[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243949
Squares of the central Delannoy numbers: a(n) = A001850(n)^2.
7
1, 9, 169, 3969, 103041, 2832489, 80802121, 2365752321, 70611901441, 2139090528969, 65568745087209, 2029206892664961, 63300531617048961, 1987912809986437161, 62787371136571152009, 1992942254830520803329, 63531842302018973818881, 2033004661359005674887561
OFFSET
0,2
COMMENTS
In general, we have the binomial identity:
if b(n) = Sum_{k=0..n} t^k * C(2*k, k) * C(n+k, n-k), then b(n)^2 = Sum_{k=0..n} (t^2+t)^k * C(2*k, k)^2 * C(n+k, n-k), where the g.f. of b(n) is 1/sqrt(1 - (4*t+2)*x + x^2), and the g.f. of b(n)^2 is 1 / AGM(1-x, sqrt((1+x)^2 - (4*t+2)^2*x)), where AGM(x,y) = AGM((x+y)/2,sqrt(x*y)) is the arithmetic-geometric mean.
Note that the g.f. of A001850 is 1/sqrt(1 - 6*x + x^2).
Limit_{n -> oo} a(n+1)/a(n) = (3 + 2*sqrt(2))^2 = 17 + 12*sqrt(2).
From Gheorghe Coserea, Jul 05 2016: (Start)
Diagonal of the rational function 1/(1 - x - y - z - x*y + x*z - y*z - x*y*z).
Annihilating differential operator: x*(x-1)*(x+1)*(x^2-34*x+1)*Dx^2 + (3*x^4-66*x^3-70*x^2+70*x-1)*Dx + x^3-7*x^2-35*x+9.
(End).
The sequence b(n) mentioned above is the sequence of shifted Legendre polynomials P(n,2*t + 1) (see A063007). See Zudilin for a g.f. for the sequence b(n)^2. - Peter Bala, Mar 02 2017
LINKS
A. Bostan, S. Boukraa, J.-M. Maillard, and J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
W. Zudilin, A generating function of the squares of Legendre polynomials, arXiv:1210.2493v2 [math.CA], 2012.
FORMULA
G.f.: 1 / AGM(1-x, sqrt(1-34*x+x^2)). - Paul D. Hanna, Aug 30 2014
a(n) = Sum_{k=0..n} 2^k * C(2*k, k)^2 * C(n+k, n-k).
a(n)^(1/2) = Sum_{k=0..n} C(2*k, k) * C(n+k, n-k).
Recurrence: n^2*(2*n-3)*a(n) = (2*n-1)*(35*n^2 - 70*n + 26)*a(n-1) - (2*n-3)*(35*n^2 - 70*n + 26)*a(n-2) + (n-2)^2*(2*n-1)*a(n-3). - Vaclav Kotesovec, Aug 18 2014
a(n) ~ (4 + 3*sqrt(2)) * (3 + 2*sqrt(2))^(2*n) / (8*Pi*n). - Vaclav Kotesovec, Aug 18 2014
From Gheorghe Coserea, Jul 05 2016: (Start)
G.f.: hypergeom([1/12, 5/12],[1],27648*x^4*(x^2-34*x+1)*(x-1)^2/(1-36*x+134*x^2-36*x^3+x^4)^3)/(1-36*x+134*x^2-36*x^3+x^4)^(1/4).
0 = x*(x-1)*(x+1)*(x^2-34*x+1)*y'' + (3*x^4-66*x^3-70*x^2+70*x-1)*y' + (x^3-7*x^2-35*x+9)*y, where y is g.f.
(End)
a(n) = Sum_{k = 0..n} 4^k*binomial(n+k,2*k)^2*binomial(2*k,k). - Peter Bala, Mar 02 2017
a(n) = hypergeom([1/2, -n, n + 1], [1, 1], -8). - Peter Luschny, Mar 14 2018
G.f.: Sum_{n >= 0} (2^n)*binomial(2*n,n)^2 *x^n/(1-x)^(2*n+1). - Peter Bala, Feb 07 2022
EXAMPLE
G.f.: A(x) = 1 + 9*x + 169*x^2 + 3969*x^3 + 103041*x^4 + 2832489*x^5 +...
MATHEMATICA
Table[Sum[2^k *Binomial[2*k, k]^2 *Binomial[n+k, n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 18 2014 *)
a[n_]:= HypergeometricPFQ[{1/2, -n, n+1}, {1, 1}, -8];
Table[a[n], {n, 0, 17}] (* Peter Luschny, Mar 14 2018 *)
LegendreP[Range[0, 30], 3]^2 (* G. C. Greubel, May 17 2023 *)
PROG
(PARI) {a(n) = sum(k=0, n, 2^k * binomial(2*k, k)^2 * binomial(n+k, n-k) )}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n)=polcoeff( 1 / agm(1-x, sqrt((1+x)^2 - 36*x +x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", "))
(Python)
from math import comb
def A243949(n): return sum(comb(n, k)*comb(n+k, k) for k in range(n+1))**2 # Chai Wah Wu, Mar 23 2023
(Magma) [Evaluate(LegendrePolynomial(n), 3)^2 : n in [0..40]]; // G. C. Greubel, May 17 2023
(SageMath) [gen_legendre_P(n, 0, 3)^2 for n in range(41)] # G. C. Greubel, May 17 2023
CROSSREFS
Sequences of the form LegendreP(n, 2*m+1)^2: A000012 (m=0), this sequence (m=1), A243943 (m=2), A243944 (m=3), A243007 (m=4).
Related to diagonal of rational functions: A268545 - A268555.
Sequence in context: A281996 A017306 A210089 * A202836 A052774 A276960
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Aug 17 2014
STATUS
approved