A Generalization of the $k$-Bonacci Sequence from Riordan Arrays

  • José L. Ramírez
  • Víctor F. Sirvent
Keywords: Riordan arrays, $k$-bonacci sequence, lattice paths

Abstract

In this article, we introduce  a family of weighted lattice paths, whose step set is $\{H=(1,0), V=(0,1), D_1=(1,1), \dots, D_{m-1}=(1,m-1)\}$. Using these lattice paths, we define a family of Riordan arrays whose sum on the rising diagonal is the $k$-bonacci sequence. This construction generalizes the Pascal and Delannoy Riordan arrays, whose sum on the rising diagonal is the Fibonacci and tribonacci sequence, respectively.  From this family of Riordan arrays we introduce a generalized $k$-bonacci polynomial sequence, and we give a lattice path combinatorial interpretation of these polynomials. In particular, we find a combinatorial interpretation of tribonacci and tribonacci-Lucas polynomials.

Published
2015-02-16
Article Number
P1.38