
for n in range(2, 10**3):
A001850.append(divexact(A001850[-1]*(6*n-3)-(n-1)*A001850[-2], n))
# Chai Wah Wu, Sep 01 2014
(Maxima) a(n):=coeff(expand((1+3*x+2*x^2)^n), x, n);
makelist(a(n), n, 0, 12); /* Emanuele Munarini, Mar 02 2011 */
(Sage)
a = lambda n: hypergeometric([-n, -n], [1], 2)
[simplify(a(n)) for n in range(23)] # Peter Luschny, Nov 19 2014
CROSSREFS
Main diagonal of A064861.
Column k=2 of A262809 and A263159.
KEYWORD
nonn,easy,nice
EXTENSIONS
New name and reference Sep 15 1995
Formula and more references from Don Knuth, May 15 1996
STATUS
approved

Search completed in 0.044 seconds