[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..n-1} binomial(n-1,k)*binomial(n+k,k). Also a(n) = T(n,n), array T as in A049600.
21

%I #137 Mar 22 2023 22:00:08

%S 0,1,4,19,96,501,2668,14407,78592,432073,2390004,13286043,74160672,

%T 415382397,2333445468,13141557519,74174404608,419472490257,

%U 2376287945572,13482186743203,76598310928096,435730007006341,2481447593848524,14146164790774359

%N a(n) = Sum_{k=0..n-1} binomial(n-1,k)*binomial(n+k,k). Also a(n) = T(n,n), array T as in A049600.

%C Also main diagonal of array: m(i,1)=1, m(1,j)=j, m(i,j)=m(i,j-1)+m(i-1,j-1)+m(i-1,j): 1 2 3 4 ... / 1 4 9 16 ... / 1 6 19 44 ... / 1 8 33 96 ... /. - _Benoit Cloitre_, Aug 05 2002

%C This array is now listed as A142978, where some conjectural congruences for the present sequence are given. - _Peter Bala_, Nov 13 2008

%C Convolution of central Delannoy numbers A001850 and little Schroeder numbers A001003. Hankel transform is 2^C(n+1,2)*A007052(n). - _Paul Barry_, Oct 07 2009

%C Define a finite triangle T(r,c) with T(r,0) = binomial(n,r) for 0 <= r <= n and the other terms recursively with T(r,c) = T(r-1,c-1) + 2*T(r,c-1). The sum of the last terms in the rows is Sum_{r=0..n} T(r,r) = a(n+1). Example: For n=4 the triangle has the rows 1; 4 9; 6 16 41; 4 14 44 129; 1 6 26 96 321 having sum of last terms 1 + 9 + 41 + 129 + 321 = 501 = a(5). - _J. M. Bergot_, Feb 15 2013

%C a(n) = A049600(2*n,n), when A049600 is seen as a triangle read by rows. - _Reinhard Zumkeller_, Apr 15 2014

%C a(n-1) for n > 1 is the number of assembly trees with the connected gluing rule for cycle graphs with n vertices. - _Nick Mayers_, Aug 16 2018

%H Seiichi Manyama, <a href="/A047781/b047781.txt">Table of n, a(n) for n = 0..1000</a> (terms 0..200 from T. D. Noe)

%H A. Bacher, <a href="http://arxiv.org/abs/1301.1365">Directed and multi-directed animals on the square lattice with next nearest neighbor edges</a>, arXiv preprint arXiv:1301.1365 [math.CO], 2013. See D(t). - From _N. J. A. Sloane_, Feb 14 2013

%H C. Banderier and P. Hitczenko, <a href="http://doi.org/10.1016/j.dam.2011.12.011">Enumeration and asymptotics of restricted compositions having the same number of parts</a>, Disc. Appl. Math. 160 (18) (2012) 2542-2554. Table 2.

%H M. Bona and A. Vince, <a href="https://arxiv.org/abs/1204.3842">The Number of Ways to Assemble a Graph</a>, arXiv preprint arXiv:1204.3842 [math.CO], 2012.

%H F. D. Cunden, F. Mezzadri, N. Simm and P. Vivo, <a href="http://arxiv.org/abs/1601.06690">Correlators for the Wigner-Smith time-delay matrix of chaotic cavities</a>, arXiv:1601.06690 [math-ph], 2016.

%H A. Dougherty, N. Mayers, and R. Short, <a href="https://arxiv.org/abs/1807.08079"> How to Build a Graph in n Days: Some Variants on Graph Assembly</a>, arXiv preprint arXiv:1807.08079 [math.CO], 2018.

%H Steffen Eger, <a href="http://arxiv.org/abs/1511.00622">On the Number of Many-to-Many Alignments of N Sequences</a>, arXiv:1511.00622 [math.CO], 2015.

%H Steffen Eger, <a href="https://arxiv.org/abs/1704.04964">The Combinatorics of Weighted Vector Compositions</a>, arXiv:1704.04964 [math.CO], 2017.

%H Milan Janjic, <a href="http://www.pmfbl.org/janjic/">Two Enumerative Functions</a>

%H G. Rutledge and R. D. Douglass, <a href="http://www.jstor.org/stable/2301099">Integral functions associated with certain binomial coefficient sums</a>, Amer. Math. Monthly, 43 (1936), 27-32.

%F D-finite with recurrence n*(2*n-3)*a(n) - (12*n^2-24*n+8)*a(n-1) + (2*n-1)*(n-2)*a(n-2) = 0. - _Vladeta Jovovic_, Aug 29 2004

%F a(n+1) = Sum_{k=0..n} binomial(n, k)*binomial(n+1, k+1)*2^k. - _Paul Barry_, Sep 20 2004

%F a(n) = Sum_{k=0..n} T(n, k), array T as in A008288.

%F If shifted one place left, the third binomial transform of A098660. - _Paul Barry_, Sep 20 2004

%F G.f.: ((1+x)/sqrt(1-6x+x^2)-1)/4. - _Paul Barry_, Sep 20 2004, simplified by _M. F. Hasler_, Oct 09 2012

%F E.g.f. for sequence shifted left: Sum_{n>=0} a(n+1)*x^n/n! = exp(3*x)*(BesselI(0, 2*sqrt(2)*x)+BesselI(1, 2*sqrt(2)*x)/sqrt(2)). - _Paul Barry_, Sep 20 2004

%F a(n) = Sum_{k=0..n-1} C(n,k)*C(n-1,k)*2^(n-k-1); a(n+1) = 2^n*Hypergeometric2F1(-n,-n-1;1;1/2). - _Paul Barry_, Feb 08 2011

%F a(n) ~ 2^(1/4)*(3+2*sqrt(2))^n/(4*sqrt(Pi*n)). - _Vaclav Kotesovec_, Oct 08 2012

%F Recurrence (an alternative): n*a(n) = (6-n)*a(n-6) + 2*(5*n-27)*a(n-5) + (84-15*n)*a(n-4) + 52*(3-n)*a(n-3) + 3*(2-5*n)*a(n-2) + 2*(5*n-3)*a(n-1), n >= 7. - _Fung Lam_, Feb 05 2014

%F a(n) = A241023(n) / 4. - _Reinhard Zumkeller_, Apr 15 2014

%F a(n) = Hyper2F1([-n, n], [1], -1)/2 for n > 0. - _Peter Luschny_, Aug 02 2014

%F n^2*a(n) = Sum_{k=0..n-1} (2*k^2+2*k+1)*binomial(n-1,k)*binomial(n+k,k). By the Zeilberger algorithm, both sides of the equality satisfy the same recurrence. - _Zhi-Wei Sun_, Aug 30 2014

%F a(n) = [x^n] (1/2) * ((1+x)/(1-x))^n for n > 0. - _Seiichi Manyama_, Jun 07 2018

%p a := proc(n) local k; add(binomial(n-1,k)*binomial(n+k,k),k=0..n-1); end;

%t Table[SeriesCoefficient[x*((1+x)-Sqrt[1-6*x+x^2])/(4*x*Sqrt[1-6*x+x^2]),{x,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Oct 08 2012 *)

%t a[n_] := Hypergeometric2F1[1-n, n+1, 1, -1]; a[0] = 0; Table[a[n], {n, 0, 23}] (* _Jean-François Alcover_, Feb 26 2013 *)

%t a[n_] := Sum[ Binomial[n - 1, k] Binomial[n + k, k], {k, 0, n - 1}]; Array[a, 25] (* _Robert G. Wilson v_, Aug 08 2018 *)

%o (Maxima) makelist(if n=0 then 0 else sum(binomial(n-1, k)*binomial(n+k, k), k, 0, n-1), n, 0, 22); \\ _Bruno Berselli_, May 19 2011

%o (Magma) [n eq 0 select 0 else &+[Binomial(n-1, k)*Binomial(n+k, k): k in [0..n-1]]: n in [0..22]]; // _Bruno Berselli_, May 19 2011

%o (PARI) A047781(n)=polcoeff((1+x)/sqrt(1+(O(x^n)-6)*x+x^2),n)\4 \\ _M. F. Hasler_, Oct 09 2012

%o (Haskell)

%o a047781 n = a049600 (2 * n) n -- _Reinhard Zumkeller_, Apr 15 2014

%o (Python)

%o from sympy import binomial

%o def a(n):

%o return sum(binomial(n - 1, k) * binomial(n + k, k) for k in range(n))

%o print([a(n) for n in range(51)]) # _Indranil Ghosh_, Apr 18 2017

%o (Python)

%o from math import comb

%o def A047781(n): return sum(comb(n,k)**2*k<<k-1 for k in range(1,n+1))//n if n else 0 # _Chai Wah Wu_, Mar 22 2023

%Y Cf. A002003. Column 1 of A296129.

%K nonn

%O 0,3

%A _N. J. A. Sloane_