[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084773
Coefficients of 1/sqrt(1-12*x+4*x^2); also, a(n) is the central coefficient of (1+6*x+8*x^2)^n.
12
1, 6, 52, 504, 5136, 53856, 575296, 6225792, 68026624, 748832256, 8291791872, 92255680512, 1030537089024, 11550176206848, 129824329777152, 1462841567576064, 16518691986407424, 186887008999047168, 2117944490818011136, 24038305911245635584, 273199990096465494016
OFFSET
0,2
COMMENTS
Number of Delannoy paths from (0,0) to (n,n) with steps U(0,1), H(1,0) and D(1,1) where H and D can choose from two colors each (or where one step is monochrome and the other two are bicolored). - Paul Barry, May 30 2005
2^n*P_n(3), where P_n is the n-th Legendre polynomial. 2^n*LegendreP(n,k) yields the central coefficients of (1 + 2*k*x + (k^2-1)*x^2)^n, with g.f. 1/sqrt(1 -4*k*x +4*x^2) and e.g.f. exp(2*k*x)*BesselI(0, 2*sqrt(k^2-1)*x). - Paul Barry, May 30 2005
Diagonal of rational functions 1/(1 - x - 2*y - 2*x*y), 1/(1 - x - 2*y*z - 2*x*y*z), 1/(1 - 2*x - y*z - 2*x*y*z). - Gheorghe Coserea, Jul 07 2018
LINKS
Hacène Belbachir and Abdelghani Mehdaoui, Recurrence relation associated with the sums of square binomial coefficients, Quaestiones Mathematicae (2021) Vol. 44, Issue 5, 615-624.
Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
FORMULA
a(n) = 2*A052141(n) = 2^n * A001850(n), n>0.
From Paul Barry, May 30 2005: (Start)
E.g.f.: exp(6*x)*Bessel_I(0, 2*sqrt(8)*x).
a(n) = Sum_{k=0..floor(n/2)} C(n, k)*C(2(n-k), n)*(-1)^k*3^(n-2*k). (End)
D-finite with recurrence: n*a(n) + 6*(-2*n+1)*a(n-1) + 4*(n-1)*a(n-2) = 0. - R. J. Mathar, Nov 30 2012
G.f.: G(0)/2, where G(k) = 1 + 1/( 1 - x*(6-2*x)*(2*k+1)/(x*(6-2*x)*(2*k+1) + (k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 17 2013
a(n) = 2^n*hyper2F1(-n, -n, 1, 2). - Peter Luschny, May 20 2015
a(n) = A059474(n,n). - Alois P. Heinz, Oct 05 2017
a(n) ~ 2^(n - 5/4) * (1 + sqrt(2))^(2*n + 1) / sqrt(Pi*n). - Vaclav Kotesovec, Jul 11 2018
EXAMPLE
G.f.: 1/sqrt(1-2*b*x+(b^2-4*c)*x^2) yields central coefficients of (1+b*x+c*x^2)^n.
MAPLE
a := n -> 2^n*hypergeom([-n, -n], [1], 2):
seq(simplify(a(n)), n=0..20); # Peter Luschny, May 20 2015
MATHEMATICA
CoefficientList[Series[1/Sqrt[(1-12x+4x^2)], {x, 0, 20}], x] (* Harvey P. Dale, Dec 13 2017 *)
Table[2^n*LegendreP[n, 3], {n, 0, 40}] (* G. C. Greubel, May 21 2023 *)
PROG
(PARI) for(n=0, 30, t=polcoeff((1+6*x+8*x^2)^n, n, x); print1(t", "))
(Magma) [2^n*Evaluate(LegendrePolynomial(n), 3): n in [0..40]]; // G. C. Greubel, May 21 2023
(SageMath) [2^n*gen_legendre_P(n, 0, 3) for n in range(41)] # G. C. Greubel, May 21 2023
CROSSREFS
Sequences of the form 2^n*LegendreP(n, 2*m+1): A000079 (m=0), this sequence (m=1), A098270 (m=2).
See A152254 for another interpretation.
Sequence in context: A334978 A005948 A027258 * A357154 A365194 A365755
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 10 2003
STATUS
approved