[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075729
Number of different hierarchical orderings that can be formed from n labeled elements: these are divided into groups and the elements in each group are then arranged in a "preferential arrangement" or "weak order" as in A000670.
32
1, 1, 4, 23, 173, 1602, 17575, 222497, 3188806, 50988405, 899222457, 17329515172, 362164300173, 8155216185781, 196789115887252, 5064722539020379, 138457553073641465, 4006059432756066914, 122284085809137076203, 3926775294104305483621, 132313462760902116605534
OFFSET
0,3
COMMENTS
If all individuals form a single society ("uniparate society"), then the number of different hierarchies for that single society is equal to the ordered Bell number Bell_ordered(n) (A000670).
Represent a labeled pre-order (quasi-order, topology, A000798) as a directed graph. a(n) is the number of such digraphs in which the underlying graph of each component is complete. a(3)=23 because there are 29 such digraphs but o->o<-o and o<-o->o are not counted. Each has 3 labelings. 29 - 6 = 23. - Geoffrey Critzer, Jul 30 2014
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..419 (first 101 terms from T. D. Noe)
José A. Adell and Sithembele Nkonkobe, A unified generalization of Touchard and Fubini polynomial extensions, Integers (2023) 23, #A80.
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 571.
Robert Gill, The number of elements in a generalized partition semilattice, Discrete mathematics 186.1-3 (1998): 125-134. See Example 2.
Norihiro Nakashima and Shuhei Tsujie, Enumeration of Flats of the Extended Catalan and Shi Arrangements with Species, arXiv:1904.09748 [math.CO], 2019.
K. A. Penson, P. Blasiak, G. Duchamp, A. Horzela and A. I. Solomon, Hierarchical Dobinski-type relations via substitution and the moment problem [J. Phys. A 37 (2004), 3475-3487]
N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, Order 21 (2004), 83-89.
Kruchinin Vladimir Victorovich, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
Thomas Wieder, The number of certain rankings and hierarchies formed from labeled or unlabeled elements and sets, Applied Mathematical Sciences, vol. 3, 2009, no. 55, 2707 - 2724. - Thomas Wieder, Nov 14 2009
FORMULA
E.g.f.: exp(f(x)-1) where f(x) = 1/(2-exp(x)) = e.g.f. for A000670.
STIRLINGi transform of A000262.
a(n) = (n-1)! * Sum_k=1^n a(n-k)*b(k)/((n-k)!*(k-1)!); a(n) = a(n) + C(n-1, k-1)*a(n-k)*b(k) (where b(n) = A000670(n)). - Thomas Wieder, Dec 31 2002
a(n) = (Sum_{j=1..n} m(j))*(n!*Product_{j=1..n} B(j)^m(j))/(Product_{j=1..n} (m(j))!*(j!)^m(j)), where the sum is over all (m(1),m(2),...,m(n)) such that Sum_{j=1..n} (j*m(j)) = n. - Thomas Wieder, May 18 2003
a(n) is asymptotic to exp(1/(4*log(2))-3/4) /(2*sqrt(Pi*sqrt(2*log(2)))) *n!*exp(-log(log(2))*n)*exp(sqrt(2*n /log(2))) /n^(3/4). Calculated using the Maple package "algolib", using the command "equivalent(exp(1/(2-exp(x))-1), x, n);". - Thomas Wieder, Nov 12 2002
a(n) = Sum_{k=0..n} A079641(n,k)*A000110(k). - Vladeta Jovovic, Sep 25 2006
a(n) = sum(sum(stirling2(n,k)*k!*C(k-1,m-1), k=m..n)/m!, m=1..n). - Vladimir Kruchinin, Aug 10 2010
EXAMPLE
a(3) = 23: Let the n = 3 individuals be named 1, 2 and 3. Let a pair of parentheses () indicate a society and let square brackets [] denote a set of disparate societies. Finally, let the ranks be ordered from left to right and separated by a colon, e.g., (1,2:3) is a society with individual 3 on top and individuals 1 and 2 on the same bottom rank.
Then the hierarchical ordering for n = 3 is composed of the following sets: [(1),(2),(3)], [(1,2)(3)], [(3,2)(1)], [(3,1)(2)], [(1:2)(3)], [(3:2)(1)], [(1:3)(2)], [(2:1)(3)], [(2:3)(1)], [(3:1)(2)], [(3:2:1)], [(1:3:2)], [(2:1:3)], [(1:2:3)], [(3:1:2)], [(2:3:1)], [(1,3:2)], [(3,2:1)], [(2,1:3)], [(3:1,2)], [(1:2,3)], [(2:3,1)], [(1,2,3)].
MAPLE
A075729 := n->n!*exp(1/4/ln(2)-3/4)/2/sqrt(Pi)/(2*ln(2))^(1/4)*exp(-n*ln(ln(2)))*exp(sqrt(2*n/ln(2)))*n^(-3/4);
with(combstruct); SetSeqSetL := [T, {T=Set(S), S=Sequence(U, card >= 1), U=Set(Z, card >=1)}, labeled]; seq(count(SetSeqSetL, size=j), j=1..12);
# alternative Maple program:
b:= proc(n) option remember: `if`(n<2, 1,
(2*n-1)*b(n-1) -(n-1)*(n-2)*b(n-2))
end:
a:= n-> add(b(k)*Stirling2(n, k), k=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, May 22 2018
MATHEMATICA
Range[0, 20]!CoefficientList[Series[E^(1/(2 - E^x) - 1), {x, 0, 20}], x] (* Robert G. Wilson v, Jul 13 2004 *)
Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)(i+r)^(n-r)/(i!*(k-i-r)!), {i, 0, k-r}], {k, r, n}]; Fubini[0, 1] = 1; a[0] = 1; a[n_] := a[n] = (n-1)! Sum[a[n-k] Fubini[k, 1]/((n-k)! (k-1)!), {k, 1, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 31 2016 *)
Table[Sum[BellY[n, k, PolyLog[-Range[n], 1/2]/2], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
With[{nn=20}, CoefficientList[Series[Exp[1/(2-Exp[x])-1], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Aug 26 2022 *)
PROG
(Maxima) a(n):= sum(sum(stirling2(n, k)*k!*binomial(k-1, m-1), k, m, n)/m!, m, 1, n) /* Vladimir Kruchinin, Aug 10 2010 */
CROSSREFS
Cf. A000670, A075744. See A075900 for the unlabeled case.
Sequence in context: A113869 A084357 A360868 * A328006 A127131 A083355
KEYWORD
nonn,nice
AUTHOR
STATUS
approved