[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058396
Expansion of ((1-x)/(1-2*x))^3.
22
1, 3, 9, 25, 66, 168, 416, 1008, 2400, 5632, 13056, 29952, 68096, 153600, 344064, 765952, 1695744, 3735552, 8192000, 17891328, 38928384, 84410368, 182452224, 393216000, 845152256, 1811939328, 3875536896, 8271167488, 17616076800
OFFSET
0,2
COMMENTS
If X_1,X_2,...,X_n are 2-blocks of a (2n+3)-set X then, for n>=1, a(n+1) is the number of (n+2)-subsets of X intersecting each X_i, (i=1,2,...,n). - Milan Janjic, Nov 18 2007
Equals row sums of triangle A152230. - Gary W. Adamson, Nov 29 2008
a(n) is the number of weak compositions of n with exactly 2 parts equal to 0. - Milan Janjic, Jun 27 2010
Except for an initial 1, this is the p-INVERT of (1,1,1,1,1,...) for p(S) = (1 - S)^3; see A291000. - Clark Kimberling, Aug 24 2017
LINKS
Robert Davis and Greg Simay, Further Combinatorics and Applications of Two-Toned Tilings, arXiv:2001.11089 [math.CO], 2020.
Nickolas Hein and Jia Huang, Variations of the Catalan numbers from some nonassociative binary operations, arXiv:1807.04623 [math.CO], 2018.
Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
Milan Janjic and Boris Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From N. J. A. Sloane, Feb 13 2013
Milan Janjic and Boris Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014), Article 14.3.5.
FORMULA
a(n) = (n+2)*(n+7)*2^(n-4) for n > 0.
a(n) = Sum_{k=0..floor((n+2)/2)} C(n+2, 2k)*k(k+1)/2. - Paul Barry, May 15 2003
Binomial transform of quarter squares A002620 (without leading zeros). - Paul Barry, May 27 2003
a(n) = Sum_{k=0..n} C(n, k)*floor((k+2)^2/4). - Paul Barry, May 27 2003
a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3), n > 3. - Harvey P. Dale, Oct 17 2011
From Amiram Eldar, Jan 05 2022: (Start)
Sum_{n>=0} 1/a(n) = 145189/525 - 1984*log(2)/5.
Sum_{n>=0} (-1)^n/a(n) = 30103/175 - 2112*log(3/2)/5. (End)
MAPLE
seq(coeff(series(((1-x)/(1-2*x))^3, x, n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 16 2018
MATHEMATICA
CoefficientList[ Series[(1 - x)^3/(1 - 2x)^3, {x, 0, 28}], x] (* Robert G. Wilson v, Jun 28 2005 *)
Join[{1}, LinearRecurrence[{6, -12, 8}, {3, 9, 25}, 40]] (* Harvey P. Dale, Oct 17 2011 *)
PROG
(PARI) Vec((1-x)^3/(1-2*x)^3+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(((1-x)/(1-2*x))^3)); // G. C. Greubel, Oct 16 2018
CROSSREFS
Cf. A045623, A001793, A152230. A diagonal of A058395.
Sequence in context: A129589 A335472 A096322 * A006809 A081663 A245748
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Nov 24 2000
STATUS
approved