[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20110110318A - 노광 장치 및 디바이스 제조 방법 - Google Patents

노광 장치 및 디바이스 제조 방법 Download PDF

Info

Publication number
KR20110110318A
KR20110110318A KR1020117019047A KR20117019047A KR20110110318A KR 20110110318 A KR20110110318 A KR 20110110318A KR 1020117019047 A KR1020117019047 A KR 1020117019047A KR 20117019047 A KR20117019047 A KR 20117019047A KR 20110110318 A KR20110110318 A KR 20110110318A
Authority
KR
South Korea
Prior art keywords
liquid
substrate
optical system
projection optical
exposure
Prior art date
Application number
KR1020117019047A
Other languages
English (en)
Other versions
KR101327697B1 (ko
Inventor
나오유키 고바야시
아키카즈 다니모토
야스시 미즈노
겐이치 시라이시
가츠시 나카노
소이치 오와
Original Assignee
가부시키가이샤 니콘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 니콘 filed Critical 가부시키가이샤 니콘
Publication of KR20110110318A publication Critical patent/KR20110110318A/ko
Application granted granted Critical
Publication of KR101327697B1 publication Critical patent/KR101327697B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B27/00Photographic printing apparatus
    • G03B27/32Projection printing apparatus, e.g. enlarger, copying camera
    • G03B27/52Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70316Details of optical elements, e.g. of Bragg reflectors, extreme ultraviolet [EUV] multilayer or bilayer mirrors or diffractive optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70916Pollution mitigation, i.e. mitigating effect of contamination or debris, e.g. foil traps
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70925Cleaning, i.e. actively freeing apparatus from pollutants, e.g. using plasma cleaning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • G03F7/70958Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7007Alignment other than original with workpiece
    • G03F9/7015Reference, i.e. alignment of original or workpiece with respect to a reference not on the original or workpiece
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7088Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7096Arrangement, mounting, housing, environment, cleaning or maintenance of apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Multimedia (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

투영 광학계와 액체를 통해 기판에 패턴을 투영하여 노광할 때, 불필요한 액체를 제거하여 원하는 디바이스 패턴을 기판 상에 형성할 수 있는 노광 장치를 제공한다. 노광 장치는 투영 광학계와 액체를 통해 기판 (P) 상에 패턴의 이미지를 투영하고, 기판 (P) 을 노광하는 노광 장치로서, 투영 광학계의 이미지면 부근에 배치된 부품 (7) 상에 잔류한 액체를 제거하는 액체 제거 기구 (40) 를 구비하고 있다.

Description

노광 장치 및 디바이스 제조 방법{EXPOSURE DEVICE AND DEVICE MANUFACTURING METHOD}
본 발명은 투영 광학계와 액체를 통해 기판에 패턴을 노광하는 노광 장치 및 디바이스 제조 방법에 관한 것이다.
반도체 디바이스나 액정 표시 디바이스는 마스크 상에 형성된 패턴을 감광성의 기판 상에 전사하는 이른바 포토리소그래피의 수법에 의해 제조된다. 이 포토리소그래피 공정에서 사용되는 노광 장치는 마스크를 지지하는 마스크 스테이지와 기판을 지지하는 기판 스테이지를 갖고, 마스크 스테이지 및 기판 스테이지를 축차 이동하면서 마스크의 패턴을 투영 광학계를 통해 기판에 전사하는 것이다. 최근, 디바이스 패턴의 보다 나은 고집적화에 대응하기 위해서 투영 광학계의 보다 나은 고해상도화가 요망되고 있다. 투영 광학계의 해상도는 사용하는 노광 파장이 짧아질수록, 또한 투영 광학계의 개구수가 클수록 높아진다. 이 때문에, 노광 장치에서 사용되는 노광 파장은 해마다 단파장화되고 있고, 투영 광학계의 개구수도 증대하고 있다. 그리고, 현재 주류의 노광 파장은 KrF 엑시머 레이저의 248nm 이지만, 더욱 단파장인 ArF 엑시머 레이저의 193nm 도 실용화되고 있다. 또한, 노광을 행하는 때에는 해상도와 마찬가지로 초점 심도 (DOF) 도 중요해진다. 해상도 (R), 및 초점 심도 (δ) 는 각각 이하의 식으로 표현된다.
R=k1·λ/NA … (1)
δ=±k2·λ/NA2 … (2)
여기서, λ 는 노광 파장, NA 는 투영 광학계의 개구수, k1, k2 는 프로세스 계수이다. (1) 식, (2) 식으로부터, 해상도 (R) 를 높이기 위해서, 노광 파장 (λ) 을 짧게 하고, 개구수 (NA) 를 크게 하면, 초점 심도 (δ) 가 좁아짐을 알 수 있다.
초점 심도 (δ) 가 지나치게 좁아지면, 투영 광학계의 이미지면에 대하여 기판 표면을 합치시키기가 어려워지고, 노광 동작시의 마진이 부족할 우려가 있다. 그래서, 실질적으로 노광 파장을 짧게 하고, 또한 초점 심도를 넓히는 방법으로서, 예를 들어, 국제 공개 제99/49504호에 개시되어 있는 액침법 (液浸法) 이 제안되어 있다. 이 액침법은 투영 광학계의 하면과 기판 표면 사이를 물이나 유기 용매 등의 액체로 채우고, 액체 중에서의 노광광의 파장이, 공기 중의 1/n (n 은 액체의 굴절률로 통상 1.2∼1.6 정도) 이 되는 것을 이용하여 해상도를 향상시킴과 함께, 초점 심도를 약 n배로 확대시킨다는 것이다.
그런데, 상기 종래 기술에는 이하와 같은 문제가 존재한다. 상기 국제 공개 제99/49504호에 개시되어 있는 노광 장치는 액침 영역을 기판 상의 일부에 형성하도록 액체를 공급 및 회수하는 구성이다. 이 노광 장치에서는 액침 노광 종료 후, 액침 영역의 액체가 충분히 회수되지 않은 상태에서, 예를 들어 기판 스테이지 상의 기판을 언로드하여 새로운 기판을 로드하기 위해서 기판 스테이지가 로드·언로드 위치까지 이동하면, 투영 광학계의 선단이나 액체 공급 노즐 또는 회수 노즐에 잔류 (부착) 하고 있던 액체가 주위의 장치나 부재, 예를 들어, 스테이지의 가이드면이나 스테이지의 간섭계용 반사면 등으로 떨어질 가능성이 있다.
또한, 투영 광학계 선단의 광학 소자에 액체가 잔류하고 있으면, 이 잔류하고 있는 액체가 기화된 후에 투영 광학계 선단의 광학 소자에 부착 흔적 (이른바 워터 마크) 을 남겨, 다음의 노광 처리시에 기판 상에 형성되는 패턴에 악영향을 미칠 가능성이 있다. 또한, 노광 처리 이외에도 기판 스테이지 상의 기판의 주위에 배치되어 있는 기준 평면 부재나 기준 마크 부재를 사용할 때에 액침 영역을 형성하는 것이 생각되지만, 그들의 액침 영역의 액체를 충분하게 회수할 수 없어, 그들의 부재 상에 부착 흔적이 남거나, 그들의 부재 상에 남은 액체가 비산 (飛散) 할 가능성이 있다.
본 발명은 이러한 사정을 감안하여 이루어진 것으로서, 투영 광학계와 액체를 통해 기판에 패턴을 투영하여 노광할 때, 불필요한 액체를 충분히 제거하여 원하는 디바이스 패턴을 기판 상에 형성할 수 있는 노광 장치, 및 이 노광 장치를 사용하는 디바이스 제조 방법을 제공하는 것을 목적으로 한다.
상기 과제를 해결하기 위해서, 본 발명은 실시형태에 나타내는 도 1∼도 27 에 대응시킨 이하의 구성을 채용하고 있다. 단, 각 요소에 붙인 괄호친 부호는 그 요소의 예시에 지나지 않고, 각 요소를 한정하는 것이 아니다.
본 발명의 제 1 태양에 따르면, 액체 (1) 를 통해 기판 (P) 상에 패턴의 이미지를 투영하고, 상기 기판을 노광하는 노광 장치로서, 기판 상에 패턴의 이미지를 투영하는 투영 광학계 (PL) 와, 상기 투영 광학계의 이미지면 부근에 배치된 부품 (2, 7, 13, 14, 31, 32, 151, 152) 상에 잔류한 액체를 제거하는 액체 제거 기구 (40, 60, 160, 174, 178, 180, 183, 251, 257) 를 구비하는 노광 장치 (EX) 가 제공된다.
본 발명에 의하면, 투영 광학계의 이미지면 부근에 배치되어 있는 부품, 예를 들어, 투영 광학계 선단의 광학 소자, 쇼트 영역의 위치 결정용 기준 부재, 각종 센서, 광투과 광학 부재, 액체 공급 및/또는 회수 기구의 노즐 등의 위에 잔류한 불필요한 액체를 액체 제거 기구로 제거함으로써, 잔류한 액체의 낙하나 비산, 그들 부품 상의 부착 흔적 (워터 마크) 의 발생을 방지할 수 있다. 따라서, 원하는 패턴을 고정밀도로 기판 상에 형성할 수 있다.
본 발명의 제 2 태양에 따르면, 기판 (P) 상의 일부에 액침 영역 (AR2) 을 형성하고, 액침 영역의 액체 (1) 을 통해 상기 기판 (P) 상에 패턴의 이미지를 투영함으로써 상기 기판을 노광하는 노광 장치로서,
상기 기판 상에 패턴의 이미지를 투영하는 투영 광학계 (PL),
상기 기판을 유지하여 이동가능한 기판 스테이지 (PST),
상기 액침 영역을 형성하기 위해서 기판 상에 액체를 공급하는 액체 공급 기구 (10),
상기 기판 상의 액체를 회수하는 제 1 액체 회수 기구 (30), 및
상기 기판 스테이지에 형성된 회수구 (23) 를 갖고, 상기 기판의 노광 종료 후에 액체를 회수하는 제 2 액체 회수 기구 (20) 를 구비하는 노광 장치 (EX) 가 제공된다.
본 발명에 의하면, 액침 노광 종료 후, 기판 상의 액침 영역의 액체를 제 1 액체 회수 기구뿐만 아니라, 스테이지 상에 회수구를 갖는 제 2 액체 회수 기구로 회수함으로써, 잔류한 액체의 낙하나 비산, 또는 잔류 액체의 부착 흔적의 발생을 방지할 수 있다. 따라서, 원하는 패턴을 고정밀도로 기판 상에 형성할 수 있게 된다.
본 발명의 제 3 태양에 따르면, 액체를 통해 기판 상에 패턴의 이미지를 투영함으로써 상기 기판을 노광하는 노광 장치로서, 상기 패턴의 이미지를 기판 상에 투영하는 투영 광학계 (PL), 상기 투영 광학계 (PL) 의 이미지면측 부근에 배치되는 부품 (2, 151, 152 등) 의 표면 상태를 검출하는 검출 장치 (100, 198) 를 구비하는 노광 장치 (EX) 가 제공된다.
본 발명에 의하면, 검출 장치를 사용하여, 투영 광학계의 이미지면 부근에 배치되는 부품의 표면 상태 (액체 등의 이물이 부착되어 있는지 여부 등) 를 검출할 수 있으므로, 그 결과에 따라 적절한 처치, 예를 들어, 세정에 의해 부품 표면의 이물 등을 제거할 수 있다.
본 발명의 제 4 태양에 따르면, 상기 태양의 노광 장치 (EX) 를 사용하는 것을 특징으로 하는 디바이스 제조 방법이 제공된다. 본 발명에 의하면, 환경 변화나 투영 광학계의 이미지면 부근의 광학 소자에 대한 부착 흔적의 발생을 억제한 상태에서 원하는 성능을 갖는 디바이스를 제조할 수 있다.
본 발명에 의하면, 투영 광학계의 이미지면 부근에 배치되어 있는 부품 상에 잔류한 불필요한 액체를 제거함으로써, 잔류한 액체의 낙하에 기인하는 노광 장치 내의 환경 변화나 장치의 녹 등의 발생을 방지할 수 있다. 특히, 투영 광학계의 선단의 광학 소자에 잔류하고 있는 액체를 제거함으로써, 이 광학 소자에 대한 부착 흔적 (워터 마크) 의 발생을 방지할 수 있다. 따라서, 원하는 패턴을 고정밀도로 기판 상에 형성할 수 있게 된다.
도 1 은 본 발명의 노광 장치의 일 실시형태를 나타내는 개략 구성도이다.
도 2 는 액침 영역을 형성하기 위한 액체 공급 기구 및 액체 회수 기구를 나타내는 개략 구성도이다.
도 3 은 기판 스테이지의 평면도이다.
도 4 는 제 2 액체 회수 장치의 일례를 나타내는 도면이다.
도 5(a) 및 5(b) 는 액체 제거 기구인 제 1 액체 제거 장치의 일례를 나타내는 개략도이다.
도 6 은 액체 제거 기구인 제 1 액체 제거 장치의 일례를 나타내는 개략도이다.
도 7 은 액체 제거 기구인 제 1 액체 제거 장치의 일례를 나타내는 개략도이다.
도 8 은 액체 제거 기구인 제 2 액체 제거 장치의 일례를 나타내는 개략도이다.
도 9 는 기판 스테이지가 이동하는 모습을 설명하기 위한 모식도이다.
도 10 은 액체 제거 기구인 제 2 액체 제거 장치의 일례를 나타내는 개략도이다.
도 11 은 액체 제거 기구인 제 2 액체 제거 장치의 일례를 나타내는 개략도이다.
도 12 는 액체 제거 기구인 제 2 액체 제거 장치의 일례를 나타내는 개략도이다.
도 13 은 세정 기구의 일례를 나타내는 개략도이다.
도 14 는 세정 기구의 일례를 나타내는 개략도이다.
도 15 는 이물 검출계의 일례를 나타내는 개략도이다.
도 16 은 기판 스테이지의 별도의 실시형태를 나타내는 평면도이다.
도 17 은 제 1 액체 제거 장치의 일례를 나타내는 개략도이다.
도 18 은 본 발명의 노광 장치의 별도의 실시형태를 나타내는 모식도이다.
도 19 는 본 발명에 관련되는 액체 제거 동작의 별도의 실시형태를 나타내는 모식도이다.
도 20(a) 및 20(b) 는 기체 노즐과 광학 소자의 관계를 나타내는 도면이다.
도 21 은 본 발명의 노광 장치의 별도의 실시형태를 나타내는 모식도이다.
도 22 는 본 발명의 노광 장치의 별도의 실시형태를 나타내는 모식도이다.
도 23 은 본 발명의 노광 장치의 별도의 실시형태를 나타내는 모식도이다.
도 24 는 본 발명의 노광 장치의 별도의 실시형태를 나타내는 모식도이다.
도 25 는 도 24 의 기판 스테이지의 요부를 상방에서 본 평면도이다.
도 26 는 반도체 디바이스의 제조 공정의 일례를 나타내는 플로우 차트도이다.
도 27 은 본 발명의 노광 장치의 노광 순서의 일례를 나타내는 플로우 차트도이다.
이하, 본 발명의 노광 장치의 실시형태에 관해서, 도면을 참조하면서 설명하겠지만, 본 발명이 이에 한정되는 것은 아니다.
<제 1 및 제 2 액체 제거 장치를 사용한 노광 장치의 실시형태>
도 1 은 본 발명의 노광 장치의 일 실시형태를 나타내는 개략 구성도이다. 도 1 에 있어서, 노광 장치 (EX) 는 마스크 (M) 를 지지하는 마스터 스테이지 (MST) 와, 기판 (P) 을 지지하는 기판 스테이지 (PST) 와, 마스크 스테이지 (MST) 에 지지되어 있는 마스크 (M) 를 노광광 (EL) 으로 조명하는 조명 광학계 (IL) 와, 노광광 (EL) 으로 조명된 마스크 (M) 의 패턴의 이미지를 기판 스테이지 (PST) 에 지지되어 있는 기판 (P) 에 투영 노광하는 투영 광학계 (PL) 와, 노광 장치 (EX) 전체의 동작을 통괄 제어하는 제어 장치 (CONT) 를 구비하고 있다.
본 실시형태의 노광 장치 (EX) 는 노광 파장을 실질적으로 짧게 하여 해상도를 향상시킴과 함께 초점 심도를 실질적으로 넓히기 위해서 액침법을 적용한 액침 노광 장치로서, 기판 (P) 상에 액체 (1) 를 공급하는 액체 공급 기구 (10) 와, 기판 (P) 상의 액체 (1) 를 회수하는 액체 회수 기구 (30; 제 1 액체 회수 기구) 를 구비하고 있다. 본 실시형태에 있어서, 액체 (1) 에는 순수 (純水) 가 사용된다. 노광 장치 (EX) 는 적어도 마스크 (M) 의 패턴 이미지를 기판 (P) 상에 전사하는 동안, 액체 공급 기구 (10) 로부터 공급된 액체 (1) 에 의해 투영 광학계 (PL) 의 투영 영역 (AR1) 을 포함하는 기판 (P) 상의 적어도 일부에 액침 영역 (AR2) 을 형성한다. 구체적으로는 노광 장치 (EX) 는 투영 광학계 (PL) 의 선단부의 광학 소자 (2) 와 기판 (P) 의 표면 (노광면) 사이에 액체 (1) 를 채우고, 이 투영 광학계 (PL) 와 기판 (P) 사이의 액체 (1) 및 투영 광학계 (PL) 를 통해 마스크 (M) 의 패턴 이미지를 기판 (P) 상에 투영하여 기판 (P) 을 노광한다.
여기서, 본 실시형태에서는 노광 장치 (EX) 로서 마스크 (M) 와 기판 (P) 을 주사 방향 (소정 방향) 에 있어서의 서로 상이한 방향 (역 방향) 으로 동기 이동시키면서 마스크 (M) 에 형성된 패턴을 기판 (P) 에 노광하는 주사형 노광 장치 (이른바 스캐닝 스테퍼) 를 사용하는 경우를 예로 들어 설명한다. 이하의 설명에 있어서, 수평면 내에 있어서 마스크 (M) 와 기판 (P) 의 동기 이동 방향 (주사 방향, 소정 방향) 을 X축 방향, 수평면 내에 있어서 X축 방향과 직교하는 방향을 Y축 방향 (비주사 (非走査) 방향), X축 및 Y축 방향에 수직하고 투영 광학계 (PL) 의 광축 (AX) 과 일치하는 방향을 Z축 방향으로 한다. 또한, X축, Y축, 및 Z축 주위 방향을 각각, θX, θY, 및 θZ 방향으로 한다. 또, 여기서 말하는 「기판」 은 반도체 웨이퍼 상에 레지스트를 도포한 것을 포함하고, 「마스크」 는 기판 상에 축소 투영되는 디바이스 패턴이 형성된 레티클을 포함한다.
조명 광학계 (IL) 는 마스크 스테이지 (MST) 에 지지되어 있는 마스크 (M) 를 노광광 (EL) 으로 조명하는 것이고, 노광용 광원, 노광용 광원으로부터 사출된 광속의 조도를 균일화하는 옵티컬 인터그레이터, 옵티컬 인터그레이터로부터의 노광광 (EL) 을 집광하는 콘덴서 렌즈, 릴레이 렌즈계, 노광광 (EL) 에 의한 마스크 (M) 상의 조명 영역을 슬릿 형상으로 설정하는 가변 시야 조리개 등을 갖고 있다. 마스크 (M) 상의 소정 조명 영역은 조명 광학계 (IL) 에 의해 균일한 조도 분포의 노광광 (EL) 으로 조명된다. 조명 광학계 (IL) 로부터 사출되는 노광광 (EL) 으로서는 예를 들어 수은 램프로부터 사출되는 자외역의 휘선 (g선, h선, i선) 및 KrF 엑시머 레이저광 (파장 248nm) 등의 원자외광 (DUV 광) 이나, ArF 엑시머 레이저광 (파장 193nm) 및 F2 레이저광 (파장 157nm) 등의 진공 자외광 (VUV 광) 등이 사용된다. 본 실시형태에서는 ArF 엑시머 레이저광이 사용된다. 상기 기술한 바와 같이, 본 실시형태에 있어서의 액체 (1) 는 순수로서, 노광광 (EL) 이 ArF 엑시머 레이저광이더라도 투과가능하다. 또한, 순수는 자외영역의 휘선 (g선, h선, i선) 및 KrF 엑시머 레이저광 (파장 248nm) 등의 원자외광 (DUV 광) 도 투과가능하다.
마스크 스테이지 (MST) 는 마스크 (M) 를 지지하는 것으로서, 투영 광학계 (PL) 의 광축 (AX) 에 수직인 평면 내, 즉 XY 평면 내에서 2차원 이동가능하고 θZ 방향으로 미소 회전가능하다. 마스크 스테이지 (MST) 는 리니어 모터 등의 마스크 스테이지 구동 장치 (MSTD) 에 의해 구동된다. 마스크 스테이지 구동 장치 (MSTD) 는 제어 장치 (CONT) 에 의해 제어된다. 마스크 스테이지 (MST) 상에는 이동 거울 (50) 이 형성되어 있다. 또한, 이동 거울 (50) 에 대향하는 위치에는 레이저 간섭계 (51) 가 형성되어 있다. 마스크 스테이지 (MST) 상의 마스크 (M) 의 2차원 방향의 위치, 및 회전각은 레이저 간섭계 (51) 에 의해 실시간으로 계측되고, 계측 결과는 제어 장치 (CONT) 에 출력된다. 제어 장치 (CONT) 는 레이저 간섭계 (51) 의 계측 결과에 기초하여 마스크 스테이지 구동 장치 (MSTD) 를 구동함으로써 마스크 스테이지 (MST) 에 지지되어 있는 마스크 (M) 의 위치 결정을 행한다.
투영 광학계 (PL) 는 마스크 (M) 의 패턴을 소정 투영 배율 (β) 로 기판 (P) 에 투영 노광하는 것으로서, 기판 (P) 측의 선단부에 형성된 광학 소자 (2; 렌즈) 를 포함하는 복수의 광학 소자로 구성되어 있고, 이들 광학 소자는 경통 (PK) 으로 지지되어 있다. 본 실시형태에 있어서, 투영 광학계 (PL) 는 투영 배율 (β) 이 예를 들어 1/4 또는 1/5 인 축소계이다. 또, 투영 광학계 (PL) 는 등배계 및 확대계의 어느 것이나 된다. 또한, 본 실시형태의 투영 광학계 (PL) 의 선단부의 광학 소자 (2) 는 경통 (PK) 에 대하여 착탈 (교환) 가능하게 형성되어 있다. 또한, 선단부의 광학 소자 (2) 는 경통 (PK) 으로부터 노출 (돌출) 되어 있고, 액침 영역 (AR2) 의 액체 (1) 는 광학 소자 (2) 에만 접촉한다. 그럼으로써, 금속으로 이루어지는 경통 (PK) 의 부식 등을 방지할 수 있다.
광학 소자 (2) 는 형석으로 형성되어 있다. 형석은 순수와의 친화성이 높으므로, 광학 소자 (2) 의 액체 접촉면 (2a) 의 거의 전체면에 액체 (1) 를 밀착시킬 수 있다. 즉, 본 실시형태에 있어서는 광학 소자 (2) 의 액체 접촉면 (2a) 과의 친화성이 높은 액체 (1; 순수) 를 공급하도록 하고 있으므로, 광학 소자 (2) 와 액체 (1) 의 높은 밀착성을 확보할 수 있다. 광학 소자 (2) 로서, 물과의 친화성이 높은 석영을 사용해도 된다. 또, 광학 소자 (2) 의 액체 접촉면 (2a) 에 친수화 (친액화) 처리를 실시하여, 액체 (1) 와의 친화성을 보다 높이도록 해도 된다.
또한, 노광 장치 (EX) 는 포커스 검출계 (4) 를 갖고 있다. 포커스 검출계 (4) 는 발광부 (4a) 와 수광부 (4b) 를 갖고, 발광부 (4a) 로부터 액체 (1) 를 통해 기판 (P) 표면 (노광면) 에 경사 상방으로부터 검출광을 투사하고, 기판 (P) 표면에 있어서의 반사광을 수광부 (4b) 에서 수광한다. 제어 장치 (CONT) 는 포커스 검출계 (4) 의 동작을 제어함과 함께, 수광부 (4b) 의 수광 결과에 기초하여, 소정 기준면에 대한 기판 (P) 표면의 Z축 방향에 있어서의 위치 (포커스 위치) 를 검출한다. 또한, 기판 (P) 표면에 있어서의 복수의 각 점에서의 각 포커스 위치를 포커스 검출계 (4) 를 사용하여 구함으로써, 기판 (P) 의 경사 방향의 자세를 구할 수도 있다. 또, 포커스 검출계 (4) 의 구성으로서는 예를 들어, 일본 공개특허공보 평8-37149호에 개시되어 있는 것을 사용할 수 있다.
기판 스테이지 (PST) 는 기판 (P) 을 지지하는 것으로서, 기판 (P) 을 기판 홀더를 통해 유지하는 Z 스테이지 (52) 와, Z 스테이지 (52) 를 지지하는 XY 스테이지 (53) 와, XY 스테이지 (53) 를 지지하는 베이스 (54) 를 구비하고 있다. 기판 스테이지 (PST) 는 리니어 모터 등의 기판 스테이지 구동 장치 (PSTD) 에 의해 구동된다. 기판 스테이지 구동 장치 (PSTD) 는 제어 장치 (CONT) 에 의해 제어된다. 또, Z 스테이지와 XY 스테이지를 일체적으로 형성해도 되는 것은 물론이다. 기판 스테이지 (PST) 의 XY 스테이지 (53) 를 구동함으로써, 기판 (P) 의 XY 방향에 있어서의 위치 (투영 광학계 (PL) 의 이미지면과 실질적으로 평행한 방향의 위치) 가 제어된다.
기판 스테이지 (PST; Z 스테이지 (52)) 상에는 기판 스테이지 (PST) 와 함께 투영 광학계 (PL) 에 대하여 이동하는 이동 거울 (55) 이 형성되어 있다. 또한, 이동 거울 (55) 에 대향하는 위치에는 레이저 간섭계 (56) 가 형성되어 있다. 기판 스테이지 (PST) 상의 기판 (P) 의 2차원 방향의 위치, 및 회전각은 레이저 간섭계 (56) 에 의해 실시간으로 계측되고, 계측 결과는 제어 장치 (CONT) 에 출력된다. 제어 장치 (CONT) 는 레이저 간섭계 (56) 의 계측 결과에 기초하여 기판 스테이지 구동 장치 (PSTD) 를 통해 XY 스테이지 (53) 를 구동함으로써, 기판 스테이지 (PST) 에 지지되어 있는 기판 (P) 의 X축 방향 및 Y축 방향에 있어서의 위치 결정을 행한다.
또한, 제어 장치 (CONT) 는 기판 스테이지 구동 장치 (PSTD) 를 통해 기판 스테이지 (PST) 의 Z 스테이지 (52) 를 구동함으로써, Z 스테이지 (52) 에 유지되어 있는 기판 (P) 의 Z축 방향에 있어서의 위치 (포커스 위치), 및 θX, θY 방향에 있어서의 위치의 제어를 행한다. 즉, Z 스테이지 (52) 는 포커스 검출계 (4) 의 검출 결과에 기초하는 제어 장치 (CONT) 로부터의 지령에 기초하여 동작하고, 기판 (P) 의 포커스 위치 (Z 위치) 및 경사각을 제어하여 기판 (P) 의 표면 (노광면) 을 투영 광학계 (PL) 및 액체 (1) 를 통해 형성되는 이미지면에 맞춘다.
기판 스테이지 (PST; Z 스테이지 (52)) 상에는 기판 (P) 을 둘러싸도록, 표면이 평탄한 보조 플레이트 (57) 가 형성되어 있다. 보조 플레이트 (57) 는 그 표면이 기판 홀더에 유지된 기판 (P) 의 표면과 거의 같은 높이가 되도록 설치되어 있다. 여기서, 기판 (P) 의 엣지 (edge) 와 보조 플레이트 (57) 사이에는 0.1∼2mm 정도의 간극이 있지만, 액체 (1) 의 표면 장력에 의해 그 간극에 액체 (1) 가 흘러 들어 오는 일은 거의 없고, 또한, 기판 (P) 의 주연 (周緣) 근방을 노광하는 경우에도, 보조 플레이트 (57) 에 의해 투영 광학계 (PL) 의 밑에 액체 (1) 를 유지할 수 있다.
투영 광학계 (PL) 의 선단 근방에는 기판 (P) 상의 얼라인먼트 마크 또는 Z 스테이지 (52) 상에 형성된 기준 마크를 검출하는 기판 얼라인먼트계 (5) 가 형성되어 있다. 또한, 마스크 스테이지 (MST) 의 근방에는 마스크 (M) 와 투영 광학계 (PL) 를 통해 Z 스테이지 (52) 상에 형성된 기준 마크를 검출하는 마스크 얼라인먼트계 (6) 가 형성되어 있다. 또, 기판 얼라인먼트계 (5) 의 구성으로서는 예를 들어 일본 공개특허공보 평4-65603호에 개시되어 있는 것을 사용할 수 있고, 마스크 얼라인먼트계 (6) 의 구성으로서는 일본 공개특허공보 평7-176468호에 개시되어 있는 것을 사용할 수 있다.
기판 얼라인먼트계 (5) 의 근방에는 Z 스테이지 (52) 에 형성되어 있는 상기 기준 마크를 갖는 기준 부재에 잔류한 액체 (1) 를 제거하는 제 1 액체 제거 장치 (40) 가 형성되어 있다. 또한, 기판 스테이지 (PST) 에는 액체 (1) 를 회수하는 제 2 액체 회수 장치 (20) 가 형성되어 있다.
액체 공급 기구 (10) 는 액침 영역 (AR2) 을 형성하기 위해서 기판 (P) 상에 소정 액체 (1) 를 공급하는 것으로서, 액체 (1) 를 송출가능한 제 1 액체 공급부 (11) 및 제 2 액체 공급부 (12) 와, 제 1 액체 공급부 (11) 에 유로 (流路) 를 갖는 공급관 (11A) 을 통해 접속되고, 이 제 1 액체 공급부 (11) 로부터 송출된 액체 (1) 를 기판 (P) 상에 공급하는 공급구를 갖는 제 1 공급 노즐 (13) 과, 제 2 액체 공급부 (12) 에 유로를 갖는 공급관 (12A) 을 통해 접속되고, 이 제 2 액체 공급부 (12) 로부터 송출된 액체 (1) 를 기판 (P) 상에 공급하는 공급구를 갖는 제 2 공급 노즐 (14) 을 구비하고 있다. 제 1 및 제 2 공급 노즐 (13, 14) 은 액침 노광 중에 있어서 액침 영역 (AR2) 의 액체 (1) 에 접촉한다. 제 1 및 제 2 공급 노즐 (13, 14) 은 기판 (P) 의 표면에 근접하여 배치되어 있고, 기판 (P) 의 면 방향에 있어서 서로 상이한 위치에 형성되어 있다. 구체적으로는 액체 공급 기구 (10) 의 제 1 공급 노즐 (13) 은 투영 영역 (AR1) 에 대하여 주사 방향의 일방의 측 (-X측) 에 형성되고, 제 2 공급 노즐 (14) 은 제 1 공급 노즐 (13) 에 대향하도록, 주사 방향의 타방의 측 (+X측) 에 형성되어 있다.
제 1 및 제 2 액체 공급부 (11, 12) 는 각각 액체 (1) 를 수용하는 탱크, 및 가압 펌프 등을 구비하고 있고, 공급관 (11A, 12A) 및 공급 노즐 (13, 14) 의 각각을 통해 기판 (P) 상에 액체 (1) 를 공급한다. 또한, 제 1 및 제 2 액체 공급부 (11, 12) 의 액체 공급 동작은 제어 장치 (CONT) 에 의해 제어되고, 제어 장치 (CONT) 는 제 1 및 제 2 액체 공급부 (11, 12) 에 의한 기판 (P) 상에 대한 단위 시간당 액체 공급량을 각각 독립적으로 제어할 수 있다. 또한, 제 1 및 제 2 액체 공급부 (11, 12) 는 각각 액체 (1) 의 온도 조정 기구를 갖고 있고, 장치가 수용되는 챔버 내의 온도와 거의 같은 23℃ 의 액체 (1) 를 기판 (P) 상에 공급하도록 되어 있다.
액체 공급부 (11, 12) 로부터 공급되는 순수 (액체) 는 투과율 99%/mm 이상인 것이 바람직하고, 그 경우, 순수 중에 용해되어 있는 탄소 화합물에 관해서, 유기계 화합물 중의 탄소의 총량을 나타내는 TOC (total organic carbon) 의 값이 3ppb 미만이 되는 것이 바람직하다.
액체 회수 기구 (30; 제 1 액체 회수 장치) 는 기판 (P) 상의 액체 (1) 를 회수하는 것으로서, 기판 (P) 의 표면에 근접하여 배치된 회수구를 갖는 제 1 및 제 2 회수 노즐 (31, 32) 과, 이 제 1 및 제 2 회수 노즐 (31, 32) 에 유로를 갖는 회수관 (33A, 34A) 을 통해 각각 접속된 제 1 및 제 2 액체 회수부 (33, 34) 를 구비하고 있다. 제 1 및 제 2 회수 노즐 (31, 32) 은 액침 노광 중에 있어서 액침 영역 (AR2) 의 액체 (1) 에 접촉한다. 제 1 및 제 2 액체 회수부 (33, 34) 는 예를 들어 진공 펌프 등의 흡인 장치, 및 회수한 액체 (1) 를 수용하는 탱크 등을 구비하고 있고, 기판 (P) 상의 액체 (1) 를 제 1 및 제 2 회수 노즐 (31, 32), 및 회수관 (33A, 34A) 을 통해 회수한다. 제 1 및 제 2 액체 회수부 (33, 34) 의 액체 회수 동작은 제어 장치 (CONT) 에 의해 제어된다. 제어 장치 (CONT) 는 제 1 및 제 2 액체 회수부 (33, 34) 에 의한 단위 시간당 액체 회수량을 각각 독립하여 제어할 수 있다.
도 2 는 액체 공급 기구 (10) 및 액체 회수 기구 (30) 의 개략 구성을 나타내는 평면도이다. 도 2 에 나타내는 바와 같이, 투영 광학계 (PL) 의 투영 영역 (AR1) 은 Y축 방향 (비주사 방향) 을 길이 방향으로 하는 슬릿 형상 (직사각 형상) 으로 설정되어 있고, 액체 (1) 가 채워진 액침 영역 (AR2) 은 투영 영역 (AR1) 을 포함하도록 기판 (P) 상의 일부에 형성된다. 상기 기술한 바와 같이, 투영 영역 (AR1) 의 액침 영역 (AR2) 을 형성하기 위한 액체 공급 기구 (10) 의 제 1 공급 노즐 (13) 은 투영 영역 (AR1) 에 대하여 주사 방향의 일방의 측 (-X측) 에 형성되고, 제 2 공급 노즐 (14) 은 그 반대측의 주사 방향의 타방의 측 (+X측) 에 형성되어 있다. 제 1 및 제 2 공급 노즐 (13, 14) 은 각각 Y축 방향을 길이 방향으로 하는 평면에서 봤을 때 직선 형상으로 형성되어 있다. 제 1 및 제 2 공급 노즐 (13, 14) 의 공급구는 각각 Y축 방향을 길이 방향으로 하는 슬릿 형상으로 형성되어 있고, 기판 (P) 의 표면을 향하고 있다. 액체 공급 기구 (10) 는 제 1 및 제 2 공급 노즐 (13, 14) 의 공급구로부터, 투영 영역 (AR1) 의 X 방향 ±측으로부터 액체 (1) 를 동시에 공급한다.
도 2 로 알 수 있는 바와 같이 액체 회수 기구 (30) 의 제 1 및 제 2 회수 노즐 (31, 32) 은 각각 기판 (P) 의 표면을 향하도록 원호 형상으로 연속적으로 형성된 회수구를 갖고 있다. 그리고, 서로 마주 향하도록 배치된 제 1 및 제 2 회수 노즐 (31, 32) 에 의해 대략 원고리 형상의 회수구가 형성되어 있다. 제 1 및 제 2 회수 노즐 (31, 32) 각각의 회수구는 액체 공급 기구 (10) 의 제 1 및 제 2 공급 노즐 (13, 14), 및 투영 영역 (AR1) 을 둘러싸도록 배치되어 있다. 또한, 투영 영역 (AR1) 을 둘러싸도록 연속적으로 형성된 회수구의 내부에 복수의 구획 부재 (35) 가 형성되어 있다.
제 1 및 제 2 공급 노즐 (13, 14) 의 공급구로부터 기판 (P) 상에 공급된 액체 (1) 는 투영 광학계 (PL) 의 선단부 (광학 소자(2)) 의 하단면과 기판 (P) 사이로 퍼져 적셔지도록 공급된다. 또한, 제 1 및 제 2 공급 노즐 (13, 14) 로부터 공급된 액체 (1) 는 제 1 및 제 2 회수 노즐 (31, 32) 의 회수구를 통해 회수된다.
도 3 은 기판 스테이지 (PST) 의 Z 스테이지 (52) 를 상방에서 본 개략 평면도이다. 직사각 형상의 Z 스테이지 (52) 의 서로 수직인 2개의 측면에는 이동 거울 (55) 이 배치되어 있고, Z 스테이지 (52) 의 대략 중앙에는 도시하지 않은 홀더를 통해 기판 (P) 이 유지되어 있다. 기판 (P) 주위에는 상기 기술한 바와 같이, 기판 (P) 의 표면과 거의 같은 높이의 평면을 갖는 보조 플레이트 (57) 가 형성되어 있다. 그리고, 보조 플레이트 (57) 의 주위에는 액체 (1) 를 회수하는 제 2 액체 회수 장치 (20) 의 일부를 구성하는 액체 흡수 부재 (21) 가 형성되어 있다. 액체 흡수 부재 (21) 는 소정 폭을 갖는 고리 형상 부재로서, Z 스테이지 (52) 상에 고리 형상으로 형성된 홈부 (23; 회수구) 에 배치되어 있다. 액체 흡수 부재 (21) 는 예를 들어 다공질 세라믹스 등의 다공성 재료에 의해 구성되어 있다. 또는 액체 흡수 부재 (21) 의 형성 재료로서 다공성 재료인 스폰지를 사용해도 된다. 이러한 다공성 재료로 이루어지는 액체 흡수 부재 (21) 를 사용함으로써, 액체 흡수 부재 (21) 에 액체 (1) 를 소정량 유지할 수 있다.
도 4 는 제 2 액체 회수 장치 (20) 를 나타내는 단면도이다. 제 2 액체 회수 장치 (20) 는 Z 스테이지 (52) 상에 고리 형상으로 형성된 홈부 (23; 회수구) 에 배치된 상기 기술한 액체 흡수 부재 (21) 와, Z 스테이지 (52) 내부에 형성되어, 홈부 (23) 와 연통하는 유로 (22) 와, Z 스테이지 (52) 외부에 형성되어, 그 일단부를 유로 (22) 에 접속한 관로 (26) 와, 관로 (26) 의 타단부에 접속되어, Z 스테이지 (52) 외부에 형성된 탱크 (27) 와, 이 탱크 (27) 에 밸브 (28) 를 통해 접속된 흡인 장치인 펌프 (29) 를 구비하고 있다. 액체 회수 장치 (20) 는 펌프 (29) 를 구동하여 액체 흡수 부재 (21) 로 회수한 액체 (1) 를 흡인하여 탱크 (27) 에 모은다. 탱크 (27) 에는 배출 유로 (27A) 가 형성되어 있고, 탱크 (27) 에 액체 (1) 가 소정량 고이면, 탱크 (27) 내의 액체 (1) 가 배출 유로 (27A) 를 통해 외부로 배출된다.
도 3 으로 되돌아가서, Z 스테이지 (52) 의 1개의 코너 근방에는 기준 부재 (7) 가 형성되어 있다. 기준 부재 (7) 에는 기판 얼라인먼트계 (5) 에 의해 검출되는 기준 마크 (PFM) 와, 마스크 얼라인먼트계 (6) 에 의해 검출되는 기판 마크 (MFM) 가 소정 위치 관계로 형성되어 있다. 또한, 기준 부재 (7) 의 표면은 거의 평탄하게 되어 있고, 포커스 검출계 (4) 의 기준면으로서의 역할도 한다. 또, 포커스 검출계 (4) 의 기준면을 기준 부재 (7) 와는 별도로 Z 스테이지 (52) 상에 형성해도 된다. 또한, 기준 부재 (7) 와 보조 플레이트 (57) 를 일체로 형성해도 된다.
그리고, Z 스테이지 (52) 상에 있어서 기준 부재 (7) 의 근방에는 기준 부재 (7) 에 잔류한 액체 (1) 를 제거하는 제 1 액체 제거 장치 (40) 의 일부를 구성하는 액체 흡수 부재 (42) 가 형성되어 있다. 또, Z 스테이지 (52) 의 별도의 코너 근방에는 투영 광학계 (PL) 의 선단의 광학 소자 (2) 나 선단 부근의 경통 (PK) 에 잔류한 액체 (1) 를 제거하는 제 2 액체 제거 장치 (60) 가 형성되어 있다.
다음으로, 상기 기술한 노광 장치 (EX) 를 사용하여 마스크 (M) 의 패턴을 기판 (P) 에 노광하는 수순에 관해서, 도 27 에 나타낸 플로우 차트를 참조하면서 설명한다. 액체 공급 기구 (10) 로부터 액체 (1) 를 공급하기 전에, 기판 (P) 상에 액체 (1) 가 없는 상태에서, 얼라인먼트 마크의 위치 정보를 구한다. 제어 장치 (CONT) 는 투영 광학계 (PL) 의 광축 (AX) 부분이 도 3 에 나타내는 파선 화살표 (43) 를 따라 진행하도록 레이저 간섭계 (56) 의 출력을 모니터하면서, XY 스테이지 (53) 를 이동한다. 그 이동 도중에, 기판 얼라인먼트계 (5) 는 쇼트 영역 (S1∼S11) 에 따라 기판 (P) 상에 형성되어 있는 복수의 얼라인먼트 마크 (도시하지 않음) 를, 액체 (1) 를 통하지 않고 검출한다 (단계 SA1, 도 27). 또, 기판 얼라인먼트계 (5) 의 얼라인먼트 마크 검출은 XY 스테이지 (53) 가 정지한 상태에서 행해진다. 그 결과, 레이저 간섭계 (56) 에 의해서 규정되는 좌표계 내에서의 각 얼라인먼트 마크의 위치 정보가 구해진다. 또, 기판 얼라인먼트계 (5) 에 의한 얼라인먼트 마크의 검출은 기판 (P) 상의 모든 얼라인먼트 마크를 검출해도 되고, 그 일부만 검출해도 된다.
또한, 그 XY 스테이지 (53) 의 이동 중에, 포커스 검출계 (4) 에 의해 기판 (P) 의 표면 정보가 액체 (1) 를 통하지 않고 검출된다 (단계 SA2, 도 27). 포커스 검출계 (4) 에 의한 표면 정보의 검출은 기판 (P) 상의 모든 쇼트 영역 (S1∼S11) 에 관해서 각각 행해지고, 검출 결과는 기판 (P) 의 주사 방향 (X축 방향) 의 위치를 대응시켜 제어 장치 (CONT) 에 기억된다. 또, 포커스 검출계 (4) 에 의한 표면 정보의 검출은 일부의 쇼트 영역에 대해서만 실시해도 된다.
기판 (P) 의 얼라인먼트 마크의 검출 및 기판 (P) 의 표면 정보의 검출이 종료하면, 제어 장치 (CONT) 는 기준 부재 (7) 상에 기판 얼라인먼트계 (5) 의 검출 영역이 위치 결정되도록 XY 스테이지 (53) 를 이동한다. 기판 얼라인먼트계 (5) 는 기준 부재 (7) 상의 기준 마크 (PFM) 를 검출하여, 레이저 간섭계 (56) 에 의해서 규정되는 좌표계 내에서의 기준 마크 (PFM) 의 위치 정보를 구한다 (단계 SA3, 도 27).
이 기준 마크 (PFM) 의 검출 처리의 완료에 의해, 기준 마크 (PFM) 와 기판 (P) 상의 복수의 얼라인먼트 마크와의 위치 관계, 즉, 기준 마크 (PFM) 와 기판 (P) 상의 복수의 쇼트 영역 (S1∼S11) 의 위치 관계가 각각 구해지게 된다. 또한, 기준 마크 (PFM) 와 기준 마크 (MFM) 는 소정 위치 관계에 있으므로, XY 평면 내에 있어서의 기준 마크 (MFM) 와 기판 (P) 상의 복수의 쇼트 영역 (S1∼S11) 의 위치 관계가 각각 결정되게 된다.
또한, 기판 얼라인먼트계 (5) 에 의한 기준 마크 (PFM) 의 검출 전 또는 후에, 제어 장치 (CONT) 는 기준 부재 (7) 의 표면 (기준면) 의 표면 정보를 포커스 검출계 (4) 에 의해 검출한다 (단계 SA4, 도 27). 이 기준 부재 (7) 의 표면의 검출 처리의 완료에 의해, 기준 부재 (7) 표면과 기판 (P) 표면의 관계가 구해지게 된다.
다음으로, 제어 장치 (CONT) 는 마스크 얼라인먼트계 (6) 에 의해 기준 부재 (7) 상의 기준 마크 (MFM) 를 검출할 수 있도록 XY 스테이지 (53) 를 이동한다. 이 때, 투영 광학계 (PL) 의 선단부와 기준 부재 (7) 는 대향하고 있다. 여기서, 제어 장치 (CONT) 는 액체 공급 기구 (10) 및 액체 회수 기구 (30) 에 의한 액체 (1) 의 공급 및 회수를 개시하고, 투영 광학계 (PL) 와 기준 부재 (7) 사이를 액체 (1) 로 채워 액침 영역을 형성한다. 또, 기준 부재 (7) 의 XY 방향의 크기는 공급 노즐 (13, 14) 및 회수 노즐 (31, 32) 보다 충분히 크고, 기준 부재 (7) 상에 액침 영역 (AR2) 이 원활하게 형성되도록 되어 있다.
다음으로, 제어 장치 (CONT) 는 마스크 얼라인먼트계 (6) 에 의해 마스크 (M), 투영 광학계 (PL), 및 액체 (1) 를 통해 기준 마크 (MFM) 를 검출한다 (단계 SA5, 도 27). 그럼으로써 투영 광학계 (PL) 와 액체 (1) 를 통해, XY 평면 내에서의 마스크 (M) 의 위치, 즉 마스크 (M) 의 패턴의 이미지의 투영 위치 정보가 기준 마크 (MFM) 를 사용하여 검출되게 된다.
이상과 같은 검출 처리가 종료되면, 제어 장치 (CONT) 는 액체 공급 기구 (10) 에 의한 기준 부재 (7) 상으로의 액체 (1) 의 공급 동작을 정지한다. 한편으로, 제어 장치 (CONT) 는 액체 회수 기구 (30) 에 의한 기준 부재 (7) 상의 액체 (1) 의 회수 동작을 소정 기간 계속한다 (단계 SA5. 1). 그리고, 상기 소정 기간이 경과한 후, 제어 장치 (CONT) 는 액체 회수 기구 (30) 에 의한 회수 동작을 정지함과 함께, 액체 회수 기구 (30) 로 다 회수하지 못하고 기준 부재 (7) 상에 잔류한 액체 (1) 를 제거하기 위해서, 기판 스테이지 (PST) 를 후술하는 제 1 액체 제거 장치 (40) 의 분사 장치 (41) 의 방향을 향해 이동시킨다.
도 5 는 기판 스테이지 (PST; Z 스테이지 (52)) 위에 형성되어 있는 기준 부재 (7) 에 잔류한 액체 (1) 를, 액체 제거 기구의 일부를 구성하는 제 1 액체 제거 장치 (40) 가 제거하는 모습을 나타내는 도면으로서, 도 5(a) 는 개략 사시도, 도 5(b) 는 단면도이다. 도 5 에 있어서, 제 1 액체 제거 장치 (40) 는 기체를 기준 부재 (7) 에 대하여 분사하는 분사 장치 (41) 와, 기준 부재 (7) 에 인접하여 형성된 액체 흡수 부재 (42) 를 구비하고 있다. 분사 장치 (41) 는 기체를 송출가능한 기체 공급부 (41A) 와, 기체 공급부 (41A) 에 접속된 노즐부 (43) 를 구비하고 있다. 노즐부 (43) 의 분사구 (43A) 는 기준 부재 (7) 표면의 면내 방향에 평행해지도록 슬릿 형상으로 형성되어 있고, 기준 부재 (7) 에 근접하여 배치되어 있다. 그리고, 액체 흡수 부재 (42) 는 기준 부재 (7) 를 사이에 두고 노즐부 (43) 의 분사구 (43A) 와 대향하는 위치에 형성되어 있다. 기체 공급부 (41A) 및 노즐부 (43) 는 투영 광학계 (PL) 와는 독립된 도시하지 않은 지지부에 지지되어 있고, 액체 흡수 부재 (42) 는 Z 스테이지 (52) 에 형성된 회수구인 홈부 (44) 에 배치되어 있다. 액체 흡수 부재 (42) 는 제 2 액체 회수 장치 (20) 의 액체 흡수 부재 (21) 와 마찬가지로, 예를 들어 다공질 세라믹스나 스폰지 등의 다공성 재료에 의해 구성되어 있어, 액체 (1) 를 소정량 유지할 수 있다. 기체 공급부 (41A) 로부터 기체가 송출됨으로써, 노즐부 (43) 의 슬릿 형상의 분사구 (43A) 를 통해 고속의 기체가 기준 부재 (7) 에 경사 상방으로부터 분사되도록 되어 있다. 제어 장치 (CONT) 는 제 1 액체 제거 장치 (40) 의 노즐부 (43) 로부터 기준 부재 (7) 에 대하여 기체를 분사함으로써, 기준 부재 (7) 상에 잔류하고 있던 액체 (1) 를 날려버려 제거한다 (단계 SA5. 27). 이 때 제어 장치 (CONT) 는 제 1 액체 제거 장치 (40) 의 노즐부 (43) 에 대하여 기판 스테이지 (PST; 즉 기준 부재 (7)) 를 이동하면서 노즐부 (43) 로부터 기체를 기준 부재 (7) 에 분사함으로써, 기준 부재 (7) 의 표면 전체에 골고루 기체를 분사할 수 있다. 날려버려진 액체 (1) 는 노즐부 (43) 의 분사구 (43A) 와 대향하는 위치에 배치되어 있는 액체 흡수 부재 (42) 에 유지 (회수) 된다.
도 5(b) 에 나타내는 바와 같이, Z 스테이지 (52) 내부에는 홈부 (44) 와 연속하는 유로 (45) 가 형성되어 있고, 홈부 (44) 에 배치되어 있는 액체 흡수 부재 (42) 의 밑바닥부는 유로 (45) 에 접속되어 있다. 액체 흡수 부재 (42) 를 배치한 홈부 (44) 에 접속되어 있는 유로 (45) 는 Z 스테이지 (52) 외부에 형성되어 있는 관로 (46) 의 일단부에 접속되어 있다. 한편, 관로 (46) 의 타단부는 Z 스테이지 (52) 외부에 형성된 탱크 (47) 및 밸브 (48) 를 통해 흡인 장치인 펌프 (49) 에 접속되어 있다. 제 1 액체 제거 장치 (40) 는 기체 공급부 (41A) 를 구동함과 함께 펌프 (49) 를 구동하여, 액체 흡수 부재 (42) 로 회수한 액체 (1) 를 흡인하여 탱크 (47) 에 모은다. 탱크 (47) 에는 배출 유로 (47A) 가 형성되어 있고, 탱크 (47) 에 액체 (1) 가 소정량 고이면, 탱크 (47) 내의 액체 (1) 가 배출 유로 (47A) 를 통해 외부로 배출된다.
이어서, 제어 장치 (CONT) 는 기판 (P) 상의 각 쇼트 영역 (S1∼S11) 을 노광하기 위해서, 기판 (P) 을 투영 광학계 (PL) 의 밑에 배치하도록 XY 스테이지 (53) 를 이동시킨다 (단계 SA6, 도 27). 투영 광학계 (PL) 의 밑에 기판 (P) 이 배치된 상태에서, 제어 장치 (CONT) 는 액체 공급 기구 (10) 를 구동하여 기판 (P) 상으로의 액체 공급 동작을 시작한다. 액침 영역 (AR2) 을 형성하기 위해서 액체 공급 기구 (10) 의 제 1 및 제 2 액체 공급부 (11, 12) 의 각각으로부터 송출된 액체 (1) 는 공급관 (11A, 12A) 을 유통한 후, 제 1 및 제 2 공급 노즐 (13, 14) 을 통해 기판 (P) 상에 공급되고, 투영 광학계 (PL) 와 기판 (P) 사이에 액침 영역 (AR2) 을 형성한다. 이 때, 제 1 및 제 2 공급 노즐 (13, 14) 의 공급구는 투영 영역 (AR1) 의 X축 방향 (주사 방향) 양측에 배치되어 있고, 제어 장치 (CONT) 는 액체 공급 기구 (10) 의 공급구로부터 투영 영역 (AR1) 의 양측에서 기판 (P) 상으로의 액체 (1) 의 공급을 동시에 행한다. 그럼으로써, 기판 (P) 상에 공급된 액체 (1) 는 적어도 투영 영역 (AR1) 보다 넓은 범위의 액침 영역 (AR2) 을 기판 (P) 상에 형성한다. 또한, 제어 장치 (CONT) 는 액체 회수 기구 (30) 의 제 1 및 제 2 액체 회수부 (33, 34) 를 제어하고, 액체 공급 기구 (10) 에 의한 액체 (1) 의 공급 동작과 병행하여, 기판 (P) 상의 액체 회수 동작을 행한다. 요컨대, 제어 장치 (CONT) 는 기판 (P) 의 노광 중에 액침 영역 (AR2) 을 형성하기 위해서, 액체 공급 기구 (10) 에 의한 액체 공급과 액체 회수 기구 (30; 제 1 액체 회수 기구) 에 의한 액체 회수를 동시에 행한다 (단계 SA7, 도 27). 그럼으로써, 제 1 및 제 2 공급 노즐 (13, 14) 의 공급구로부터 투영 영역 (AR1) 에 대하여 외측으로 흐르는 기판 (P) 상의 액체 (1) 는 제 1 및 제 2 회수 노즐 (31, 32) 의 회수구를 통해 회수된다. 이와 같이, 액체 회수 기구 (30) 는 투영 영역 (AR1) 을 둘러싸도록 형성되어 있는 회수구에 의해 기판 (P) 상의 액체 (1) 를 회수한다.
그리고, 전술한 검출 처리 중에 구한 각 정보를 사용하여, 기판 (P) 상의 각 쇼트 영역 (S1∼S11) 을 주사 노광한다 (단계 SA8, 도 27). 즉, 각 쇼트 영역의 각각에 대한 주사 노광 중에는 액체 (1) 의 공급 전에 구한 기준 마크 (PFM) 와 각 쇼트 영역 (S1∼S11) 의 위치 관계의 정보, 및 액체 (1) 의 공급 후에 기준 마크 (MFM) 를 사용하여 구한 마스크 (M) 패턴의 이미지의 투영 위치 정보에 기초하여, 기판 (P) 상의 각 쇼트 영역 (S1∼S11) 과 마스크 (M) 의 위치 맞춤이 행해진다.
또한, 각 쇼트 영역 (S1∼S11) 에 대한 주사 노광 중에는, 액체 (1) 의 공급 전에 구한 기판 (P) 의 표면 정보, 및 주사 노광 중에 포커스 검출계 (4) 를 사용하여 검출되는 기판 (P) 표면의 면 정보에 기초하여, 포커스 검출계 (4) 를 사용하지 않고, 기판 (P) 표면과 액체 (1) 를 통해 형성되는 이미지면과의 위치 관계가 조정된다.
본 실시형태에 있어서, 투영 영역 (AR1) 의 주사 방향 양측으로부터 기판 (P) 에 대하여 액체 (1) 를 공급할 때, 제어 장치 (CONT) 는 액체 공급 기구 (10) 의 제 1 및 제 2 액체 공급부 (11, 12) 의 액체 공급 동작을 제어하여, 주사 방향에 관해서, 투영 영역 (AR1) 의 앞에서 공급하는 단위 시간당 액체 공급량을, 그 반대측에서 공급하는 액체 공급량보다 많이 설정한다. 예를 들어, 기판 (P) 을 +X 방향으로 이동시키면서 노광 처리하는 경우, 제어 장치 (CONT) 는 투영 영역 (AR1) 에 대하여 -X측 (즉 제 1 공급 노즐 (13)) 으로부터의 액체량을 +X측 (즉 제 2 공급 노즐 (14)) 으로부터의 액체량보다 많게 하고, 한편 기판 (P) 을 -X 방향으로 이동시키면서 노광 처리하는 경우, 투영 영역 (AR1) 에 대하여 +X측으로부터의 액체량을 -X측으로부터의 액체량보다 많게 한다.
기판 (P) 상의 각 쇼트 영역 (S1∼S11) 의 주사 노광이 종료되면, 제어 장치 (CONT) 는 액체 공급 기구 (10) 에 의한 액체 공급을 정지함과 함께, 기판 스테이지 (PST) 에 형성된 제 2 액체 회수 장치 (20) 의 회수구 (23) 가 투영 광학계 (PL) 와 대향하도록 기판 스테이지 (PST) 를 이동시킨다. 그리고, 제어 장치 (CONT) 는 액체 회수 기구 (30; 제 1 액체 회수 장치) 와 제 2 액체 회수 장치 (20) 를 병용하여, 투영 광학계 (PL) 의 밑에 존재하는 액체 (1) 를 회수한다 (단계 SA9). 이와 같이, 기판 스테이지 (PST) 의 상방에 회수구가 배치되어 있는 액체 회수 기구 (30; 제 1 액체 회수 장치) 와, 기판 스테이지 (PST) 상에 회수구가 배치되어 있는 제 2 액체 회수 장치 (20) 에 의해 동시에 액침 영역 (AR2) 의 액체 (1) 를 회수하도록 하고 있으므로, 투영 광학계 (PL) 의 선단이나 기판 (P) 상에 액체 (1) 가 잔류하는 것을 억제할 수 있다.
또, 제 2 액체 회수 장치 (20) 는 기판 (P) 의 노광 종료 후에, 액침 영역 (AR2) 의 액체 (1) 를 회수하는 것이지만, 액침 노광 중에, 기판 (P; 보조 플레이트 (57)) 의 외측으로 유출된 액체 (1) 를 회수하도록 해도 된다. 또, 제 2 액체 회수 장치 (20) 의 회수구 (23) 는 기판 (P) 의 주위에 윤대 (輪帶; 원고리) 형상으로 형성되어 있는데, 기판 (P) 의 노광 종료 후의 기판 스테이지 (PST) 의 이동 방향을 고려하여, 기판 (P; 보조 플레이트 (57)) 근방의 소정 위치에 부분적으로 형성하도록 해도 된다. 또한, 액침 노광의 전후에서는 회수 동작에 수반되는 진동이 커진 경우라도 액침 노광 자체에 영향을 주지 않기 때문에, 액체 회수 기구 (30) 의 회수 파워를 액침 노광 중보다 크게 해도 된다.
또한, 액침 노광 종료 후, 기판 (P) 상의 액체 (1) 를 다 회수하지 못한 경우에는 기판 (P) 은 부품이 아니지만, 예를 들어, 기판 (P) 을 지지한 기판 스테이지 (PST) 를 이동시켜 기판 (P) 을 투영 광학계 (PL) 로부터 떨어진 위치, 구체적으로는 제 1 액체 제거 장치 (40) 의 상기 분사 장치 (41) 의 하방에 배치하여, 기판 (P) 에 기체를 분사하여 액체를 제거하고, 날려버린 액체 (1) 를 액체 흡수 부재를 통해 펌프 (42) 에 의해 흡인하여 탱크 (47) 에 모을 수 있다. 또한, 날려버려진 액체 (1) 를, 제 2 액체 회수 장치 (20) 로 회수하도록 해도 된다. 물론, 이 기체 분사 동작은 기판 (P) 에 대하여 뿐만 아니라, 보조 플레이트 (57) 나 보조 플레이트 (57) 외측의 Z 스테이지 (52) 표면에 대하여 분사할 수 있다.
상기 기술한 바와 같이, 제 1 액체 제거 장치 (40) 는 기준 부재 (7) 상에 잔존하고 있는 액체 (1) 를 제거하는 것이지만, 기판 스테이지 (PST) 상의 기준 부재 (7) 이외의 부품 (영역) 에 잔류한 액체 (1) 를 제거할 수도 있다. 예를 들어, 액체 노광 중에 기판 (P) 의 외측으로 액체 (1) 가 유출 또는 비산하여, 기판 스테이지 (PST; Z 스테이지 (52)) 상에 액체 (1) 가 부착된 경우, 기판 (P) 의 노광 종료 후에 기판 스테이지 (PST) 상의 액체 (1) 를 제 1 액체 제거 장치 (40) 로 회수할 수 있다. 이 경우, 제 1 액체 제거 장치 (40) 의 분사 장치 (41) 로 날려버려진 액체 (1) 를 제 2 액체 회수 장치 (20) 의 홈부 (23; 회수구) 에 배치된 액체 흡수 부재 (21) 로 회수해도 된다.
또한, 분사 장치 (41) 의 노즐부 (43) 를 기판 스테이지 (PST) 에 대하여 이동가능하게 형성해 두고, 기판 (P) 의 노광 중이나 노광 종료 후에 있어서 기판 (P) 의 외측으로 유출된 액체 (1) 를 회수하도록 해도 된다.
이상 설명한 바와 같이, 기판 스테이지 (PST; Z 스테이지 (52)) 에 형성되어 있는 기준 부재 (7) 상에 잔류한 액체 (1) 를 제거하는 제 1 액체 제거 장치 (40) 를 형성하였으므로, 기준 부재 (7) 상에 있어서의 액체 (1) 의 잔존을 방지할 수 있다. 또한, 기판 (P) 의 노광 종료 후에, 기판 스테이지 (PST) 상의 회수구도 사용하여 액체 (1) 를 회수하도록 하였으므로, 투영 광학계 (PL) 나 노즐의 선단, 또는 기판 (P) 상의 액체 (1) 의 잔존을 방지할 수 있고, 기판 등으로의 액체 (1) 의 낙하나 비산을 방지할 수 있다. 또, 상기 기술한 실시형태에 있어서는 제 1 액체 제거 장치 (40) 는 기준 부재 (7) 의 근방에 배치된 액체 흡수 부재 (42) 를 갖고 있지만, 액체 흡수 부재 (42) 를 생략해도 된다. 이 경우, 기준 부재 (7) 상에서 제거된 액체 (1) 는 노광 동작이나 계측 동작에 영향이 없는 기판 스테이지 (PST) 상의 소정 영역에 잔류시켜 둘 수도 있다.
도 6 은 제 1 액체 제거 장치 (40) 의 다른 실시형태를 나타내는 도면이다. 이하의 설명에 있어서, 상기 기술한 실시형태와 동일 또는 동등한 구성 부분에 관해서는 동일한 부호를 붙여 그 설명을 간략하게 하거나 생략한다. 도 6 에 있어서, 제 1 액체 제거 장치 (40) 는 기준 부재 (7) 상에 부착되어 있는 액체 (1) 를 흡인하는 흡인 장치 (81) 를 구비하고 있다. 흡인 장치 (81) 는 기준 부재 (7) 를 사이에 두도록 분사 장치 (41) 와 대향하는 위치에 배치되어 있다. 흡인 장치 (81) 는 탱크 및 펌프를 포함하는 흡인부 (81A) 와, 흡인부 (81A) 에 접속된 흡인 노즐 (82) 을 구비하고 있다. 그리고, 흡인 노즐 (82) 의 흡입구 (82A) 는 기준 부재 (7) 에 근접하여 배치되어 있다. 기준 부재 (7) 상에 잔류한 액체 (1) 를 제거할 때에는 분사 장치 (41) 가 기준 부재 (7) 에 대하여 기체를 분사함과 함께, 흡인 장치 (81) 가 기준 부재 (7) 상의 액체 (1) 를 흡인한다.
또, 도 6 을 참조하여 설명한 예에서는 제 1 액체 제거 장치 (40) 에는 분사 장치 (41) 와 흡인 장치 (81) 가 병설되어 있지만, 흡인 장치 (81) 만 형성되어 있는 구성이어도 된다. 흡인 장치 (81) 는 흡입구 (82A) 를 통해 기준 부재 (7) 상에 잔류하고 있는 액체 (1) 를 흡인함으로써, 이 액체 (1) 를 제거 (회수) 가능하다. 또, 흡인 장치 (81) 의 노즐부 (82) 를 기판 스테이지 (PST) 에 대하여 이동가능하게 형성하고, 기판 (P) 의 노광 중이나 노광 종료 후에 기판 (P) 의 외측으로 유출된 액체 (1) 를 회수하도록 해도 된다. 또한, 도 6 의 실시형태에 있어서도, 제 1 액체 제거 장치 (40) 는 기준 부재 (7) 의 근방에 배치된 액체 흡수 부재 (42) 를 갖고 있지만, 액체 흡수 부재 (42) 를 생략해도 된다.
도 7 은 제 1 액체 제거 장치 (40) 의 다른 실시형태를 나타내는 단면도이다. 도 7 에 나타내는 바와 같이, 제 1 액체 제거 장치 (40) 는 기준 부재 (7) 를 덮는 커버 부재 (84) 와, 커버 부재 (84) 의 내부 공간에 건조 기체를 공급하는 건조 기체 공급부 (85) 를 구비하고 있다. 건조 기체 공급부 (85) 는 관로 (86) 를 통해, 기준 부재 (7) 의 상방에 배치되어 있는 커버 부재 (84) 의 내부 공간에 건조 기체를 공급한다. 이렇게 함으로써, 기준 부재 (7) 에 잔류한 액체 (1) 의 기화가 촉진되어 액체 (1) 가 제거된다. 또, 제 1 액체 제거 장치 (40) 는 기판 스테이지 (PST) 에 탑재되어 있는 기준 부재 (7) 등의 부품의 액체를 제거하도록 하고 있지만, 일본 공개특허공보 평11-135400호에 개시되어 있는 바와 같이, 노광 장치 (EX) 가 기판 스테이지 (PST) 와는 별도로 계측 부재나 레퍼런스부를 구비한 스테이지를 탑재하고 있는 경우에는 그 스테이지 상의 부품의 액체를 제거할 수도 있다.
다음으로, 도 8 을 참조하면서, 투영 광학계 (PL) 의 선단의 광학 소자 (2) 나 선단 부근의 경통 (PK) 에 잔류한 액체 (1) 등을 제거하는 제 2 액체 제거 장치 (60) 에 관해서 설명한다. 도 8 에 있어서, 제 2 액체 제거 장치 (60) 는 투영 광학계 (PL) 의 선단의 부품을 구성하는 광학 소자 (2) 나 그 근방의 경통 (PK) 에 대하여 기체를 분사하는 분사 장치 (61) 와, 투영 광학계 (PL) 의 선단에 잔류하고, 분사 장치 (61) 에 의한 기체 분사에 의해 날려버려져 낙하된 액체를 회수하는 회수 장치 (62; 흡인 장치) 를 구비하고 있다. 분사 장치 (61) 는 기체 공급부 (63) 와, 기체 공급부 (63) 에 접속되어, Z 스테이지 (52) 의 오목부 (64B) 에 형성되어 있는 노즐부 (64) 를 구비하고 있고, 노즐부 (64) 의 분사구 (64A) 는 상방을 향하여 투영 광학계 (PL) 의 선단 근방에 배치가능하게 되어 있다. 한편, 회수 장치 (62) 는 Z 스테이지 (52) 에 형성된 회수구 (65; 홈부) 와, 회수구 (65) 에 배치된 다공성 재료로 이루어지는 액체 흡수 부재 (66) 와, Z 스테이지 (52) 내부에 형성되어, 홈부 (66) 에 연통하는 유로 (67) 와, Z 스테이지 (52) 외부에 형성되어, 그 일단부를 유로 (67) 에 접속한 관로 (68) 와, 관로 (68) 의 타단부에 접속되어, Z 스테이지 (52) 외부에 형성된 탱크 (69) 와, 이 탱크 (69) 에 밸브 (70) 를 통해 접속된 흡인 장치인 펌프 (71) 를 구비하고 있다. 회수 장치 (62) 는 펌프 (71) 를 구동하여, 액체 흡수 부재 (66) 로 회수한 액체 (1) 를 흡인하여 탱크 (69) 에 모은다. 탱크 (69) 에는 배출 유로 (69A) 가 형성되어 있고, 탱크 (69) 에 액체 (1) 가 소정량 고이면, 탱크 (69) 내의 액체 (1) 가 배출 유로 (69A) 를 통해 외부로 배출된다.
본 실시형태에 있어서, 분사 장치 (61) 의 노즐부 (64) 의 분사구 (64A) 는 Y축 방향을 길이 방향으로 하는 슬릿 형상이고 (도 3 참조), 회수 장치 (62) 의 회수구 (65) 는 분사구 (64A) 의 +X측에 인접하는 위치에, Y축 방향을 길이 방향으로 하는 직사각 형상으로 형성되어 있다. 그리고, 제 2 액체 제거 장치 (60) 는 기판 (P) 의 노광 종료 후에, 기판 (P) 의 노광 중에 액침 영역 (AR2) 의 액체 (1) 에 접촉한 투영 광학계 (PL) 의 선단 뿐만 아니라, 액체 공급 기구 (10) 의 공급 노즐 (13, 14; 부품), 액체 회수 기구 (30) 의 회수 노즐 (31, 32; 부품) 에 잔류한 액체 (1) 의 제거도 행한다. 물론, 투영 광학계 (PL) 의 선단의 액체만, 또는 노즐의 액체만 제거할 수도 있다.
기판 (P) 에 대한 액침 노광 종료 후 (단계 SA8 종료 후), 전술한 바와 같이, 제어 장치 (CONT) 는 액체 회수 기구 (30; 제 1 액체 회수 장치) 를 사용하여 기판 (P) 상의 액체 (1) 를 회수한다 (단계 SA9, 도 27). 그리고, 액체 회수 기구 (30) 에 의한 기판 (P) 상의 액체 (1) 의 회수가 종료된 후, 제어 장치 (CONT) 는 투영 광학계 (PL) 의 밑에 제 2 액체 제거 장치 (60) 가 배치되도록 기판 스테이지 (PST) 를 이동시킨다. 그리고, 제 2 액체 제거 장치 (60) 는 투영 광학계 (PL) 의 선단에 대하여 경사 하방에 배치된 분사 장치 (61) 의 노즐부 (64) 로부터 기체를 분사하고, 이 투영 광학계 (PL) 의 선단에 잔류한 액체 (1) 를 날려버려 제거한다 (단계 SA10, 도 27). 날려버려진 액체 (1) 는 노즐부 (64) 에 인접한 액체 흡수 부재 (66) 상에 낙하되어, 회수 장치 (62) 의 액체 흡수 부재 (66) 를 배치한 회수구 (65) 에 회수된다. 여기서, 제어 장치 (CONT) 는 기판 스테이지 (PST) 를 예를 들어, 분사구 (64A) 및 회수구 (65) 의 길이 방향 (Y축 방향) 과 직교하는 X축 방향으로 이동시키면서, 제 2 액체 제거 장치 (60) 를 구동한다. 이렇게 함에 따라, 투영 광학계 (PL) 의 선단은 물론, 그 주위에 배치되어 있는 액체 공급 기구 (10) 의 공급 노즐 (13, 14) 이나, 액체 회수 기구 (30) 의 회수 노즐 (31, 32) 에도 기체를 분사하여, 이들 공급 노즐 (13, 14) 및 회수 노즐 (31, 32) 에 잔류하고 있는 액체 (1) 도 제거할 수 있다.
이상 설명한 바와 같이, 노광 중의 액침 영역 (AR2) 의 액체 (1) 에 접촉하는 투영 광학계 (PL) 의 선단, 공급 노즐 (13, 14), 및 회수 노즐 (31, 32) 에 잔류한 액체 (1) 를 제거함으로써, 도 9 의 모식도에 나타내는 바와 같이, 기판 스테이지 (PST) 가 투영 광학계 (PL) 의 밑 (노광 처리 위치 A) 으로부터, 기판 (P) 을 로드·언로드하는 위치 (로드·언로드 위치 B) 까지 이동하더라도, 상기 투영 광학계 (PL) 의 선단 등에 잔류하고 있는 액체 (1) 가 낙하하여 주변 장치에 영향을 주거나 환경 변화를 초래하거나 하는 문제의 발생을 억제할 수 있다. 특히, 투영 광학계 (PL) 의 선단의 광학 소자 (2) 에 액체 (1) 를 잔존시키지 않음으로써 부착 흔적 (워터 마크) 의 발생을 억제할 수 있다.
그리고, 제 2 액체 제거 장치 (60) 를 기판 스테이지 (PST) 에 형성함으로써, 기판 스테이지 (PST) 를 이동하면서 제 2 액체 제거 장치 (60) 를 구동하면, 새로운 액츄에이터를 형성하지 않더라도, 투영 광학계 (PL) 나 공급 노즐, 회수 노즐에 대하여 제 2 액체 제거 장치 (60) 를 주사하면서 기체를 분사할 수 있다. 또한, 예를 들어 도 9 에 나타낸 바와 같이, 액침 노광 종료 후, 노광 처리 위치 A 로부터 로드·언로드 위치 B 까지 이동하는 동안에, 제 2 액체 제거 장치 (60) 에 의한 기체의 분사 동작을 행하도록 함으로써, 액체 제거 동작 (기체 분사 동작) 과 스테이지 이동 동작을 동시에 행할 수 있어, 일련의 노광 프로레스의 시간 효율을 향상시킬 수 있다. 따라서, 제 2 액체 제거 장치 (60) 는 기판 스테이지 (PST) 가 노광 처리 위치 A 로부터 로드·언로드 위치 B 까지 이동하는 동안에 투영 광학계 (PL) 의 밑을 통과하는 위치에 미리 형성해 두는 것이 바람직하다.
도 10 및 도 11 은 제 2 액체 제거 장치 (60) 의 변형예를 나타낸 도면이다. 도 10 에 나타내는 바와 같이, Z 스테이지 (52) 상에 큰 홈부 (72) 를 형성해 두고, 이 홈부 (72) 내에, 분사 장치 (61) 의 노즐부 (64) 및 회수 장치 (62) 의 유로 (67; 회수구) 를 배치해도 된다. 또, 도 10 에 나타내는 예에 있어서 액체 흡수 부재 (66) 는 형성되어 있지 않다. 이와 같이, 액체 흡수 부재 (66) 를 형성하지 않는 구성으로 할 수도 있다. 또한, 도 11 에 나타내는 바와 같이, 홈부 (72) 내에, 분사 장치 (61) 의 노즐부 (64) 를 복수 (도 11 에 나타내는 예에서는 2개) 형성해도 된다. 또, 도 10 및 도 11 에 나타낸 예와 같이, 투영 광학계 (PL) 의 선단의 크기 (폭) 보다 큰 홈부 (72) 를 형성하고, 이 속에 노즐부 (64) 및 회수구 (67) 를 배치함으로써, 기체가 분사되어 낙하된 액체 (1) 를 홈부 (72) 로 모두 회수할 수 있으므로, 액체 (1) 가 주위로 비산되는 것을 억제할 수 있다.
또는 도 12 에 나타내는 바와 같이, 노즐부 (64) 의 분사구 (64A) 및 회수구 (65) 주위에, 기체가 분사되어 액체 (1) 의 주위로 비산되는 것을 방지하기 위한 커버 부재 (73) 를 형성할 수도 있다. 도 12 에 나타내는 커버 부재 (73) 는 투영 광학계 (PL) 의 선단을 둘러싸도록 배치가능한 평면에서 봤을 때 U 자형으로 형성되어 있다. 또한, 커버 부재 (73) 는 U 자형 개구측에 노즐부 (64) 의 분사구 (64A) 가 배치되도록 형성되어 있다. 또, 커버 부재 (73) 는 커버 부재 (73) 의 U 자형 개구측이 기판 스테이지 (PST) 의 이동 방향 (X축 방향) 에 면하도록 형성되어 있다. 투영 광학계 (PL) 의 선단은 이 U 자형 개구측에서 커버 부재 (73) 내측으로 출입한다. 이 커버 부재 (73) 의 내측에 Y축 방향을 길이 방향으로 하는 분사구 (64A) 및 회수구 (65) 를 형성해 둠으로써, 1회의 기판 스테이지 (PST) 의 주사 이동으로, 액체 (1) 의 비산을 방지하면서, 효율적으로 투영 광학계 (PL) 의 선단 부분 등의 액체를 제거할 수 있다.
또, 제 2 액체 제거 장치 (60) 의 회수 장치 (62) 의 회수구 (65) 를 통해, 기판 (P) 의 노광 중에 기판 (P) 의 외측으로 유출된 액체 (1) 를 회수할 수도 있다. 이 때, 회수 장치 (62) 의 회수구 (65) 를, 기판 (P) 의 주위에 소정 간격으로 복수 형성해 두는 것이 바람직하다.
또한, 도 8∼도 12 의 실시형태에 있어서, 제 2 액체 제거 장치 (60) 는 노즐부 (64) 의 근방에 회수 장치 (62) 를 구비하고 있는데, 이것을 생략해도 된다. 이 경우, 투영 광학계 (PL) 의 선단에서 제거된 액체 (1) 는 노광 동작이나 계측 동작에 영향이 없는 기판 스테이지 (PST) 상의 소정 영역에 잔류시켜 둘 수도 있다.
또한, 도 8∼도 12 의 실시형태에 있어서는 제 2 액체 제거 장치 (60) 는 기판 스테이지 (PST) 상에 배치되어 있지만, 기판 스테이지 (PST) 와는 상이한 부재 또는 부위에 제 2 액체 제거 장치 (60) 를 배치해도 된다. 예를 들어, 기판 스테이지 (PST) 와는 독립하여, 투영 광학계 (PL) 의 이미지면측을 이동가능한 스테이지를 추가로 탑재해 두고, 그 스테이지에 제 2 액체 제거 장치 (60) 를 배치하도록 해도 된다.
또한, 투영 광학계 (PL) 나 공급 노즐, 회수 노즐, 제 2 액체 제거 장치 (60) 의 노즐부 (64) 의 분사구 (64A) 의 근방에 흡인구를 형성해도 된다. 또는 그 분사구 (64A) 대신에 흡인구를 형성하여, 투영 광학계 (PL) 의 선단면이나 공급 노즐, 회수 노즐에 부착된 액체를 회수하도록 해도 된다.
그런데, 투영 광학계 (PL) 의 선단의 액체 (1) 를 제거하더라도, 액체 (1) 에 함유되어 있는 불순물이나 이물이 투영 광학계 (PL) 의 선단의 광학 소자 (2) 에 부착되어 광학 소자 (2) 가 오염되는 경우가 있다. 여기서, 불순물이나 이물이란, 포토레지스트의 파편이나, 포토레지스트에 함유되는 전해질의 석출물 등을 들 수 있다. 그래서, 투영 광학계 (PL) 의 선단의 광학 소자 (2) 에 잔류하고 있는 액체 (1) 를 제거 (날려버리거나 또는 흡인한다) 전 또는 후에, 이 광학 소자 (2) 를 세정하는 것이 바람직하다.
도 13 은 투영 광학계 (PL) 의 선단을 세정하고 있는 상태를 나타내는 모식도이다. 도 13 에 나타내는 실시형태에 있어서, 기판 스테이지 (PST; Z 스테이지 (52)) 상에는 기판 홀더에 유지된 기판 (P) 과는 별도의 위치에, 세정 스테이션 (90) 이 형성되어 있다. 세정 스테이션 (90) 에는 세정판 (91) 이 형성되어 있다. 세정판 (91) 은 예를 들어 기판 (P) 과 거의 같은 크기를 갖는 판 부재이다.
액침 노광 종료 후 (또는 전) 에 있어서 투영 광학계 (PL) 의 선단의 광학 소자 (2) 를 세정하기 위해서, 제어 장치 (CONT) 는 기판 스테이지 (PST) 를 이동하여, 세정판 (91; 세정 스테이션 (90)) 을 투영 광학계 (PL) 의 밑에 배치한다. 그리고, 제어 장치 (CONT) 는 액체 공급 기구 (10) 및 액체 회수 기구 (30) 를 구동하여, 투영 광학계 (PL) 과 세정판 (91) 사이에 액침 영역 (AR2) 을 형성한다. 이 세정판 (91) 상에 형성된 액침 영역 (AR2) 의 액체 (1) 에 의해 투영 광학계 (PL) 의 선단의 광학 소자 (2) 가 세정된다. 그리고, 세정 처리가 종료된 후, 전술한 바와 같이, 제 2 액체 제거 장치 (60) 를 사용하여, 투영 광학계 (PL) 의 선단의 광학 소자 (2) 에 잔류한 액체 (1) 를 제거한다.
또, 도 13 에 나타낸 세정 스테이션 (90) 에서는 액체 공급 기구 (10) 및 액체 회수 기구 (30) 를 사용하여 세정판 (91) 상에 액침 영역 (AR2) 을 형성하고, 이 액침 영역 (AR2) 의 액체 (1) 로 투영 광학계 (PL) 의 선단의 광학 소자 (2) 를 세정하고 있는데, 도 14 에 나타내는 바와 같이, 세정 스테이션 (90) 에 세정 기구 (95) 를 형성하고, 이 세정 기구 (95) 를 사용하여 투영 광학계 (PL) 의 선단의 광학 소자 (2) 를 세정하는 것이 가능하다. 도 14 에 나타내는 세정 스테이션 (90) 의 세정 기구 (95) 는 세정용 액체 공급부 (96) 와, 세정용 액체 공급부 (96) 에 접속하여, 세정용 액체 공급부 (96) 로부터 송출된 세정용 액체를 투영 광학계 (PL) 의 선단의 광학 소자 (2) 에 분사하는 분사구 (97A) 를 갖는 분사부 (97) 와, 광학 소자 (2) 를 세정한 후의 폐수 (廢水) 를 회수하는 회수구 (98A) 를 갖는 회수관 (98) 과, 회수관 (98) 에 접속하여, 펌프 및 탱크 등으로 이루어지는 회수부 (99) 를 구비하고 있다. 분사구 (97A) 및 회수구 (98A) 는 기판 스테이지 (PST; Z 스테이지 (52)) 상에 형성된 홈부 (94) 내에 배치되어 있다. 액침 노광 종료 후, 투영 광학계 (PL) 의 밑에 세정 스테이션 (90) 을 배치하여, 세정 기구 (95) 의 분사부 (97) 에 의해 투영 광학계 (PL) 의 선단의 광학 소자 (2) 에 세정용 액체를 분사함으로써, 광학 소자 (2) 는 세정된다. 이 때, 분사구 (97A) 및 회수구 (98A) 를 홈부 (94) 에 배치함으로써, 세정용 액체의 주위로의 비산이 방지된다.
또한, 세정 스테이션 (90; 세정판 (91)) 은 기판 스테이지 (PST) 상에 배치되어 있지만, 기판 스테이지 (PST) 와는 상이한 부재에 배치해도 된다. 예를 들어, 기판 스테이지 (PST) 와는 독립하여, 투영 광학계 (PL) 의 이미지면측을 이동가능한 스테이지를 추가로 탑재해 두고, 그 스테이지에 세정 스테이션을 배치하도록 해도 된다.
또한, 세정 동작 및 액체 제거 동작 후, 투영 광학계 (PL) 의 선단의 광학 소자 (2) 에 이물이 부착되어 있는지 여부를 이물 검출계에 의해 확인하는 것이 바람직하다. 도 15 는 이물 검출계 (100) 의 일례를 나타내는 모식도이다. 또, 여기서 말하는 이물이란, 상기 기술한 포토레지스트의 파편이나 포토레지스트에 함유되는 전해질의 석출물 등 이외에, 잔류한 액체 (1; 액적 (液滴)) 도 포함된다.
도 15 에 있어서, 이물 검출계 (100) 는 기판 스테이지 (PST) (52; Z 스테이지) 상에 형성되고, 투영 광학계 (PL) 의 선단의 광학 소자 (2) 표면에 대하여 경사 하방으로부터 소정 조사광을 조사하는 발광부 (118) 와, 광학 소자 (2) 표면과 발광부 (118) 를 잇는 광로 상에 배치된 분기 (分岐) 미러 (119) 와, 기판 스테이지 (PST) 상에 형성되고, 발광부 (118) 로부터의 조사에 기초하는 광학 소자 (2) 표면으로부터의 반사광을 수광하기 위한 제 1 수광부 (120) 와, 기판 스테이지 (PST) 의 상방 위치에 배치되어, 발광부 (118) 로부터의 조사에 기초하는 분기 미러 (119) 로부터의 분기광을 수광하기 위한 제 2 수광부 (121) 를 구비하고 있다. 여기서, 이물 검출계 (100) 를 구성하는 발광부 (118) 및 제 1 수광부 (120) 등은 기판 스테이지 (PST) 상 중 기판 홀더나 세정 스테이션 이외의 위치에 형성되어 있다. 그리고, 제 1 및 제 2 수광부 (120, 121) 의 수광 결과는 광전 신호로서 이물 검출계 (100) 의 일부를 구성하는 제어 장치 (CONT) 로 출력되도록 되어 있다. 제어 장치 (CONT) 는 제 1 및 제 2 수광부 (120, 121) 로부터 출력된 광전 신호에 기초하여 광학 소자 (2) 표면의 광반사율을 실반사율로서 연산하고, 연산한 실반사율과 미리 기억되어 있는 소정 반사율의 대비 결과에 기초하여 광학 소자 (2) 표면의 오염도를 측정하도록 구성되어 있다. 요컨대, 광학 소자 (2) 에 이물이 부착되어 있으면, 이 이물에 기인하여 산란광이 생겨 반사율이 변화되고, 제 1 수광부 (120) 에서 수광되는 수광량이 변화된다. 제어 장치 (CONT) 는 광학 소자 (2) 표면이 광학 특성에 영향을 미칠 정도로 오염되지 않은 것으로 상정되는 본 장치 완성시에 측정된 광학 소자 (2) 표면의 광반사율을 소정 반사율로서 미리 기억하고 있다.
도 13 이나 도 14 를 참조하여 설명하도록, 투영 광학계 (PL) 의 선단의 광학 소자 (2) 의 세정 처리를 종료한 후, 제어 장치 (CONT) 는 기판 스테이지 (PST) 를 이동하여 이물 검출계 (100) 를 투영 광학계 (PL) 의 밑에 배치한다. 그리고, 발광부 (118) 로부터 소정 조사광이 조사되면, 그 조사광 중 분기 미러 (119) 를 투과한 조사광은 광학 소자 (2) 표면을 조사한 후 이 표면에서 반사되고, 그 반사광은 제 1 수광부 (120) 에 의해 수광된다. 한편, 분기 미러 (119) 에 의해 분기된 조사광 (분기광) 은 광학 소자 (2) 표면에 이르지 않고 제 2 수광부 (121) 에 의해 수광된다. 그리고, 양 수광부 (120, 121) 에 의해 광전변환된 광전 신호가 각각 제어 장치 (CONT) 에 출력된다. 제어 장치 (CONT) 는 제 1 수광부 (120) 로부터의 광전 신호와 제 2 수광부 (121) 로부터의 광전 신호에 기초하여, 광학 소자 (2) 표면의 반사율을 연산한다. 즉, 일반적으로, 2개의 매질의 경계면에 대하여 소정 입사각으로 광이 입사할 때, 그 반사율 (R) 은 입사광속의 에너지의 강도를 Io 로 하고, 반사광속의 에너지의 강도를 Ir 로 하였을 때, R=Ir/Io 로 표현된다. 따라서, 제어 장치 (CONT) 에서는 제 1 수광부 (120) 로부터의 광전 신호에 기초하는 에너지의 강도를 Ir 로 하고, 제 2 수광부 (121) 로부터의 광전 신호에 기초하는 에너지의 강도를 Io 로 하여, 광학 소자 (2) 표면의 실반사율 (Rr) 을 구한다. 다음으로, 제어 장치 (CONT) 는 미리 기억되어 있는 소정 반사율 (Ro) 을 판독하고, 이 소정 반사율 (Ro) 과 상기 실반사율 (Rr) 의 차 ΔR (=Ro-Rr) 를 연산한다. 그리고, 구해진 양 반사율 (Ro, Rr) 의 차 ΔR 에 기초하는 표시 신호를 표시 장치 (126) 에 출력한다. 표시 장치 (126) 는 이 표시 신호에 기초하여 광학 소자 (2) 표면의 오염도를 수치 표시한다. 제어 장치 (CONT) 는 오염도가 소정 허용치를 초과한 경우에는 광학 소자 (2) 표면에 이물이 허용량 이상 존재하는 것으로 판단하여, 다시 세정 처리하도록 세정 장치를 제어한다.
또, 여기서는 광학 소자 (2) 에 조사광을 조사하여, 광학 소자 (2) 표면에서의 산란광을 검출하는 구성이지만, 이물이 광학 소자 (2) 에 부착되어 있는 경우, 투영 광학계 (PL) 의 이미지면측에 있어서 조도 불균일 또는 텔레센트릭 어긋남이 관측되므로, 기판 스테이지 (PST) 상에 형성된 조도 센서를 사용하여, 초점면과 디포커스면의 각각에서 조도를 계측함으로써, 이물이 부착되어 있는지 여부를 검출할 수 있다.
또한, 도 15 의 실시형태에 있어서는 광학 소자 (2) 에 광을 조사하고, 그 산란광을 수광함으로써, 광학 소자 (2) 표면에 부착된 액체나 이물 (불순물) 을 검출하도록 하고 있지만, 검출 방법은 이에 한정되지 않고, 예를 들어, 전술한 마스크 얼라인먼트계 (6) 를 사용하여 검출하도록 해도 된다. 또, 광학 소자 (2) 표면의 세정 후뿐만 아니라, 기판 (P) 의 교환 중 등의 소정 타이밍으로 투영 광학계 (PL) 의 선단의 광학 소자 (2) 에 이물이 부착되어 있는지 여부를 이물 검출계에 의해 확인하여, 이물이 검출된 경우에 세정 동작을 행하도록 해도 된다. 또, 이물 검출계 (100) 는 투영 광학계 (PL) 선단의 광학 소자 (2) 의 이물을 검출하고 있지만, 투영 광학계 (PL) 의 이미지면측에서 액체와 접촉하는 다른 부품 표면의 이물을 검출하도록 해도 된다.
<제 1 액체 제거 장치를 사용한 노광 장치의 별도의 실시형태>
도 16 은 제 1 액체 제거 장치를 구비한 노광 장치의 별도의 실시형태를 나타낸 도면이다. 본 실시형태에 있어서는 Z 스테이지 (52) 에, 투영 광학계 (PL) 를 통해 그 이미지면측 (기판 (P) 측) 에 조사되는 광을 수광하는 조도 불균일 센서 (138; 계측계) 의 일부를 구성하는 판 부재 (138A; 상판) 가 형성되고, 추가로 그 근방에 판 부재 (138A) 에서 제거된 액체를 회수하는 액체 흡수 부재 (142) 가 형성되어 있다. 액체 흡수 부재 (142) 는 Z 스테이지 (52) 에 형성된 홈부 (144) 에 배치되어 있다. 또한, 판 부재 (138A) 는 유리판의 표면에 크롬 등의 차광성 재료를 함유하는 박막으로 패터닝하고, 그 중앙부에 핀 홀 (138P) 을 형성한 것이다. 또한, 판 부재 (138A) 의 상면은 발액성 (撥液性) 을 갖고 있다. 본 실시형태에 있어서는 불소계 화합물 등의 발액성을 갖는 재료가 판 부재 (138A) 의 표면에 코팅되어 있다.
도 17 은 기판 스테이지 (PST) 에 형성되어, 조도 불균일 센서 (138) 의 일부를 구성하는 판 부재 (138A) 에 부착된 액체를 제거하고 있는 모습을 나타내는 도면이다. 본 실시형태에 있어서, 조도 불균일 센서 (138) 는 일본 공개특허공보 소57-117238호 (대응 미국 특허 4,465,368) 에 개시되어 있는 바와 같이, 투영 광학계 (PL) 를 통해 이미면측에 조사되는 노광광의 조도 (강도) 를 복수의 위치에서 계측하고, 투영 광학계 (PL) 의 이미지면측에 조사되는 노광광의 조도 불균일 (조도 분포) 을 계측하는 것이다. 조도 불균일 센서 (138) 는 기판 스테이지 (PST; Z 스테이지 (52)) 에 형성되고, 유리판의 표면에 차광막을 패터닝하여, 그 중앙부에 핀 홀 (138P) 이 형성된 판 부재 (138A) 와, Z 스테이지 (52) 에 매설되고, 핀 홀 (138P) 을 통과한 광이 조사되는 광학계 (138C) 와, 광학계 (138C) 를 통과한 광을 수광하는 수광 소자 (138B; 수광계) 를 갖고 있다. 또, 예를 들어 광학계 (138C) 와 수광 소자 (138B) 사이에 릴레이 광학계를 형성하고, 수광 소자 (138B) 를 Z 스테이지 (52) 의 외측에 배치할 수도 있다. 본 국제 출원의 지정국 또는 선택국의 국내 법령이 허용하는 한, 미국 특허 4,465,368 의 개시를 원용하여 본문의 기재의 일부로 한다.
조도 불균일 센서 (138) 로 조도 분포를 계측하는 경우, 투영 광학계 (PL) 와 조도 불균일 센서 (138) 의 판 부재 (138A) 를 대향시킨 상태에서, 투영 광학계 (PL) 와 판 부재 (138A) 사이를 액체로 채운다. 이어서, 노광광이 조사되는 조사 영역 내의 복수의 위치에 순차로 핀 홀 (138P) 을 이동시키고, 상기 기술한 바와 같이, 각 위치에 있어서의 노광광의 조도를 계측하여 조도 분포 (조도 불균일) 를 구한다 (계측한다). 조도 분포를 구한 후, 제어 장치 (CONT) 는 기판 스테이지 (PST) 를 이동시켜, 제 1 액체 제거 장치 (40) 의 노즐부 (43) 의 밑에 조도 불균일 센서 (138) 의 판 부재 (138A) 를 배치한다.
상기 기술한 바와 같이, Z 스테이지 (52) 상에 있어서, 판 부재 (138A) 에 인접하는 위치에는 제 1 액체 제거 장치 (40) 에 의해서 판 부재 (138A) 에서 제거된 액체를 회수하는 액체 흡수 부재 (142) 가 형성되어 있다. 액체 흡수 부재 (142) 는 상기 기술한 액체 흡수 부재 (42) 와 마찬가지로, 예를 들어 다공질 세라믹스나 스폰지 등의 다공성 재료에 의해 구성되어 있고, 액체를 소정량 유지가능하다.
제어 장치 (CONT) 는 제 1 액체 제거 장치 (40) 의 노즐부 (43) 로부터 판 부재 (138A) 에 대하여 기체를 분사함으로써, 판 부재 (138A) 에 부착되어 있는 액체를 날려버려 제거한다. 날려버려진 액체는 제 1 액체 제거 장치 (40) 의 노즐부 (43) 의 분사구 (43A) 와 대향하는 위치에 배치된 액체 흡수 부재 (142) 에 유지 (회수) 된다. 또, 판 부재 (138A) 의 표면은 발액 처리되어 있으므로, 핀 홀 (138P) 의 내부에 대한 액체의 침입을 방지할 수 있을 뿐만 아니라, 기체를 분사함으로써 판 부재 (138A) 로부터 액체를 양호하게 제거할 수 있다.
Z 스테이지 (52) 내부에는 홈부 (144) 와 연통하는 유로 (145) 가 형성되어 있다. 액체 흡수 부재 (142) 는 그 밑바닥부가 유로 (145) 에 접하도록 홈부 (144) 내에 배치되어 있다. 유로 (145) 는 Z 스테이지 (52) 외부에 형성되어 있는 관로 (146) 의 일단부에 접속되어 있다. 한편, 관로 (146) 의 타단부는 Z 스테이지 (52) 외부에 형성되어 있는 탱크 (147) 및 밸브 (148A) 를 갖는 관로 (148) 를 통해 펌프 (149) 에 접속되어 있다. 제어 장치 (CONT) 는 제 1 액체 제거 장치 (40) 의 기체 공급부 (41A) 를 구동함과 함께, 펌프 (149) 를 구동함으로써, 액체 흡수 부재 (142) 에 의해 회수된 액체를 탱크 (147) 에 흡인하여 모은다. 탱크 (147) 에는 배출 유로 (147A) 가 형성되어 있고, 탱크 (147) 에 액체 (1) 가 소정량 고였을 때에, 액체 (1) 가 배출 유로 (147A) 를 통해 탱크 (147) 로부터 외부로 배출된다.
또, 제 1 액체 제거 장치 (40) 에 의한 판 부재 (138A) 의 액체 제거 방법으로서는 앞서의 실시형태에서 설명한 바와 같은, 액체의 흡인이나 드라이 에어의 분사 등을 사용해도 되고, 그들을 적절히 조합하여 사용해도 된다. 또, 판 부재 (138A) 의 표면은 전체면을 발액성으로 할 필요는 없고, 일부만, 예를 들어 핀 홀 (138P) 의 주위만을 발액성으로 해 두어도 된다. 또, 조도 불균일 센서 (138) 의 판 부재 (138A) 의 상면에 한정되지 않고, 기판 스테이지 (PST) 상의 다른 부품의 표면도 발액성으로 해 두어도 된다. 또, 제 1 액체 제거 장치 (40) 의 액체 제거 능력이 충분히 높은 경우에는 발액성 재료의 코팅을 생략해도 된다.
또한, 기판 스테이지 (PST) 상에는 조도 불균일 센서에 한정되지 않고, 일본 공개특허공보 평11-16816호 (대응 미국 특허공개 2002/0061469호) 에 개시되어 있는 조사량 모니터나, 일본 공개특허공보 2002-14005호 (대응 미국 특허공개 2002/0041377호) 에 개시되어 있는 바와 같은 이미지 특성 등을 계측하기 위한 공간 이미지 계측 센서 등, 투영 광학계 (PL) 와 액체를 통과한 노광광을 광투과부를 통해 수광하는 센서가 그 밖에도 배치되어 있다. 이들의 센서에 대해서도 광투과부가 형성되어 있는 평탄부의 표면에 액체가 잔류·부착될 가능성이 있으므로, 전술한 바와 같은 제 1 액체 제거 장치 (40) 를 사용한 액체의 제거 방법을 그들의 센서에 적용해도 된다. 또, 기판 스테이지 (PST) 상에, 일본 공개특허공보 소62-183522호 (대응 미국 특허 4,780,747호) 에 개시되어 있는 반사 부재가 배치되어 있는 경우에는 제 1 액체 제거 기구 (40) 를 사용하여, 그 표면에 잔류·부착된 액체를 제거하도록 해도 된다. 본 국제 출원의 지정국 또는 선택국의 국내 법령이 허용하는 한, 상기 미국 공개특허공보의 개시를 원용하여 본문의 기재의 일부로 한다.
또한, 일본 공개특허공보 평11-238680호나 일본 공개특허공보 2000-97616호, 또는 국제 공개 WO02/063664호 (대응 미국 특허공개 2004/0041377호) 에 개시되어 있는, 기판 스테이지 (PST) 에 대하여 착탈가능한 센서를 사용하는 경우에는 기판 스테이지 (PST) 에서 센서를 분리할 때에, 제 1 액체 제거 장치 (40) 를 사용하여 센서 표면에 잔류·부착된 액체를 제거하고 나서 분리하도록 해도 된다. 본원의 지정국 또는 선택국의 국내 법령이 허용하는 범위에 있어서, 상기 미국 공개특허공보의 개시를 원용하여 본문의 기재의 일부로 한다.
<제 3 액체 제거 장치를 사용한 노광 장치의 실시형태>
도 18 은 제 3 액체 제거 장치를 사용한 노광 장치의 모식도이다. 도 18 에 있어서, 포커스 검출계 (4) 는 발광부 (4a) 와 수광부 (4b) 를 구비하고 있다. 본 실시형태에 있어서는 투영 광학계 (PL) 의 선단부 근방에는 포커스 검출계 (4) 의 발광부 (4a) 에서 사출된 검출광을 투과가능한 제 1 광학 부재 (151) 와, 기판 (P) 상에서 반사된 검출광을 투과가능한 제 2 광학 부재 (152) 가 형성되어 있다. 제 1 광학 부재 (151) 및 제 2 광학 부재 (152) 는 투영 광학계 (PL) 선단의 광학 소자 (2) 와는 분리된 상태로 지지되어 있고, 제 1 광학 부재 (151) 는 광학 소자 (2) 의 -X측에 배치되고, 제 2 광학 부재 (152) 는 광학 소자 (2) 의 +X측에 배치되어 있다. 제 1 및 제 2 광학 부재 (151, 152) 는 노광광 (EL) 의 광로 및 기판 (P) 의 이동을 방해하지 않는 위치에 있어서 액침 영역 (AR2) 의 액체 (1) 에 접촉가능한 위치에 형성되어 있다.
그리고, 도 18 에 나타내는 바와 같이, 예를 들어 기판 (P) 의 노광 처리 중에 있어서는 투영 광학계 (PL) 를 통과한 노광광 (EL) 의 광로, 요컨대 광학 소자 (2) 와 기판 (P) (기판 (P) 상의 투영 영역 (AR1)) 사이의 노광광 (EL) 의 광로가 모두 액체 (1) 로 채워지도록, 액체 공급 기구 (10) 및 액체 회수 기구 (30) 에 의해 액체 (1) 의 공급 및 회수가 행해진다. 또한, 광학 소자 (2) 와 기판 (P) 사이의 노광광 (EL) 의 광로의 모두가 액체 (1) 로 채워지고, 기판 (P) 상에 있어서 액침 영역 (AR2) 이 투영 영역 (AR1) 의 모두를 덮도록 원하는 상태로 형성되었을 때, 그 액침 영역 (AR2) 을 형성하는 액체 (1) 는 제 1 광학 부재 (151) 및 제 2 광학 부재 (152) 의 단면의 각각에 밀착 (접촉) 하도록 되어 있다. 기판 (P) 상에 액침 영역 (AR2) 이 형성되고, 액체 (1) 가 제 1 광학 부재 (151) 및 제 2 광학 부재 (152) 의 단면의 각각에 밀착되어 있는 상태에 있어서는 포커스 검출계 (4) 의 발광부 (4a) 로부터 사출된 검출광 및 그 기판 (P) 상에서의 반사광의 광로 중 제 1 광학 부재 (151) 와 제 2 광학 부재 (152) 사이의 광로는 모두 액체 (1) 로 채워진다. 또한, 검출광의 광로의 모두가 액체 (1) 로 채워진 상태일 때, 포커스 검출계 (4) 의 발광부 (4a) 에서 사출 (射出) 된 검출광은 기판 (P) 상의 투영 광학계 (PL) 의 투영 영역 (AR1) 에 조사되도록 설정되어 있다.
또한, 상기 제 1 및 제 2 광학 부재 (151, 152) 의 단면인 액체 접촉면은 예를 들어, 친액화 처리되어 친액성을 갖고 있다. 이렇게 함으로써, 액침 영역 (AR2) 의 액체 (1) 는 제 1 및 제 2 광학 부재 (151, 152) 의 액체 접촉면에 밀착하기 쉽기 때문에, 액침 영역 (AR2) 의 형상을 유지하기 쉬워진다.
또, 도 18 에 있어서는 액체 공급 기구 (10) 및 액체 회수 기구 (30) 가 간략하게 도시되어 있다. 도 18 에 나타내는 액체 공급 기구 (10) 는 액체 (1) 를 송출가능한 액체 공급부 (171) 와, 공급 노즐 (173) 과 액체 공급부 (171) 를 접속하는 공급관 (172) 을 구비하고 있다. 액체 공급부 (171) 로부터 송출된 액체 (1) 는 공급관 (172) 을 통과한 후, 공급 노즐 (173) 의 액체 공급구 (174) 로부터 기판 (P) 상에 공급된다. 또한, 도 18 에 나타내는 액체 회수 기구 (30) 는 액체 (1) 를 회수가능한 액체 회수부 (175) 와, 회수 노즐 (177) 과 액체 회수부 (175) 를 접속하는 회수관 (176) 을 구비하고 있다. 기판 (P) 상의 액체 (1) 는 회수 노즐 (177) 의 회수구 (178) 로부터 회수된 후, 회수관 (176) 을 통해 액체 회수부 (175) 에 회수된다.
또, 여기서는 제 1 광학 부재 (151) 와 제 2 광학 부재 (152) 는 서로 독립된 부재인 것으로 설명하였지만, 예를 들어 투영 광학계 (PL) 의 선단부의 광학 소자 (2) 를 둘러싸도록 고리 형상의 광학 부재를 배치하고, 그 고리 형상의 광학 부재의 일부에 검출광을 조사하여, 액침 영역 (AR2) 및 기판 (P) 표면을 통과한 검출광을, 그 고리 형상의 광학 부재의 일부를 통해 수광하도록 해도 된다. 광학 부재를 고리 형상으로 형성하여, 액침 영역 (AR2) 의 액체 (1) 를 고리 형상의 광학 부재의 내측면에 밀착시킴으로써, 액침 영역 (AR2) 의 형상을 양호하게 유지할 수 있다. 또한, 본 실시형태에 있어서는 제 1 광학 부재 (151) 및 제 2 광학 부재 (152) 는 투영 광학계 (PL) 에 대하여 분리되어 있지만, 제 1 광학 부재 (151) 및 제 2 광학 부재 (152) 와 투영 광학계 (PL) 의 광학 소자 (2) 를 일체적으로 형성해도 된다.
도 18 에 나타낸 상태에서 액침 노광 처리를 행한 후, 제어 장치 (CONT) 는 예를 들어 도 13 을 참조하여 설명하는 바와 같이, 세정판 (또는 더미 기판) 을 투영 광학계 (PL) 의 밑에 배치하고, 액체 공급 기구 (10) 및 액체 회수 기구 (30) 를 사용하여 세정판 상에 액침 영역 (AR2) 을 형성하고, 이 액침 영역 (AR2) 의 액체 (1) 로 투영 광학계 (PL) 의 선단부의 광학 소자 (2) 나 제 1 및 제 2 광학 부재 (151, 152), 또는 공급 노즐 (173) 의 공급구 (174) 근방이나 회수 노즐 (177) 의 회수구 (178) 근방을 세정한다. 이 세정이 종료된 후, 제어 장치 (CONT) 는 액체 회수 기구 (30) 등을 사용하여 액침 영역 (AR2) 의 액체 (1) 를 회수한다.
액침 영역 (AR2) 의 액체 (1) 를 회수한 후, 제어 장치 (CONT) 는 도 19 에 나타내는 바와 같이, 기체를 분사하는 기체 노즐 (160; 제 3 액체 제거 장치) 을 도시하지 않은 구동 장치에 의해서 투영 광학계 (PL) 의 밑에 배치한다. 이 때, 기판 스테이지 (PST) 는 기판 (P) 을 언로드하기 위해서 로드·언로드 위치 (도 9 참조) 로 이동하고 있다. 또한, 투영 광학계 (PL) 의 밑에는, 광학 소자 (2) 등으로부터 낙하한 액체 (1) 를 받는 액체 받이 부재 (280) 가 배치된다. 또, 기체 노즐 (160) 은 사용하지 않는 상태에서는 기판 스테이지 (PST) 와 간섭하지 않는 노광 장치 (EX) 내의 소정 위치에 배치되어 있다. 기체 노즐 (160) 은 기판 스테이지 (PST) 상의 기판 홀더 이외의 위치에 형성되어 있어도 된다.
제어 장치 (CONT) 는 기체 노즐 (160) 의 분사구 (161) 로부터 기체를 분사하고, 그 분사한 기체를 사용하여 광학 소자 (2) 나 제 1 및 제 2 광학 부재 (151, 152), 또는 공급 노즐 (173), 회수 노즐 (177) 에 부착되어 있는 액체 (1) 의 위치를 이동시킨다. 예를 들어, 도 19 에 나타내는 바와 같이, 제어 장치 (CONT) 는 우선 기체 노즐 (160) 의 분사구 (161) 를 광학 소자 (2) 의 하면 (2a) 의 노광광 (EL) 이 통과하는 영역에 대향한 위치까지 기판면과 평행하게 (X 방향으로) 이동시킨 후, 분사구 (161) 로부터 기체를 분사한다. 기체를 분사한 상태를 유지한 상태에서, 기체 노즐 (160) 을 노광광 (EL) 이 통과하는 영역의 외측으로 향하게 이동시킨다. 그럼으로써, 광학 소자 (2) 의 하면 (2a) 에 있어서 노광광 (EL) 이 통과하는 영역, 즉, 광학 소자 (2) 의 하면 (2a) 의 투영 영역 (AR1) 에 대응하는 영역에 부착되어 있는 액체 (1; 액적) 를 그 영역의 외측으로 이동시킬 수 있다. 본 실시형태에 있어서는 노광광 (EL) 이 통과하는 영역은 광학 소자 (2) 의 하면 (2a) 의 대략 중앙부이므로, 상기 기술한 방법에 의해 하면 (2a) 의 중앙부에 부착 (잔류) 되어 있는 기체 (1) 를 하면 (2a) 의 단부를 향하여 이동시킬 수 있다 (도 19 의 부호 1' 참조). 바꾸어 말하면, 제어 장치 (CONT) 는 분사한 기체를 사용하여, 노광광 (EL) 이 통과하는 영역에 부착된 액체 (1) 를 건조시키지 않고, 그 영역의 외측으로 물러나게 함으로써, 노광광 (EL) 이 통과하는 영역에 부착된 액체를 제거하도록 하고 있다. 그럼으로써, 광학 소자 (2) 의 하면 (2a) 중 적어도 노광광 (EL) 이 통과하는 영역에 워터 마크가 형성되는 문제를 방지할 수 있다. 이 실시형태에 있어서, 기체 노즐 (160) 및 그 부속 장치는 제 3 액체 제거 장치로서 기능한다.
또, 본 실시형태에 있어서는 노광광 (EL) 이 통과하는 영역으로부터 액체를 물러나도록 (제거하도록) 하였지만, 그에 한정되지 않고, 필요에 따라 원하는 영역으로부터 액체를 물러나도록 해도 된다.
도 20(a) 는 분사구 (161) 의 일례를 나타내는 도면이다. 도 20(a) 에 나타내는 바와 같이, 본 실시형태에 있어서는 분사구 (161) 는 Y축 방향을 길이 방향으로 하는 슬릿 형상으로 형성되어 있다. 도 20(b) 는 광학 소자 (2) 의 하면 (2a) 을 나타내는 도면이다. 투영 영역 (AR1) 은 Y축 방향을 길이 방향으로 하는 슬릿 형상 (직사각 형상) 이다. 또한, 분사구 (161) 의 크기는 광학 소자 (2) 의 하면 (2a) 보다 작게 형성되어 있다. 상기 기술한 바와 같이, 광학 소자 (2) 의 하면 (2a) 의 중앙부에 부착된 액체 (1) 를 물러나게 하는 경우에는 제어 장치 (CONT) 는, 처음에 기체 노즐 (160) 의 분사구 (161) 와 광학 소자 (2) 의 하면 (2a) 의 대략 중앙부를 대향시킨 상태에서 분사구 (161) 로부터 기체를 분사하고, 그 기체의 분사 상태를 유지한 채로, 기체 노즐 (160) 을 +X측 (또는 -X측) 으로 이동시킨다. 요컨대, 제어 장치 (CONT) 는 기체 노즐 (160) 을 X축 방향을 따라 이동시킨다. 이렇게 함으로써, 제어 장치 (CONT) 는 광학 소자 (2) 의 하면 (2a) 의 투영 영역 (AR1) 에 대응하는 영역의 외측으로 액체 (1) 를 원활하게 이동시킬 (물러나게 할) 수 있다. 광학 소자 (2) 의 하면 (2a) 의 중앙부 (투영 영역 (AR1) 에 대응하는 영역의 중앙부) 에 부착되어 있는 액체 (1) 를, 투영 영역 (AR1) 에 대응하는 영역의 외측으로 빼내기 위해서 Y축 방향을 따라 이동시키는 경우, 투영 영역 (AR1) 은 Y축 방향을 길이 방향으로 하고 있기 때문에, 그 이동 거리는 길어진다. 이동 거리가 길어지면 이동 시간도 길어진다. 따라서, 시간 효율을 중시하는 경우에는 광학 소자 (2) 의 하면 (2a) 의 중앙부 (투영 영역 (AR1) 에 대응하는 영역의 중앙부) 에 부착되어 있는 액체 (1) 를 X축 방향을 따라 이동시키는 것이 바람직하다. 이렇게 함으로써, 액체 (1) 를 투영 영역 (AR1) 에 대응하는 영역의 외측으로 원활하게 이동시킬 수 있다.
본 실시형태에 있어서는 기체 노즐 (160) 의 분사구 (161) 로부터 분사되는 기체는 케미컬 필터나 파티클 제거 필터를 포함하는 필터 장치 (도시하지 않음) 를 통과한 후의 청정한 기체이다. 그럼으로써, 광학 소자 (2) 등의 오염을 방지할 수 있다. 또한, 기체로서는 노광 장치 (EX) 가 설치되어 있는 환경과 거의 같은 기체, 구체적으로는 노광 장치 (EX) 가 수용된 챔버 내부의 기체와 거의 같은 기체를 사용하는 것이 바람직하다. 본 실시형태에 있어서는 공기 (드라이 에어) 가 사용되고 있다. 또, 분사하는 기체로서 질소가스 (드라이 질소) 를 사용해도 된다. 노광 장치 (EX) 가 설치되어 있는 환경과는 상이한 기체를 사용한 경우, 서로 상이한 기체의 굴절률의 차에 의해서, 예를 들어, 스테이지 위치 계측을 행하는 간섭계의 측정광의 광로가 변동되는 등에 따라 계측 오차 등의 문제를 초래할 가능성이 있지만, 분사구 (161) 로부터 분사하는 기체를, 노광 장치 (EX) 의 설치 환경과 거의 같은 기체로 함으로써, 상기 문제를 방지할 수 있다.
노광광 (EL) 이 통과하는 영역의 외측으로 이동한 (물러난) 액체 (1) 는 예를 들어, 기체 노즐 (160) 로부터 분사한 기체나 소정 건조 장치에 의해서 기화 (건조) 되어 제거된다.
또, 노광광 (EL) 이 통과하는 영역의 외측으로 이동시킨 액체가 말랐다고 하더라도, 기체 노즐 (160) 로부터 기체를 분사하기 전에 광학 소자 (2) 의 하면 (2a) 의 세정 작업을 행하고 있으므로, 노광광 (EL) 이 통과하는 영역의 외측의 액체가 마른 곳에 불순물 등이 부착되는 것을 억제할 수 있다.
또, 본 실시형태에서는 노광광 (EL) 이 통과하는 영역의 외측으로 이동시킨 액체를 흡인 (회수) 하도록 해도 된다
마찬가지로, 제어 장치 (CONT) 는 제 1 및 제 2 광학 부재 (151, 152) 의 액체 접촉면측의 단면의 적어도 포커스 검출계 (4) 의 검출광이 통과하는 영역에 부착되어 있는 액체 (액적) 를, 기체 노즐 (160) 로부터 분사한 기체를 사용하여 이동시킨다 (물러나게 한다). 이렇게 함으로써, 제 1 및 제 2 광학 부재 (151, 152) 의 상기 단면의 적어도 검출광이 통과하는 영역에 워터 마크가 형성되는 (불순물이 부착되는) 문제를 방지할 수 있다.
마찬가지로, 제어 장치 (CONT) 는, 공급 노즐 (173) 이나 회수 노즐 (177) 에 부착 (잔류) 한 액체 (1) 를, 기체 노즐 (160) 로부터 분사한 기체를 사용하여 물러나게 한다. 이렇게 함에 따라, 공급 노즐 (173) 이나 회수 노즐 (177) 에 워터 마크가 형성되는 문제를 방지할 수 있다. 워터 마크는 이물 (불순물) 이 되기 때문에, 예를 들어 공급 노즐 (173; 공급구 (174)) 이나 회수 노즐 (177; 회수구 (178)) 에 워터 마크가 형성되면, 액침 영역 (AR2) 을 형성하였을 때, 워터 마크에 의한 이물 (불순물) 이 액침 영역 (AR2) 에 혼입할 가능성이 있다. 그 경우, 노광 정밀도나 계측 정밀도의 열화를 초래한다. 또한, 회수 노즐 (177; 회수구 (178)) 의 액체 (1) 에 대한 접촉각 (친화성) 에 의해서, 액체 회수 기구 (30) 의 회수 능력이 변화하는 것이 생각될 수 있고, 회수 노즐 (177) 에 워터 마크가 형성되어 액체 (1) 와의 접촉각이 변화하면, 액체 회수 기구 (30) 의 회수 능력이 열화될 가능성도 있다. 그런데, 본 실시형태와 같이 노즐 (173, 177) 에 부착된 액체 (1) 를 제거함으로써, 상기 문제를 방지할 수 있다.
이상 설명한 바와 같이, 광학 소자 (2) 나 제 1 및 제 2 광학 부재 (151, 152) 의 소정 영역 (노광광이나 검출광이 조사되는 영역) 에 부착된 액체를, 그 소정 영역에 대하여 기체 노즐 (160; 분사구 (161)) 을 상대적으로 이동시키면서 기체를 분사하는 것에 의해 소정 영역의 외측으로 이동시킴 (물러나게 함) 으로써, 그 소정 영역에 워터 마크가 형성되는 문제를 방지할 수 있다.
또, 본 실시형태에 있어서는 광학 소자 (2) 의 하면 (2a) 에 부착한 액체 (1) 를 단부로 물러나게 할 때, 우선 하면 (2a) 의 중앙부에 기체를 분사한 후, 그 기체의 분사를 유지한 상태에서 기체 노즐 (160) 을 하면 (2a) 의 단부를 향하여 대략 직선적으로 이동시키는 구성이지만, 하면 (2a) 에 대하여 분사구 (161) 가 나선 형상의 궤적을 그리도록 기체 노즐 (160) 을 이동시키도록 해도 된다. 또, 분사구 (161) 의 형상은 슬릿 형상에 한정되지 않고, 예를 들어, 원형상 등, 임의의 형상이어도 된다. 또, 분사구 (161) 에 다공질체를 배치해도 된다.
또한, 본 실시형태에 있어서는 기체 노즐 (160; 분사구 (161)) 은 1개이지만, 물론 복수의 기체 노즐 (160; 분사구 (161)) 을 형성하고, 그들을 병용해도 된다. 또, 복수의 기체 노즐 (160) 중, 예를 들어 제 1 기체 노즐 (160) 로부터 분사한 기체를 사용하여 광학 소자 (2) 에 부착된 액체 (1) 를 제거하고, 제 2 기체 노즐 (160) 로부터 분사한 기체를 사용하여 제 1 광학 부재 (151) 또는 제 2 광학 부재 (152) 에 부착된 액체 (1) 를 제거하고, 그들의 제거 동작을 병행하여 행하도록 해도 된다. 이와 같이, 복수의 기체 노즐 (160) 을 사용하여 복수의 소정 영역의 각각에 대한 액체 제거 동작을 병행하여 행함으로써, 액체 제거 작업을 효율적으로 행할 수 있다.
또한, 광학 소자 (2) 나 제 1 및 제 2 광학 부재 (151, 152) 의 단면에 부착된 액체 (1) 를 이동시키기 (물러나게 하기) 위해서, 예를 들어, 도 8 등을 참조하여 설명한 제 2 액체 제거 장치 (60) 의 분사구 (64A) 로부터 분사한 기체를 사용해도 된다.
상기 기술한 실시형태에 있어서는 광학 소자 (2) 나 제 1 및 제 2 광학 부재 (151, 152) 에 대하여 기체를 하방으로부터 분사하는 구성이지만, 상방으로부터 분사하도록 해도 된다. 예를 들어, 도 21 에 나타내는 바와 같이, 기체 노즐 (160) 의 분사구 (161) 를 하측 또는 경사 하측으로 향하도록 설치하고, 제 2 광학 부재 (152) 의 액체 접촉면측의 단면에 부착된 액체 (1) 를 제거하도록 (물러나게 하도록) 해도 된다. 물론, 이 기체 노즐 (160) 을 사용하여 제 1 광학 부재 (151) 의 단면에 부착된 액체 (1) 를 제거할 수도 있다. 또는 제 1 광학 부재 (151; 또는 제 2 광학 부재 (152)) 의 일부에 유로 (163) 를 형성함과 함께, 그 유로 (163) 에 접속하는 기체 노즐 (164) 을 제 1 광학 부재 (151) 의 액체 접촉면측의 단면에 형성하고, 유로 (163) 및 기체 노즐 (164) 을 통과한 기체를, 제 1 광학 부재 (151) 의 상기 단면에 상방으로부터 분사할 수도 있다. 또, 유로 (163) 는 포커스 검출계 (4) 의 검출광의 광로를 방해하지 않는 위치에 형성된다.
상기 기술한 실시형태에 있어서는 투영 광학계 (PL) 의 선단부의 광학 소자 (2) 나 제 1 및 제 2 광학 부재 (151, 152), 또는 공급 노즐 (173) 의 공급구 (174) 근방이나 회수 노즐 (177) 의 회수구 (178) 근방을 세정한 후에, 기체 노즐 (160) 을 사용하여 액체를 제거하고 있는데, 세정 공정은 생략해도 된다. 또 기체 노즐 (160) 을, 상기 기술한 제 2 실시형태와 마찬가지로, 기판 스테이지 (PST) 에 형성하고, 기판 스테이지 (PST) 를 움직임으로써, 기체 노즐 (160) 을 이동시키도록 해도 된다. 또, 일본 공개특허공보 평11-135400호에 개시되어 있는 바와 같이, 기판 스테이지 (PST) 와는 독립하여, 투영 광학계 (PL) 의 이미지면측을 이동가능한 스테이지를 추가로 탑재시켜 두고, 그 스테이지에 기체 노즐 (160) 을 배치하도록 해도 된다.
상기 기술한 실시형태에 있어서는 분사구 (161) 로부터 기체를 분사하고, 광학 소자 (2) 나 제 1 및 제 2 광학 부재 (151, 152), 또는 노즐 (173, 177) 에 부착된 액체 (1) 를 이동시키고 있지만, 기판 스테이지 (PST) 상에 잔류 (부착) 하고 있는 액체 (1) 를 분사구 (61) 로부터 분사한 기체에 의해서 이동시킬 수도 있다. 예를 들어, 분사구 (161) 를 기판 스테이지 (PST) 의 상면과 대향하도록 배치하여, 도 3 등을 참조하여 설명한 기준 부재 (7) 에 대하여 분사구 (161) 로부터 기체를 분사하고, 그 기준 부재 (7) 상에 부착되어 있는 액체 (1) 를 건조시키지 않고, 기준 부재 (7) 의 외측 (또는 기준 부재 (7) 상의 검출 대상 영역의 외측) 으로 이동시킬 (물러나게 할) 수 있다. 마찬가지로, 도 16 등을 참조하여 설명한 조도 불균일 센서 (138) 의 상판 (138A) 상에 부착된 액체 (1) 나, 예를 들어 일본 공개특허공보 평11-16816호에 개시되어 있는 조사량 모니터나, 예를 들어 일본 공개특허공보 2002-14005호에 개시되어 있는 공간 이미지 계측 센서의 상판 상에 부착된 액체 (1) 를, 분사구 (161) 로부터 기체를 분사함으로써, 건조시키지 않고 이동시킬 (물러나게 할) 수 있다.
<제 4 액체 제거 장치를 사용한 노광 장치의 실시형태>
도 22 는 제 1∼3 액체 제거 장치와는 상이한 액체 제거 장치 (제 4 액체 제거 장치) 를 구비하는 노광 장치의 실시형태를 나타내는 도면이다. 도 22 에 있어서, 공급관 (172) 의 도중에는 예를 들어 3방 밸브 등의 유로 전환 장치 (182) 를 통해 기체 공급관 (181) 의 일단부가 접속되어 있다. 한편, 기체 공급관 (181) 의 타단부는 기체 공급부 (180) 에 접속되어 있다. 유로 전환 장치 (182) 는 액체 공급부 (171) 와 공급구 (174) 를 접속하는 유로를 열고 있을 때, 기체 공급부 (180) 와 공급구 (174) 를 접속하는 유로를 닫는다. 한편, 유로 전환 장치 (182) 는 액체 공급부 (171) 와 공급구 (174) 를 접속하는 유로를 닫고 있을 때, 기체 공급부 (180) 와 공급구 (174) 를 접속하는 유로를 연다. 마찬가지로, 회수관 (176) 의 도중에는 유로 전환 장치 (185) 를 통해 기체 공급관 (184) 의 일단부가 접속되어 있고, 타단부는 기체 공급부 (183) 에 접속되어 있다. 유로 전환 장치 (185) 는 액체 회수부 (175) 와 회수구 (178) 를 접속하는 유로를 열고 있을 때, 기체 공급부 (183) 와 회수구 (178) 를 접속하는 유로를 닫는다. 한편, 유로 전환 장치 (185) 는 액체 회수부 (175) 와 회수구 (178) 를 접속하는 유로를 닫고 있을 때, 기체 공급부 (183) 와 회수구 (178) 를 접속하는 유로를 연다. 이 실시형태에서는 기체 공급부 (180, 183), 공급구 (174) 및 회수구 (178), 그리고 유로 전환 장치 (182) 등이 잔류 액체를 제거하는 제 4 액체 제거 장치 (액체 제거 기구) 로서 동작한다.
예를 들어 기판 (P) 상에 액침 영역 (AR2) 을 형성할 때에는 제어 장치 (CONT) 는 유로 전환 장치 (182, 185) 를 구동시켜, 액체 공급부 (171) 와 공급구 (174) 를 접속하는 유로를 엶과 함께, 액체 회수부 (175) 와 회수구 (178) 를 접속하는 유로를 연다. 이 때, 기체 공급부 (180) 와 공급구 (174) 를 접속하는 유로, 및 기체 공급부 (183) 와 회수구 (178) 를 접속하는 유로는 닫혀 있다.
기판 (P) 의 액침 노광이 종료된 후, 제어 장치 (CONT) 는 액체 공급 기구 (10) 에 의한 액체 공급 동작을 정지함과 함께, 그 액체 공급 동작의 정지 후의 소정 기간만 액체 회수 기구 (30) 에 의한 액체 회수 동작을 계속하여, 액침 영역 (AR2) 을 형성하고 있던 액체 (1) 를 회수한다. 제어 장치 (CONT) 는 액체 공급 기구 (10) 에 의한 액체 공급 동작을 정지할 때, 유로 전환 장치 (182) 를 구동하여, 액체 공급부 (171) 와 공급구 (174) 를 접속하는 유로를 닫음과 함께, 기체 공급부 (180) 와 공급구 (174) 를 접속하는 유로를 연다. 그리고, 액침 영역 (AR2) 의 액체 (1) 가 거의 없어진 후, 제어 장치 (CONT) 는 기체 공급부 (180) 를 구동하여 기체의 공급을 시작한다. 기체 공급부 (180) 로부터 공급된 기체는 기체 공급관 (181) 및 유로 전환 장치 (182) 를 통해, 공급 노즐 (173) 의 공급구 (174) 로부터 분사한다. 그럼으로써, 유로 전환 장치 (182) 와 공급구 (174) 사이의 유로에 잔류하고 있는 액체 (1) 를 공급구 (174) 를 통해 외측으로 분사하여 제거할 수 있다. 또, 기체 공급부 (180) 로부터 공급되고, 공급구 (174) 로부터 분사한 기체를 사용하여, 예를 들어 제 1 및 제 2 광학 부재 (151, 152) 의 단면에 부착되어 있는 액체 (1) 나, 기판 스테이지 (PST; 계측 부재 등 포함) 상에 부착되어 있는 액체 (1) 를 제거할 수도 있다.
마찬가지로, 제어 장치 (CONT) 는 액체 회수 기구 (30) 에 의한 액침 영역 (AR2) 의 액체 (1) 의 회수 동작이 종료된 후, 유로 전환 장치 (185) 를 구동하여, 액체 회수부 (175) 와 회수구 (178) 를 접속하는 유로를 닫음과 함께, 기체 공급부 (183) 와 회수구 (178) 를 접속하는 유로를 연다. 그리고, 제어 장치 (CONT) 는 기체 공급부 (183) 로부터 공급된 기체를 사용하여, 유로 전환 장치 (185) 와 회수구 (178) 사이의 유로에 잔류하고 있는 액체 (1) 를 회수구 (178) 를 통해 외측으로 분사하여 제거한다. 또, 그 회수구 (178) 로부터 분사한 기체를 사용하여, 제 1 및 제 2 광학 부재 (151, 152) 의 단면에 부착되어 있는 액체 (1) 나, 기판 스테이지 (PST; 계측 부재 등 포함) 상에 부착되어 있는 액체 (1) 를 제거할 (물러나게 할) 수도 있다.
이상 설명한 바와 같이, 액체 (1) 의 공급이나 회수를 행하지 않을 때에, 기체 공급부 (180, 183) 로부터 청정한 기체를 공급함으로써, 공급관 (172) 및 공급 노즐 (173) 의 내부 유로나 공급구 (174) 근방, 또는 회수관 (176) 이나 회수 노즐 (177) 의 내부 유로나 회수구 (178) 근방에 워터 마크가 형성되는 문제를 방지할 수 있다. 이 실시형태에서는 액체와 액체 제거 기체의 공급구 (배출구) 를 공통화하고 있으므로, 액체 공급구 근방의 구조를 단순화시켜 노광 장치를 컴팩트하게 할 수 있다.
<제 3 액체 제거 장치를 사용한 노광 장치의 별도의 실시형태>
도 23 은 도 19 에 나타낸 제 3 액체 제거 장치를 사용한 노광 장치의 변형예를 나타내는 도면이다. 도 23 에 있어서, 분사구 (161) 를 갖는 기체 노즐 (160) 은 액체 받이 부재 (190) 에 장착되어 있다. 액체 받이 부재 (190) 는 접시 형상의 부재로서, 광학 소자 (2), 노즐 (173, 177), 그리고 제 1 및 제 2 광학 부재 (151, 152) 의 점유 면적보다 크게 형성되어 있고, 이들 각 부재로부터 방울져 떨어진 액체 (1) 를 액체 받이 부재 (190) 의 상면에서 받을 수 있도록 되어 있다. 또한, 액체 받이 부재 (190) 의 상면에는 다공질체 (多孔質體) 나 스폰지형 부재로 이루어지는 액체 흡수 부재 (199) 가 교환가능하게 형성되어 있다. 그럼으로써, 상기 각 부재로부터 방울져 떨어진 액체 (1) 를 양호하게 회수 (포집)·유지할 수 있다. 또, 액체 받이 부재 (190) 에는 주벽부 (周壁部; 191) 가 형성되어 있으므로, 포집된 액체 (1) 가 액체 받이 부재 (190) 로부터 유출되는 것을 방지할 수 있다.
액체 받이 부재 (190) 는 구동 기구 (193) 에 의해 이동가능하게 형성되어 있다. 구동 기구 (193) 는 아암부 (194), 액츄에이터부 (195) 및 축부 (196) 로 구성되어 있다. 아암부 (194) 의 일방의 단부는 액체 받이 부재 (190) 의 측면에 접속되어 있고, 타방의 단부는 액츄에이터부 (195) 에 접속되어 있다. 또한 액츄에이터부 (195) 는 축부 (196) 를 통해, 예를 들어 노광 장치 (EX) 의 바디나 투영 광학계 (PL) 를 지지하는 칼럼 등의 소정 지지부 (CL) 에 매달리도록 장착되어 있다. 액츄에이터부 (195) 를 구동함으로써, 아암부 (194) 의 일단부에 장착되어 있는 액체 받이 부재 (190) 는 축부 (196) 를 선회 중심으로 하여 θZ 방향으로 선회한다. 제어 장치 (CONT) 는 구동 기구 (193) 의 액츄에이터부 (195) 를 구동하여 액체 받이 부재 (190) 를 선회함으로써, 투영 광학계 (PL) 의 하방 영역에 대하여 액체 받이 부재 (190) 를 진퇴할 수 있다. 또한, 액츄에이터부 (195) 는 아암부 (194) 를 통해 액체 받이 부재 (190) 를 Z축 방향으로 이동시킬 수 있음과 함께, XY 방향으로 이동시킬 수도 있다.
또한, 액체 받이 부재 (190) 에는 예를 들어, CCD 등으로 이루어지는 촬상 장치 (198) 가 형성되어 있다. 촬상 장치 (198) 는 광학 소자 (2) 나 제 1 및 제 2 광학 부재 (151, 152) 의 표면 정보를 화상으로서 출력할 수 있다.
제어 장치 (CONT) 는 광학 소자 (2) 나 제 1 및 제 2 광학 부재 (151, 152) 등에 부착된 액체 (1) 를 이동 (제거) 할 때, 액츄에이터부 (195) 를 구동하여, 광학 소자 (2) 와 액체 받이 부재 (190) 를 대향시키고, 광학 소자 (2) 에 대하여 액체 받이 부재 (190) 와 함께 기체 노즐 (160) 을 이동시키면서, 광학 소자 (2) 에 대하여 기체를 분사한다. 광학 소자 (2) 중 노광광 (EL) 의 광로 상에 대응하는 영역에 부착되어 있는 액체 (1) 는 분사된 기체에 의해서 이동되고, 곧 낙하된다. 광학 소자 (2) 로부터 낙하된 액체 (1) 는 액체 받이 부재 (190) 에 유지된다. 이렇게 함으로써, 예를 들어 투영 광학계 (PL) 및 액체 받이 부재 (190) 의 밑에 기판 스테이지 (PST) 가 배치되어 있는 경우에 있어서도, 액체 받이 부재 (190) 로 액체 (1) 를 받음으로써, 광학 소자 (2) 등으로부터 제거된 액체 (1) 가 기판 스테이지 (PST) 에 부착되는 문제를 방지할 수 있다.
또한, 제어 장치 (CONT) 는 촬상 장치 (198) 의 촬상 결과에 기초하여, 기체 노즐 (160) 의 기체 분사 동작을 제어한다. 예를 들어, 제어 장치 (CONT) 는 촬상 장치 (198) 의 촬상 결과에 기초하여 액체 (1) 가 부착되어 있는 위치를 구하고, 액체 (1) 가 부착되어 있는 위치와 기체 노즐 (160) 을 위치 맞춤을 하여 기체의 분사를 행하도록 제어할 수 있다. 이렇게 함으로써, 액체 (1) 를 보다 확실하게 제거할 수 있다. 그리고, 액체 (1) 가 광학 소자 (2) 로부터 제거되었다고 판단하였을 때, 제어 장치 (CONT) 는 기체 노즐 (160) 에 의한 기체 분사 동작을 종료한다.
또, 액체 받이 부재 (190) 와, 예를 들어 제 1 및 제 2 광학 부재 (151, 152) 를 위치 결정하는 위치 결정 기구를 형성해도 된다. 위치 결정 기구로서는 도 23 에 파선으로 나타내는 바와 같은 판스프링 부재 (192) 를 사용할 수 있다. 도 23 에 나타내는 예에서는 판스프링 부재 (192) 는 액체 받이 부재 (190) 의 주벽부 (191) 의 상면 (191A) 에 형성되어 있다. 액츄에이터부 (195) 의 구동에 의해 액체 받이 부재 (190) 가 +Z 방향으로 이동하여 제 1 및 제 2 광학 부재 (151, 152) 에 접근하면, 판스프링 부재 (192; 위치 결정 기구) 는 제 1 및 제 2 광학 부재 (151, 152) 의 외측 부분을 집는다. 그럼으로써, 제 1 및 제 2 광학 부재 (151, 152) 와 액체 받이 부재 (190) 의 위치 결정이 행해진다. 이 상태에서, 기체 노즐 (160) 로부터 분사한 기체를 광학 소자 (2) 의 원하는 영역 (이 경우, 투영 영역 (AR1) 에 대응하는 영역) 에 분사함으로써, 그 영역에 부착된 액체 (1) 를 양호하게 제거할 (물러나게 할) 수 있다.
<제 3 액체 제거 장치를 사용한 노광 장치의 또 다른 실시형태>
도 24 는 제 3 액체 제거 기구를 구비한 노광 장치의 다른 변형예를 나타낸다. 이 예에서는 액체 제거용의 기체를 노즐이 아니라, 기판을 흡착하는 흡착 구멍으로부터 분사한다. 도 24 에 있어서, 기판 스테이지 (PST) 는 기판 스테이지 (PST) 의 평면에서 봤을 때 대략 중앙부에 형성되고, Z축 방향으로 이동가능한 센터 테이블 (250) 을 구비하고 있다. 센터 테이블 (250) 은 도시하지 않은 구동 기구에 의해 Z축 방향으로 이동가능하며, 기판 스테이지 (PST; Z 스테이지 (52)) 의 상면으로부터 돌출가능하게 형성되어 있다. 또한 센터 테이블 (250) 의 상면 (250A) 에는 흡착 구멍 (251) 이 형성되어 있다. 흡착 구멍 (251) 은 기판 스테이지 (PST) 내부에 형성된 유로 (252) 의 일단부에 접속되어 있다. 한편, 유로 (252) 의 타단부는 유로 전환 장치 (253) 를 통해 제 1 유로 (254) 의 일단부 및 제 2 유로 (255) 의 일단부의 어느 일방에 연통가능하게 되어 있다. 제 1 유로 (254) 의 타단부는 진공계 (256) 에 접속되고, 제 2 유로 (255) 의 타단부는 기체 공급부 (257) 에 접속되어 있다. 유로 전환 장치 (253) 는 유로 (252) 와 제 1 유로 (254) 를 접속하여 진공계 (256) 와 흡착 구멍 (251) 을 접속하는 유로를 열고 있을 때, 기체 공급부 (257) 와 흡착 구멍 (251) 을 접속하는 유로를 닫는다. 한편, 유로 전환 장치 (253) 는 유로 (252) 와 제 2 유로 (255) 를 접속하여 기체 공급부 (257) 와 흡착 구멍 (251) 을 접속하는 유로를 열고 있을 때, 진공계 (256) 와 흡착 구멍 (251) 을 접속하는 유로를 닫는다.
제어 장치 (CONT) 는 기판 (P) 을 기판 스테이지 (PST) 에 로드할 때, 센터 테이블 (250) 을 상승시키고, 센터 테이블 (250) 상에 기판 (P) 을 탑재하고, 진공계 (256) 를 구동하여 흡착 구멍 (251) 을 통해 기판 (P) 의 이면 (裏面) 을 흡착 유지한다. 그리고, 제어 장치 (CONT) 는 기판 (P) 을 흡착 유지한 상태에서 센터 테이블 (250) 을 하강시키고, 기판 (P) 을 Z 스테이지 (52) 상의 기판 홀더에 유지시킨다. 기판 홀더에는 예를 들어 핀 척 (chuck) 기구가 형성되어 있고, 기판 홀더는 핀 척 기구에 의해서 기판 (P) 을 흡착 유지한다. 한편, 기판 스테이지 (PST) 로부터 기판 (P) 을 언로드할 때에는 제어 장치 (CONT) 는 기판 홀더에 의한 기판 (P) 의 흡착 유지를 해제함과 함께, 센터 테이블 (250) 로 기판 (P) 을 흡착 유지하여 상승시킨다. 센터 테이블 (250) 이 기판 (P) 을 흡착 유지한 상태에서 상승함으로써, 기판 (P) 은 Z 스테이지로부터 떨어져 언로드가능해진다.
본 실시형태에 있어서는 센터 테이블 (250) 에 형성된 흡착 구멍 (251) 으로부터 기체를 분사하고, 그 분사한 기체를 사용하여, 광학 소자 (2) 의 하면 (2a) 이나 제 1 및 제 2 광학 부재 (151, 152) 에 부착된 액체 (1) 를 이동시킨다 (물러나게 한다). 제어 장치 (CONT) 는 광학 소자 (2) 나 제 1 및 제 2 광학 부재 (151, 152) 에 부착된 액체 (1) 를 제거할 때, 유로 전환 장치 (253) 를 구동하여, 기체 공급부 (257) 와 흡착 구멍 (251) 을 접속하는 유로를 연다. 그리고, 제어 장치 (CONT) 는 기판 스테이지 (PST) 를 XY 평면을 따라 이동시키면서, 흡착 구멍 (251) 으로부터 기체를 분사한다. 기체가 분사됨으로써, 예를 들어 광학 소자 (2) 의 하면 (2a) 중 노광광 (EL) 의 광로 상에 대응하는 영역에 부착되어 있던 액체 (1) 는 이동되어 곧 낙하된다.
본 실시형태에 있어서, Z 스테이지 (52) (기판 홀더) 상에는 액체 (1) 를 포집할 수 있는 액체 받이 부재 (DP) 가 설치되어 있다. 액체 받이 부재 (DP) 는 도 23 에 나타낸 액체 받이 부재 (190) 와 동일한 접시 형상의 부재로서, 기판 (P) 과 거의 동등한 크기의 원형상으로 형성되어 있다. 또한, 액체 받이 부재 (DP) 는 기판 홀더에 설치할 수 있다. 광학 소자 (2) 로부터 낙하된 액체 (1) 는 기판 홀더에 설치된 액체 받이 부재 (DP) 에 유지된다. 액체 받이 부재 (DP) 의 상면에는 액체 유지 부재 (261) 가 형성되어 있고, 액체 (1) 는 액체 유지 부재 (261) 에 의해서 회수·유지된다. 또한, 액체 받이 부재 (DP) 는 주벽부 (262) 를 갖고 있어, 유지한 액체 (1) 의 액체 받이 부재 (DP) 로부터의 유출을 방지하고 있다.
도 25 는 기판 홀더에 유지되어 있는 액체 받이 부재 (DP) 를 상방에서 본 도면이다. 도 25 에 있어서, 흡착 구멍 (251) 은 센터 테이블 (250) 의 상면 (250A) 에 복수 형성되어 있고, 본 실시형태에 있어서는 3개 형성되어 있다. 또한, 액체 받이 부재 (DP) 에는 복수의 흡착 구멍 (251) 에 대응한 개구부 (264) 가 복수 (3개) 형성되어 있다. 즉, 흡착 구멍 (251) 은 기판 홀더에 액체 받이 부재 (DP) 가 유지된 상태에 있어서도 노출되어 있다. 따라서, 흡착 구멍 (251) 으로부터 분사한 기체를 광학 소자 (2) 등에 분사할 수 있다. 또한, 센터 테이블 (50) 의 상면 (250A) 에는 상면 (250A) 의 중앙부에서 방사 방향으로 연장되는 복수 (3개) 의 홈부 (258) 가 형성되어 있고, 이들 복수의 홈부 (258) 는 상면 (250A) 의 중앙부에서 연속하고 있다. 그리고, 홈부 (258) 의 내측에 흡착 구멍 (251) 이 배치되어 있다. 노광 처리 대상인 기판 (P) 의 이면을 센터 테이블 (250) 의 상면 (250A) 에서 흡착 유지할 때에는 기판 (P) 의 이면과 상면 (250A) 을 맞닿게 한 상태에서 진공계 (256) 를 구동하여, 기판 (P) 의 이면과 홈부 (258) 에 의해 형성되는 공간을 부압 (負壓) 으로 함으로써, 기판 (P) 을 센터 테이블 (250) 로 흡착 유지할 수 있다. 또한, 액체 받이 부재 (DP) 를 센터 테이블 (250) 로 유지할 때에도, 개구부 (264) 나 홈부 (258) 의 형상이나 크기, 또는 흡착 구멍 (251) 의 크기나 위치 등을 최적으로 설정함으로써, 액체 받이 부재 (DP) 를 센터 테이블 (250) 로 유지시킬 수 있다. 또는 흡착 구멍 (251) 과는 별도의 액체 받이 부재 (DP) 를 흡착 유지하기 위한 전용의 흡착 구멍 및 이것에 대응하는 홈부를 센터 테이블 (250) 의 상면 (250A) 에 형성해 두고 (도 25 의 부호 251' 및 258' 참조), 이 흡착 구멍 (251') 을 사용하여 액체 받이 부재 (DP) 를 상면 (250A) 에 대하여 흡착 유지하도록 해도 된다. 그리고, 이 센터 테이블 (250) 을 사용하여, 액체 받이 부재 (DP) 를, 노광 처리 대상인 기판 (P) 과 마찬가지로, 기판 스테이지 (PST) 에 대하여 로드·언로드할 수 있다. 그리고, 광학 소자 (2) 등의 액체 제거 작업을 할 때는 기판 스테이지 (PST) 상에 액체 받이 부재 (DP) 가 로드되고, 액체 제거 작업이 종료되었을 때에는 기판 스테이지 (PST) 상의 액체 받이 부재 (DP) 가 언로드된다. 또한, 액체 받이 부재 (DP) 를 기판 홀더의 핀 척 기구로 흡착 유지할 때에도, 액체 받이 부재 (DP) 중 개구부 (264) 이외의 이면과의 사이에서 대략 밀폐 공간을 형성할 수 있도록, 예를 들어 핀 척 기구에 있어서 부압화되는 영역을 복수로 분할하여 두고, 상기 개구부 (264) 에 대응하는 영역 이외의 영역에 있어서 선택적으로 부압화를 행함으로써, 액체 받이 부재 (DP) 를 기판 홀더에 흡착 유지할 수 있다.
또, 액체 받이 부재 (DP) 에 유지된 액체 (1) 는 개구부 (264) 를 통해 액체 받이 부재 (DP) 의 이면과 센터 테이블 (250) 의 상면 (250A; 나아가서는 기판 홀더의 상면) 과의 사이로 침입할 가능성이 있기 때문에, 그 액체 (1) 의 침입을 방지하기 위한 시일 부재를, 예를 들어 액체 받이 부재 (DP) 의 이면이나 개구부 (264) 근방에 형성하는 것이 바람직하다.
또, 흡착 구멍 (251) 으로부터 분사한 기체를 광학 소자 (2) 등에 분사하기 전에, 예를 들어, 로드·언로드 위치 B (도 9 참조) 등, 투영 광학계 (PL) 와는 떨어진 위치에 기판 스테이지 (PST) 를 이동시키고, 그 위치에 있어서 흡착 구멍 (251) 으로부터 기체를 분사해 두는 것이 바람직하다. 흡착 구멍 (251) 의 내부나 근방에 이물 (쓰레기) 이 존재하고 있을 가능성이 있지만, 투영 광학계 (PL) 와는 떨어진 위치에 있어서 기체 분사 동작을 미리 행하여 이물을 제거한 후, 광학 소자 (2) 등에 기체를 분사하도록 함으로써, 광학 소자 (2) 등이 오염되는 문제를 방지할 수 있다.
또, 도 24 에 나타내는 실시형태에 있어서도, 기판 스테이지 (PST) 상의 기판 (P) 을 유지하는 기판 홀더 이외의 위치에, 도 8 등을 참조하여 설명한 분사구 (64A) 를 형성하고, 그 분사구 (64A) 로부터 분사한 기체를 사용하여, 광학 소자 (2) 등에 부착되어 있는 액체 (1) 를 이동시킬 수 있다.
또한, 상기 기술한 실시형태에 있어서는 제 1 ∼제 4 액체 제거 장치를 설명하였지만, 이들의 제거 장치는 단독으로 노광 장치 (EX) 에 탑재되어 있어도 되고, 이들의 제거 장치를 적절히 조합하여 노광 장치 (EX) 에 탑재하도록 해도 된다.
상기 기술한 바와 같이, 상기 실시형태에 있어서의 액체 (1) 는 순수를 사용하였다. 순수는 반도체 제조 공장 등에서 용이하게 대량 입수할 수 있음과 함께, 기판 (P) 상의 포토레지스트나 광학 소자 (렌즈) 등에 대한 악영향이 없는 이점이 있다. 또한, 순수는 환경에 대한 악영향이 없음과 함께, 불순물의 함유량이 매우 낮기 때문에, 기판 (P) 의 표면 및 투영 광학계 (PL) 의 선단면에 형성되어 있는 광학 소자의 표면을 세정하는 작용도 기대할 수 있다.
그리고, 파장이 193nm 정도의 노광광 (EL) 에 대한 순수 (물) 의 굴절률 n 은 약 1.44 정도로 알려져 있고, 노광광 (EL) 의 광원으로서 ArF 엑시머 레이저광 (파장 193nm) 을 사용한 경우, 기판 (P) 상에서는 1/n, 즉, 약 134nm 정도로 단파장화되어 높은 해상도가 얻어진다. 더욱, 초점 심도는 공기 중에 비하여 약 n배, 즉, 약 1.44배 정도로 확대되기 때문에, 공기 중에서 사용하는 경우와 같은 정도의 초점 심도를 확보할 수 있으면 되는 경우에는 투영 광학계 (PL) 의 개구수를 보다 증가시킬 수 있고, 이 점에서도 해상도가 향상된다.
본 실시형태에서는 투영 광학계 (PL) 의 선단에 광학 소자 (2) 가 장착되어 있고, 이 렌즈에 의해 투영 광학계 (PL) 의 광학 특성, 예를 들어 수차 (구면 수차, 코마 수차 등) 를 조정할 수 있다. 또, 투영 광학계 (PL) 의 선단에 장착되는 광학 소자로서는 투영 광학계 (PL) 의 광학 특성의 조정에 사용하는 광학 플레이트이어도 된다. 또는 노광광 (EL) 을 투과가능한 평행 평면판이어도 된다. 액체 (1) 와 접촉하는 광학 소자를, 렌즈보다 저렴한 평행 평면판으로 함으로써, 노광 장치 (EX) 의 운반, 조립, 조정시 등에 있어서 투영 광학계 (PL) 의 투과율, 기판 (P) 상에서의 노광광 (EL) 의 조도, 및 조도 분포의 균일성을 저하시키는 물질 (예를 들어 규소계 유기물 등) 이 그 평행 평면판에 부착되더라도, 액체 (1) 를 공급하기 직전에 그 평행 평면판을 교환하기만 하면 되어, 액체 (1) 와 접촉하는 광학 소자를 렌즈로 하는 경우에 비하여 교환 비용이 낮아진다는 이점이 있다. 즉, 노광광 (EL) 의 조사에 의해 레지스트로부터 발생되는 비산 입자, 또는 액체 (1) 중의 불순물의 부착 등에 기인하여 액체 (1) 에 접촉하는 광학 소자의 표면이 더렵혀지기 때문에, 그 광학 소자를 정기적으로 교환할 필요가 있지만, 이 광학 소자를 저렴한 평행 평면판으로 함으로써, 렌즈에 비하여 교환부품의 비용이 낮고, 또한 교환에 요하는 시간을 짧게 할 수 있고, 유지관리 비용 (운영 비용) 의 상승이나 작업처리량의 저하를 억제할 수 있다.
또, 액체 (1) 의 흐름에 의해서 생기는 투영 광학계 (PL) 의 선단의 광학 소자와 기판 (P) 사이의 압력이 큰 경우에는 그 광학 소자를 교환할 수 있게 하는 것이 아니라, 그 압력에 의해서 광학 소자가 움직이지 않도록 견고하게 고정해도 된다.
또, 본 실시형태에서는 투영 광학계 (PL) 와 기판 (P) 표면 사이는 액체 (1) 로 채워져 있는 구성이지만, 예를 들어 기판 (P) 의 표면에 평행 평면판으로 이루어지는 커버 유리를 장착한 상태에서 액체 (1) 를 채우는 구성이어도 된다.
또, 본 실시형태의 액체 (1) 는 물이지만, 물 이외의 액체이어도 되고, 예를 들어, 노광광 (EL) 의 광원이 F2 레이저인 경우, 이 F2 레이저광은 물을 투과하지 않으므로, 액체 (1) 로서는 F2 레이저광을 투과할 수 있는 예를 들어, 과불화 폴리에테르 (PFPE) 나 불소계 오일 등의 불소계 유체이어도 된다. 이 경우, 액체 (1) 와 접촉하는 부분에는 예를 들어 불소를 함유하는 극성이 작은 분자 구조의 물질로 박막을 형성함으로써 친액화 처리한다. 또한, 액체 (1) 로서는 그 밖에도, 노광광 (EL) 에 대한 투과성이 있으며 될 수 있는 한 굴절률이 높고, 투영 광학계 (PL) 나 기판 (P) 표면에 도포되어 있는 포토레지스트에 대하여 안정된 것 (예를 들어 시더유 (ceder oil)) 을 사용할 수도 있다. 이 경우에도, 사용하는 액체 (1) 의 극성에 따라 표면 처리가 행해진다.
또, 상기 기술한 바와 같이 액침법을 사용한 경우에는 투영 광학계의 개구수 (NA) 가 0.9∼1.3 이 되는 경우도 있다. 이와 같이 투영 광학계의 개구수 (NA) 가 커지는 경우에는 종래부터 노광광으로서 사용되고 있는 랜덤 편광광에서는 편광 효과에 의해서 결상 성능이 악화되는 경우도 있으므로, 편광 조명을 사용하는 것이 바람직하다. 그 경우, 마스크 (레티클) 의 라인·앤드·스페이스 패턴의 라인 패턴의 길이 방향에 맞춘 직선 편광 조명을 행하고, 마스크 (레티클) 의 패턴으로부터는 S 편광 성분 (TE 편광 성분), 즉 라인 패턴의 길이 방향을 따른 편광 방향 성분의 회절광이 많이 사출되도록 하면 된다. 투영 광학계 (PL) 와 기판 (P) 표면에 도포된 레지스트와의 사이가 액체로 채워져 있는 경우, 투영 광학계 (PL) 와 기판 (P) 표면에 도포된 레지스트와의 사이가 공기 (기체) 로 채워져 있는 경우에 비하여, 콘트라스트의 향상에 기여하는 S 편광 성분 (TE 편광 성분) 의 회절광의 레지스트 표면에서의 투과율이 높아지기 때문에, 투영 광학계의 개구수 (NA) 가 1.0 을 넘는 경우라도 높은 결상 성능을 얻을 수 있다. 또한, 위상 시프트 마스크나 일본 공개특허공보 평6-188169호에 개시되어 있는 라인 패턴의 길이 방향에 맞춘 사입사 (斜入射) 조명법 (특히 다이볼 조명법) 등을 적절히 조합하면 더욱 효과적이다. 예를 들어, 투과율 6% 의 하프톤형의 위상 시프트 마스크 (하프 피치 45nm 정도의 패턴) 를, 직선 편광 조명법과 다이볼 조명법을 병용하여 조명하는 경우, 조명계의 동공면에 있어서 다이볼을 형성하는 2광속의 외접 (外接) 원으로 규정되는 조명 (σ) 을 0.95, 그 동공면에서의 각 광속의 반경을 0.125σ, 투영 광학계 (PL) 의 개구수를 NA=1.2 로 하면, 랜덤 편광광을 사용하는 것보다, 초점 심도 (DOF) 를 150nm 정도 증가시킬 수 있다.
또한, 예를 들어 ArF 엑시머 레이저를 노광광으로 하고, 1/4 정도의 축소 배율의 투영 광학계 (PL) 를 사용하여, 미세한 라인·앤드·스페이스 패턴 (예를 들어 25∼50nm 정도의 라인·앤드·스페이스) 을 기판 (P) 상에 노광하는 경우, 마스크 (M) 의 구조 (예를 들어 패턴의 미세도나 크롬의 두께) 에 따라서는, Wave guide 효과에 의해 마스크 (M) 가 편광판으로서 작용하여, 콘트라스트를 저하시키는 P 편광 성분 (TM 편광 성분) 의 회절광보다 S 편광 성분 (TE 편광 성분) 의 회절광이 많이 마스크 (M) 에서 사출되게 된다. 이 경우, 상기 기술한 직선 편광 조명을 사용하는 것이 바람직하지만, 랜덤 편광광으로 마스크 (M) 를 조명하더라도, 투영 광학계 (PL) 의 개구수 (NA) 가 0.9∼1.3 과 같이 큰 경우라도 높은 해상 성능을 얻을 수 있다.
또한, 마스크 (M) 상의 극미세한 라인·앤드·스페이스 패턴을 기판 (P) 상에 노광하는 경우, Wire Grid 효과에 의해 P 편광 성분 (TM 편광 성분) 이 S 편광 성분 (TE 편광 성분) 보다 커질 가능성도 있지만, 예를 들어 ArF 엑시머 레이저를 노광광으로 하여, 1/4 정도의 축소 배율의 투영 광학계 (PL) 를 사용하여, 25nm 보다 큰 라인·앤드·스페이스 패턴을 기판 (P) 상에 노광하는 경우에는 S 편광 성분 (TE 편광 성분) 의 회절광이 P 편광 성분 (TM 편광 성분) 의 회절광보다 많이 마스크 (M) 에서 사출되기 때문에, 투영 광학계 (PL) 의 개구수 (NA) 가 0.9∼1.3 과 같이 큰 경우라도 높은 해상 성능을 얻을 수 있다.
또, 마스크 (레티클) 의 라인 패턴의 길이 방향에 맞춘 직선 편광 조명 (S 편광 조명) 뿐만 아니라, 일본 공개특허공보 평6-53120호에 개시되어 있는 바와 같이, 광축을 중심으로 한 원의 접선 (둘레) 방향으로 직선 편광하는 편광 조명법과 사입사 조명도의 조합도 효과적이다. 특히, 마스크 (레티클) 의 패턴이 소정의 한 방향으로 연장되는 라인 패턴 뿐만 아니라, 복수의 상이한 방향으로 연장되는 라인 패턴이 혼재하는 경우에는 동일하게 일본 공개특허공보 평6-53120호에 개시되어 있는 바와 같이, 광축을 중심으로 한 원의 접선 방향으로 직선 편광하는 편광 조명법과 윤대 조명법을 병용함으로써, 투영 광학계의 개구수 (NA) 가 큰 경우라도 높은 결상 성능을 얻을 수 있다. 예를 들어, 투과율 6% 의 하프톤형의 위상 시프트 마스크 (하프 피치 63nm 정도의 패턴) 를, 광축을 중심으로 한 원의 접선 방향으로 직선 편광하는 편광 조명법과 윤대 조명법 (윤대비 3/4) 을 병용하여 조명하는 경우, 조명 (σ) 을 0.95, 투영 광학계 (PL) 의 개구수를 NA=1.00 으로 하면, 랜덤 편광광을 사용하는 것보다, 초점 심도 (DOF) 를 250nm 정도 증가시킬 수 있다. 하프 피치 55nm 정도의 패턴으로 투영 광학계의 개구수 NA=1.2 인 경우에는 초점 심도를 100nm 정도 증가시킬 수 있다.
또, 상기 각 실시형태의 기판 (P) 으로서는 반도체 디바이스 제조용의 반도체 웨이퍼뿐만 아니라, 디스플레이 디바이스용 유리 기판이나, 박막 자기 헤드용 세라믹 웨이퍼, 또는 노광 장치에서 사용되는 마스크 또는 레티클의 원판 (합성 석영, 규소 웨이퍼) 등이 적용된다.
노광 장치 (EX) 로서는 마스크 (M) 와 기판 (P) 을 동기 이동하여 마스크 (M) 의 패턴을 주사 노광하는 스텝 앤드 스캔 방식의 주사형 노광 장치 (스캐닝 스테퍼) 외에, 마스크 (M) 와 기판 (P) 을 정지시킨 상태에서 마스크 (M) 의 패턴을 일괄 노광하고, 기판 (P) 을 순차 단계 이동시키는 스텝 앤드 리피트 방식의 투영 노광 장치 (스테퍼) 에도 적용할 수 있다. 또한, 본 발명은 기판 (P) 상에서 2개 이상의 패턴을 부분적으로 겹쳐 전사하는 스텝 앤드 스티치 방식의 노광 장치에도 적용할 수 있다.
또한, 본 발명은 트윈 스테이지형의 노광 장치에도 적용할 수 있다. 트윈 스테이지형의 노광 장치의 구조 및 노광 동작은 예를 들어 일본 공개특허공보 평10-163099호 및 일본 공개특허공보 평10-214783호 (대응 미국 특허 6,341,007, 6,400,441, 6,549,269 및 6,590,634), 일본 특허공표 2000-505958호 (대응 미국 특허 5,969,441) 또는 미국 특허 6,208,407 에 개시되어 있고, 본 국제 출원의 지정국 또는 선택국의 국내 법령이 허용하는 한, 그들의 개시를 원용하여 본문의 기재의 일부로 한다.
또한, 상기 기술한 실시형태에 있어서는 투영 광학계 (PL) 와 기판 (P) 사이에 국소적으로 액체를 채우는 노광 장치를 채용하고 있지만, 본 발명은 노광 대상의 기판을 유지한 스테이지를 액조 속에서 이동시키는 액침 노광 장치에도 적용할 수 있다. 노광 대상의 기판을 유지한 스테이지를 액조 속에서 이동시키는 액침 노광 장치의 구조 및 노광 동작은 예를 들어, 일본 공개특허공보 평6-124873호에 개시되어 있다. 또한, 기판 스테이지 상에 액체조를 형성하여 그 속에 기판을 유지하는 노광 장치에 관해서는 예를 들어 미국 특허 5,825,043 (일본 공개특허공보 평10-303114호) 에 개시되어 있고, 본 국제 출원의 지정국 또는 선택국의 국내 법령이 허용하는 한, 미국 특허 5,825,043 에 기재된 내용을 원용하여 본문의 기재의 일부로 한다.
노광 장치 (EX) 의 종류로서는 기판 (P) 에 반도체 소자 패턴을 노광하는 반도체 소자 제조용 노광 장치에 한정되지 않고, 액정 표시 소자 제조용 또는 디스플레이 제조용 노광 장치나, 박막 자기 헤드, 촬상 소자 (CCD) 또는 레티클 또는 마스크 등을 제조하기 위한 노광 장치 등에도 널리 적용할 수 있다.
기판 스테이지 (PST) 나 마스크 스테이지 (MST) 에 리니어 모터를 사용하는 경우에는 에어 베어링을 사용한 에어 부상형 및 로렌츠력 또는 리액턴스력을 사용한 자기 부상형의 어느 쪽을 사용해도 된다. 또, 각 스테이지 (PST, MST) 는 가이드를 따라 이동하는 타입이어도 되고, 가이드를 형성하지 않은 가이드리스 타입이어도 된다. 스테이지에 리니어 모터를 사용한 예는 미국 특허 5,623,853 및 5,528,118 에 개시되어 있고, 그들의 개시를, 본 국제 출원의 지정국 또는 선택국의 국내 법령이 허용하는 한, 본문의 기재의 일부로서 원용한다.
각 스테이지 (PST, MST) 의 구동 기구로서는 2차원으로 자석을 배치한 자석 유닛과, 2차원으로 코일을 배치한 전기자 유닛을 대향시켜 전자력에 의해 각 스테이지 (PST, MST) 를 구동하는 평면 모터를 사용해도 된다. 이 경우, 자석 유닛과 전기자 유닛의 어느 일방을 스테이지 (PST, MST) 에 접속하고, 자석 유닛과 전기자 유닛의 다른 일방을 스테이지 (PST, MST) 의 이동면측에 형성하면 된다.
기판 스테이지 (PST) 의 이동에 의해 발생되는 반력은 투영 광학계 (PL) 에 전해지지 않도록, 프레임 부재를 사용하여 기계적으로 바닥 (대지) 으로 내보내도 된다. 이 반력의 처리 방법은 예를 들어, 미국 특허 5,528,118 (일본 공개특허공보 평8-166475호) 에 상세하게 개시되어 있고, 이들의 개시를, 본 국제 출원의 지정국 또는 선택국의 국내 법령이 허용하는 한, 본문의 기재의 일부로서 원용한다.
마스크 스테이지 (MST) 의 이동에 의해 발생되는 반력은 투영 광학계 (PL) 에 전해지지 않도록, 프레임 부재를 사용하여 기계적으로 바닥 (대지) 으로 내보내도 된다. 이 반력의 처리 방법은 예를 들어, 미국 특허 5,874,820 (일본 공개특허공보 평8-330224호) 에 상세히 개시되어 있고, 본 국제 출원의 지정국 또는 선택국의 국내 법령이 허용하는 한, 본문의 기재의 일부로 한다.
이상과 같이, 본원 실시형태의 노광 장치 (EX) 는 본원 특허 청구의 범위에 언급된 각 구성 요소를 포함하는 각종 서브 시스템을, 소정 기계적 정밀도, 전기적 정밀도, 광학적 정밀도를 유지하도록, 조립함으로써 제조된다. 이들 각종 정밀도를 확보하기 위해서, 이 조립의 전후에는 각종 광학계에 관해서는 광학적 정밀도를 달성하기 위한 조정, 각종 기계계에 관해서는 기계적 정밀도를 달성하기 위한 조정, 각종 전기계에 관해서는 전기적 정밀도를 달성하기 위한 조정이 행해진다. 각종 서브 시스템으로부터 노광 장치로의 조립 공정은 각종 서브 시스템 상호의, 기계적 접속, 전기 회로의 배선 접속, 기압 회로의 배관 접속 등이 포함된다. 이 각종 서브 시스템으로부터 노광 장치로의 조립 공정 전에, 각 서브 시스템 개개의 조립 공정이 있음은 물론이다. 각종 서브 시스템의 노광 장치에 대한 조립 공정이 종료되면, 종합 조정이 행해져, 노광 장치 전체적인 각종 정밀도가 확보된다. 또, 노광 장치의 제조는 온도 및 청정도 등이 관리된 청정실에서 실시하는 것이 바람직하다.
반도체 디바이스 등의 마이크로 디바이스는 도 26 에 나타내는 바와 같이, 마이크로 디바이스의 기능·성능 설계를 행하는 단계 201, 이 설계 단계에 기초한 마스크 (레티클) 를 제작하는 단계 202, 디바이스의 기재인 기판을 제조하는 단계 203, 전술한 실시형태의 노광 장치 (EX) 에 의해 마스크의 패턴을 기판에 노광하는 노광 처리 단계 204, 디바이스 조립 단계 (다이싱 공정, 본딩 공정, 패키지 공정 포함) 205, 검사 단계 206 등을 거쳐 제조된다.

Claims (39)

  1. 액체를 통해 기판상에 패턴의 이미지를 투영하고, 상기 기판을 노광하는 노광 장치로서,
    기판 상에 패턴의 이미지를 투영하는 투영 광학계와,
    상기 투영 광학계의 이미지면 부근에 배치된 부품 상에 잔류한 액체를 제거하는 액체 제거 기구를 구비하는 노광 장치.
  2. 제 1 항에 있어서,
    상기 액체 제거 기구는 상기 부품에 부착된 액체를 흡인하는 흡인 장치를 갖는 노광 장치.
  3. 제 1 항에 있어서,
    상기 액체 제거 기구는 상기 부품에 기체를 분사하는 장치를 갖는 노광 장치.
  4. 제 1 항에 있어서,
    상기 부품은 상기 투영 광학계의 선단의 부품을 포함하는 노광 장치.
  5. 제 1 항에 있어서,
    액체를 공급하는 액체 공급 기구를 더 구비하고,
    상기 부품은 상기 액체 공급 기구의 공급 노즐을 포함하는 노광 장치.
  6. 제 1 항에 있어서,
    액체를 회수하는 액체 회수 기구를 더 구비하고,
    상기 부품은 상기 액체 회수 기구의 회수 노즐을 포함하는 노광 장치.
  7. 제 1 항에 있어서,
    상기 부품은 상기 기판의 노광 중에 액체에 접촉하는 노광 장치.
  8. 제 1 항에 있어서,
    상기 투영 광학계의 이미지면측에서 이동가능한 스테이지를 더 포함하는 노광 장치.
  9. 제 8 항에 있어서,
    상기 부품은 상기 스테이지의 일부 또는 스테이지에 형성되어 있는 계측 부재를 포함하는 노광 장치.
  10. 제 9 항에 있어서,
    상기 계측 부재는 상기 스테이지에 형성되어 있는 기준 부재를 포함하는 노광 장치.
  11. 제 9 항에 있어서,
    상기 투영 광학계로부터의 노광광을 투과하는 광투과부를 갖는 상판과,
    상기 상판의 광투과부를 통과한 광을 수광하는 수광계를 갖는 계측계를 더 구비하고,
    상기 부품은 상기 계측계의 상판을 포함하는 노광 장치.
  12. 제 8 항에 있어서,
    상기 액체 제거 기구의 적어도 일부는 상기 스테이지에 형성되어 있는 노광 장치.
  13. 제 1 항에 있어서,
    상기 부품 표면은 발액성 (撥液性) 인 노광 장치.
  14. 제 1 항에 있어서,
    상기 액체 제거 기구는 상기 부품 표면의 소정 영역에 잔류하고 있는 액체를, 상기 소정 영역의 외측으로 이동시키는 노광 장치.
  15. 제 1 항에 있어서,
    상기 액체 제거 기구는 청정한 기체 또는 건조 기체를 사용하여, 상기 액체를 제거하는 노광 장치.
  16. 제 15 항에 있어서,
    상기 청정한 기체는 질소가스인 노광 장치.
  17. 제 1 항에 있어서,
    상기 부품을 세정하는 세정 기구를 더 구비하는 노광 장치.
  18. 제 1 항에 있어서,
    상기 부품 표면의 상태를 검출하는 검출 장치를 더 구비하는 노광 장치.
  19. 제 1 항에 있어서,
    상기 액체 제거 기구가, 노광 전 또는 노광 후에, 상기 투영 광학계의 이미지면 부근에 배치된 부품 상에 잔류한 액체를 제거하는 노광 장치.
  20. 제 19 항에 있어서,
    노광 중에 기판 상의 액체를 회수하는 액체 회수 기구를 더 구비하는 노광 장치.
  21. 제 8 항에 있어서,
    상기 액체 제거 기구는 스테이지 상에 형성된 부품 상에 잔류한 액체를 제거하는 제 1 액체 제거 기구와, 투영 광학계의 선단에 잔류한 액체를 제거하는 제 2 액체 제거 기구를 구비하는 노광 장치.
  22. 제 8 항에 있어서,
    상기 액체 제거 기구는 스테이지에 형성되고 또한 스테이지에서 상방으로 향하여 기체를 분사하는 기체 분사 노즐을 구비하는 노광 장치.
  23. 제 1 항에 있어서,
    액체 제거 기구를 제어하는 제어 장치를 더 구비하고,
    상기 제어 장치는 기판의 언로드시에 액체 제거 기구에 의한 액체 제거를 실행하도록 액체 제거 기구를 제어하는 노광 장치.
  24. 제 1 항에 있어서,
    액체 영역의 액체에 접촉하는 광학 부재와 포커스 검출계를 더 구비하고,
    상기 포커스 검출계로부터 출사된 광이 광학 부재와 액체를 투과하여 기판에 도달하는 노광 장치.
  25. 제 1 항에 있어서,
    상기 액체 제거 기구는 기판면 방향으로 이동할 수 있는 기체 분사부를 구비하는 노광 장치.
  26. 제 1 항에 있어서,
    상기 액체 제거 기구는 상기 액체와 기체를 선택적으로 분사하는 노즐을 구비하는 장치인 노광 장치.
  27. 제 26 항에 있어서,
    상기 액체를 공급하는 액체 공급 기구를 더 구비하고,
    상기 액체 공급 기구로부터의 액체와, 상기 액체 제거 기구의 노즐로부터의 기체의 유로를 전환하는 유로 전환 장치를 구비하는 노광 장치.
  28. 제 25 항에 있어서,
    상기 기체 분사 노즐을 구비한 액체 받이 부재와, 액체 받이 부재를 투영 광학계에 상대하여 이동시키는 액츄에이터를 더 구비하는 노광 장치.
  29. 제 25 항에 있어서,
    상기 기체 분사부에 기판에 정 또는 부의 압력을 선택적으로 가하는 계를 구비하는 노광 장치.
  30. 기판 상의 일부에 액침 영역을 형성하고, 액침 영역의 액체를 통해 상기 기판 상에 패턴의 이미지를 투영함으로써 상기 기판을 노광하는 노광 장치로서,
    상기 기판 상에 패턴의 이미지를 투영하는 투영 광학계,
    상기 기판을 유지하여 이동가능한 기판 스테이지,
    상기 액침 영역을 형성하기 위해서 기판 상에 액체를 공급하는 액체 공급 기구,
    상기 기판 상의 액체를 회수하는 제 1 액체 회수 기구, 및
    상기 기판 스테이지에 형성된 회수구를 갖고, 상기 기판의 노광 종료 후에 액체를 회수하는 제 2 액체 회수 기구를 구비하는 노광 장치.
  31. 제 30 항에 있어서,
    상기 기판의 노광 종료 후에, 상기 제 1 및 제 2 액체 회수 기구 모두가 액체를 회수하는 노광 장치.
  32. 제 30 항에 있어서,
    상기 기판의 노광 중에 상기 액침 영역을 형성하기 위해서, 상기 액체 공급 기구가 액체를 공급하는 것과 동시에 상기 제 1 액체 회수 기구가 액체를 회수하는 노광 장치.
  33. 제 30 항에 있어서,
    상기 제 2 액체 회수 기구는 상기 기판의 노광 중에 상기 기판의 외측으로 유출된 액체를 회수하는 노광 장치.
  34. 제 30 항에 있어서,
    제 1 및 제 2 액체 회수 기구와는 상이한 액체 제거 기구를 더 구비하는 노광 장치.
  35. 액체를 통해 기판 상에 패턴의 이미지를 투영함으로써 상기 기판을 노광하는 노광 장치로서,
    상기 패턴의 이미지를 기판 상에 투영하는 투영 광학계와,
    상기 투영 광학계의 이미지면측 부근에 배치되는 부품의 표면 상태를 검출하는 검출 장치를 구비하는 노광 장치.
  36. 제 35 항에 있어서,
    상기 검출 장치는 상기 부품 표면에 부착된 이물을 검출하는 노광 장치.
  37. 제 35 항에 있어서,
    상기 부품 표면은 상기 투영 광학계의 이미지면측에 가장 가까운 광학 소자 표면을 포함하는 노광 장치.
  38. 제 37 항에 있어서,
    광학 소자 표면을 세정하는 세정 장치와, 세정 장치를 제어하는 제어 장치를 더 구비하고,
    상기 제어 장치는 검출 장치의 검출 결과에 따라 세정 장치를 동작하는 노광 장치.
  39. 제 1 항, 제 30 항 또는 제 35 항 중 어느 한 항에 기재된 노광 장치를 사용하는 것을 특징으로 하는 디바이스 제조 방법.
KR1020117019047A 2003-05-23 2004-05-24 노광 장치 및 디바이스 제조 방법 KR101327697B1 (ko)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JPJP-P-2003-146423 2003-05-23
JP2003146423 2003-05-23
JPJP-P-2003-305280 2003-08-28
JP2003305280 2003-08-28
JP2004049231 2004-02-25
JPJP-P-2004-049231 2004-02-25
PCT/JP2004/007417 WO2004105107A1 (ja) 2003-05-23 2004-05-24 露光装置及びデバイス製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020057022146A Division KR20060009950A (ko) 2003-05-23 2004-05-24 노광 장치 및 디바이스 제조 방법

Related Child Applications (3)

Application Number Title Priority Date Filing Date
KR1020117031175A Division KR101345540B1 (ko) 2003-05-23 2004-05-24 노광 장치 및 디바이스 제조 방법
KR1020117026166A Division KR101508811B1 (ko) 2003-05-23 2004-05-24 노광 장치 및 디바이스 제조 방법
KR1020117023021A Division KR101536033B1 (ko) 2003-05-23 2004-05-24 노광 장치 및 디바이스 제조 방법

Publications (2)

Publication Number Publication Date
KR20110110318A true KR20110110318A (ko) 2011-10-06
KR101327697B1 KR101327697B1 (ko) 2013-11-11

Family

ID=33479649

Family Applications (10)

Application Number Title Priority Date Filing Date
KR1020117023021A KR101536033B1 (ko) 2003-05-23 2004-05-24 노광 장치 및 디바이스 제조 방법
KR1020177032045A KR20170126020A (ko) 2003-05-23 2004-05-24 노광 장치 및 디바이스 제조 방법
KR1020117031175A KR101345540B1 (ko) 2003-05-23 2004-05-24 노광 장치 및 디바이스 제조 방법
KR1020147036412A KR101677829B1 (ko) 2003-05-23 2004-05-24 노광 장치 및 디바이스 제조 방법
KR1020157026199A KR101796849B1 (ko) 2003-05-23 2004-05-24 노광 장치 및 디바이스 제조 방법
KR1020057022146A KR20060009950A (ko) 2003-05-23 2004-05-24 노광 장치 및 디바이스 제조 방법
KR1020127025284A KR101523829B1 (ko) 2003-05-23 2004-05-24 노광 장치 및 디바이스 제조 방법
KR1020117026166A KR101508811B1 (ko) 2003-05-23 2004-05-24 노광 장치 및 디바이스 제조 방법
KR1020127025283A KR101523828B1 (ko) 2003-05-23 2004-05-24 노광 장치 및 디바이스 제조 방법
KR1020117019047A KR101327697B1 (ko) 2003-05-23 2004-05-24 노광 장치 및 디바이스 제조 방법

Family Applications Before (9)

Application Number Title Priority Date Filing Date
KR1020117023021A KR101536033B1 (ko) 2003-05-23 2004-05-24 노광 장치 및 디바이스 제조 방법
KR1020177032045A KR20170126020A (ko) 2003-05-23 2004-05-24 노광 장치 및 디바이스 제조 방법
KR1020117031175A KR101345540B1 (ko) 2003-05-23 2004-05-24 노광 장치 및 디바이스 제조 방법
KR1020147036412A KR101677829B1 (ko) 2003-05-23 2004-05-24 노광 장치 및 디바이스 제조 방법
KR1020157026199A KR101796849B1 (ko) 2003-05-23 2004-05-24 노광 장치 및 디바이스 제조 방법
KR1020057022146A KR20060009950A (ko) 2003-05-23 2004-05-24 노광 장치 및 디바이스 제조 방법
KR1020127025284A KR101523829B1 (ko) 2003-05-23 2004-05-24 노광 장치 및 디바이스 제조 방법
KR1020117026166A KR101508811B1 (ko) 2003-05-23 2004-05-24 노광 장치 및 디바이스 제조 방법
KR1020127025283A KR101523828B1 (ko) 2003-05-23 2004-05-24 노광 장치 및 디바이스 제조 방법

Country Status (7)

Country Link
US (14) US7388649B2 (ko)
EP (10) EP2466616A3 (ko)
JP (13) JP5440228B2 (ko)
KR (10) KR101536033B1 (ko)
HK (1) HK1221072A1 (ko)
TW (8) TWI503865B (ko)
WO (1) WO2004105107A1 (ko)

Families Citing this family (171)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7110081B2 (en) 2002-11-12 2006-09-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
CN100470367C (zh) 2002-11-12 2009-03-18 Asml荷兰有限公司 光刻装置和器件制造方法
SG121822A1 (en) 2002-11-12 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
EP1420300B1 (en) * 2002-11-12 2015-07-29 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
KR100588124B1 (ko) 2002-11-12 2006-06-09 에이에스엠엘 네델란즈 비.브이. 리소그래피장치 및 디바이스제조방법
US9482966B2 (en) 2002-11-12 2016-11-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10503084B2 (en) 2002-11-12 2019-12-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2004053952A1 (ja) * 2002-12-10 2004-06-24 Nikon Corporation 露光装置及びデバイス製造方法
KR101503992B1 (ko) 2003-04-09 2015-03-18 가부시키가이샤 니콘 노광 방법 및 장치, 그리고 디바이스 제조 방법
KR101129213B1 (ko) * 2003-04-10 2012-03-27 가부시키가이샤 니콘 액침 리소그래피 장치용 액체를 수집하는 런-오프 경로
KR101498405B1 (ko) 2003-04-11 2015-03-04 가부시키가이샤 니콘 액침 리소그래피 머신에서 웨이퍼 교환동안 투영 렌즈 아래의 갭에서 액침 액체를 유지하는 장치 및 방법
KR101525335B1 (ko) 2003-04-11 2015-06-03 가부시키가이샤 니콘 액침 리소그래피에 의한 광학기기의 세정방법
TWI503865B (zh) 2003-05-23 2015-10-11 尼康股份有限公司 A method of manufacturing an exposure apparatus and an element
US7213963B2 (en) 2003-06-09 2007-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7684008B2 (en) 2003-06-11 2010-03-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
TWI409853B (zh) 2003-06-13 2013-09-21 尼康股份有限公司 An exposure method, a substrate stage, an exposure apparatus, and an element manufacturing method
US6867844B2 (en) 2003-06-19 2005-03-15 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
EP1635382B1 (en) 2003-06-19 2009-12-23 Nikon Corporation Exposure device and device producing method
US6809794B1 (en) 2003-06-27 2004-10-26 Asml Holding N.V. Immersion photolithography system and method using inverted wafer-projection optics interface
JP3862678B2 (ja) * 2003-06-27 2006-12-27 キヤノン株式会社 露光装置及びデバイス製造方法
DE60308161T2 (de) 2003-06-27 2007-08-09 Asml Netherlands B.V. Lithographischer Apparat und Verfahren zur Herstellung eines Artikels
KR101414896B1 (ko) 2003-07-28 2014-07-03 가부시키가이샤 니콘 노광 장치 및 디바이스 제조 방법, 그리고 노광 장치의 제어 방법
KR101239632B1 (ko) 2003-08-21 2013-03-11 가부시키가이샤 니콘 노광 장치, 노광 방법 및 디바이스 제조 방법
TWI263859B (en) 2003-08-29 2006-10-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP4325622B2 (ja) * 2003-08-29 2009-09-02 株式会社ニコン 露光装置及びデバイス製造方法
WO2005031820A1 (ja) * 2003-09-26 2005-04-07 Nikon Corporation 投影露光装置及び投影露光装置の洗浄方法、メンテナンス方法並びにデバイスの製造方法
KR101361892B1 (ko) 2003-10-08 2014-02-12 가부시키가이샤 자오 니콘 기판 반송 장치 및 기판 반송 방법, 노광 장치 및 노광 방법, 디바이스 제조 방법
TWI511179B (zh) 2003-10-28 2015-12-01 尼康股份有限公司 照明光學裝置、曝光裝置、曝光方法以及元件製造方法
JP2005159322A (ja) 2003-10-31 2005-06-16 Nikon Corp 定盤、ステージ装置及び露光装置並びに露光方法
TWI361450B (en) * 2003-10-31 2012-04-01 Nikon Corp Platen, stage device, exposure device and exposure method
JP4513747B2 (ja) 2003-10-31 2010-07-28 株式会社ニコン 露光装置及びデバイス製造方法
US7528929B2 (en) 2003-11-14 2009-05-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
TWI519819B (zh) 2003-11-20 2016-02-01 尼康股份有限公司 光束變換元件、光學照明裝置、曝光裝置、以及曝光方法
KR101682884B1 (ko) 2003-12-03 2016-12-06 가부시키가이샤 니콘 노광 장치, 노광 방법 및 디바이스 제조 방법, 그리고 광학 부품
US7589822B2 (en) 2004-02-02 2009-09-15 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
WO2005076321A1 (ja) 2004-02-03 2005-08-18 Nikon Corporation 露光装置及びデバイス製造方法
TWI614795B (zh) 2004-02-06 2018-02-11 Nikon Corporation 光學照明裝置、曝光裝置、曝光方法以及元件製造方法
US7050146B2 (en) 2004-02-09 2006-05-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2005076323A1 (ja) * 2004-02-10 2005-08-18 Nikon Corporation 露光装置及びデバイス製造方法、メンテナンス方法及び露光方法
US7616383B2 (en) 2004-05-18 2009-11-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2005119368A2 (en) * 2004-06-04 2005-12-15 Carl Zeiss Smt Ag System for measuring the image quality of an optical imaging system
JP4760708B2 (ja) 2004-06-09 2011-08-31 株式会社ニコン 露光装置、露光方法、及びデバイス製造方法、メンテナンス方法
US8698998B2 (en) 2004-06-21 2014-04-15 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
EP3098835B1 (en) * 2004-06-21 2017-07-26 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
KR101330922B1 (ko) 2004-06-21 2013-11-18 가부시키가이샤 니콘 노광 장치 및 디바이스 제조 방법
US7463330B2 (en) 2004-07-07 2008-12-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4894515B2 (ja) 2004-07-12 2012-03-14 株式会社ニコン 露光装置、デバイス製造方法、及び液体検出方法
JP2006041046A (ja) * 2004-07-23 2006-02-09 Canon Inc 光電計測装置及び露光装置
EP3267257B1 (en) * 2004-08-03 2019-02-13 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7224427B2 (en) * 2004-08-03 2007-05-29 Taiwan Semiconductor Manufacturing Company, Ltd. Megasonic immersion lithography exposure apparatus and method
KR20070048164A (ko) 2004-08-18 2007-05-08 가부시키가이샤 니콘 노광 장치 및 디바이스 제조 방법
US7701550B2 (en) 2004-08-19 2010-04-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4618253B2 (ja) * 2004-09-17 2011-01-26 株式会社ニコン 基板保持装置、露光装置、及びデバイス製造方法
US7385670B2 (en) * 2004-10-05 2008-06-10 Asml Netherlands B.V. Lithographic apparatus, cleaning system and cleaning method for in situ removing contamination from a component in a lithographic apparatus
EP1814144B1 (en) 2004-10-26 2012-06-06 Nikon Corporation Substrate processing method and device production system
KR101559621B1 (ko) * 2004-12-06 2015-10-13 가부시키가이샤 니콘 메인터넌스 방법, 메인터넌스 기기, 노광 장치, 및 디바이스 제조 방법
JP4752473B2 (ja) 2004-12-09 2011-08-17 株式会社ニコン 露光装置、露光方法及びデバイス製造方法
US7528931B2 (en) 2004-12-20 2009-05-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7880860B2 (en) 2004-12-20 2011-02-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7450217B2 (en) 2005-01-12 2008-11-11 Asml Netherlands B.V. Exposure apparatus, coatings for exposure apparatus, lithographic apparatus, device manufacturing method, and device manufactured thereby
US7324185B2 (en) 2005-03-04 2008-01-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
USRE43576E1 (en) 2005-04-08 2012-08-14 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
US20060232753A1 (en) 2005-04-19 2006-10-19 Asml Holding N.V. Liquid immersion lithography system with tilted liquid flow
US8248577B2 (en) 2005-05-03 2012-08-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7433016B2 (en) 2005-05-03 2008-10-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101762083B1 (ko) 2005-05-12 2017-07-26 가부시키가이샤 니콘 투영 광학계, 노광 장치 및 노광 방법
US7924416B2 (en) 2005-06-22 2011-04-12 Nikon Corporation Measurement apparatus, exposure apparatus, and device manufacturing method
WO2006137440A1 (ja) * 2005-06-22 2006-12-28 Nikon Corporation 計測装置及び露光装置、並びにデバイス製造方法
JP2007012375A (ja) * 2005-06-29 2007-01-18 Toyota Motor Corp 燃料電池、燃料電池用電極触媒層の製造方法、及び燃料電池の運転方法
WO2007007746A1 (ja) * 2005-07-11 2007-01-18 Nikon Corporation 露光装置及びデバイス製造方法
JP5011676B2 (ja) * 2005-08-12 2012-08-29 株式会社日立製作所 表示装置を備える機器
CN101258581B (zh) * 2005-09-09 2011-05-11 株式会社尼康 曝光装置及曝光方法以及设备制造方法
US7929109B2 (en) 2005-10-20 2011-04-19 Nikon Corporation Apparatus and method for recovering liquid droplets in immersion lithography
JP4735186B2 (ja) 2005-10-21 2011-07-27 株式会社ニコン 液浸顕微鏡装置
US7986395B2 (en) * 2005-10-24 2011-07-26 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion lithography apparatus and methods
US7773195B2 (en) 2005-11-29 2010-08-10 Asml Holding N.V. System and method to increase surface tension and contact angle in immersion lithography
US8125610B2 (en) * 2005-12-02 2012-02-28 ASML Metherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus
US7649611B2 (en) 2005-12-30 2010-01-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4889331B2 (ja) * 2006-03-22 2012-03-07 大日本スクリーン製造株式会社 基板処理装置および基板処理方法
CN101907733B (zh) 2006-04-03 2013-06-19 株式会社尼康 对浸没液体为疏溶的入射表面和光学窗
KR20090018024A (ko) 2006-05-18 2009-02-19 가부시키가이샤 니콘 노광 방법 및 장치, 메인터넌스 방법, 그리고 디바이스 제조 방법
US7969548B2 (en) * 2006-05-22 2011-06-28 Asml Netherlands B.V. Lithographic apparatus and lithographic apparatus cleaning method
TW200818256A (en) * 2006-05-22 2008-04-16 Nikon Corp Exposure method and apparatus, maintenance method, and device manufacturing method
CN102156389A (zh) * 2006-05-23 2011-08-17 株式会社尼康 维修方法、曝光方法及装置、以及组件制造方法
US20070273856A1 (en) * 2006-05-25 2007-11-29 Nikon Corporation Apparatus and methods for inhibiting immersion liquid from flowing below a substrate
WO2007139017A1 (ja) * 2006-05-29 2007-12-06 Nikon Corporation 液体回収部材、基板保持部材、露光装置、及びデバイス製造方法
US7532309B2 (en) * 2006-06-06 2009-05-12 Nikon Corporation Immersion lithography system and method having an immersion fluid containment plate for submerging the substrate to be imaged in immersion fluid
US8564759B2 (en) 2006-06-29 2013-10-22 Taiwan Semiconductor Manufacturing Company, Ltd. Apparatus and method for immersion lithography
JP5245825B2 (ja) * 2006-06-30 2013-07-24 株式会社ニコン メンテナンス方法、露光方法及び装置、並びにデバイス製造方法
ATE431575T1 (de) * 2006-08-28 2009-05-15 Imec Inter Uni Micro Electr Verfahren und system zur kontaminationsmessung bei einem lithografischen element
KR101523388B1 (ko) 2006-08-30 2015-05-27 가부시키가이샤 니콘 노광 장치, 디바이스 제조 방법, 클리닝 방법 및 클리닝용 부재
US7826030B2 (en) * 2006-09-07 2010-11-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2008029884A1 (fr) * 2006-09-08 2008-03-13 Nikon Corporation Dispositif et procédé de nettoyage, et procédé de fabrication du dispositif
US20080100812A1 (en) * 2006-10-26 2008-05-01 Nikon Corporation Immersion lithography system and method having a wafer chuck made of a porous material
JP5055971B2 (ja) * 2006-11-16 2012-10-24 株式会社ニコン 表面処理方法及び表面処理装置、露光方法及び露光装置、並びにデバイス製造方法
US9632425B2 (en) 2006-12-07 2017-04-25 Asml Holding N.V. Lithographic apparatus, a dryer and a method of removing liquid from a surface
JP2008192854A (ja) * 2007-02-05 2008-08-21 Canon Inc 液浸露光装置
US8817226B2 (en) 2007-02-15 2014-08-26 Asml Holding N.V. Systems and methods for insitu lens cleaning using ozone in immersion lithography
US8654305B2 (en) * 2007-02-15 2014-02-18 Asml Holding N.V. Systems and methods for insitu lens cleaning in immersion lithography
JP4366407B2 (ja) * 2007-02-16 2009-11-18 キヤノン株式会社 露光装置及びデバイス製造方法
US20080198347A1 (en) * 2007-02-16 2008-08-21 Canon Kabushiki Kaisha Immersion exposure apparatus and method of manufacturing device
JP2008218653A (ja) * 2007-03-02 2008-09-18 Canon Inc 露光装置及びデバイス製造方法
US8237911B2 (en) 2007-03-15 2012-08-07 Nikon Corporation Apparatus and methods for keeping immersion fluid adjacent to an optical assembly during wafer exchange in an immersion lithography machine
JP2008258324A (ja) * 2007-04-03 2008-10-23 Canon Inc 露光装置及びデバイスの製造方法
US7866330B2 (en) 2007-05-04 2011-01-11 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US7841352B2 (en) 2007-05-04 2010-11-30 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US8011377B2 (en) 2007-05-04 2011-09-06 Asml Netherlands B.V. Cleaning device and a lithographic apparatus cleaning method
US8947629B2 (en) 2007-05-04 2015-02-03 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
JP2008283052A (ja) * 2007-05-11 2008-11-20 Toshiba Corp 液浸露光装置および半導体装置の製造方法
KR20100031694A (ko) * 2007-05-28 2010-03-24 가부시키가이샤 니콘 노광 장치, 디바이스 제조 방법, 세정 장치, 및 클리닝 방법 그리고 노광 방법
US8514365B2 (en) * 2007-06-01 2013-08-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20090014030A1 (en) * 2007-07-09 2009-01-15 Asml Netherlands B.V. Substrates and methods of using those substrates
US20090025753A1 (en) * 2007-07-24 2009-01-29 Asml Netherlands B.V. Lithographic Apparatus And Contamination Removal Or Prevention Method
US7916269B2 (en) 2007-07-24 2011-03-29 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
NL1035942A1 (nl) * 2007-09-27 2009-03-30 Asml Netherlands Bv Lithographic Apparatus and Method of Cleaning a Lithographic Apparatus.
SG151198A1 (en) * 2007-09-27 2009-04-30 Asml Netherlands Bv Methods relating to immersion lithography and an immersion lithographic apparatus
JP2009094145A (ja) * 2007-10-04 2009-04-30 Canon Inc 露光装置、露光方法およびデバイス製造方法
JP5267029B2 (ja) 2007-10-12 2013-08-21 株式会社ニコン 照明光学装置、露光装置及びデバイスの製造方法
EP2179330A1 (en) 2007-10-16 2010-04-28 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
WO2009050977A1 (en) 2007-10-16 2009-04-23 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
JP5017232B2 (ja) * 2007-10-31 2012-09-05 エーエスエムエル ネザーランズ ビー.ブイ. クリーニング装置および液浸リソグラフィ装置
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
NL1036273A1 (nl) * 2007-12-18 2009-06-19 Asml Netherlands Bv Lithographic apparatus and method of cleaning a surface of an immersion lithographic apparatus.
NL1036306A1 (nl) 2007-12-20 2009-06-23 Asml Netherlands Bv Lithographic apparatus and in-line cleaning apparatus.
US8339572B2 (en) 2008-01-25 2012-12-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20100039628A1 (en) * 2008-03-19 2010-02-18 Nikon Corporation Cleaning tool, cleaning method, and device fabricating method
NL1036631A1 (nl) * 2008-03-24 2009-09-25 Asml Netherlands Bv Immersion Lithographic Apparatus and Device Manufacturing Method.
NL1036709A1 (nl) 2008-04-24 2009-10-27 Asml Netherlands Bv Lithographic apparatus and a method of operating the apparatus.
ATE548679T1 (de) * 2008-05-08 2012-03-15 Asml Netherlands Bv Lithografische immersionsvorrichtung, trocknungsvorrichtung, immersionsmetrologievorrichtung und verfahren zur herstellung einer vorrichtung
US8421993B2 (en) * 2008-05-08 2013-04-16 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
EP2282188B1 (en) 2008-05-28 2015-03-11 Nikon Corporation Illumination optical system and exposure apparatus
US9176393B2 (en) 2008-05-28 2015-11-03 Asml Netherlands B.V. Lithographic apparatus and a method of operating the apparatus
US20100045949A1 (en) * 2008-08-11 2010-02-25 Nikon Corporation Exposure apparatus, maintaining method and device fabricating method
NL2003363A (en) 2008-09-10 2010-03-15 Asml Netherlands Bv Lithographic apparatus, method of manufacturing an article for a lithographic apparatus and device manufacturing method.
NL2003333A (en) * 2008-10-23 2010-04-26 Asml Netherlands Bv Fluid handling structure, lithographic apparatus and device manufacturing method.
TWI438577B (zh) 2008-12-08 2014-05-21 Asml Netherlands Bv 微影裝置及器件製造方法
JP2010140958A (ja) * 2008-12-09 2010-06-24 Canon Inc 露光装置及びデバイス製造方法
WO2010088194A2 (en) 2009-01-28 2010-08-05 Advanced Technology Materials, Inc. Lithographic tool in situ clean formulations
GB2469112A (en) 2009-04-03 2010-10-06 Mapper Lithography Ip Bv Wafer support using controlled capillary liquid layer to hold and release wafer
DE102009015717B4 (de) * 2009-03-31 2012-12-13 Globalfoundries Dresden Module One Limited Liability Company & Co. Kg Verfahren und System zum Erkennen einer Teilchenkontamination in einer Immersionslithographieanlage
NL2004362A (en) * 2009-04-10 2010-10-12 Asml Netherlands Bv A fluid handling device, an immersion lithographic apparatus and a device manufacturing method.
US20110153387A1 (en) * 2009-12-17 2011-06-23 Google Inc. Customizing surveys
NL2005717A (en) * 2009-12-18 2011-06-21 Asml Netherlands Bv A lithographic apparatus and a device manufacturing method.
EP2381310B1 (en) 2010-04-22 2015-05-06 ASML Netherlands BV Fluid handling structure and lithographic apparatus
NL2006818A (en) 2010-07-02 2012-01-03 Asml Netherlands Bv A method of adjusting speed and/or routing of a table movement plan and a lithographic apparatus.
US9632426B2 (en) * 2011-01-18 2017-04-25 Taiwan Semiconductor Manufacturing Company, Ltd. In-situ immersion hood cleaning
JP2012256000A (ja) * 2011-06-10 2012-12-27 Sanyo Electric Co Ltd 投写型映像表示装置
TWI447843B (zh) * 2011-12-02 2014-08-01 Univ Nat Central 晶圓定位方法及其系統
WO2013086217A1 (en) 2011-12-06 2013-06-13 Masco Corporation Of Indiana Ozone distribution in a faucet
NL2010817A (en) * 2012-05-29 2013-12-02 Asml Netherlands Bv A support apparatus, a lithographic apparatus and a device manufacturing method.
JP6313585B2 (ja) * 2013-12-10 2018-04-18 キヤノン株式会社 露光装置及び物品の製造方法
US9658536B2 (en) * 2014-02-25 2017-05-23 Taiwan Semiconductor Manufacturing Co., Ltd. In-line inspection and clean for immersion lithography
WO2015133391A1 (ja) * 2014-03-07 2015-09-11 富士フイルム株式会社 トランジスタの製造方法
US10409174B2 (en) 2014-06-16 2019-09-10 Asml Netherlands B.V. Lithographic apparatus, method of transferring a substrate and device manufacturing method
CN106462083B (zh) * 2014-06-19 2019-08-13 Asml荷兰有限公司 光刻设备、对象定位系统和器件制造方法
JP6744588B2 (ja) * 2015-03-31 2020-08-19 株式会社ニコン 露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び露光方法
KR102426760B1 (ko) * 2015-04-24 2022-07-29 엘지이노텍 주식회사 헤드 마운트 디스플레이 장치
CA3007437C (en) 2015-12-21 2021-09-28 Delta Faucet Company Fluid delivery system including a disinfectant device
JP6207671B1 (ja) * 2016-06-01 2017-10-04 キヤノン株式会社 パターン形成装置、基板配置方法及び物品の製造方法
CN107966880B (zh) 2017-03-15 2019-01-11 上海微电子装备(集团)股份有限公司 一种用于光刻机的垂向控制方法
JP6985102B2 (ja) * 2017-10-31 2021-12-22 株式会社ディスコ レーザー加工装置
JP7219230B2 (ja) 2017-12-22 2023-02-07 ソニーグループ株式会社 コンタクトレンズおよび通信システム
JP6933608B2 (ja) * 2018-06-01 2021-09-08 ファナック株式会社 視覚センサのレンズまたはレンズカバーの異常検出システム
JP7252322B2 (ja) 2018-09-24 2023-04-04 エーエスエムエル ネザーランズ ビー.ブイ. プロセスツール及び検査方法
CN110597021B (zh) * 2019-09-20 2021-04-23 上海华力微电子有限公司 浸没式光刻工艺中晶圆表面残水缺陷的改善方法
JP7427461B2 (ja) * 2020-02-06 2024-02-05 キヤノン株式会社 露光装置、及び物品の製造方法
JP7038163B2 (ja) * 2020-05-18 2022-03-17 本田技研工業株式会社 外観検査システム
JP7536571B2 (ja) 2020-09-15 2024-08-20 キオクシア株式会社 位置計測装置及び計測方法
CN113189849B (zh) 2021-04-22 2023-08-11 中国科学院光电技术研究所 一种近场光刻浸没系统及其浸没单元和接口模组

Family Cites Families (308)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3139101A (en) 1962-07-23 1964-06-30 Gen Motors Corp Sonic surface cleaner
GB1242527A (en) * 1967-10-20 1971-08-11 Kodak Ltd Optical instruments
NL7606482A (nl) * 1976-06-16 1977-12-20 Philips Nv Eenkristzl van calcium-gallium-germanium granaat, alsmede substraat vervaardigd van een dergelijk eenkristzl met een epitaxiaal opgegroeide beldo- meinfilm.
ATE1462T1 (de) 1979-07-27 1982-08-15 Werner W. Dr. Tabarelli Optisches lithographieverfahren und einrichtung zum kopieren eines musters auf eine halbleiterscheibe.
US4346164A (en) 1980-10-06 1982-08-24 Werner Tabarelli Photolithographic method for the manufacture of integrated circuits
US4509852A (en) * 1980-10-06 1985-04-09 Werner Tabarelli Apparatus for the photolithographic manufacture of integrated circuit elements
JPS57117238A (en) 1981-01-14 1982-07-21 Nippon Kogaku Kk <Nikon> Exposing and baking device for manufacturing integrated circuit with illuminometer
JPS57153433A (en) * 1981-03-18 1982-09-22 Hitachi Ltd Manufacturing device for semiconductor
JPS57153433U (ko) 1981-03-20 1982-09-27
JPS58202448A (ja) 1982-05-21 1983-11-25 Hitachi Ltd 露光装置
JPS5919912A (ja) 1982-07-26 1984-02-01 Hitachi Ltd 液浸距離保持装置
DD221563A1 (de) 1983-09-14 1985-04-24 Mikroelektronik Zt Forsch Tech Immersionsobjektiv fuer die schrittweise projektionsabbildung einer maskenstruktur
DD224448A1 (de) 1984-03-01 1985-07-03 Zeiss Jena Veb Carl Einrichtung zur fotolithografischen strukturuebertragung
JPS6197918A (ja) * 1984-10-19 1986-05-16 Hitachi Ltd X線露光装置
JPS6265326A (ja) 1985-09-18 1987-03-24 Hitachi Ltd 露光装置
JPS62121417A (ja) * 1985-11-22 1987-06-02 Hitachi Ltd 液浸対物レンズ装置
JPH0782981B2 (ja) 1986-02-07 1995-09-06 株式会社ニコン 投影露光方法及び装置
JPH0695511B2 (ja) * 1986-09-17 1994-11-24 大日本スクリ−ン製造株式会社 洗浄乾燥処理方法
JPS63157419A (ja) 1986-12-22 1988-06-30 Toshiba Corp 微細パタ−ン転写装置
JP2897355B2 (ja) 1990-07-05 1999-05-31 株式会社ニコン アライメント方法,露光装置,並びに位置検出方法及び装置
JPH04305915A (ja) 1991-04-02 1992-10-28 Nikon Corp 密着型露光装置
JPH04305917A (ja) 1991-04-02 1992-10-28 Nikon Corp 密着型露光装置
JPH0562877A (ja) 1991-09-02 1993-03-12 Yasuko Shinohara 光によるlsi製造縮小投影露光装置の光学系
JPH05100182A (ja) * 1991-10-11 1993-04-23 Nikon Corp レーザトラツプ集塵装置及び集塵方法
JPH05304072A (ja) 1992-04-08 1993-11-16 Nec Corp 半導体装置の製造方法
JPH06459A (ja) * 1992-06-19 1994-01-11 T H I Syst Kk 洗浄乾燥方法とその装置
JP3246615B2 (ja) 1992-07-27 2002-01-15 株式会社ニコン 照明光学装置、露光装置、及び露光方法
JPH06188169A (ja) 1992-08-24 1994-07-08 Canon Inc 結像方法及び該方法を用いる露光装置及び該方法を用いるデバイス製造方法
JPH06124873A (ja) * 1992-10-09 1994-05-06 Canon Inc 液浸式投影露光装置
JP2753930B2 (ja) * 1992-11-27 1998-05-20 キヤノン株式会社 液浸式投影露光装置
JPH06181157A (ja) 1992-12-15 1994-06-28 Nikon Corp 低発塵性の装置
JP2520833B2 (ja) 1992-12-21 1996-07-31 東京エレクトロン株式会社 浸漬式の液処理装置
JP3412704B2 (ja) 1993-02-26 2003-06-03 株式会社ニコン 投影露光方法及び装置、並びに露光装置
JP3306961B2 (ja) * 1993-03-08 2002-07-24 株式会社ニコン 露光装置及び露光方法
WO1994020114A1 (en) 1993-03-12 1994-09-15 Board Of Regents, The University Of Texas System Anthracyclines with unusually high activity against cells resistant to doxorubicin and its analogs
JPH0750246A (ja) * 1993-08-06 1995-02-21 Hitachi Ltd 半導体製造装置
JPH07220990A (ja) 1994-01-28 1995-08-18 Hitachi Ltd パターン形成方法及びその露光装置
JP3379200B2 (ja) * 1994-03-25 2003-02-17 株式会社ニコン 位置検出装置
US5874820A (en) 1995-04-04 1999-02-23 Nikon Corporation Window frame-guided stage mechanism
US5528118A (en) 1994-04-01 1996-06-18 Nikon Precision, Inc. Guideless stage with isolated reaction stage
US7365513B1 (en) 1994-04-01 2008-04-29 Nikon Corporation Positioning device having dynamically isolated frame, and lithographic device provided with such a positioning device
US6989647B1 (en) * 1994-04-01 2006-01-24 Nikon Corporation Positioning device having dynamically isolated frame, and lithographic device provided with such a positioning device
JP3555230B2 (ja) 1994-05-18 2004-08-18 株式会社ニコン 投影露光装置
JP3613288B2 (ja) 1994-10-18 2005-01-26 株式会社ニコン 露光装置用のクリーニング装置
US5623853A (en) 1994-10-19 1997-04-29 Nikon Precision Inc. Precision motion stage with single guide beam and follower stage
JP3647100B2 (ja) * 1995-01-12 2005-05-11 キヤノン株式会社 検査装置およびこれを用いた露光装置やデバイス生産方法
JPH08195375A (ja) * 1995-01-17 1996-07-30 Sony Corp 回転乾燥方法および回転乾燥装置
US6008500A (en) 1995-04-04 1999-12-28 Nikon Corporation Exposure apparatus having dynamically isolated reaction frame
JPH08316125A (ja) 1995-05-19 1996-11-29 Hitachi Ltd 投影露光方法及び露光装置
JPH08316124A (ja) 1995-05-19 1996-11-29 Hitachi Ltd 投影露光方法及び露光装置
US6297871B1 (en) * 1995-09-12 2001-10-02 Nikon Corporation Exposure apparatus
US5798838A (en) 1996-02-28 1998-08-25 Nikon Corporation Projection exposure apparatus having function of detecting intensity distribution of spatial image, and method of detecting the same
US5825043A (en) 1996-10-07 1998-10-20 Nikon Precision Inc. Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
JPH10116760A (ja) 1996-10-08 1998-05-06 Nikon Corp 露光装置及び基板保持装置
US6033478A (en) * 1996-11-05 2000-03-07 Applied Materials, Inc. Wafer support with improved temperature control
JP4029182B2 (ja) 1996-11-28 2008-01-09 株式会社ニコン 露光方法
DE69738910D1 (de) 1996-11-28 2008-09-25 Nikon Corp Ausrichtvorrichtung und belichtungsverfahren
JP4029183B2 (ja) 1996-11-28 2008-01-09 株式会社ニコン 投影露光装置及び投影露光方法
KR19980032589U (ko) 1996-12-04 1998-09-05 최병숙 롤러컨베이어 장치
US5815246A (en) 1996-12-24 1998-09-29 U.S. Philips Corporation Two-dimensionally balanced positioning device, and lithographic device provided with such a positioning device
JP2000505958A (ja) 1996-12-24 2000-05-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 2個の物品ホルダを有する二次元バランス位置決め装置及びこの位置決め装置を有するリソグラフ装置
DE69829614T2 (de) 1997-03-10 2006-03-09 Asml Netherlands B.V. Lithographiegerät mit einer positioniervorrichtung mit zwei objekthaltern
JPH10255319A (ja) 1997-03-12 1998-09-25 Hitachi Maxell Ltd 原盤露光装置及び方法
JP3747566B2 (ja) * 1997-04-23 2006-02-22 株式会社ニコン 液浸型露光装置
EP0874283B1 (en) 1997-04-23 2003-09-03 Nikon Corporation Optical exposure apparatus and photo-cleaning method
US6268904B1 (en) * 1997-04-23 2001-07-31 Nikon Corporation Optical exposure apparatus and photo-cleaning method
JP3817836B2 (ja) * 1997-06-10 2006-09-06 株式会社ニコン 露光装置及びその製造方法並びに露光方法及びデバイス製造方法
JP2002511934A (ja) 1997-06-18 2002-04-16 ウルリッヒ・ジェイ・クルール 核酸バイオセンサ診断装置
JPH1116816A (ja) 1997-06-25 1999-01-22 Nikon Corp 投影露光装置、該装置を用いた露光方法、及び該装置を用いた回路デバイスの製造方法
US5980647A (en) 1997-07-15 1999-11-09 International Business Machines Corporation Metal removal cleaning process and apparatus
US6085764A (en) 1997-07-22 2000-07-11 Tdk Corporation Cleaning apparatus and method
JP3445120B2 (ja) 1997-09-30 2003-09-08 キヤノン株式会社 露光装置及びデバイスの製造方法
JP4210871B2 (ja) 1997-10-31 2009-01-21 株式会社ニコン 露光装置
JPH11283903A (ja) * 1998-03-30 1999-10-15 Nikon Corp 投影光学系検査装置及び同装置を備えた投影露光装置
AU1175799A (en) * 1997-11-21 1999-06-15 Nikon Corporation Projection aligner and projection exposure method
JPH11162831A (ja) * 1997-11-21 1999-06-18 Nikon Corp 投影露光装置及び投影露光方法
JPH11166990A (ja) 1997-12-04 1999-06-22 Nikon Corp ステージ装置及び露光装置並びに走査型露光装置
JPH11176727A (ja) 1997-12-11 1999-07-02 Nikon Corp 投影露光装置
US6208407B1 (en) 1997-12-22 2001-03-27 Asm Lithography B.V. Method and apparatus for repetitively projecting a mask pattern on a substrate, using a time-saving height measurement
JPH11191525A (ja) 1997-12-26 1999-07-13 Nikon Corp 投影露光装置
JP4207240B2 (ja) 1998-02-20 2009-01-14 株式会社ニコン 露光装置用照度計、リソグラフィ・システム、照度計の較正方法およびマイクロデバイスの製造方法
US5913981A (en) 1998-03-05 1999-06-22 Micron Technology, Inc. Method of rinsing and drying semiconductor wafers in a chamber with a moveable side wall
WO1999049504A1 (fr) * 1998-03-26 1999-09-30 Nikon Corporation Procede et systeme d'exposition par projection
US5958143A (en) 1998-04-28 1999-09-28 The Regents Of The University Of California Cleaning process for EUV optical substrates
US6459472B1 (en) 1998-05-15 2002-10-01 Asml Netherlands B.V. Lithographic device
JP2000058436A (ja) 1998-08-11 2000-02-25 Nikon Corp 投影露光装置及び露光方法
JP2000091207A (ja) 1998-09-14 2000-03-31 Nikon Corp 投影露光装置及び投影光学系の洗浄方法
JP2000097616A (ja) 1998-09-22 2000-04-07 Nikon Corp 干渉計
JP2000311933A (ja) 1999-04-27 2000-11-07 Canon Inc 基板保持装置、基板搬送システム、露光装置、塗布装置およびデバイス製造方法ならびに基板保持部クリーニング方法
JP2000354835A (ja) 1999-06-15 2000-12-26 Toshiba Corp 超音波洗浄処理方法及びその装置
JP2001013677A (ja) 1999-06-28 2001-01-19 Shin Etsu Chem Co Ltd ペリクル収納容器の洗浄方法
US6459672B1 (en) 1999-09-28 2002-10-01 Sony Corporation Optical head and optical disc device
WO2001035168A1 (en) 1999-11-10 2001-05-17 Massachusetts Institute Of Technology Interference lithography utilizing phase-locked scanning beams
US6496259B2 (en) 1999-12-28 2002-12-17 Robert John Barish Optical device providing relative alignment
US6995930B2 (en) 1999-12-29 2006-02-07 Carl Zeiss Smt Ag Catadioptric projection objective with geometric beam splitting
US7187503B2 (en) 1999-12-29 2007-03-06 Carl Zeiss Smt Ag Refractive projection objective for immersion lithography
US6421932B2 (en) * 2000-02-14 2002-07-23 Hitachi Electronics Engineering Co., Ltd. Method and apparatus for drying substrate plates
JP2001318470A (ja) * 2000-02-29 2001-11-16 Nikon Corp 露光装置、マイクロデバイス、フォトマスク、及び露光方法
HU225403B1 (en) * 2000-03-13 2006-11-28 Andras Dr Boerzsoenyi Method and apparatus for calibration of flowmeter of liquid flowing in canal
JP3996730B2 (ja) * 2000-03-31 2007-10-24 株式会社日立製作所 半導体部品の製造方法
US6466365B1 (en) 2000-04-07 2002-10-15 Corning Incorporated Film coated optical lithography elements and method of making
JP3531914B2 (ja) * 2000-04-14 2004-05-31 キヤノン株式会社 光学装置、露光装置及びデバイス製造方法
JP2001300453A (ja) * 2000-04-20 2001-10-30 Canon Inc 物品表面の洗浄方法と洗浄装置、およびこれらによる光学素子の製造方法と装置、並びに光学系、露光方法、露光装置、デバイス製造方法
JP2002014005A (ja) 2000-04-25 2002-01-18 Nikon Corp 空間像計測方法、結像特性計測方法、空間像計測装置及び露光装置
US20020041377A1 (en) 2000-04-25 2002-04-11 Nikon Corporation Aerial image measurement method and unit, optical properties measurement method and unit, adjustment method of projection optical system, exposure method and apparatus, making method of exposure apparatus, and device manufacturing method
DE10130999A1 (de) 2000-06-29 2002-04-18 D M S Co Multifunktions-Reinigungsmodul einer Herstellungseinrichtung für Flachbildschirme und Reinigungsgerät mit Verwendung desselben
DE10032238A1 (de) 2000-07-03 2002-01-17 Siemens Ag Telefon mit einem kapazitiven Umgebungssensor
US6446365B1 (en) 2000-09-15 2002-09-10 Vermeer Manufacturing Company Nozzle mount for soft excavation
JP3840388B2 (ja) 2000-09-25 2006-11-01 東京エレクトロン株式会社 基板処理装置
KR100798769B1 (ko) 2000-09-25 2008-01-29 동경 엘렉트론 주식회사 기판 처리장치
KR100866818B1 (ko) 2000-12-11 2008-11-04 가부시키가이샤 니콘 투영광학계 및 이 투영광학계를 구비한 노광장치
JP2002289514A (ja) 2000-12-22 2002-10-04 Nikon Corp 露光装置及び露光方法
JP4345098B2 (ja) 2001-02-06 2009-10-14 株式会社ニコン 露光装置及び露光方法、並びにデバイス製造方法
US20020163629A1 (en) 2001-05-07 2002-11-07 Michael Switkes Methods and apparatus employing an index matching medium
DE10123027B4 (de) 2001-05-11 2005-07-21 Evotec Oai Ag Vorrichtung zur Untersuchung chemischer und/oder biologischer Proben
JP2002336804A (ja) 2001-05-15 2002-11-26 Nikon Corp 光学部品の洗浄方法及び露光装置
TW529172B (en) 2001-07-24 2003-04-21 Asml Netherlands Bv Imaging apparatus
US20030023182A1 (en) * 2001-07-26 2003-01-30 Mault James R. Respiratory connector for respiratory gas analysis
US7145671B2 (en) 2001-08-16 2006-12-05 Hewlett-Packard Development Company, L.P. Image forming devices, methods of operating an image forming device, a method of providing consumable information, and a method of operating a printer
JP2003124089A (ja) * 2001-10-09 2003-04-25 Nikon Corp 荷電粒子線露光装置及び露光方法
US6801301B2 (en) 2001-10-12 2004-10-05 Canon Kabushiki Kaisha Exposure apparatus
JP4191923B2 (ja) * 2001-11-02 2008-12-03 株式会社東芝 露光方法および露光装置
EP1313337A1 (de) * 2001-11-15 2003-05-21 Siemens Aktiengesellschaft Verfahren zur Übertragung von Informationen in einem zellularen Funkkommunikationssystem mit Funksektoren
EP1329773A3 (en) 2002-01-18 2006-08-30 ASML Netherlands B.V. Lithographic apparatus, apparatus cleaning method, and device manufacturing method
EP1329770A1 (en) * 2002-01-18 2003-07-23 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US7154676B2 (en) * 2002-03-01 2006-12-26 Carl Zeiss Smt A.G. Very-high aperture projection objective
US7190527B2 (en) * 2002-03-01 2007-03-13 Carl Zeiss Smt Ag Refractive projection objective
DE10229249A1 (de) * 2002-03-01 2003-09-04 Zeiss Carl Semiconductor Mfg Refraktives Projektionsobjektiv mit einer Taille
US7092069B2 (en) 2002-03-08 2006-08-15 Carl Zeiss Smt Ag Projection exposure method and projection exposure system
DE10229818A1 (de) 2002-06-28 2004-01-15 Carl Zeiss Smt Ag Verfahren zur Fokusdetektion und Abbildungssystem mit Fokusdetektionssystem
DE10210899A1 (de) 2002-03-08 2003-09-18 Zeiss Carl Smt Ag Refraktives Projektionsobjektiv für Immersions-Lithographie
US20030200996A1 (en) 2002-04-30 2003-10-30 Hiatt William Mark Method and system for cleaning a wafer chuck
KR20040104691A (ko) 2002-05-03 2004-12-10 칼 짜이스 에스엠테 아게 높은 개구를 갖는 투영 대물렌즈
US6853794B2 (en) * 2002-07-02 2005-02-08 Lightel Technologies Inc. Apparatus for cleaning optical fiber connectors and fiber optic parts
US20040021061A1 (en) * 2002-07-30 2004-02-05 Frederik Bijkerk Photodiode, charged-coupled device and method for the production
JP2004071855A (ja) 2002-08-07 2004-03-04 Tokyo Electron Ltd 基板処理装置及び基板処理方法
JP2005536775A (ja) 2002-08-23 2005-12-02 株式会社ニコン 投影光学系、フォトリソグラフィ方法および露光装置、並びに露光装置を用いた方法
JP3922637B2 (ja) 2002-08-30 2007-05-30 本田技研工業株式会社 サイドエアバッグシステム
US6988326B2 (en) 2002-09-30 2006-01-24 Lam Research Corporation Phobic barrier meniscus separation and containment
US6954993B1 (en) 2002-09-30 2005-10-18 Lam Research Corporation Concentric proximity processing head
US7093375B2 (en) 2002-09-30 2006-08-22 Lam Research Corporation Apparatus and method for utilizing a meniscus in substrate processing
US7367345B1 (en) 2002-09-30 2008-05-06 Lam Research Corporation Apparatus and method for providing a confined liquid for immersion lithography
US6788477B2 (en) 2002-10-22 2004-09-07 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus for method for immersion lithography
US7110081B2 (en) 2002-11-12 2006-09-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
SG121822A1 (en) 2002-11-12 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
EP2495613B1 (en) 2002-11-12 2013-07-31 ASML Netherlands B.V. Lithographic apparatus
KR100588124B1 (ko) 2002-11-12 2006-06-09 에이에스엠엘 네델란즈 비.브이. 리소그래피장치 및 디바이스제조방법
EP1420300B1 (en) * 2002-11-12 2015-07-29 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1420299B1 (en) * 2002-11-12 2011-01-05 ASML Netherlands B.V. Immersion lithographic apparatus and device manufacturing method
CN100470367C (zh) 2002-11-12 2009-03-18 Asml荷兰有限公司 光刻装置和器件制造方法
EP1429188B1 (en) 2002-11-12 2013-06-19 ASML Netherlands B.V. Lithographic projection apparatus
DE60335595D1 (de) 2002-11-12 2011-02-17 Asml Netherlands Bv Lithographischer Apparat mit Immersion und Verfahren zur Herstellung einer Vorrichtung
CN101470360B (zh) 2002-11-12 2013-07-24 Asml荷兰有限公司 光刻装置和器件制造方法
SG131766A1 (en) 2002-11-18 2007-05-28 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
DE10253679A1 (de) 2002-11-18 2004-06-03 Infineon Technologies Ag Optische Einrichtung zur Verwendung bei einem Lithographie-Verfahren, insbesondere zur Herstellung eines Halbleiter-Bauelements, sowie optisches Lithographieverfahren
JP3884371B2 (ja) 2002-11-26 2007-02-21 株式会社東芝 レチクル、露光モニタ方法、露光方法、及び半導体装置の製造方法
TW200412617A (en) 2002-12-03 2004-07-16 Nikon Corp Optical illumination device, method for adjusting optical illumination device, exposure device and exposure method
DE10258718A1 (de) 2002-12-09 2004-06-24 Carl Zeiss Smt Ag Projektionsobjektiv, insbesondere für die Mikrolithographie, sowie Verfahren zur Abstimmung eines Projektionsobjektives
US7242455B2 (en) 2002-12-10 2007-07-10 Nikon Corporation Exposure apparatus and method for producing device
CN101852993A (zh) 2002-12-10 2010-10-06 株式会社尼康 曝光装置和器件制造方法
JP4352874B2 (ja) 2002-12-10 2009-10-28 株式会社ニコン 露光装置及びデバイス製造方法
WO2004053955A1 (ja) 2002-12-10 2004-06-24 Nikon Corporation 露光装置及びデバイス製造方法
JP4525062B2 (ja) 2002-12-10 2010-08-18 株式会社ニコン 露光装置及びデバイス製造方法、露光システム
EP1429190B1 (en) 2002-12-10 2012-05-09 Canon Kabushiki Kaisha Exposure apparatus and method
WO2004053952A1 (ja) 2002-12-10 2004-06-24 Nikon Corporation 露光装置及びデバイス製造方法
WO2004055803A1 (en) 2002-12-13 2004-07-01 Koninklijke Philips Electronics N.V. Liquid removal in a method and device for irradiating spots on a layer
CN1316482C (zh) 2002-12-19 2007-05-16 皇家飞利浦电子股份有限公司 照射层上斑点的方法和装置
EP1732075A3 (en) 2002-12-19 2007-02-21 Koninklijke Philips Electronics N.V. Method and device for irradiating spots on a layer
US7010958B2 (en) 2002-12-19 2006-03-14 Asml Holding N.V. High-resolution gas gauge proximity sensor
US6781670B2 (en) 2002-12-30 2004-08-24 Intel Corporation Immersion lithography
US7156869B1 (en) * 2003-01-27 2007-01-02 Advanced Cardiovascular Systems, Inc. Drug-eluting stent and delivery system with tapered stent in shoulder region
JP2004007417A (ja) 2003-02-10 2004-01-08 Fujitsu Ltd 情報提供システム
TWI247339B (en) 2003-02-21 2006-01-11 Asml Holding Nv Lithographic printing with polarized light
US7206059B2 (en) 2003-02-27 2007-04-17 Asml Netherlands B.V. Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems
US6943941B2 (en) 2003-02-27 2005-09-13 Asml Netherlands B.V. Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems
US6853795B2 (en) * 2003-03-05 2005-02-08 Corning Cable Systems Llc High density fiber optic distribution frame
US7029832B2 (en) 2003-03-11 2006-04-18 Samsung Electronics Co., Ltd. Immersion lithography methods using carbon dioxide
US20050164522A1 (en) 2003-03-24 2005-07-28 Kunz Roderick R. Optical fluids, and systems and methods of making and using the same
KR20110104084A (ko) 2003-04-09 2011-09-21 가부시키가이샤 니콘 액침 리소그래피 유체 제어 시스템
JP4656057B2 (ja) 2003-04-10 2011-03-23 株式会社ニコン 液浸リソグラフィ装置用電気浸透素子
KR101129213B1 (ko) * 2003-04-10 2012-03-27 가부시키가이샤 니콘 액침 리소그래피 장치용 액체를 수집하는 런-오프 경로
EP1611486B1 (en) 2003-04-10 2016-03-16 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
CN104597717B (zh) 2003-04-10 2017-09-05 株式会社尼康 包括用于沉浸光刻装置的真空清除的环境系统
JP4582089B2 (ja) 2003-04-11 2010-11-17 株式会社ニコン 液浸リソグラフィ用の液体噴射回収システム
KR101498405B1 (ko) 2003-04-11 2015-03-04 가부시키가이샤 니콘 액침 리소그래피 머신에서 웨이퍼 교환동안 투영 렌즈 아래의 갭에서 액침 액체를 유지하는 장치 및 방법
KR101525335B1 (ko) 2003-04-11 2015-06-03 가부시키가이샤 니콘 액침 리소그래피에 의한 광학기기의 세정방법
WO2004095135A2 (en) 2003-04-17 2004-11-04 Nikon Corporation Optical arrangement of autofocus elements for use with immersion lithography
JP4025683B2 (ja) 2003-05-09 2007-12-26 松下電器産業株式会社 パターン形成方法及び露光装置
JP4146755B2 (ja) 2003-05-09 2008-09-10 松下電器産業株式会社 パターン形成方法
TWI295414B (en) 2003-05-13 2008-04-01 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
CN100437358C (zh) * 2003-05-15 2008-11-26 株式会社尼康 曝光装置及器件制造方法
TWI421911B (zh) 2003-05-23 2014-01-01 尼康股份有限公司 An exposure method, an exposure apparatus, and an element manufacturing method
JP2005277363A (ja) * 2003-05-23 2005-10-06 Nikon Corp 露光装置及びデバイス製造方法
JP5058550B2 (ja) * 2003-05-23 2012-10-24 株式会社ニコン 露光装置、露光方法、デバイス製造方法、及び液体回収方法
TWI503865B (zh) 2003-05-23 2015-10-11 尼康股份有限公司 A method of manufacturing an exposure apparatus and an element
US6995833B2 (en) 2003-05-23 2006-02-07 Canon Kabushiki Kaisha Projection optical system, exposure apparatus, and device manufacturing method
CN100541717C (zh) 2003-05-28 2009-09-16 株式会社尼康 曝光方法、曝光装置以及器件制造方法
JP2004356356A (ja) 2003-05-29 2004-12-16 Oki Electric Ind Co Ltd 洗浄終了判定方法および洗浄装置
US7356332B2 (en) * 2003-06-09 2008-04-08 Microsoft Corporation Mobile information system for presenting information to mobile devices
US7317504B2 (en) * 2004-04-08 2008-01-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7684008B2 (en) 2003-06-11 2010-03-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4084710B2 (ja) 2003-06-12 2008-04-30 松下電器産業株式会社 パターン形成方法
JP4054285B2 (ja) 2003-06-12 2008-02-27 松下電器産業株式会社 パターン形成方法
US6867844B2 (en) 2003-06-19 2005-03-15 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
JP4084712B2 (ja) 2003-06-23 2008-04-30 松下電器産業株式会社 パターン形成方法
JP4029064B2 (ja) 2003-06-23 2008-01-09 松下電器産業株式会社 パターン形成方法
US6809794B1 (en) 2003-06-27 2004-10-26 Asml Holding N.V. Immersion photolithography system and method using inverted wafer-projection optics interface
KR20060027832A (ko) 2003-07-01 2006-03-28 가부시키가이샤 니콘 광학 엘리먼트로서 동위원소적으로 특정된 유체를 사용하는방법
KR101211451B1 (ko) 2003-07-09 2012-12-12 가부시키가이샤 니콘 노광 장치 및 디바이스 제조 방법
US7384149B2 (en) 2003-07-21 2008-06-10 Asml Netherlands B.V. Lithographic projection apparatus, gas purging method and device manufacturing method and purge gas supply system
US7006209B2 (en) * 2003-07-25 2006-02-28 Advanced Micro Devices, Inc. Method and apparatus for monitoring and controlling imaging in immersion lithography systems
KR101414896B1 (ko) 2003-07-28 2014-07-03 가부시키가이샤 니콘 노광 장치 및 디바이스 제조 방법, 그리고 노광 장치의 제어 방법
US7175968B2 (en) 2003-07-28 2007-02-13 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and a substrate
US7326522B2 (en) 2004-02-11 2008-02-05 Asml Netherlands B.V. Device manufacturing method and a substrate
US7370659B2 (en) * 2003-08-06 2008-05-13 Micron Technology, Inc. Photolithographic stepper and/or scanner machines including cleaning devices and methods of cleaning photolithographic stepper and/or scanner machines
US7061578B2 (en) 2003-08-11 2006-06-13 Advanced Micro Devices, Inc. Method and apparatus for monitoring and controlling imaging in immersion lithography systems
US7579135B2 (en) 2003-08-11 2009-08-25 Taiwan Semiconductor Manufacturing Company, Ltd. Lithography apparatus for manufacture of integrated circuits
US7700267B2 (en) 2003-08-11 2010-04-20 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion fluid for immersion lithography, and method of performing immersion lithography
US7085075B2 (en) 2003-08-12 2006-08-01 Carl Zeiss Smt Ag Projection objectives including a plurality of mirrors with lenses ahead of mirror M3
US6844206B1 (en) 2003-08-21 2005-01-18 Advanced Micro Devices, Llp Refractive index system monitor and control for immersion lithography
JP2005072404A (ja) 2003-08-27 2005-03-17 Sony Corp 露光装置および半導体装置の製造方法
JP4325622B2 (ja) * 2003-08-29 2009-09-02 株式会社ニコン 露光装置及びデバイス製造方法
US6954256B2 (en) 2003-08-29 2005-10-11 Asml Netherlands B.V. Gradient immersion lithography
US7070915B2 (en) 2003-08-29 2006-07-04 Tokyo Electron Limited Method and system for drying a substrate
EP1659620A4 (en) 2003-08-29 2008-01-30 Nikon Corp LIQUID RECOVERY DEVICE, EXPOSURE DEVICE, EXPOSURE METHOD, AND CORRESPONDING PRODUCTION DEVICE
JP4305095B2 (ja) 2003-08-29 2009-07-29 株式会社ニコン 光学部品の洗浄機構を搭載した液浸投影露光装置及び液浸光学部品洗浄方法
TWI245163B (en) 2003-08-29 2005-12-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US7014966B2 (en) 2003-09-02 2006-03-21 Advanced Micro Devices, Inc. Method and apparatus for elimination of bubbles in immersion medium in immersion lithography systems
KR101748923B1 (ko) 2003-09-03 2017-06-19 가부시키가이샤 니콘 액침 리소그래피용 유체를 제공하기 위한 장치 및 방법
WO2005031820A1 (ja) 2003-09-26 2005-04-07 Nikon Corporation 投影露光装置及び投影露光装置の洗浄方法、メンテナンス方法並びにデバイスの製造方法
US6961186B2 (en) 2003-09-26 2005-11-01 Takumi Technology Corp. Contact printing using a magnified mask image
US7369217B2 (en) 2003-10-03 2008-05-06 Micronic Laser Systems Ab Method and device for immersion lithography
JP2005136374A (ja) 2003-10-06 2005-05-26 Matsushita Electric Ind Co Ltd 半導体製造装置及びそれを用いたパターン形成方法
TW200514138A (en) * 2003-10-09 2005-04-16 Nippon Kogaku Kk Exposure equipment and exposure method, manufacture method of component
EP1524558A1 (en) 2003-10-15 2005-04-20 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1524588A1 (en) 2003-10-15 2005-04-20 Sony Ericsson Mobile Communications AB User input device for a portable electronic device
US7678527B2 (en) 2003-10-16 2010-03-16 Intel Corporation Methods and compositions for providing photoresist with improved properties for contacting liquids
US20050084797A1 (en) * 2003-10-16 2005-04-21 Agfa-Gevaert Heat-sensitive lithographic printing plate precursor
JP2007525824A (ja) 2003-11-05 2007-09-06 ディーエスエム アイピー アセッツ ビー.ブイ. マイクロチップを製造するための方法および装置
US7924397B2 (en) 2003-11-06 2011-04-12 Taiwan Semiconductor Manufacturing Company, Ltd. Anti-corrosion layer on objective lens for liquid immersion lithography applications
US7545481B2 (en) 2003-11-24 2009-06-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8854602B2 (en) 2003-11-24 2014-10-07 Asml Netherlands B.V. Holding device for an optical element in an objective
US7125652B2 (en) 2003-12-03 2006-10-24 Advanced Micro Devices, Inc. Immersion lithographic process using a conforming immersion medium
KR101200654B1 (ko) 2003-12-15 2012-11-12 칼 짜이스 에스엠티 게엠베하 고 개구율 및 평평한 단부면을 가진 투사 대물렌즈
JP2007516613A (ja) 2003-12-15 2007-06-21 カール・ツアイス・エスエムテイ・アーゲー 少なくとも1つの液体レンズを備えるマイクロリソグラフィー投影対物レンズとしての対物レンズ
WO2005106589A1 (en) 2004-05-04 2005-11-10 Carl Zeiss Smt Ag Microlithographic projection exposure apparatus and immersion liquid therefore
KR101119813B1 (ko) 2003-12-15 2012-03-06 가부시키가이샤 니콘 스테이지 장치, 노광 장치, 및 노광 방법
US7460206B2 (en) 2003-12-19 2008-12-02 Carl Zeiss Smt Ag Projection objective for immersion lithography
US20050185269A1 (en) 2003-12-19 2005-08-25 Carl Zeiss Smt Ag Catadioptric projection objective with geometric beam splitting
JP5102492B2 (ja) 2003-12-19 2012-12-19 カール・ツァイス・エスエムティー・ゲーエムベーハー 結晶素子を有するマイクロリソグラフィー投影用対物レンズ
JP4323946B2 (ja) 2003-12-19 2009-09-02 キヤノン株式会社 露光装置
US7589818B2 (en) 2003-12-23 2009-09-15 Asml Netherlands B.V. Lithographic apparatus, alignment apparatus, device manufacturing method, and a method of converting an apparatus
US7394521B2 (en) 2003-12-23 2008-07-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7119884B2 (en) 2003-12-24 2006-10-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20050147920A1 (en) 2003-12-30 2005-07-07 Chia-Hui Lin Method and system for immersion lithography
US7088422B2 (en) 2003-12-31 2006-08-08 International Business Machines Corporation Moving lens for immersion optical lithography
US7145641B2 (en) 2003-12-31 2006-12-05 Asml Netherlands, B.V. Lithographic apparatus, device manufacturing method, and device manufactured thereby
KR101636632B1 (ko) 2004-01-05 2016-07-05 가부시키가이샤 니콘 노광 장치, 노광 방법 및 디바이스 제조 방법
JP4371822B2 (ja) 2004-01-06 2009-11-25 キヤノン株式会社 露光装置
JP4429023B2 (ja) 2004-01-07 2010-03-10 キヤノン株式会社 露光装置及びデバイス製造方法
US20050153424A1 (en) 2004-01-08 2005-07-14 Derek Coon Fluid barrier with transparent areas for immersion lithography
CN102169226B (zh) 2004-01-14 2014-04-23 卡尔蔡司Smt有限责任公司 反射折射投影物镜
CN1910522B (zh) 2004-01-16 2010-05-26 卡尔蔡司Smt股份公司 偏振调制光学元件
WO2005069078A1 (en) 2004-01-19 2005-07-28 Carl Zeiss Smt Ag Microlithographic projection exposure apparatus with immersion projection lens
KR101204157B1 (ko) 2004-01-20 2012-11-22 칼 짜이스 에스엠테 게엠베하 마이크로 리소그래픽 투영 노광 장치 및 그 투영 렌즈를 위한 측정 장치
US7026259B2 (en) 2004-01-21 2006-04-11 International Business Machines Corporation Liquid-filled balloons for immersion lithography
US7391501B2 (en) 2004-01-22 2008-06-24 Intel Corporation Immersion liquids with siloxane polymer for immersion lithography
WO2005076321A1 (ja) * 2004-02-03 2005-08-18 Nikon Corporation 露光装置及びデバイス製造方法
KR20070039869A (ko) 2004-02-03 2007-04-13 브루스 더블유. 스미스 용액을 사용한 포토리소그래피 방법 및 관련 시스템
EP1716454A1 (en) 2004-02-09 2006-11-02 Carl Zeiss SMT AG Projection objective for a microlithographic projection exposure apparatus
US7050146B2 (en) 2004-02-09 2006-05-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2005076323A1 (ja) 2004-02-10 2005-08-18 Nikon Corporation 露光装置及びデバイス製造方法、メンテナンス方法及び露光方法
US20070165198A1 (en) 2004-02-13 2007-07-19 Carl Zeiss Smt Ag Projection objective for a microlithographic projection exposure apparatus
DE102004007946A1 (de) 2004-02-18 2005-09-15 Tyco Electronics Raychem Gmbh Gassensoranordnung in integrierter Bauweise
WO2005081030A1 (en) 2004-02-18 2005-09-01 Corning Incorporated Catadioptric imaging system for high numerical aperture imaging with deep ultraviolet light
JP5076497B2 (ja) 2004-02-20 2012-11-21 株式会社ニコン 露光装置、液体の供給方法及び回収方法、露光方法、並びにデバイス製造方法
US20050205108A1 (en) 2004-03-16 2005-09-22 Taiwan Semiconductor Manufacturing Co., Ltd. Method and system for immersion lithography lens cleaning
US7027125B2 (en) 2004-03-25 2006-04-11 International Business Machines Corporation System and apparatus for photolithography
US7084960B2 (en) 2004-03-29 2006-08-01 Intel Corporation Lithography using controlled polarization
US7227619B2 (en) 2004-04-01 2007-06-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7034917B2 (en) 2004-04-01 2006-04-25 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured thereby
US7295283B2 (en) 2004-04-02 2007-11-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7712905B2 (en) 2004-04-08 2010-05-11 Carl Zeiss Smt Ag Imaging system with mirror group
US7898642B2 (en) 2004-04-14 2011-03-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7271878B2 (en) 2004-04-22 2007-09-18 International Business Machines Corporation Wafer cell for immersion lithography
US7244665B2 (en) 2004-04-29 2007-07-17 Micron Technology, Inc. Wafer edge ring structures and methods of formation
US7379159B2 (en) 2004-05-03 2008-05-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8054448B2 (en) 2004-05-04 2011-11-08 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
US7091502B2 (en) 2004-05-12 2006-08-15 Taiwan Semiconductor Manufacturing, Co., Ltd. Apparatus and method for immersion lithography
KR20140138350A (ko) 2004-05-17 2014-12-03 칼 짜이스 에스엠티 게엠베하 중간이미지를 갖는 카타디옵트릭 투사 대물렌즈
US7616383B2 (en) * 2004-05-18 2009-11-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7486381B2 (en) 2004-05-21 2009-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2005119368A2 (en) 2004-06-04 2005-12-15 Carl Zeiss Smt Ag System for measuring the image quality of an optical imaging system
JP4760708B2 (ja) 2004-06-09 2011-08-31 株式会社ニコン 露光装置、露光方法、及びデバイス製造方法、メンテナンス方法
US7463330B2 (en) * 2004-07-07 2008-12-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7224427B2 (en) * 2004-08-03 2007-05-29 Taiwan Semiconductor Manufacturing Company, Ltd. Megasonic immersion lithography exposure apparatus and method
US7304715B2 (en) 2004-08-13 2007-12-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7446850B2 (en) * 2004-12-03 2008-11-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101559621B1 (ko) 2004-12-06 2015-10-13 가부시키가이샤 니콘 메인터넌스 방법, 메인터넌스 기기, 노광 장치, 및 디바이스 제조 방법
US7248334B2 (en) * 2004-12-07 2007-07-24 Asml Netherlands B.V. Sensor shield
JP4752473B2 (ja) 2004-12-09 2011-08-17 株式会社ニコン 露光装置、露光方法及びデバイス製造方法
US7880860B2 (en) * 2004-12-20 2011-02-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7450217B2 (en) 2005-01-12 2008-11-11 Asml Netherlands B.V. Exposure apparatus, coatings for exposure apparatus, lithographic apparatus, device manufacturing method, and device manufactured thereby
US7262422B2 (en) 2005-07-01 2007-08-28 Spansion Llc Use of supercritical fluid to dry wafer and clean lens in immersion lithography
US8125610B2 (en) * 2005-12-02 2012-02-28 ASML Metherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus
JP5100182B2 (ja) 2007-03-30 2012-12-19 キヤノン株式会社 データ転送装置及びデータ受信装置並びにデータ転送システム
US20090025753A1 (en) * 2007-07-24 2009-01-29 Asml Netherlands B.V. Lithographic Apparatus And Contamination Removal Or Prevention Method
JP5440937B2 (ja) * 2010-02-01 2014-03-12 日本電気株式会社 スレッド数制限装置、スレッド数制限方法およびスレッド数制限プログラム

Also Published As

Publication number Publication date
JP2011139106A (ja) 2011-07-14
US20080030695A1 (en) 2008-02-07
US8125612B2 (en) 2012-02-28
US8760617B2 (en) 2014-06-24
JP2011159995A (ja) 2011-08-18
JP2011139107A (ja) 2011-07-14
TWI612556B (zh) 2018-01-21
TW200509205A (en) 2005-03-01
EP2498131B1 (en) 2017-04-26
TW201635346A (zh) 2016-10-01
US20080030696A1 (en) 2008-02-07
EP2535769A3 (en) 2013-01-02
JP5794291B2 (ja) 2015-10-14
US20110199594A1 (en) 2011-08-18
EP2466615A3 (en) 2012-10-10
EP2535769A2 (en) 2012-12-19
KR101327697B1 (ko) 2013-11-11
JP5700011B2 (ja) 2015-04-15
KR20110126733A (ko) 2011-11-23
JP2012129562A (ja) 2012-07-05
EP2498131A2 (en) 2012-09-12
KR101523828B1 (ko) 2015-05-28
EP1628329A1 (en) 2006-02-22
KR101536033B1 (ko) 2015-07-13
TW201519285A (zh) 2015-05-16
EP2466616A3 (en) 2012-10-03
EP2466620A3 (en) 2013-01-02
JP2018077518A (ja) 2018-05-17
EP2466616A2 (en) 2012-06-20
TWI353624B (ko) 2011-12-01
JP5440541B2 (ja) 2014-03-12
EP2466617A3 (en) 2012-10-10
KR20150115948A (ko) 2015-10-14
EP2466618A2 (en) 2012-06-20
US20140293249A1 (en) 2014-10-02
JP5907238B2 (ja) 2016-04-26
JP5440228B2 (ja) 2014-03-12
US8384877B2 (en) 2013-02-26
KR101796849B1 (ko) 2017-11-10
US20080225249A1 (en) 2008-09-18
KR101345540B1 (ko) 2013-12-26
JP2015222451A (ja) 2015-12-10
US7388649B2 (en) 2008-06-17
US9304392B2 (en) 2016-04-05
JP2012248902A (ja) 2012-12-13
KR20120005562A (ko) 2012-01-16
JP6350643B2 (ja) 2018-07-04
EP1628329A4 (en) 2009-09-16
TW200952045A (en) 2009-12-16
TW201137939A (en) 2011-11-01
US8174668B2 (en) 2012-05-08
US20070247600A1 (en) 2007-10-25
TW201230147A (en) 2012-07-16
TWI474380B (zh) 2015-02-21
KR20120115591A (ko) 2012-10-18
KR20110136891A (ko) 2011-12-21
US20070064210A1 (en) 2007-03-22
JP2015029154A (ja) 2015-02-12
US8134682B2 (en) 2012-03-13
EP2466615A2 (en) 2012-06-20
EP3032572A1 (en) 2016-06-15
US8130363B2 (en) 2012-03-06
US8072576B2 (en) 2011-12-06
EP2466617A2 (en) 2012-06-20
EP2466620A2 (en) 2012-06-20
WO2004105107A1 (ja) 2004-12-02
US9939739B2 (en) 2018-04-10
EP2498131A3 (en) 2012-09-26
HK1221072A1 (zh) 2017-05-19
JP2012248903A (ja) 2012-12-13
US8780327B2 (en) 2014-07-15
TWI616932B (zh) 2018-03-01
KR101523829B1 (ko) 2015-05-28
US8169592B2 (en) 2012-05-01
US20130169945A1 (en) 2013-07-04
JP5699976B2 (ja) 2015-04-15
JP5252025B2 (ja) 2013-07-31
EP2466618A3 (en) 2012-11-14
JP2010109391A (ja) 2010-05-13
JP2017107215A (ja) 2017-06-15
EP2466619A3 (en) 2012-11-21
US20080231825A1 (en) 2008-09-25
TW201806001A (zh) 2018-02-16
US20080225250A1 (en) 2008-09-18
US20060077367A1 (en) 2006-04-13
US20180196352A1 (en) 2018-07-12
JP6278015B2 (ja) 2018-02-14
KR101508811B1 (ko) 2015-04-07
KR20060009950A (ko) 2006-02-01
KR20120115592A (ko) 2012-10-18
TWI424470B (zh) 2014-01-21
JP5590083B2 (ja) 2014-09-17
TW201218248A (en) 2012-05-01
KR101677829B1 (ko) 2016-11-18
TWI503865B (zh) 2015-10-11
JP2011139105A (ja) 2011-07-14
TWI518742B (zh) 2016-01-21
KR20150015003A (ko) 2015-02-09
JP2014075609A (ja) 2014-04-24
KR20170126020A (ko) 2017-11-15
EP2466619A2 (en) 2012-06-20
US20070132968A1 (en) 2007-06-14
US20160216612A1 (en) 2016-07-28
JP5440542B2 (ja) 2014-03-12

Similar Documents

Publication Publication Date Title
KR101327697B1 (ko) 노광 장치 및 디바이스 제조 방법
JP2005277363A (ja) 露光装置及びデバイス製造方法
JP5058550B2 (ja) 露光装置、露光方法、デバイス製造方法、及び液体回収方法

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
A107 Divisional application of patent
A107 Divisional application of patent
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161019

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171018

Year of fee payment: 5