[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342980
Triangle read by rows: T(n,k) is the number of rooted loopless planar maps with n edges, k faces and no isthmuses, n >= 0, k = 1..n+1.
8
1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 8, 1, 0, 0, 1, 20, 20, 1, 0, 0, 1, 38, 131, 38, 1, 0, 0, 1, 63, 469, 469, 63, 1, 0, 0, 1, 96, 1262, 3008, 1262, 96, 1, 0, 0, 1, 138, 2862, 12843, 12843, 2862, 138, 1, 0, 0, 1, 190, 5780, 42602, 83088, 42602, 5780, 190, 1, 0
OFFSET
0,13
COMMENTS
The number of vertices is n + 2 - k.
For k >= 2, columns k without the initial zero term is a polynomial of degree 3*(k-2). This is because adding a face can increase the number of vertices whose degree is greater than two by at most two.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus. III: Nonseparable maps, J. Combinatorial Theory Ser. B 18 (1975), 222-259, Table VIa.
FORMULA
T(n,n+2-k) = T(n,k).
G.f.: A(x,y) satisfies A(x,y) = G(x*A(x,y)^2,y) where G(x,y) = 1 + x*B(x,y) and B(x,y) is the g.f. of A082680.
EXAMPLE
Triangle begins:
1;
0, 0;
0, 1, 0;
0, 1, 1, 0;
0, 1, 8, 1, 0;
0, 1, 20, 20, 1, 0;
0, 1, 38, 131, 38, 1, 0;
0, 1, 63, 469, 469, 63, 1, 0;
0, 1, 96, 1262, 3008, 1262, 96, 1, 0;
0, 1, 138, 2862, 12843, 12843, 2862, 138, 1, 0;
...
MATHEMATICA
G[m_, y_] := Sum[x^n*Sum[(n + k - 1)!*(2*n - k)!*y^k/(k!*(n + 1 - k)!*(2*k - 1)!*(2*n - 2*k + 1)!), {k, 1, n}], {n, 1, m}] + O[x]^m;
H[n_] := With[{g = 1 + x*G[n - 1, y]}, Sqrt[InverseSeries[x/g^2 + O[x]^(n + 1), x]/x]];
Join[{{1}, {0, 0}}, Append[CoefficientList[#, y], 0]& /@ CoefficientList[ H[11], x][[3;; ]]] // Flatten (* Jean-François Alcover, Apr 15 2021, after Andrew Howroyd *)
PROG
(PARI) \\ here G(n, y) gives A082680 as g.f.
G(n, y)={sum(n=1, n, x^n*sum(k=1, n, (n+k-1)!*(2*n-k)!*y^k/(k!*(n+1-k)!*(2*k-1)!*(2*n-2*k+1)!))) + O(x*x^n)}
H(n)={my(g=1+x*G(n-1, y), v=Vec(sqrt(serreverse(x/g^2)/x))); vector(#v, n, Vecrev(v[n], n))}
{ my(T=H(8)); for(n=1, #T, print(T[n])) }
CROSSREFS
Columns (and diagonals) are A006416, A006417, A006418.
Row sums are A099553(n-1).
Sequence in context: A209914 A375078 A365237 * A094922 A230049 A088990
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Apr 01 2021
STATUS
approved