[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a049600 -id:a049600
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = Sum_{k=0..n-1} binomial(n-1,k)*binomial(n+k,k). Also a(n) = T(n,n), array T as in A049600.
+20
21
0, 1, 4, 19, 96, 501, 2668, 14407, 78592, 432073, 2390004, 13286043, 74160672, 415382397, 2333445468, 13141557519, 74174404608, 419472490257, 2376287945572, 13482186743203, 76598310928096, 435730007006341, 2481447593848524, 14146164790774359
COMMENTS
a(n) = A049600(2*n,n), when A049600 is seen as a triangle read by rows. - Reinhard Zumkeller, Apr 15 2014
PROG
a047781 n = a049600 (2 * n) n -- Reinhard Zumkeller, Apr 15 2014
a(n) = T(n,2), array T as in A049600.
+20
20
0, 1, 4, 13, 38, 104, 272, 688, 1696, 4096, 9728, 22784, 52736, 120832, 274432, 618496, 1384448, 3080192, 6815744, 15007744, 32899072, 71827456, 156237824, 338690048, 731906048, 1577058304, 3388997632, 7264534528, 15535702016
a(n) = T(n,3), array T as in A049600.
+20
11
0, 1, 5, 19, 63, 192, 552, 1520, 4048, 10496, 26624, 66304, 162560, 393216, 940032, 2224128, 5214208, 12124160, 27983872, 64159744, 146210816, 331350016, 747110400, 1676673024, 3746562048, 8338276352, 18488492032
CROSSREFS
Cf. A049600.
Triangle with columns built from row sums of the partial row sums triangles obtained from Pascal's triangle A007318. Essentially A049600 formatted differently.
+20
9
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 8, 4, 1, 1, 16, 20, 13, 5, 1, 1, 32, 48, 38, 19, 6, 1, 1, 64, 112, 104, 63, 26, 7, 1, 1, 128, 256, 272, 192, 96, 34, 8, 1, 1, 256, 576, 688, 552, 321, 138, 43, 9, 1, 1, 512, 1280, 1696, 1520, 1002, 501, 190, 53, 10, 1, 1, 1024, 2816, 4096
CROSSREFS
Cf. A049600, column sequences are A000012 (powers of 1), A000079 (powers of 2), A001792, A049611, A049612, A055589, A055852-5 for m=0..9, row sums: A055588.
Number of loopless rooted planar maps with 3 faces and n vertices and no isthmuses. Also a(n)=T(4,n-3), array T as in A049600.
(Formerly M4490)
+20
4
1, 8, 20, 38, 63, 96, 138, 190, 253, 328, 416, 518, 635, 768, 918, 1086, 1273, 1480, 1708, 1958, 2231, 2528, 2850, 3198, 3573, 3976, 4408, 4870, 5363, 5888, 6446, 7038, 7665, 8328, 9028, 9766, 10543, 11360, 12218, 13118, 14061, 15048
CROSSREFS
Cf. A049600.
a(n)=Sum{T(2i,n-2i): i=0,1,...,[ n/2 ]}, array T as in A049600.
+20
1
0, 0, 2, 3, 12, 25, 76, 182, 504, 1275, 3410, 8811, 23256, 60580, 159094, 415715, 1089648, 2850645, 7466468, 19541994, 51170460, 133951675, 350713222, 918141623, 2403786672, 6293097000, 16475700746, 43133687427, 112925875764
a(n)=T(n,n+2), array T as in A049600.
+20
1
0, 1, 6, 34, 190, 1059, 5908, 33028, 185076, 1039525, 5851626, 33006438, 186519138, 1055789511, 5985405000, 33979107336, 193143097288
a(n)=T(n,n+3), array T as in A049600.
+20
0
0, 1, 7, 43, 253, 1462, 8378, 47818, 272422, 1550927, 8829033, 50276013, 286430763, 1632808572, 9313861092, 53163187748, 303653552188
a(n) = (n+2)*2^(n-1).
(Formerly M2739 N1100)
+10
211
1, 3, 8, 20, 48, 112, 256, 576, 1280, 2816, 6144, 13312, 28672, 61440, 131072, 278528, 589824, 1245184, 2621440, 5505024, 11534336, 24117248, 50331648, 104857600, 218103808, 452984832, 939524096, 1946157056, 4026531840, 8321499136, 17179869184, 35433480192
CROSSREFS
a(n) = A049600(n, 1), a(n) = A030523(n + 1, 1).
Central Delannoy numbers: a(n) = Sum_{k=0..n} C(n,k)*C(n+k,k).
(Formerly M2942 N1184)
+10
190
1, 3, 13, 63, 321, 1683, 8989, 48639, 265729, 1462563, 8097453, 45046719, 251595969, 1409933619, 7923848253, 44642381823, 252055236609, 1425834724419, 8079317057869, 45849429914943, 260543813797441, 1482376214227923, 8443414161166173, 48141245001931263
FORMULA
a(n) = A049600(n, n-1).

Search completed in 0.038 seconds