OFFSET
0,2
COMMENTS
In general, we have the binomial identity:
if b(n) = Sum_{k=0..n} t^k * C(2*k, k) * C(n+k, n-k), then b(n)^2 = Sum_{k=0..n} (t^2+t)^k * C(2*k, k)^2 * C(n+k, n-k), where the g.f. of b(n) is 1/sqrt(1 - (4*t+2)*x + x^2), and the g.f. of b(n)^2 is 1 / AGM(1-x, sqrt((1+x)^2 - (4*t+2)^2*x)), where AGM(x,y) = AGM((x+y)/2,sqrt(x*y)) is the arithmetic-geometric mean.
Note that the g.f. of A001850 is 1/sqrt(1 - 6*x + x^2).
Limit_{n -> oo} a(n+1)/a(n) = (3 + 2*sqrt(2))^2 = 17 + 12*sqrt(2).
From Gheorghe Coserea, Jul 05 2016: (Start)
Diagonal of the rational function 1/(1 - x - y - z - x*y + x*z - y*z - x*y*z).
Annihilating differential operator: x*(x-1)*(x+1)*(x^2-34*x+1)*Dx^2 + (3*x^4-66*x^3-70*x^2+70*x-1)*Dx + x^3-7*x^2-35*x+9.
(End).
The sequence b(n) mentioned above is the sequence of shifted Legendre polynomials P(n,2*t + 1) (see A063007). See Zudilin for a g.f. for the sequence b(n)^2. - Peter Bala, Mar 02 2017
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..500
A. Bostan, S. Boukraa, J.-M. Maillard, and J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
Jacques-Arthur Weil, Supplementary Material for the Paper "Diagonals of rational functions and selected differential Galois groups"
W. Zudilin, A generating function of the squares of Legendre polynomials, arXiv:1210.2493v2 [math.CA], 2012.
FORMULA
G.f.: 1 / AGM(1-x, sqrt(1-34*x+x^2)). - Paul D. Hanna, Aug 30 2014
a(n) = Sum_{k=0..n} 2^k * C(2*k, k)^2 * C(n+k, n-k).
a(n)^(1/2) = Sum_{k=0..n} C(2*k, k) * C(n+k, n-k).
Recurrence: n^2*(2*n-3)*a(n) = (2*n-1)*(35*n^2 - 70*n + 26)*a(n-1) - (2*n-3)*(35*n^2 - 70*n + 26)*a(n-2) + (n-2)^2*(2*n-1)*a(n-3). - Vaclav Kotesovec, Aug 18 2014
a(n) ~ (4 + 3*sqrt(2)) * (3 + 2*sqrt(2))^(2*n) / (8*Pi*n). - Vaclav Kotesovec, Aug 18 2014
From Gheorghe Coserea, Jul 05 2016: (Start)
G.f.: hypergeom([1/12, 5/12],[1],27648*x^4*(x^2-34*x+1)*(x-1)^2/(1-36*x+134*x^2-36*x^3+x^4)^3)/(1-36*x+134*x^2-36*x^3+x^4)^(1/4).
0 = x*(x-1)*(x+1)*(x^2-34*x+1)*y'' + (3*x^4-66*x^3-70*x^2+70*x-1)*y' + (x^3-7*x^2-35*x+9)*y, where y is g.f.
(End)
a(n) = Sum_{k = 0..n} 4^k*binomial(n+k,2*k)^2*binomial(2*k,k). - Peter Bala, Mar 02 2017
a(n) = hypergeom([1/2, -n, n + 1], [1, 1], -8). - Peter Luschny, Mar 14 2018
G.f.: Sum_{n >= 0} (2^n)*binomial(2*n,n)^2 *x^n/(1-x)^(2*n+1). - Peter Bala, Feb 07 2022
EXAMPLE
G.f.: A(x) = 1 + 9*x + 169*x^2 + 3969*x^3 + 103041*x^4 + 2832489*x^5 +...
MATHEMATICA
Table[Sum[2^k *Binomial[2*k, k]^2 *Binomial[n+k, n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 18 2014 *)
a[n_]:= HypergeometricPFQ[{1/2, -n, n+1}, {1, 1}, -8];
Table[a[n], {n, 0, 17}] (* Peter Luschny, Mar 14 2018 *)
LegendreP[Range[0, 30], 3]^2 (* G. C. Greubel, May 17 2023 *)
PROG
(PARI) {a(n) = sum(k=0, n, 2^k * binomial(2*k, k)^2 * binomial(n+k, n-k) )}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n)=polcoeff( 1 / agm(1-x, sqrt((1+x)^2 - 36*x +x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", "))
(Python)
from math import comb
def A243949(n): return sum(comb(n, k)*comb(n+k, k) for k in range(n+1))**2 # Chai Wah Wu, Mar 23 2023
(Magma) [Evaluate(LegendrePolynomial(n), 3)^2 : n in [0..40]]; // G. C. Greubel, May 17 2023
(SageMath) [gen_legendre_P(n, 0, 3)^2 for n in range(41)] # G. C. Greubel, May 17 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Aug 17 2014
STATUS
approved