[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A066810
Expansion of x^2/((1-3*x)*(1-2*x)^2).
14
0, 0, 1, 7, 33, 131, 473, 1611, 5281, 16867, 52905, 163835, 502769, 1532883, 4651897, 14070379, 42456897, 127894979, 384799049, 1156756443, 3475250065, 10436235955, 31330727961, 94038321227, 282211432673, 846835624611
OFFSET
0,4
COMMENTS
Binomial transform of A000295.
a(n) = A112626(n, 2). - Ross La Haye, Jan 11 2006
Let Q be a binary relation on the power set P(A) of a set A having n = |A| elements such that for all x,y of P(A), xQy if x is a proper subset of y and |y| - |x| > 1. Then a(n) = |Q|. - Ross La Haye, Jan 11 2008
a(n) is the number of n-digit ternary sequences that have at least two 0's. - Geoffrey Critzer, Apr 14 2009
LINKS
Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
FORMULA
a(n) = 3^n - 2^n - n*2^(n-1).
From Ross La Haye, Apr 26 2006: (Start)
a(n) = A000244(n) - A001792(n).
a(n) = Sum_{k=2..n} binomial(n,k)2^(n-k). (End)
Inverse binomial transform of A086443. - Ross La Haye, Apr 29 2006
Convolution of A000244 beginning [0,1,3,9,27,81,...] and A001787. - Ross La Haye, Feb 15 2007
From Geoffrey Critzer, Apr 14 2009: (Start)
E.g.f.: exp(2*x)*(exp(x) - x - 1).
a(n) = 3*a(n-1) + (n-1)*2^(n-2). (End)
MAPLE
seq(3^n - 2^n - n*2^(n-1), n=0..30); # G. C. Greubel, Nov 18 2019
MATHEMATICA
RecurrenceTable[{a[n]==3*a[n-1] + (n-1) 2^(n-2), a[0]==0}, a, {n, 0, 30}] (* Geoffrey Critzer, Apr 14 2009 *)
CoefficientList[Series[x^2/((1-3x)(1-2x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Nov 29 2015 *)
PROG
(PARI) for(n=0, 50, write("b066810.txt", n, " ", 3^n -2^n -n*2^(n-1)) ) \\ Harry J. Smith, Mar 29 2010
(Magma) [3^n-2^n-n*2^(n-1): n in [0..30]]; // Vincenzo Librandi, Nov 29 2015
(Sage) [3^n - 2^n - n*2^(n-1) for n in (0..30)] # G. C. Greubel, Nov 18 2019
(GAP) List([0..30], n-> 3^n - 2^n - n*2^(n-1)); # G. C. Greubel, Nov 18 2019
CROSSREFS
Column k=1 of A238858 (with different offset).
Sequence in context: A258458 A320546 A377867 * A262600 A034577 A372878
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 25 2002
EXTENSIONS
Additional comments from Ross La Haye, Sep 27 2005
STATUS
approved