[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109980
Number of Delannoy paths of length n with no (1,1)-steps on the line y=x.
7
1, 2, 8, 36, 172, 852, 4324, 22332, 116876, 618084, 3296308, 17702412, 95627580, 519170004, 2830862532, 15494401116, 85091200620, 468692890308, 2588521289812, 14330490031020, 79509491551772, 442019710668852
OFFSET
0,2
COMMENTS
A Delannoy path of length n is a path from (0,0) to (n,n), consisting of steps E=(1,0), N=(0,1) and D=(1,1).
Equals left border of triangle A152250 and INVERTi transform of A001850, the Delannoy numbers: (1, 3, 13, 63, 321, ...). - Gary W. Adamson, Nov 30 2008
Hankel transform is A036442. First column of Riordan array ((1-x)/(1+x), x/(1+3x+2x^2))^{-1}. - Paul Barry, Apr 27 2009
LINKS
Robert A. Sulanke, Objects Counted by the Central Delannoy Numbers, Journal of Integer Sequences, Volume 6, 2003, Article 03.1.5.
FORMULA
G.f.: 1/(z + sqrt(1 - 6*z + z^2)).
Moment representation: a(n) = 0^n/3 + (1/Pi)*Integral_{x=3-2*sqrt(2)..3+2*sqrt(2)} x^n*sqrt(-x^2+6x-1)/(x*(6-x)) dx. - Paul Barry, Apr 27 2009
From Gary W. Adamson, Aug 23 2011: (Start)
a(n) is the upper left term in M^n, M = an infinite square production matrix as follows:
2, 2, 0, 0, 0, 0, ...
2, 1, 2, 0, 0, 0, ...
2, 1, 1, 2, 0, 0, ...
2, 1, 1, 1, 2, 0, ...
2, 1, 1, 1, 1, 2, ...
... (End)
D-finite with recurrence: n*a(n) = 3*(4*n-3)*a(n-1) - (37*n-57)*a(n-2) + 6*(n-3)*a(n-3). - Vaclav Kotesovec, Oct 18 2012
a(n) ~ 2^(1/4) * (1 + sqrt(2))^(2*n+3) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Oct 18 2012, simplified Dec 24 2017
EXAMPLE
a(2)=8 because we have NDE, EDN, NENE, NEEN, ENNE, ENEN, NNEE and EENN.
MAPLE
g:=1/(z+sqrt(1-6*z+z^2)): gser:=series(g, z=0, 28): 1, seq(coeff(gser, z^n), n=1..25);
MATHEMATICA
CoefficientList[Series[1/(x+Sqrt[1-6*x+x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 18 2012 *)
CROSSREFS
First column of A109979.
Cf. A152250.
Sequence in context: A350645 A330793 A352862 * A186338 A190862 A110837
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jul 06 2005
STATUS
approved