[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294435
a(n) = Sum_{m=0..n} (Sum_{k=0..m} binomial(n,k))^4.
5
1, 17, 338, 6754, 131428, 2495906, 46434532, 849488292, 15328171208, 273445276258, 4831735919236, 84688295720132, 1474133269832776, 25506505928857892, 439034457665156168, 7522356118216054216, 128364598453699389840, 2182553210810903666402, 36989251585608710893636
OFFSET
0,2
LINKS
N. J. Calkin, A curious binomial identity, Discr. Math., 131 (1994), 335-337.
M. Hirschhorn, Calkin's binomial identity, Discr. Math., 159 (1996), 273-278.
FORMULA
a(n) ~ n * 2^(4*n - 1). - Vaclav Kotesovec, Jun 07 2019
MAPLE
A:=proc(n, k) local j; add(binomial(n, j), j=0..k); end;
S:=proc(n, p) local i; global A; add(A(n, i)^p, i=0..n); end;
[seq(S(n, 4), n=0..30)];
MATHEMATICA
Table[Sum[Sum[Binomial[n, k], {k, 0, m}]^4, {m, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Jun 07 2019 *)
PROG
(PARI) a(n) = sum(m=0, n, sum(k=0, m, binomial(n, k))^4); \\ Michel Marcus, Nov 18 2017
CROSSREFS
Same expression with exponent b instead of 4: A001792 (b=1), A003583 (b=2), A007403 (b=3), A294435 (b=4), A294436 (b=5).
Sequence in context: A136270 A009046 A012112 * A361096 A137246 A171860
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 17 2017
STATUS
approved