[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4345098B2 - 露光装置及び露光方法、並びにデバイス製造方法 - Google Patents

露光装置及び露光方法、並びにデバイス製造方法 Download PDF

Info

Publication number
JP4345098B2
JP4345098B2 JP2002563512A JP2002563512A JP4345098B2 JP 4345098 B2 JP4345098 B2 JP 4345098B2 JP 2002563512 A JP2002563512 A JP 2002563512A JP 2002563512 A JP2002563512 A JP 2002563512A JP 4345098 B2 JP4345098 B2 JP 4345098B2
Authority
JP
Japan
Prior art keywords
exposure
wavefront aberration
optical system
projection optical
wavefront
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002563512A
Other languages
English (en)
Other versions
JPWO2002063664A1 (ja
Inventor
旬 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of JPWO2002063664A1 publication Critical patent/JPWO2002063664A1/ja
Application granted granted Critical
Publication of JP4345098B2 publication Critical patent/JP4345098B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • G03F7/706Aberration measurement

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は、露光装置及び露光方法、並びにデバイス製造方法に係り、更に詳しくは、LSI等の半導体素子、液晶表示素子、CCD等の撮像素子、あるいは薄膜磁気ヘッド等の電子デバイスを製造するためのフォトリソグラフィ工程で、マスクあるいはレチクル(以下、「レチクル」と総称する)のパターンをウエハ等の基板上に転写するための露光装置及び露光方法、並びに前記露光装置及び露光方法を用いるデバイス製造方法に関する。
半導体素子等の高集積化に応じて回路パターンが微細化し、これに伴って露光装置にも必然的に解像力の向上が要請され、露光波長が短波長化してきている。最近では、KrFエキシマレーザ(出力波長248nm)に続く露光光源として、193nmの出力波長を持つフッ化アルゴンエキシマレーザ(ArFエキシマレーザ)を露光光源とする露光装置が実用化されている。このArFエキシマレーザを露光光源とする露光装置では、実用最小線幅(デバイスルール)が0.18μm〜0.10μmにまで及ぶ微細パターンを有する電子デバイス(マイクロデバイス)の量産が可能となる。
露光装置では、解像力の他、レチクルパターンと基板上に既に形成されたショット領域のパターンとの重ね合わせ精度も重要である。この重ね合わせ精度を良好に維持するためには、使用する投影光学系の収差を極力抑制することが必要である。この収差の管理のために、従来は、所定のレチクル上の計測用パターンを投影光学系を介して基板上に焼付け、その基板を現像後に基板上に形成されるレジスト像の線幅あるいは位置ずれ等を、例えば走査型電子顕微鏡(SEM)等を用いて計測し、その計測結果に基づいて投影光学系の収差を求めるという計測技術が採用されていた。
しかし、0.13μm以下の微細なパターンになると、上述したSEM等を用いたプロセスが介在する計測技術には限界が見えてくる。その理由は、計測用パターンの描画誤差等のレチクル製造誤差、基板に対するレジスト塗布,現像等のプロセスに起因する誤差、及びSEM等による計測誤差や計測再現性の悪化等が存在するためである。そこで、近年、波面収差によって投影光学系の性能を保証しようという動きが高まってきている。波面収差の測定は、プロセスを介することを必要としないため、より高精度に投影光学系の性能を保証することができる。
上記の波面収差によって投影光学系の性能を保証する方法として、投影光学系単体での調整工程において、干渉計などを利用した専用の波面計測装置を用いて、投影光学系の波面収差を計測し、その計測結果に基づいて厳密に収差を調整する方法もある。しかし、この方法では、投影光学系単体での状態と投影光学系を露光装置本体に組み込んだ後の状態とで環境が変化した場合や、露光装置本体に組み込む際に不慮の事故が起こった場合などに、出荷時における品質保証が不十分あるいは不可能となる。このような理由により、主として、出荷直前に波面収差を計測しその計測結果に基づいて投影光学系の収差を調整することにより、品質保証を行おうとの観点から、投影光学系を露光装置に搭載した後にも、波面収差を測定可能な波面計測装置、例えば、基板ステージに取り付けたり、基板ステージと交換したりして、露光装置内に設けることが可能な小型の波面計測装置(波面計測器)が、最近になって提案されている。
しかしながら、上記従来の波面計測器は、上述の如く、出荷時における品質保証の観点から投影光学系の波面収差を計測することを主たる目的とするため、出荷後に、投影光学系の波面収差を計測することを殆ど意図していない。このため、この波面計測器は、露光装置の出荷後には、その露光装置には取り付けられていないとともに、露光装置の構成自体も波面計測を頻繁に行うのに適した構成にはなっていなかった。このため、露光装置の通常の使用時において、投影光学系の品質管理を十分に行うことが困難であった。
本発明は、かかる事情の下になされたものであり、その第1の目的は、投影光学系の品質管理を十分に行うことができる露光装置を提供することにある。
また、本発明の第2の目的は、結像特性が良好に維持された投影光学系を用いて、マスクのパターンを各基板上に精度良く転写することが可能な露光方法を提供することにある。
また、本発明の第3の目的は、マイクロデバイスの生産性を向上させることができるデバイス製造方法を提供することにある。
本発明は、第1の観点からすると、照明系からの露光用照明光によりパターンが形成されたマスクを照明し、前記パターンを投影光学系を介して基板上に転写する露光装置であって、前記マスクを保持して移動するマスクステージと;前記マスクステージ上に固定され、少なくとも1つのピンホール状の開口パターンが形成されたパターン板と;前記基板を保持して移動する基板ステージと;を備える第1の露光装置である。
これによれば、少なくとも1つのピンホール状の開口パターンが形成されたパターン板がマスクを保持して移動するマスクステージ上に固定されている。このため、例えば、前述した基板ステージに取り付けるタイプの波面計測器を基板ステージに取り付け、照明系からの露光用照明光によりパターン板を照明することにより、その開口パターンで発生した球面波を投影光学系を介して波面計測器で受光することにより、投影光学系の波面収差を計測することが可能となる。この場合、マスクステージ上に計測用の特別なマスク(レチクル)を載置する必要はない。従って、投影光学系の波面収差計測を所望のタイミングでかつ簡易に行うことができ、これにより投影光学系の品質管理を十分に行うことが可能となり、ひいてはこの品質管理が十分に行われた投影光学系を用いてマスクのパターンを基板上に精度良く転写することが可能となる。
この場合において、前記基板ステージに固定された波面計測器と;記投影光学系による前記開口パターンの投影位置に前記波面計測器が位置するように前記マスクステージ及び前記基板ステージの少なくとも一方の位置を調整し、前記照明系からの露光用照明光を前記パターン板の前記開口パターンに照射し、前記波面計測器を用いて前記投影光学系の波面収差の計測を実行する第1の制御装置と;を更に備えることとすることができる。かかる場合には、第1の制御装置が、開口パターンの投影光学系による投影位置に基板ステージに固定された波面計測器が位置するようにマスクステージ及び基板ステージの少なくとも一方の位置を調整し、照明系からの露光用照明光をパターン板の開口パターンに照射し、投影光学系の波面収差を波面計測器を用いて計測する波面計測を実行する。このため、投影光学系の波面収差計測を全自動方式で所望のタイミングで行うことが可能となる。この場合、基板ステージに波面計測器を取り付けるという作業も不要となる。
この場合において、前記投影光学系の波面収差を補正するための補正機構と;前記波面収差の計測結果に基づいて、前記投影光学系の波面収差の状態が理想状態に近づくように、前記補正機構を制御する第2の制御装置と;を更に備えることとすることができる。
この場合において、前記パターンを前記投影光学系を介して複数枚の基板上に順次転写するに際し、前記第1の制御装置は、前記波面収差の計測を所定枚数の基板に対する露光開始直前毎に行い、前記第2の制御装置は、前記波面収差の計測が行われる度に前記補正機構を制御することとすることができる。
ここで、所定枚数は1枚を含む。従って、「所定枚数の基板に対する露光開始直前毎」は、各基板に対する露光開始直前毎の意味を含む。本明細書では、かかる意味で、所定枚数なる用語を用いる。
本発明の第1の露光装置では、前記パターンを前記投影光学系を介して複数枚の基板上に順次転写するに際し、前記第1の制御装置は、前記波面収差の計測を所定枚数の基板に対する露光開始直前毎に行い、前記波面収差の計測が行われた際に前回からの波面収差の変動量が所定の値を超えているか否かを判断する判断装置を更に備えるとともに、前記第2の制御装置は、前記変動量が所定の値を超えていると前記判断装置が判断したときに、前記補正機構を制御することとすることができる。
本発明の第1の露光装置では、前記パターンを前記投影光学系を介して複数枚の基板上の複数の区画領域に順次転写するに際し、前記第1の制御装置は、前記波面収差の計測を所定枚数の基板に対する露光開始直前毎に行い、前記第2の制御装置は、前記波面収差の計測が行われる度に前記波面収差の計測の結果に基づいて、次に露光が行われる前記所定枚数の基板上の複数の区画領域に対する露光に伴う波面収差の変動量を予測し、前記複数の区画領域のうちの所定数の区画領域に対する露光開始直前毎に前記予測結果に基づいて前記補正機構を制御することとすることができる。
ここで、「所定数」は1つを含む。従って、「所定数の区画領域に対する露光開始直前毎」は、各区画領域に対する露光開始直前毎の意味を含む。本明細書では、かかる意味で所定数なる用語を用いる。
本発明の第1の露光装置では、前記パターンを前記投影光学系を介して複数枚の基板上の複数の区画領域に順次転写するに際し、前記第1の制御装置は、前記波面収差の計測を所定枚数の基板に対する露光開始直前毎に行い、前記波面収差の計測が行われる度に前記波面収差の計測の結果に基づいて、次に露光が行われる所定枚数の基板上の前記複数の区画領域に対する露光に伴う波面収差の変動量を予測し、前記複数の区画領域のうちの所定数の区画領域に対する露光開始直前毎に、直前の所定数の区画領域に対する露光開始前からの波面収差の変動量が所定の値を超えているか否かを判断する判断装置を更に備えるとともに、前記第2の制御装置は、前記変動量が所定の値を超えていると前記判断装置が判断したときに、次の所定数の区画領域に対する露光開始直前に前記予測結果に基づいて前記補正機構を制御することとすることができる。
本発明は、第2の観点からすると、露光用照明光によりパターンが形成されたマスクを照明し、前記パターンを投影光学系を介して複数枚の基板上に順次転写する露光方法であって、前記投影光学系の波面収差の計測を所定枚数の基板に対する露光開始前に行う波面収差計測工程と前記波面収差の計測の結果に基づいて、次に露光が行われる前記所定枚数の基板上の複数の区画領域に対する露光に伴う記波面収差の変動量を予測する予測工程と前記予測結果に基づいて、前記波面収差を補正する波面収差補正工程と;を含む第1の露光方法である。
これによれば、露光用照明光によりパターンが形成されたマスクを照明し、前記パターンを投影光学系を介して複数枚の基板上に順次転写するに際して、前記投影光学系の波面収差を計測する波面計測が所定枚数の基板に対する露光開始前に行われ、その波面計測の結果に基づいて、投影光学系の波面収差の変動量が予測され、その予測結果に基づいて、投影光学系の波面収差を補正する波面補正が実行される。すなわち、所定枚数の基板に対する露光開始前に投影光学系の波面収差が計測され、その波面収差の計測結果に基づいて、投影光学系の波面収差の変動量が予測され、その予測結果に基づいて、投影光学系の波面収差の状態が理想状態に近づくように補正されるので、投影光学系の結像特性を良好に維持することができる。そして、この結像特性が良好に維持された投影光学系を用いて露光が行われるので、マスクのパターンを各基板上に精度良く転写することが可能となる。
ここで、波面計測を行う間隔は、上記の所定枚数の設定に応じて定まる。すなわち、所定枚数が少ないほど、投影光学系の結像特性をより良好な状態に維持して露光が行われるので、より高精度な露光が実現され、所定枚数が多いほど、スループットが向上する。従って、要求される精度に応じて所定枚数を設定すれば良い。
記波面収差補正工程では、前記複数の区画領域のうちの所定数の区画領域に対する露光開始直前毎に前記予測結果に基づいて前記波面補正を実行することとすることができる。
本発明は、第3の観点からすると露光用照明光によりパターンが形成されたマスクを照明し、前記パターンを投影光学系を介して複数枚の基板上に順次転写する露光方法であって、前記投影光学系の波面収差の計測を所定枚数の基板に対する露光開始前に行う波面収差計測工程と;前記波面収差の計測の結果に基づいて、次に露光が行われる前記所定枚数の基板上の複数の区画領域に対する露光に伴う前記投影光学系の波面収差の変動量を予測する予測工程と;予測した波面収差の変動量が所定の値を超えているか否かを判断する判断工程と;前記変動量が所定の値を超えていると判断されたときに、前記投影光学系の波面収差を補正する波面収差補正工程と;を含む第2の露光方法である。
この他、本発明の第の露光方法では、前記予測工程では、前記波面収差の計測が行われる度に前記波面収差の計測結果に基づいて、次に露光が行われる所定枚数の基板上の複数の区画領域に対する露光に伴う波面収差の変動量を予測し、前記判断工程では、前記複数の区画領域のうちの前記各基板上の所定数の区画領域に対する露光開始直前毎に、直前の所定数前の区画領域の露光開始前からの波面収差の変動量が所定の値を超えているか否かを判断し、前記波面収差補正工程では、前記変動量が所定の値を超えていると判断されたときに、次の所定数の区画領域に対する露光開始直前に前記予測結果に基づいて前記波面補正を実行することとすることができる。
本発明の第1、第2の露光方法のそれぞれでは、前記所定枚数は、複数枚であり、前記予測工程では、前記複数枚の基板上の複数の区画領域に対する露光に伴う波面収差の変動量を予測することとすることができる。
本発明は、第4の観点からすると、照明系からの露光用照明光によりパターンが形成されたマスクを照明し、前記パターンを投影光学系を介して基板上に転写する露光装置であって、前記投影光学系の波面収差を計測するのに用いられる波面収差計測器と;前記パターンを所定枚数の基板上の所定数の区画領域に順次転写する前に、前記波面収差計測器を用いて前記投影光学系の波面収差の計測を実行する第1の制御装置と;前記投影光学系の波面収差を補正する補正機構と;前記波面収差の計測結果に基づいて、次に露光が行われる前記所定数の区画領域に対する露光に伴う波面収差の変動量を予測し、該予測した変動量に基づいて、前記補正機構を制御する第2の制御装置と;を備える第2の露光装置である
また、リソグラフィ工程において、本発明の第1又は第2の露光装置のいずれかを用いて露光を行うことにより、基板上にパターンを精度良く形成することができ、これにより、より高集積度のマイクロデバイスを歩留まり良く製造することができる。同様に、リソグラフィ工程において、本発明の第1又は第2の露光方法のいずれかを用いることにより、基板上にパターンを精度良く形成することができ、これにより、より高集積度のマイクロデバイスを歩留まり良く製造することができる。従って、本発明は、更に別の観点からすると、本発明の第1又は第2の露光装置のいずれか又は本発明の第1又は第2の露光方法のいずれかを用いるデバイス製造方法であるとも言える。
以下、本発明の一実施形態を図1〜図5に基づいて説明する。
図1には、一実施形態の露光装置10の概略構成が示されている。この露光装置10は、ステップ・アンド・スキャン方式の走査型露光装置である。
この露光装置10は、不図示の光源及び照明光学系から成る照明系IOP、この照明系IOPからの露光用照明光(以下、単に「照明光」と呼ぶ)ILにより照明されるマスクとしてのレチクルRを保持するレチクルステージRST、レチクルRから射出された照明光ILを基板としてのウエハW上に投射する投影光学系PL、ウエハWを保持する基板ステージとしてのウエハステージWST、及びこれらの制御系等を備えている。
前記照明系IOPは、例えば特開平10−112433号公報、特開平6−349701号公報及びこれに対応する米国特許第5,534,970号公報などに開示されるように、光源、オプティカル・インテグレータを含む照度均一化光学系、リレーレンズ、可変NDフィルタ、レチクルブラインド、及びダイクロイックミラー等(いずれも不図示)を含んで構成されている。オプティカル・インテグレータとしては、フライアイレンズ、ロッドインテグレータ(内面反射型インテグレータ)、あるいは回折光学素子等を用いることができる。なお、本国際出願で指定した指定国又は選択した選択国の国内法令が許す限りにおいて、上記米国特許における開示を援用して本明細書の記載の一部とする。
この照明系IOPでは、回路パターン等が描かれたレチクルR上のX軸方向に細長く伸びる長方形スリット状の照明領域部分(照明系IOP内のレチクルブラインドで規定される)を照明光ILによりほぼ均一な照度で照明する。ここで、照明光ILとしては、KrFエキシマレーザ光(波長248nm)、ArFエキシマレーザ光(波長193nm)等の近紫外光(遠紫外光)、あるいはF2レーザ光(波長157nm)などの真空紫外光などが用いられる。照明光ILとして、超高圧水銀ランプからの紫外域の輝線(g線、i線等)を用いることも可能である。
前記レチクルステージRST上にレチクルRが載置され、不図示のバキュームチャック等を介して吸着保持されている。レチクルステージRSTは、レチクルステージ駆動部49によって、水平面(XY平面)内で微小駆動されるとともに、走査方向(ここでは図1の紙面左右方向であるY軸方向とする)に所定ストローク範囲で走査されるようになっている。レチクルステージRSTの位置は、レチクルステージRST上に固定された移動鏡52Rを介して外部のレーザ干渉計54Rによって例えば0.5〜1nm程度の分解能で常時検出される。ここで、実際には、レチクルステージRST上にはY軸方向に直交する反射面を有する移動鏡とX軸方向に直交する反射面を有する移動鏡とが設けられ、これらの移動鏡に対応してレチクルY干渉計とレチクルX干渉計とが設けられているが、図1ではこれらが代表的に移動鏡52R、レチクル干渉計54Rとして示されている。なお、例えば、レチクルステージRSTの端面を鏡面加工して反射面(移動鏡52Rの反射面に相当)を形成しても良い。また、レチクルステージRSTの走査方向(本実施形態ではY軸方向)の位置検出に用いられるX軸方向に伸びた反射面の代わりに、少なくとも1つのコーナーキューブ型ミラーを用いても良い。ここで、レチクルY干渉計とレチクルX干渉計の一方、例えばレチクルY干渉計は、測長軸を2軸有する2軸干渉計であり、このレチクルY干渉計の計測値に基づきレチクルステージRSTのY位置に加え、θz方向の回転も計測できるようになっている。レーザ干渉計54Rの計測値が主制御装置50に供給されるようになっている。
また、レチクルステージRST上には、その中央部にピンホール状のパターンとしてのピンホール開口(開口パターン)が形成されたパターン板としてのレチクルフィデューシャルマーク板(以下、「レチクル基準板」と呼ぶ)RFMがレチクルRの近傍に設けられている。このレチクル基準板RFMは、ガラス板と、そのガラス板の図1における下面にクロム等の金属の蒸着により形成された遮光膜とを有し、その遮光膜にはX軸方向に一列に並んだ複数のピンホール状の開口パターンが形成されている。
なお、レチクルR及びレチクル基準板RFMに用いる材質は、使用する光源によって使い分ける必要がある。すなわち、F2レーザを用いる場合は、ホタル石、フッ素がドープされた合成石英、あるいはその他のフッ化物結晶で形成する必要があるが、KrFエキシマレーザやArFエキシマレーザを光源とする場合は、上記各物質の他、合成石英を用いることができる。
前記投影光学系PLは、例えば両側テレセントリックな縮小系であり、共通のZ軸方向の光軸を有する複数枚のレンズエレメント70a,70b,…から構成されている。また、この投影光学系PLとしては、投影倍率βが例えば1/4、1/5、あるいは1/6などのものが使用されている。このため、前述の如くして、照明光ILによりレチクルR上の照明領域IARが照明されると、その照明領域部分のレチクルRのパターンが投影光学系PLによって投影倍率βで縮小された像(部分倒立像)が表面にレジスト(感光剤)が塗布されたウエハW上の上記照明領域に共役なスリット状の露光領域IAに形成される。
本実施形態では、上記複数のレンズエレメントのうち、レチクルRに最も近いレンズエレメント70aを含む複数のレンズエレメントが独立に駆動可能となっている。例えば、レンズエレメント70aは、リング状の支持部材76aにより支持され、この支持部材76aは、伸縮可能な駆動素子、例えばピエゾ素子74a,74b,74c(紙面奥側の駆動素子74cについては不図示)によって、3点支持されるとともに鏡筒部76bと連通されている。上記の駆動素子74a,74b,74cによって、レンズエレメント70aの周辺3点を独立に、投影光学系PLの光軸AX方向に移動させることができるようになっている。すなわち、レンズエレメント70aを3つの駆動素子74a,74b,74cの変位量に応じて光軸AXに沿って平行移動させることができるとともに、光軸AXと垂直な平面に対して任意に傾斜させることもできる。その他の駆動可能なレンズエレメントもレンズエレメント70aと同様の駆動機構を介して、光軸AX方向及び傾斜方向に微小駆動可能な構成となっている。この場合、上記のレンズエレメント70a等を駆動する駆動素子に与えられる電圧が、主制御装置50からの指令に基づいて結像特性補正コントローラ78によって制御され、これによって駆動素子の変位量が制御される。レンズエレメント70a等の駆動により、例えばザイデルの5収差(ディストーション、非点収差、コマ収差、球面収差、像面湾曲(フォーカス))などを調整できるようになっている。すなわち、本実施形態では、駆動可能なレンズエレメント70aを駆動する駆動素子74a,74b,74c等及びこれらを制御する結像特性補正コントローラ78によって、補正機構が構成されている。
なお、照明光ILとしてKrFエキシマレーザ光やArFエキシマレーザ光を用いる場合には、投影光学系PLを構成する各レンズエレメントとしては合成石英やホタル石等を用いることができるが、F2レーザ光を用いる場合には、この投影光学系PLに使用されるレンズ等の材質は、全てホタル石等のフッ化物結晶が用いられる。
前記ウエハステージWSTは、不図示のリニアモータ等によってXY面内で自在に駆動されるXYステージ14、該XYステージ14上に搭載されたZチルトステージ58等を備えている。Zチルトステージ58上には、ほぼ円形のウエハホルダ25が載置されており、このウエハホルダ25によってウエハWが真空吸着によって保持されている。
また、Zチルトステージ58は、XYステージ14上にXY方向に位置決めされ、かつ不図示の駆動系によりZ軸方向の移動及びXY平面に対する傾斜駆動が可能な構成となっている。これによってZチルトステージ58上に保持されたウエハWの面位置(Z軸方向位置及びXY平面に対する傾斜)が所望の状態に設定されるようになっている。
さらに、Zチルトステージ58上には移動鏡52Wが固定され、外部に配置されたレーザ干渉計54Wにより、Zチルトステージ58のXY面内の位置が計測され、レーザ干渉計54Wによって計測された位置情報が主制御装置50に供給されている。なお、実際には、移動鏡はX軸に直交する反射面を有するX移動鏡と、Y軸に直交する反射面を有するY移動鏡とが設けられ、これに対応してレーザ干渉計もX方向位置計測用のXレーザ干渉計とY方向位置計測用のYレーザ干渉計とが設けられているが、図1ではこれらが代表して移動鏡52W、レーザ干渉計54Wとして図示されている。なお、例えば、Zチルトステージ58の端面を鏡面加工して反射面(移動鏡52Wの反射面に相当)を形成しても良い。また、Xレーザ干渉計及びYレーザ干渉計は測長軸を複数有する多軸干渉計であり、Zチルトステージ58のX、Y位置の他、回転(ヨーイング(Z軸回りの回転であるθz回転)、ピッチング(X軸回りの回転であるθx回転)、ローリング(Y軸回りの回転であるθy回転))も計測可能となっている。従って、以下の説明ではレーザ干渉計26によって、Zチルトステージ58のX、Y、θz、θy、θxの5自由度方向の位置が計測されるものとする。また、多軸干渉計は45°傾いてZチルトステージ58に設置される反射面を介して、投影光学系PLが載置される架台(不図示)に設置される反射面にレーザビームを照射し、投影光学系PLの光軸方向(Z軸方向)に関する相対位置情報を検出するようにしても良い。
主制御装置50は、レーザ干渉計54Wの計測値に基づいてウエハステージ駆動部56(これは、XYステージ14の駆動系及びZチルトステージ58の駆動系の全てを含む)を介してXYステージ14及びZチルトステージ58の位置決め動作を制御する。
また、Zチルトステージ58の+Y側端部には、投影光学系PLの波面収差を計測するための波面計測器80が固定されている。この波面計測器80は、図2に示されるように、XZ断面がL字状の内部空間を有する筐体62と、該筐体62の内部に所定の位置関係で配置された複数の光学素子から成る受光光学系44と、筐体62の内部の−X側端部に配置された受光部42とを備えている。この波面計測器80としては、ここでは、シャック−ハルトマン(Shack-Hartmann)方式の波面計測器が用いられている。
これを更に詳述すると、前記筐体62は、XZ断面L字状の中空部材から成り、その最上部(+Z方向端部)には、筐体62の内部に上方から光が入射するように開口62aが形成されている。また、この開口62aを下側(筐体62の内部側)から覆うようにカバーガラス82が設けられている。カバーガラス82の上面には、クロム等の金属の蒸着により中央部に円形の開口を有する遮光膜が形成され、該遮光膜によって投影光学系PLの波面収差の計測の際に周囲からの不要な光が受光光学系44に入射するのが遮られている。
前記受光光学系44は、筐体62内部のカバーガラス82の下方に、上から下に順次配置された、対物レンズ64a,リレーレンズ64b,折り曲げミラー39と、該折り曲げミラー39の−X側に順次配置されたコリメータレンズ64c、及びマイクロレンズアレイ66から構成されている。折り曲げミラー39は、45°で斜設されており、該折り曲げミラー39によって、上方から鉛直下向きに対物レンズ64aに対して入射した光の光路がコリメータレンズ64cに向けて折り曲げられるようになっている。なお、この受光光学系44を構成する各光学部材は、筐体62の壁の内側に不図示の保持部材を介してそれぞれ固定されている。前記マイクロレンズアレイ66は、複数の小さな凸レンズ(レンズエレメント)が受光光学系44の光軸と直交する面内にアレイ状に配置されて構成されている。
前記受光部42は、光を光電変換方式で検出する2次元CCD等から成る受光素子と、例えば電荷転送制御回路等の電気回路等から構成されている。受光素子は、対物レンズ64aに入射し、マイクロレンズアレイ66から出射される光束のすべてを受光するのに十分な面積を有している。なお、受光部42による計測データは、不図示の信号線を介して、あるいは無線送信にて主制御装置50に出力されるようになっている(図1参照)。
このようにして構成された受光光学系44及び受光部42等の作用を簡単に説明すると、カバーガラス82の開口62aを介して筐体62の内部に入射した光束は、対物レンズ64aに上方から入射し、リレーレンズ64bを介してミラー39に達する。そして、この光束は、ミラー39で光路が90°折り曲げられ、コリメータレンズ64cで平行光束に変換され、マイクロレンズアレイ66に入射する。このマイクロレンズアレイ66に入射した光束は、マイクロレンズアレイ66を構成する各レンズエレメントを介して受光部42を構成する受光素子上にそれぞれ集光される。そして、受光素子上の各集光点に入射した光が受光素子でそれぞれ光電変換され、該光電変換信号が前述の電気回路により受光データに変換され、該受光データが不図示の信号線を介して、あるいは無線送信にて主制御装置50に送られ、主制御装置50では、計測データに基づいて結像位置を算出するようになっている。
図1に戻り、本実施形態の露光装置10には、主制御装置50によってオン・オフが制御される光源を有し、投影光学系PLの結像面に向けて多数のピンホール又はスリットの像を形成するための結像光束を光軸AXに対して斜め方向より照射する照射系60aと、それらの結像光束のウエハW表面での反射光束を受光する受光系60bとからなる射入射光式の多点焦点位置検出系(以下、単に「焦点検出系」と呼ぶ)が設けられている。この焦点検出系(60a,60b)としては、例えば特開平6−283403号公報及びこれに対応する米国特許第5,448,332号等に開示されるものと同様の構成のものが用いられる。なお、本国際出願で指定した指定国又は選択した選択国の国内法令が許す限りにおいて、上記公報及び対応する米国特許における開示を援用して本明細書の記載の一部とする。
主制御装置50では、走査露光時等に、受光系60bからの焦点ずれ信号(デフォーカス信号)、例えばSカーブ信号に基づいて焦点ずれが零となるようにウエハWのZ位置及びXY面に対する傾斜をウエハステージ駆動部56を介して制御することにより、オートフォーカス(自動焦点合わせ)及びオートレベリングを実行する。また、主制御装置50では、後述する波面収差の計測の際に、焦点検出系(60a,60b)を用いて波面計測器80のZ位置の計測及び位置合わせを行う。このとき、必要に応じて波面収差計測器80の傾斜計測も行うようにしても良い。
さらに、図示は省略されているが、露光装置10は、ウエハステージWST上に保持されたウエハW上のアライメントマーク及び不図示の基準マーク板上に形成された基準マークの位置計測等に用いられるオフ・アクシス(off-axis)方式のアライメント系を備えている。このアライメント系としては、例えばウエハ上のレジストを感光させないブロードバンドな検出光束を対象マークに照射し、その対象マークからの反射光により受光面に結像された対象マークの像と不図示の指標の像とを撮像素子(CCD)等を用いて撮像し、それらの撮像信号を出力する画像処理方式のFIA(Field Image Alignment)系のセンサが用いられる。なお、FIA系に限らず、コヒーレントな検出光を対象マークに照射し、その対象マークから発生する散乱光又は回折光を検出したり、その対象マークから発生する2つの回折光(例えば同次数)を干渉させて検出するアライメントセンサを単独であるいは適宜組み合わせて用いることは勿論可能である。
制御系は、図1中、主制御装置50によって主に構成される。主制御装置50は、CPU(中央演算処理装置)、ROM(リード・オンリ・メモリ)、RAM(ランダム・アクセス・メモリ)等から成るいわゆるマイクロコンピュータ(又はワークステーション)を含んで構成され、装置全体を統括して制御する。主制御装置50は、例えば露光動作が的確に行われるように、例えばレチクルRとウエハWの同期走査、ウエハWのステッピング等を制御する。
具体的には、前記主制御装置50は、例えば走査露光時には、レチクルRがレチクルステージRSTを介して+Y方向(又は−Y方向)に速度VR=Vで走査されるのに同期して、ウエハステージWSTを介してウエハWが露光領域IAに対して−Y方向(又は+Y方向)に速度VW=β・V(βはレチクルRからウエハWに対する投影倍率)で走査されるように、レーザ干渉計54R、54Wの計測値に基づいてレチクルステージ駆動部49、ウエハステージ駆動部56をそれぞれ介してレチクルステージRST、ウエハステージWSTの位置及び速度をそれぞれ制御する。また、ステッピングの際には、主制御装置50ではレーザ干渉計54Wの計測値に基づいてウエハステージ駆動部56を介してウエハステージWSTの位置を制御する。
また、本実施形態では、主制御装置50は、後述するようにして行われる投影光学系PLの波面収差の計測結果に基づいて、結像特性補正コントローラ78を介して投影光学系PLの結像特性(ディストーション、コマ収差、非点収差、球面収差、像面湾曲等)を補正する。
次に、本実施形態の露光装置10における投影光学系PLの波面収差の計測方法について説明する。なお、以下の説明においては、説明の簡略化のため、波面計測器80内の受光光学系44の収差は無視できる程小さいものとする。
主制御装置50では、不図示のオフ・アクシス方式のアライメント系の下方に波面計測器80が位置するように、ウエハステージ駆動部56を介してウエハステージWSTを移動させる。そして、主制御装置50では、アライメント系により波面計測器80に設けられた不図示の位置合わせマークを検出し、その検出結果とそのときのレーザ干渉計54Wの計測値とに基づいて位置合わせマークの位置座標を算出し、波面計測器80の正確な位置を求める。そして、波面計測器80の位置計測後、主制御装置50では以下のようにして波面収差の計測を実行する。
まず、主制御装置50は、前述の複数のピンホールパターン(ほぼ理想的な点光源となって球面波を発生するピンホール)が形成されたレチクル基準板RFMが、投影光学系PLの視野内に予め定められた計測点にそれぞれ位置決めされるようにレチクルステージRSTを移動する(図3参照)。
この後、主制御装置50では、不図示の光源に制御情報を与えてレーザ光を発光させる。これにより、照明系IOPからの照明光ILが、レチクル基準板RFMに照射される。そして、レチクル基準板RFMの複数のピンホールから射出された光が投影光学系PLを介して像面上に集光され、ピンホールの像が像面に結像される。
次に、主制御装置50は、レチクル基準板RFM上のいずれかのピンホール(以下においては、着目するピンホールと呼ぶ)の像が結像する結像点に波面計測器80の開口62aのほぼ中心が一致するように、ウエハレーザ干渉計54Wの計測値をモニタしつつ、ウエハステージ駆動部56を介してウエハステージWSTを移動する。この際、主制御装置50では、焦点検出系(60a,60b)の検出結果に基づいて、ピンホール像が結像される像面に波面計測器80のカバーガラス82の上面を一致させるべく、ウエハステージ駆動部56を介してZチルトステージ58をZ軸方向に微少駆動する。このとき、必要に応じてZチルトステージ58の傾斜角も調整する。これにより、着目するピンホールの像光束がカバーガラス82の中央の開口を介して受光光学系44に入射し、受光部42を構成する受光素子によって受光される。図3には、このようにして波面収差の計測が開始された後の状態が示されている。
レチクル基準板RFM上の着目するピンホールからは球面波が発生し、この球面波が、投影光学系PL、及び波面計測器80の受光光学系44を構成する対物レンズ64a、リレーレンズ64b、ミラー39、コリメータレンズ64cを介して平行光束となって、マイクロレンズアレイ66を照射する。これにより、投影光学系PLの瞳面がマイクロレンズアレイ66によって分割される。そして、このマイクロレンズアレイ36の各レンズエレメントによってそれぞれの光が受光素子の受光面に集光され、該受光面にピンホールの像(以下、「スポット像」又は「スポット」とも呼ぶ)がそれぞれ結像される。
ここで、投影光学系PLには通常、波面収差が存在するため、マイクロレンズアレイ66に入射する平行光束の波面は理想的な波面(ここでは平面)からずれ、そのずれ、すなわち波面の理想波面に対する傾きに応じて、各スポットの結像位置がマイクロレンズアレイ66の各レンズエレメントの光軸上の位置からずれることとなる。この場合、各スポットの基準点(各レンズエレメントの光軸上の位置)からの位置のずれは、波面の傾きに対応している。
そして、受光部42を構成する受光素子上の各集光点に入射した光(スポット像の光束)が受光素子でそれぞれ光電変換され、該光電変換信号が電気回路を介して主制御装置50に送られ、主制御装置50では、その光電変換信号に基づいて各スポットの結像位置を算出し、さらに、その算出結果と既知の基準点の位置データとを用いて、位置ずれ(Δξ,Δη)を算出してRAMに格納する。このとき、主制御装置50では、そのときのレーザ干渉計54Wの計測値(Xi,Yi)についても位置ずれ(Δξ、Δη)とともにRAMに格納する。
上述のようにして、1つの着目するピンホール像の結像点における波面計測器80による、スポット像の位置ずれの計測が終了すると、主制御装置50では、次のピンホール像の結像点に、波面計測器80の開口62aのほぼ中心が一致するように、ウエハステージWSTを移動する。この移動が終了すると、前述と同様にして、主制御装置50により、光源からレーザ光の発光が行われ、同様にして各スポットの結像位置が算出される。以後、他のピンホール像の結像点(一列に並んだ計測点)で同様の計測が順次行われる。なお、上記計測時に照明系IOP内の不図示のレチクルブラインドを用いて、レチクル基準板RFM上の着目するピンホールのみ、あるいは少なくとも着目するピンホールを含む一部の領域のみが照明光ELで照明されるように、例えばピンホール毎に、レチクル上での照明領域の位置や大きさなどを変更しても良い。
上記のようにX軸方向に一列に並んだ計測点の全てにおいて計測が終了すると、主制御装置50は、ピンホールが次の計測点に位置決めされるようにレチクルステージ駆動部49を介して、レチクルステージRSTを移動する。そして、以降同様にして、投影光学系PLの視野内における計測点に位置決めされたピンホール像を計測する。
このようにして、必要な計測が終了した段階では、主制御装置50のメモリには、前述した各ピンホールの結像点におけるスポット像の位置ずれデータ(Δξ,Δη)と、各ピンホールの結像位置でスポット像の計測を行った際のレーザ干渉計54Wの計測値(Xi,Yi)とがメモリに格納されている。
そこで、主制御装置50では、メモリ内に格納されたピンホール像の結像点に対応する投影光学系PLの瞳面における波面の傾きに対応する位置ずれ(Δξ,Δη)に基づいて、例えば、周知のツェルニケ多項式を用いて、波面を復元する、すなわち波面収差を算出する。なお、この波面収差の算出方法は、周知であるから、詳細な説明は省略するが、スポット位置のみでしか与えられていない波面の傾きをそのまま積分するのは容易ではないため、面形状を級数に展開して、これにフィットするものとする。この場合、級数は直交系(ツェルニケ多項式)を選ぶこと、ツェルニケ多項式は軸対称な面の展開に適した級数であり、円周方向は三角級数に展開すること、波面を極座標系(ρ,θ)で表すこと、波面の微分が上記の位置ずれとして検出されるので、フィッティングは微係数について、最小自乗法で行うことなどが、効率的な演算のためのポイントとなる。
なお、ツェルニケ多項式のそれぞれの項はディストーション、フォーカス成分、非点収差、コマ収差、球面収差などの各光学収差に対応しており、しかも低次の項はザイデル収差にほぼ対応することが知られている。従って、ツェルニケ多項式を用いることにより、投影光学系PLの結像性能(各収差)を求めることができる。
次に、本実施形態の露光装置10における、波面収差の計測及び補正を含む露光処理動作について、主制御装置50内のCPUの制御アルゴリズムを簡略化して示す、図4のフローチャートに沿って、かつ適宜他の図面を参照しつつ説明する。
この図4のフローチャートがスタートするのは、レチクルステージRST上に回路パターンが形成されたレチクルRが、不図示のレチクルローダを介してロードされ、レチクルアライメント、ベースライン計測等の準備作業が終了したときである。なお、上記のレチクルアライメント、ベースライン計測等の準備作業については、例えば特開平4−324923号公報及びこれに対応する米国特許第5243195号に詳細に開示されている。本国際出願で指定した指定国又は選択した選択国の国内法令が許す限りにおいて、上記公報及び対応する上記米国特許における開示を援用して本明細書の記載の一部とする。
また、前提として、後述するウエハW上のショット番号を示す不図示の第1カウンタのカウント値mが「1」に、ウエハ番号を示す不図示の第2カウンタのカウント値nが「1」に初期設定されているものとする。また、主制御装置50内のRAMには、照明光ILの照射時間と波面収差の変動量との関係を示す図5Aに示されるようなマップデータMDが予め格納されているものとする。この図5AのマップデータMDは、例えば露光装置の調整段階等で実験(あるいはシミュレーション)等により、照明光ILを照射し続けた状態で、波面計測器80を用いて投影光学系PLの波面収差を所定間隔で計測し、得られた各計測値を横軸を時間(照射量)、縦軸を波面収差の量(例えば、ツェルニケ多項式の各項の係数のRMS値)とする直交座標系上にプロットし、各プロット点の最小自乗曲線を求め、これをマップデータとするものである。このマップデータMDは、後述するウエハW上の各ショット領域に対する露光に伴う波面収差の変動量を予測する際に用いられる。
まず、ステップ102では、前述したように、レチクル基準板RFMを用いて、投影光学系PLの波面収差の計測を行い、その計測結果(例えば、ツェルニケ多項式の各項の係数のRMS値)をRAMの所定領域に保存する。
次のステップ104では、前述した第1カウンタのカウント値mが「1」であるか否かを判断する。この場合、カウント値mは「1」に初期設定されているので、このステップ104における判断が肯定され、ステップ108に移行する。ステップ108では、上記の計測結果に基づいて投影光学系PLの波面収差の状態が理想状態に近づくように、前述した補正機構を制御する波面補正を実行する。すなわち、ツェルニケ多項式の各項の係数が対応する各光学収差、例えば、ディストーション、非点収差、コマ収差、球面収差、像面湾曲(フォーカス)を算出し、これらが可能な限りゼロに近づくような可動レンズの駆動量の指令値を結像特性補正コントローラ78に与えて、投影光学系PLの結像特性(ディストーション、コマ収差、非点収差、球面収差、像面湾曲等)を補正する。
次のステップ110では、次に露光が行われるウエハW(この場合、第1枚目のウエハ)上の複数のショット領域に対する露光に伴う波面収差の変動量を予測し、その予測結果をRAM内の一時格納領域に記憶する。具体的には、プロセスプログラムファイルと呼ばれる露光条件の設定ファイル(ショットマップデータを含む)に基づいて、ウエハW上の各ショット領域に対する露光時間S1,S2,S3,……,SM(Mは全ショット数)、ショット間ステッピング等に要する時間(すなわち、前ショットの露光終了から次ショットの露光開始までの時間)I1,I2,I3,……,IM-1を求め、これらの時間と図5AのマップデータMDとに基づいて、ウエハW上のM個のショット領域に対する波面収差の変動量を予測するのである。この結果、例えば、図5Bに示されるような変化曲線D2が得られ、この変化曲線D2がテーブルデータとして、RAM内の一時格納領域に記憶される。この変化曲線D2は、ウエハWに対する露光開始から露光終了までの間に、投影光学系PLの結像特性の補正を一度も行わない場合の波面収差の変動の予測データに他ならない。
次のステップ112では、不図示のウエハローダを介して、第n番目(ここでは第1番目)のウエハWをウエハステージWST上にロードする。次のステップ114では、例えば特開昭61−44429号公報及びこれに対応する米国特許第4,780,617号等に詳細に開示されるEGA(エンハンスト・グローバル・アライメント)等のウエハアライメントを行い、ウエハW上の全てのショット領域(ここでは、M個のショット領域)の配列座標が求められる。なお、このウエハアライメントに際して、ウエハW上の複数のショット領域のうちの予め選択された所定の複数(少なくとも3個)のサンプルショットのウエハアライメントマークがアライメント系を用いて計測される。本国際出願で指定した指定国又は選択した選択国の国内法令が許す限りにおいて、上記公報及びこれに対応する上記米国特許における開示を援用して本明細書の記載の一部とする。
次のステップ116では、上記ステップ114で求めたウエハW上の各ショット領域の配列座標、及び予め求めたベースライン量に基づいて、ウエハ干渉計54W、レチクル干渉計54Rから送られる位置情報をモニタしつつ、ウエハステージWSTをウエハW上の第1番目のショット領域(ファーストショット)の露光のための走査開始位置に位置決めするとともに、レチクルステージRSTを走査開始位置に位置決めする。
そして、次のステップ118では、ファーストショットに対する走査露光を次のようにして行う。すなわち、レチクルステージRSTとウエハステージWSTとのY軸方向逆向きの相対走査を開始し、両ステージRST、WSTがそれぞれの目標走査速度に達すると、照明光ILによってレチクルRのパターン領域を照明して走査露光を開始する。このファーストショットに対する露光開始と同時に不図示のタイマーによる計時を開始する。
この走査露光時には、レチクルステージRSTのY軸方向の移動速度VrとウエハステージWSTのY軸方向の移動速度Vwとが投影光学系PLの投影倍率に応じた速度比に維持されるように、レチクルステージRST及びウエハステージWSTを同期制御する。
そして、レチクルRのパターン領域の異なる領域が紫外パルス光で逐次照明され、パターン領域全面に対する照明が完了することにより、ウエハW上の第1ショット領域の走査露光が終了する。これにより、レチクルRの回路パターンが投影光学系PLを介して第1ショット領域に縮小転写される。
このようにしてファーストショットの走査露光が終了すると、次のステップ120に進み、m≧M(M:全ショット数)となったかを判断することにより、ウエハW上の全ショット領域への露光が終了したか否かを判断する。ここでは、まだファーストショットへの露光が終了したのみであり、m=1であることからここでの判断は否定され、ステップ121に移行する。
ステップ121では、前ショット領域の露光開始前からの現時点における波面収差の変動量を算出する。具体的には、現時点のタイマーの計時時間(計時開始からの経過時間)Siにおける変化曲線D2上の波面収差の予測値Pjと、計時開始時点、すなわち、前ショット領域の露光開始時点における変化曲線D2上の波面収差の予測値Pj-1をRAMから読み出し、両者の差ΔP=(Pj−Pj-1)を算出する。ここで、i=1,2,……,M、j=1,2,……,Mである。
次のステップ122では、ステップ121で算出した波面収差の変動量ΔPが所定値αを超えたか否かを判断する。ここで、αは、波面収差の変動量が露光精度に与える影響が殆ど無視できるレベルである許容範囲を示す値に定められている(図5B参照)。この時点(ファーストショットに対する露光が終了した時点)では、図5Bに示される時間S1が経過しているので、波面収差の予測値P1をRAMから読み出す。このときの波面収差の変動量は、図5Bに示されるように、ΔP=(P1−0)=P1と算出される。この場合、波面収差の変動量ΔPは、所定量αを超えているので、ステップ122における判断は肯定され、ステップ124に進む。
ステップ124では、前述したステップ108と同様にしてステップ121で算出した変動量に基づいて、結像特性補正コントローラ78に指令を与えて、投影光学系PLの結像特性を調整し、波面収差の変動量がゼロに極力近くなるような波面補正を実行する(図5B中に実線で示される波面変動曲線D1の時間軸のI1部分参照)。
その後、ステップ126において、上記第1カウンタのカウント値mを1インクリメントした後、ステップ116に戻り、ステップ116以下の処理、判断を繰り返す。
すなわち、ステップ116でウエハステージWSTを第2番目のショット領域(セカンドショット)の露光のための走査開始位置へ移動させるショット間のステッピング動作を行い、ステップ118においてセカンドショットに対して露光を行った後、ステップ120に進む。この場合、セカンドショットの露光が終了したにすぎないので、ステップ120における判断は否定され、ステップ121において、前述と同様にして、セカンドショットに対する露光が終了した時点、すなわち照射時間S2における波面収差の変動量を算出する。この時点のタイマーの計時時間S2における変化曲線D2上の波面収差の予測値P2と、計時開始時点における変化曲線D2上の波面収差の予測値P1(これはファーストショットに対する露光が終了した時点であり、ファーストショットからセカンドショットへの移動時間が非常に短いため、その移動時間に変動する波面収差の変動量は無視できるものとする)とをRAMから読み出す。そして、照射時間S2の間における投影光学系PLの波面収差の変動量が算出される。ここでは、図5A,Bに示されるように、波面収差の変動量ΔP=P2−P1となる。
次のステップ122では、ステップ121において算出された波面収差の変動量が所定値αを超えているか否かを判断するが、この場合、図5Bに示されるように、変動量ΔP=P2−P1は所定値αを超えていないので、ここでの判断は否定され、ステップ122に移行して第1カウンタのカウント値mを1インクリメントした後、ステップ116に戻り、以降上記と同様の処理、判断を繰り返す。なお、本実施形態では、図5Bの実線で示される波面変動曲線D1から分かるように、時間I1,I3,I6…のときに波面補正が行われ、それ以外には波面補正は行われない。その後、ステップ120の判断が肯定されるまで、上記のループが繰り返され、ウエハW上のM個のショット領域に対する露光が終了し、ステップ120における判断が肯定されると、ステップ128に進み、不図示のウエハアンローダを介して、第1枚目のウエハWをウエハステージWST上からアンロードする。
次のステップ130では、第2カウンタのカウント値n=N(N:露光予定のウエハ枚数)である、及び露光終了の指示がオペレータによりなされた、のいずれかの条件を満足するか否かを判断することにより、露光終了か否かを判断する。ここでは、まだ1枚目のウエハに対する露光が終了しただけなので、このステップ130における判断は否定され、ステップ132において第2カウンタのカウント値nを1インクリメントした後、ステップ102に戻り、以後ステップ102以降の処理、判断を繰り返す。
この場合、ステップ102で投影光学系PLの波面収差を前述と同様にして計測した後、ステップ104において第1カウンタのカウント値mが「1」であるか否かを判断する。このとき、m=M≠1となっているからステップ105に進んで第1カウンタのカウント値mを初期値「1」にリセットした後、ステップ106に進んで前回(前回の計測時、ここでは第1枚目のウエハの露光開始直前の波面収差の計測時)からの波面収差の変動量が所定の値(β)を超えているか否かを判断する。ここで、本実施形態では、ウエハ上の複数のショット領域に対する露光が行われる間に、ステップ124において必要に応じて波面補正が実行されているので、通常はこのステップ106における判断は否定される。そして、このステップ106における判断が否定されると、ステップ110に移行して前述と同様にして、次に露光が行われるウエハW(第n枚目のウエハ)上の複数のショット領域に対する露光に伴う波面収差の変動量を予測し、その予測結果をRAM内の一時格納領域に記憶する。
一方、何らかの要因により、前のウエハに対する露光開始直前からの投影光学系PLの波面収差が所定値βを超えた場合には、ステップ106における判断が肯定される。この場合、前述と同様にして、ステップ110で波面補正を実行した後、ステップ110に移行して前述と同様にして、次に露光が行われるウエハW(第n枚目のウエハ)上の複数のショット領域に対する露光に伴う波面収差の変動量を予測し、その予測結果をRAM内の一時格納領域に記憶する。
そして、ステップ112で不図示のウエハローダを介して、第2枚目のウエハWをウエハステージWST上にロードした後、第2枚目のウエハについても前述した第1枚目のウエハと同様の処理を行う。その後、第3枚目以降のウエハについてもこれら第1枚目、第2枚目と同様の処理を行う。
このようにして、第N枚目のウエハ上の各ショット領域に対するステップ・アンド・スキャン方式でのレチクルRのパターン転写が終了する、あるいはその途中で露光終了の指示がオペレータによりなされるのいずれかの条件が満足されると、ステップ130における判断が肯定され、本ルーチンの一連の処理を終了する。
これまでの説明から明らかなように、本実施形態では、主制御装置50及びその処理アルゴリズムを実現するソフトウェア(図4のフローチャート)によって、第1の制御装置、第2の制御装置、及び判断装置が実現されている。但し、第1の制御装置、第2の制御装置、及び判断装置の一部を、ハードアウェアにて構成して勿論良い。この場合、別々のハードウェアによって第1の制御装置、第2の制御装置、及び判断装置を構成しても良いし、第1の制御装置、第2の制御装置及び判断装置のうちのいずれか2つを同一のハードウェアにて構成しても良い。
以上詳細に説明したように、本実施形態の露光装置10によると、複数のピンホール状のパターンが形成されたレチクル基準板RFMがレチクルステージRST上に固定され、波面計測器80がウエハステージWSTに固定されている。また、主制御装置50が、ピンホール状のパターンの投影光学系PLによる投影位置にウエハステージWSTに固定された波面計測器80が位置するようにレチクルステージRSTとウエハステージWSTとの位置を調整し、照明系IOPからの照明光ILをレチクル基準板RFMのピンホール状のパターンに照射し、投影光学系PLの波面収差を波面計測器80を用いて計測する波面計測を実行する。このため、投影光学系PLの波面収差計測を全自動方式で所望のタイミングで行うことが可能となる。従って、本実施形態の露光装置10によると、投影光学系の波面収差計測を所望のタイミングでかつ簡易に行うことができ、これにより投影光学系PLの品質管理を十分に行うことが可能となる。また、本実施形態では、レチクルステージRST上に計測用の特別なレチクルを載置したり、ウエハステージWSTに波面計測器を取り付けたりする作業を行うことなく、投影光学系の波面収差計測を行うことができる。
また、露光装置10では、主制御装置50が、波面収差の計測結果に基づいて、前記投影光学系の波面収差の状態が理想状態に近づくように、前述した補正機構(78,74a〜74c等)を介して投影光学系の波面収差を補正するので、投影光学系PLの結像特性を良好に維持することができ、この結像特性が良好に維持された投影光学系PLを用いて露光が行われるので、レチクルRのパターンをウエハW上の各ショット領域に重ね合わせ精度良く転写することができる。
また、本実施形態では、主制御装置50が、ウエハに対する露光開始直前毎に波面収差の計測を行い、その計測結果に基づいて前回の波面計測時からの波面収差の変動量が所定の値を超えているか否かを判断し、その判断が肯定された場合にのみ波面補正を行うので、ウエハの露光開始直前毎に波面補正を行う場合に比べて、投影光学系の結像特性をほぼ維持しつつスループットを向上させることが可能である。
また、本実施形態では、主制御装置50が、ウエハに対する露光開始直前に波面収差の計測を行い、その結果に基づいて、次に露光が行われるウエハ上の複数のショット領域に対する露光に伴う波面収差の変動量を予測し、各ショット領域の露光開始直前毎に前ショット領域に対する露光開始前からの波面収差の変動量が所定の値を超えているか否かを判断し、その判断が肯定された場合のみ波面補正を実行する。このため、各ショット領域の露光開始直前毎に波面補正を行う場合に比べて露光の際の重ね合わせ精度をほぼ維持しつつスループットを向上させることができる。
なお、上記実施形態では、波面計測器80がウエハステージWSTに固定されている場合について説明したが、本発明がこれに限定されることはなく、ウエハステージWST上に波面計測器を固定する必要はない。例えば、波面計測器80と同様の構成の着脱自在の波面計測器を設け、該波面計測器をウエハステージWSTに取り付けて、投影光学系PLの波面収差をその波面計測器で計測するようにしても良い。かかる場合であっても、レチクルステージRSTに対する計測用レチクルのロード、アンロードが不要なので、従来の露光装置に比べてスループットの向上が可能である。また、この場合において、その波面計測器として全体形状がウエハホルダと交換可能な形状を有する波面計測器を用いても良い。かかる場合には、この波面収差計測器は、ウエハ又はウエハホルダの交換を行う搬送系(ウエハローダなど)を用いて自動搬送することが可能である。
また、上記実施形態と同様に、波面計測器80がウエハステージWSTに常設される場合であっても、波面収差計測器80の一部のみをウエハステージに設置し、残りをウエハステージの外部に配置しても良い。
また、上記実施形態では波面計測器80の受光光学系の収差を無視するものとしたが、その波面収差を考慮して投影光学系の波面収差を決定しても良い。
また、上記実施形態では、主制御装置50が、ウエハに対する露光の開始直前にそのウエハ上の各ショット領域に対する露光時の波面収差の変動を予測し、各ショット領域の露光開始直前毎に前ショット領域に対する露光開始前からの波面収差の変動量が所定の値を超えているか否かを判断し、その判断が肯定された場合のみ波面補正を実行するものとしたが、本発明がこれに限られるものではない。例えば、上記の波面収差の変動量が所定の値を超えているか否かの判断は一切行わずにショット間ステッピング時毎に波面補正を行うことも可能である。この場合、波面収差は、図6に示されているような挙動を示すので、図5Bに比べ、多少のスループットの低下は否めないが、いずれのショット領域においても重ね合わせ精度がより良好な露光を実現することが可能である。
また、上記実施形態では、主制御装置50が、ウエハに対する露光開始直前毎に波面収差の計測を行い、その計測結果に基づいて前回の波面計測時からの波面収差の変動量が所定の値を超えているか否かを判断し、その判断が肯定された場合にのみ波面補正を行うものとしたが、これに限らず、波面収差の計測を行う度毎に、波面補正を行うこととしても良い。
なお、上記実施形態では、説明の便宜上、投影光学系PLにおいて波面収差の補正を行った後に、ショット間ステッピング、及びウエハ交換を行うものとしたが、波面収差の補正とショット間ステッピング、波面収差の補正とウエハ交換を同時に行うことも可能である。
また、上記実施形態では、波面計測をウエハ交換時(ウエハをアンロードした後)に行うものとして説明したが、これに限らず、例えば、ウエハ交換、ウエハアライメントが終了した後、すなわち、露光動作を始める直前に波面収差の計測を行うこととしても良い。
また、上記実施形態では、ウエハ交換毎に波面収差の変動量を計測し、かつショット間ステッピング毎の波面収差の変動を予測し、この結果に基づいて投影光学系の波面収差を補正するものとしたが、ウエハ交換毎の波面計測及び補正のみを行い、ショット間ステッピング時の波面収差の補正を省略することとしても良い。
また、上記実施形態では、波面収差の変動量の計測を各ウエハ交換毎に行うものとしたが、ウエハ数枚毎に波面計測を行うこととしても良い。この場合において、主制御装置50は、波面計測が行われる度に波面補正を実行することとしても良いし、波面計測が行われる度に前回からの波面収差の変動量が所定の値を超えているか否かを判断し、その判断が肯定された場合にのみ、波面補正を行うこととしても良い。
この他、主制御装置50は、p枚(pは2以上の整数)のウエハに対する露光開始直前毎に、前述の波面収差の計測を行うこととしても良く、この場合、波面計測が行われる度に波面計測の結果に基づいて、次に露光が行われるp枚数のウエハ上の複数のショット領域に対する露光に伴う波面収差の変動量を予測し、各ウエハ上のk個(kは2以上の整数)のショット領域に対する露光開始直前毎に、直前のk個前のショット領域に対する露光開始前からの波面収差の変動量が所定の値を超えているか否かを判断し、その判断が工程された場合にのみ(次のk個のショット領域に対する露光開始直前に)前記予測結果に基づいて波面補正を実行することとしても良い。あるいは、主制御装置50は、波面計測が行われる度に波面計測の結果に基づいて、次に露光が行われるp枚数のウエハ上の複数のショット領域に対する露光に伴う波面収差の変動量を予測し、各ウエハ上のk個(kは2以上の整数)のショット領域に対する露光開始直前毎に、予測結果に基づいて波面補正を実行することとしても良い。
このように、投影光学系PLの波面収差の計測を行うタイミング(あるいは間隔)、波面補正を行うタイミング(あるいは間隔)、投影光学系の露光に伴う波面収差の変動量を予測するか否か、及び波面補正を行うか否かの判断を行うか否かなど、種々の変更組み合わせが可能である。波面収差の計測間隔が短いほど、波面補正を行う間隔が短いほど、投影光学系PLの波面収差(ないしは結像特性)を良好に維持することができる。一方、波面収差の計測間隔が長いほど、波面補正を行う間隔が長いほど、さらには波面補正を行うか否かを判断をする場合ほど、スループットの向上が可能である。また、a.露光に伴う投影光学系の波面収差の変動量を予測することなく、波面収差の計測の度に波面補正を行う場合、b.波面収差の計測の度に計測結果に基づいて露光に伴う投影光学系の波面収差の変動量を予測してその予測結果に基づいて波面補正の要否を判断することなく波面補正を行う場合、c.波面収差の計測の度に計測結果に基づいて露光に伴う投影光学系の波面収差の変動量を予測してその予測結果に基づいて波面補正の要否を判断し、補正が必要な場合にのみ波面補正を行う場合、の順に、露光精度が低下する反面スループットが向上する。要は、要求される露光精度、スループットに応じて定めれば良い。
なお、上記実施形態では、各ショット領域毎に波面収差の変動を予測するための照射時間と波面収差の変動との関係を表すマップデータを主制御装置50内のメモリに格納しておくものとしたが、その他の条件、例えば照明条件や環境の変化に応じた様々なマップデータをメモリに格納しておいても良いし、様々な条件の変動を考慮した計算を行い、変動量を予測しても良い。
また、上記実施形態では、ショット領域間における波面収差の変動量の算出を、タイマーの計時に基づいて行うものとしたが、これに限らず、照明系IOP内に設けられる露光量制御用の光検出器の計測値に基づいて投影光学系PLに実際に照射される照明光ILのエネルギの積算値をモニタし、このモニタ結果に基づいて上記実施形態と同様にしてショット領域間における波面収差の変動量を算出することとしても良い。
なお、上記実施形態において、投影光学系PLの瞳形状を測定する、前述の受光部42と同様に構成される別の受光部を新たに設けても良い。例えば、図2に示される、コリメータレンズ64cとマイクロレンズアレイ66との間の光路上に、ハーフミラーを例えば45°で斜設し、該ハーフミラーの反射光路上でかつ投影光学系PLの瞳位置と光学的に共役な位置に、その別の受光部の受光面を配置することとすることができる。このようにすると、その別の受光部の受光結果に基づいて投影光学系の瞳面の中心(瞳中心)と受光部42の受光面中心との位置関係を求めることができるので、瞳中心とスポット像の結像位置との関係、すなわち瞳中心に対するスポット像の位置ずれを求めることができる。また、必要に応じて、瞳中心と受光面中心を一致させることも可能となる。
また、上記実施形態において、投影光学系PLの波面収差の計測を精度良く行うため、ファインな波面収差の計測に先立って投影光学系PLの波面収差を予備的に測定することとしても良い。この場合、その予備的な測定結果から波面計測器80を構成するカバーガラス82の面(受光部42の受光面と光学的に共役な面)の投影光学系PLの像面に対するデフォーカス成分と傾斜成分とを算出し、それらデフォーカス成分と傾斜成分とを用いて、波面測定器80のZ軸方向の位置及び傾斜を調整する。そして、デフォーカス成分と傾斜成分とが十分に小さくなった状態で、ファインな波面収差計測を開始するようにすることができる。
また、上記実施形態では、照明光ILの非照射時間における波面収差の変化が実質的にないものとしているが、非照射時間における波面収差の変化をも予測するようにしても良い。
なお、上記実施形態において、ArFエキシマレーザ光、あるいはF2レーザ光などの波長200nm〜150nmの帯域に属する真空紫外と呼ばれる波長域の光束を露光光として用いる場合には、酸素や有機物(F2レーザ光の場合には、それ以外に水蒸気,炭化水素ガス等も含む)による吸収が極めて大きいため、露光光が通る光路上の空間中のこれらのガスの濃度を数ppm以下の濃度にまで下げるべく、その光路上の空間の気体を、吸収の少ない、窒素や、へリウム等の不活性ガスで置換する(パージする)必要がある。
なお、上記実施形態では、光源としてF2レーザ、ArFエキシマレーザ等の真空紫外域のパルスレーザ光源を用いるものとしたが、これに限らず、KrFエキシマレーザ光源(出力波長248nm)などの紫外光源、あるいはAr2レーザ光源(出力波長126nm)などの他の真空紫外光源を用いても良い。また、例えば、真空紫外光として上記各光源から出力されるレーザ光に限らず、DFB半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、例えばエルビウム(Er)(又はエルビウムとイッテルビウム(Yb)の両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。
なお、上記各実施形態では、ステップ・アンド・スキャン方式等の走査型露光装置に本発明が適用された場合について説明したが、本発明の適用範囲がこれに限定されないことは勿論である。すなわちステップ・アンド・リピート方式の縮小投影露光装置にも本発明は好適に適用できる。
なお、複数のレンズから構成される照明光学系、投影光学系を露光装置本体に組み込み、光学調整をするとともに、多数の機械部品からなるレチクルステージやウエハステージを露光装置本体に取り付けて配線や配管を接続し、更に総合調整(電気調整、動作確認等)をすることにより、上記実施形態の露光装置を製造することができる。なお、露光装置の製造は温度及びクリーン度等が管理されたクリーンルームで行うことが望ましい。
また、上記各実施形態では、本発明が半導体製造用の露光装置に適用された場合について説明したが、これに限らず、例えば、角型のガラスプレートに液晶表示素子パターンを転写する液晶用の露光装置や、薄膜磁気へッド、撮像素子、マイクロマシン、DNAチップなどを製造するための露光装置などにも本発明は広く適用できる。
また、半導体素子などのマイクロデバイスだけでなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるレチクル又はマスクを製造するために、ガラス基板又はシリコンウエハなどに回路パターンを転写する露光装置にも本発明を適用できる。ここで、DUV(遠紫外)光やVUV(真空紫外)光などを用いる露光装置では一般的に透過型レチクルが用いられ、レチクル基板としては石英ガラス、フッ素がドープされた石英ガラス、螢石、フッ化マグネシウム、又は水晶などが用いられる。
なお、半導体デバイスは、デバイスの機能・性能設計を行うステップ、この設計ステップに基づいたレチクルを製作するステップ、シリコン材料からウエハを製作するステップ、前述した実施形態の露光装置によりレチクルのパターンをウエハに転写するステップ、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)、検査ステップ等を経て製造される。以下、デバイス製造方法について詳述する。
《デバイス製造方法》
図7には、デバイス(ICやLSI等の半導体チップ、液晶パネル、CCD、薄膜磁気ヘッド、マイクロマシン等)の製造例のフローチャートが示されている。図7に示されるように、まず、ステップ301(設計ステップ)において、デバイスの機能・性能設計(例えば、半導体デバイスの回路設計等)を行い、その機能を実現するためのパターン設計を行う。引き続き、ステップ302(マスク製作ステップ)において、設計した回路パターンを形成したマスクを製作する。一方、ステップ303(ウエハ製造ステップ)において、シリコン等の材料を用いてウエハを製造する。
次に、ステップ304(ウエハ処理ステップ)において、ステップ301〜ステップ303で用意したマスクとウエハを使用して、後述するように、リソグラフィ技術等によってウエハ上に実際の回路等を形成する。次いで、ステップ305(デバイス組立ステップ)において、ステップ304で処理されたウエハを用いてデバイス組立を行う。このステップ305には、ダイシング工程、ボンディング工程、及びパッケージング工程(チップ封入)等の工程が必要に応じて含まれる。
最後に、ステップ306(検査ステップ)において、ステップ305で作製されたデバイスの動作確認テスト、耐久性テスト等の検査を行う。こうした工程を経た後にデバイスが完成し、これが出荷される。
図8には、半導体デバイスの場合における、上記ステップ304の詳細なフロー例が示されている。図8において、ステップ311(酸化ステップ)においてはウエハの表面を酸化させる。ステップ312(CVDステップ)においてはウエハ表面に絶縁膜を形成する。ステップ313(電極形成ステップ)においてはウエハ上に電極を蒸着によって形成する。ステップ314(イオン打込みステップ)においてはウエハにイオンを打ち込む。以上のステップ311〜ステップ314それぞれは、ウエハ処理の各段階の前処理工程を構成しており、各段階において必要な処理に応じて選択されて実行される。
ウエハプロセスの各段階において、上述の前処理工程が終了すると、以下のようにして後処理工程が実行される。この後処理工程では、まず、ステップ315(レジスト形成ステップ)において、ウエハに感光剤を塗布する。引き続き、ステップ316(露光ステップ)において、上で説明した露光装置及び露光法によってマスクの回路パターンをウエハに転写する。次に、ステップ317(現像ステップ)においては露光されたウエハを現像し、ステップ318(エッチングステップ)において、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去る。そして、ステップ319(レジスト除去ステップ)において、エッチングが済んで不要となったレジストを取り除く。
これらの前処理工程と後処理工程とを繰り返し行うことによって、ウエハ上に多重に回路パターンが形成される。
以上説明した本実施形態のデバイス製造方法を用いれば、露光工程(ステップ316)において上記実施形態の露光装置10及びその露光方法が用いられるので、ウエハ上に精度良くパターンを転写することができるので、これにより高集積度のマイクロデバイスを生産性(歩留まりを含む)良く製造することができる。
以上説明したように、本発明の露光装置は、投影光学系の品質管理を行うのに適している。また、本発明の露光方法は、デバイスパターンを基板上に転写するのに適している。また、本発明のデバイス製造方法は、マイクロデバイスの製造に適している。
本発明の一実施形態にかかる露光装置の概略構成を示す図である。 図1の波面計測器の内部構成を示す図である。 波面計測時のレチクルステージ、ウエハステージ、投影光学系の相対位置関係を示す図である。 露光動作時における主制御装置内のCPUの制御アルゴリズムを簡略化して示すフローチャートである。 図5Aは、照射時間と波面収差の変動量との関係を示すマップデータ、図5Bは、図5Aのマップデータを用いた投影光学系の波面補正の一例を示す線図である。 ショット間ステッピング時毎に波面補正を行う場合の波面収差の変動を示す線図である。 本発明に係るデバイスを製造する製造方法の実施形態を説明するためのフローチャートである。 図7のステップ304における処理を示すフローチャートである。

Claims (17)

  1. 照明系からの露光用照明光によりパターンが形成されたマスクを照明し、前記パターンを投影光学系を介して基板上に転写する露光装置であって、
    前記マスクを保持して移動するマスクステージと;
    前記マスクステージ上に固定され、少なくとも1つのピンホール状の開口パターンが形成されたパターン板と;
    前記基板を保持して移動する基板ステージと;を備える露光装置。
  2. 請求項1に記載の露光装置において、
    前記基板ステージに固定された波面計測器と;
    前記投影光学系による前記開口パターンの投影位置に前記波面計測器が位置するように前記マスクステージ及び前記基板ステージの少なくとも一方の位置を調整し、前記照明系からの露光用照明光を前記パターン板の前記開口パターンに照射し、前記波面計測器を用いて前記投影光学系の波面収差の計測を実行する第1の制御装置と;を更に備えることを特徴とする露光装置。
  3. 請求項2に記載の露光装置において、
    前記投影光学系の波面収差を補正するための補正機構と;
    前記波面収差の計測結果に基づいて、前記投影光学系の波面収差の状態が理想状態に近づくように、前記補正機構を制御する第2の制御装置と;を更に備えることを特徴とする露光装置。
  4. 請求項3に記載の露光装置において、
    前記パターンを前記投影光学系を介して複数枚の基板上に順次転写するに際し、
    前記第1の制御装置は、前記波面収差の計測を所定枚数の基板に対する露光開始直前毎に行い、
    前記第2の制御装置は、前記波面収差の計測が行われる度に前記補正機構を制御することを特徴とする露光装置。
  5. 請求項3に記載の露光装置において、
    前記パターンを前記投影光学系を介して複数枚の基板上に順次転写するに際し、
    前記第1の制御装置は、前記波面収差の計測を所定枚数の基板に対する露光開始直前毎に行い、
    前記波面収差の計測が行われた際に前回からの波面収差の変動量が所定の値を超えているか否かを判断する判断装置を更に備え、
    前記第2の制御装置は、前記変動量が所定の値を超えていると前記判断装置が判断したときに、前記補正機構を制御することを特徴とする露光装置。
  6. 請求項3に記載の露光装置において、
    前記パターンを前記投影光学系を介して複数枚の基板上の複数の区画領域に順次転写するに際し、
    前記第1の制御装置は、前記波面収差の計測を所定枚数の基板に対する露光開始直前毎に行い、
    前記第2の制御装置は、前記波面収差の計測が行われる度に前記波面収差の計測の結果に基づいて、次に露光が行われる前記所定枚数の基板上の前記複数の区画領域に対する露光に伴う波面収差の変動量を予測し、前記複数の区画領域のうちの所定数の区画領域に対する露光開始直前毎に前記予測結果に基づいて前記補正機構を制御することを特徴とする露光装置。
  7. 請求項3に記載の露光装置において、
    前記パターンを前記投影光学系を介して複数枚の基板上の複数の区画領域に順次転写するに際し、
    前記第1の制御装置は、前記波面収差の計測を所定枚数の基板に対する露光開始直前毎に行い、
    前記波面収差の計測が行われる度に前記波面収差の計測の結果に基づいて、次に露光が行われる所定枚数の基板上の前記複数の区画領域に対する露光に伴う波面収差の変動量を予測し、前記複数の区画領域のうちの所定数の区画領域に対する露光開始直前毎に、直前の前記所定数の区画領域に対する露光開始前からの波面収差の変動量が所定の値を超えているか否かを判断する判断装置を更に備え、
    前記第2の制御装置は、前記変動量が所定の値を超えていると前記判断装置が判断したときに、次の所定数の区画領域に対する露光開始直前に前記予測結果に基づいて前記補正機構を制御することを特徴とする露光装置。
  8. リソグラフィ工程を含むデバイス製造方法であって、
    前記リソグラフィ工程では、請求項1〜7のいずれか一項に記載の露光装置を用いて露光を行うことを特徴とするデバイス製造方法。
  9. 露光用照明光によりパターンが形成されたマスクを照明し、前記パターンを投影光学系を介して複数枚の基板上に順次転写する露光方法であって、
    前記投影光学系の波面収差の計測を所定枚数の基板に対する露光開始前に行う波面収差計測工程と;
    前記波面収差の計測の結果に基づいて、次に露光が行われる前記所定枚数の基板上の複数の区画領域に対する露光に伴う前記波面収差の変動量を予測する予測工程と;
    前記予測結果に基づいて、前記波面収差を補正する波面収差補正工程と;を含む露光方法。
  10. 請求項9に記載の露光方法において、
    前記波面収差補正工程では、前記複数の区画領域のうちの所定数の区画領域に対する露光開始直前毎に前記予測結果に基づいて前記波面補正を実行することを特徴とする露光方法。
  11. 露光用照明光によりパターンが形成されたマスクを照明し、前記パターンを投影光学系を介して複数枚の基板上に順次転写する露光方法であって、
    前記投影光学系の波面収差の計測を所定枚数の基板に対する露光開始前に行う波面収差計測工程と;
    前記波面収差の計測の結果に基づいて、次に露光が行われる前記所定枚数の基板上の複数の区画領域に対する露光に伴う前記投影光学系の波面収差の変動量を予測する予測工程と;
    予測した前記波面収差の変動量が所定の値を超えているか否かを判断する判断工程と;
    前記変動量が所定の値を超えていると判断されたときに、前記投影光学系の波面収差を補正する波面収差補正工程と;を含む露光方法。
  12. 請求項11に記載の露光方法において、
    前記予測工程では、前記波面収差の計測が行われる度に前記波面収差の計測結果に基づいて、次に露光が行われる所定枚数の基板上の複数の区画領域に対する露光に伴う波面収差の変動量を予測し、
    前記判断工程では、前記複数の区画領域のうちの所定数の区画領域に対する露光開始直前毎に、直前の所定数の区画領域の露光開始前からの波面収差の変動量が所定の値を超えているか否かを判断し、
    前記波面収差補正工程では、前記変動量が所定の値を超えていると判断されたときに、次の所定数の区画領域に対する露光開始直前に前記予測結果に基づいて前記波面補正を実行することを特徴とする露光方法。
  13. 請求項9〜12のいずれか一項に記載の露光方法において、
    前記所定枚数は、複数枚であり、
    前記予測工程では、前記複数枚の基板上の複数の区画領域に対する露光に伴なう波面収差の変動量を予測することを特徴とする露光方法。
  14. リソグラフィ工程を含むデバイス製造方法であって、
    前記リソグラフィ工程では、請求項9〜13のいずれか一項に記載の露光方法を用いることを特徴とするデバイス製造方法。
  15. 照明系からの露光用照明光によりパターンが形成されたマスクを照明し、前記パターンを投影光学系を介して基板上に転写する露光装置であって、
    前記投影光学系の波面収差を計測するのに用いられる波面収差計測器と;
    前記パターンを所定枚数の基板上の所定数の区画領域に順次転写する前に、前記波面収差計測器を用いて前記投影光学系の波面収差の計測を実行する第1の制御装置と;
    前記投影光学系の波面収差を補正する補正機構と;
    前記波面収差の計測結果に基づいて、次に露光が行われる前記所定数の区画領域に対する露光に伴う波面収差の変動量を予測し、該予測した変動量に基づいて、前記補正機構を制御する第2の制御装置と;を備える露光装置。
  16. 請求項15に記載の露光装置において、
    前記波面収差の計測が行われた際に、前回からの波面収差の変動量が所定の値を超えているか否かを判断する判断装置を更に備え、
    前記第2の制御装置は、前記変動量が所定の値を超えていると前記判断装置が判断したときに、前記補正機構を制御することを特徴とする露光装置。
  17. 請求項15に記載の露光装置において、
    前記マスクを保持して移動するマスクステージと;
    前記基板を保持して移動する基板ステージと;を更に備え、
    前記波面計測器は、前記基板ステージに固定されることを特徴とする露光装置。
JP2002563512A 2001-02-06 2002-02-06 露光装置及び露光方法、並びにデバイス製造方法 Expired - Fee Related JP4345098B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001030112 2001-02-06
JP2001030112 2001-02-06
PCT/JP2002/000974 WO2002063664A1 (fr) 2001-02-06 2002-02-06 Systeme et procede d'exposition et procede de production de dispositif

Publications (2)

Publication Number Publication Date
JPWO2002063664A1 JPWO2002063664A1 (ja) 2004-06-10
JP4345098B2 true JP4345098B2 (ja) 2009-10-14

Family

ID=18894380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002563512A Expired - Fee Related JP4345098B2 (ja) 2001-02-06 2002-02-06 露光装置及び露光方法、並びにデバイス製造方法

Country Status (5)

Country Link
US (1) US6914665B2 (ja)
JP (1) JP4345098B2 (ja)
KR (1) KR20040007444A (ja)
CN (1) CN1491427A (ja)
WO (1) WO2002063664A1 (ja)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353099A (ja) * 2001-05-22 2002-12-06 Canon Inc 位置検出方法及び装置及び露光装置及びデバイス製造方法
AU2003211559A1 (en) * 2002-03-01 2003-09-16 Nikon Corporation Projection optical system adjustment method, prediction method, evaluation method, adjustment method, exposure method, exposure device, program, and device manufacturing method
KR20050085026A (ko) * 2002-12-10 2005-08-29 가부시키가이샤 니콘 광학 소자 및 그 광학 소자를 사용한 투영 노광 장치
DE10261775A1 (de) 2002-12-20 2004-07-01 Carl Zeiss Smt Ag Vorrichtung zur optischen Vermessung eines Abbildungssystems
TW200500813A (en) 2003-02-26 2005-01-01 Nikon Corp Exposure apparatus and method, and method of producing device
KR101503992B1 (ko) 2003-04-09 2015-03-18 가부시키가이샤 니콘 노광 방법 및 장치, 그리고 디바이스 제조 방법
KR101525335B1 (ko) 2003-04-11 2015-06-03 가부시키가이샤 니콘 액침 리소그래피에 의한 광학기기의 세정방법
TWI503865B (zh) 2003-05-23 2015-10-11 尼康股份有限公司 A method of manufacturing an exposure apparatus and an element
WO2005006418A1 (ja) 2003-07-09 2005-01-20 Nikon Corporation 露光装置及びデバイス製造方法
SG133589A1 (en) * 2003-08-26 2007-07-30 Nikon Corp Optical element and exposure device
US8149381B2 (en) 2003-08-26 2012-04-03 Nikon Corporation Optical element and exposure apparatus
TWI525660B (zh) 2003-09-29 2016-03-11 尼康股份有限公司 An exposure apparatus and an exposure method, and an element manufacturing method
EP1681709A4 (en) 2003-10-16 2008-09-17 Nikon Corp DEVICE AND METHOD FOR MEASURING OPTICAL CHARACTERISTICS, EXPOSURE SYSTEM AND EXPOSURE METHOD AND COMPONENT MANUFACTURING METHOD
JP3833209B2 (ja) * 2003-10-24 2006-10-11 キヤノン株式会社 露光装置及びデバイス製造方法
TWI511179B (zh) 2003-10-28 2015-12-01 尼康股份有限公司 照明光學裝置、曝光裝置、曝光方法以及元件製造方法
JP4513747B2 (ja) 2003-10-31 2010-07-28 株式会社ニコン 露光装置及びデバイス製造方法
TWI519819B (zh) 2003-11-20 2016-02-01 尼康股份有限公司 光束變換元件、光學照明裝置、曝光裝置、以及曝光方法
TWI614795B (zh) 2004-02-06 2018-02-11 Nikon Corporation 光學照明裝置、曝光裝置、曝光方法以及元件製造方法
JP4464166B2 (ja) * 2004-02-27 2010-05-19 キヤノン株式会社 測定装置を搭載した露光装置
DE102004035595B4 (de) 2004-04-09 2008-02-07 Carl Zeiss Smt Ag Verfahren zur Justage eines Projektionsobjektives
WO2005119368A2 (en) 2004-06-04 2005-12-15 Carl Zeiss Smt Ag System for measuring the image quality of an optical imaging system
JP4760708B2 (ja) 2004-06-09 2011-08-31 株式会社ニコン 露光装置、露光方法、及びデバイス製造方法、メンテナンス方法
KR20070048164A (ko) * 2004-08-18 2007-05-08 가부시키가이샤 니콘 노광 장치 및 디바이스 제조 방법
US8547522B2 (en) * 2005-03-03 2013-10-01 Asml Netherlands B.V. Dedicated metrology stage for lithography applications
US7684010B2 (en) * 2005-03-09 2010-03-23 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, seal structure, method of removing an object and a method of sealing
KR101762083B1 (ko) 2005-05-12 2017-07-26 가부시키가이샤 니콘 투영 광학계, 노광 장치 및 노광 방법
US8194242B2 (en) 2005-07-29 2012-06-05 Asml Netherlands B.V. Substrate distortion measurement
JP4793683B2 (ja) * 2006-01-23 2011-10-12 株式会社ニコン 算出方法、調整方法及び露光方法、並びに像形成状態調整システム及び露光装置
US7499818B2 (en) * 2006-05-03 2009-03-03 Gm Global Technology Operations, Inc. Flexible sampling plans and user interface for coordinate measuring machines
US7580113B2 (en) * 2006-06-23 2009-08-25 Asml Netherlands B.V. Method of reducing a wave front aberration, and computer program product
KR101440762B1 (ko) * 2007-02-06 2014-09-17 칼 짜이스 에스엠테 게엠베하 마이크로리소그래피 투영 노광 장치의 조명 시스템 내의 다수의 미러 어레이들을 감시하는 방법 및 장치
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
JP5267029B2 (ja) 2007-10-12 2013-08-21 株式会社ニコン 照明光学装置、露光装置及びデバイスの製造方法
EP2179330A1 (en) 2007-10-16 2010-04-28 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
WO2009050977A1 (en) 2007-10-16 2009-04-23 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US8115906B2 (en) * 2007-12-14 2012-02-14 Nikon Corporation Movable body system, pattern formation apparatus, exposure apparatus and measurement device, and device manufacturing method
EP2282188B1 (en) 2008-05-28 2015-03-11 Nikon Corporation Illumination optical system and exposure apparatus
DE102008042463B3 (de) * 2008-09-30 2010-04-22 Carl Zeiss Smt Ag Optische Messvorrichtung für eine Projektionsbelichtungsanlage
TW201102765A (en) 2009-07-01 2011-01-16 Nikon Corp Grinding device, grinding method, exposure device and production method of a device
CN102236260B (zh) * 2010-04-27 2013-05-22 上海微电子装备有限公司 一种波像差校正系统与方法
US8760625B2 (en) * 2010-07-30 2014-06-24 Asml Netherlands B.V. Lithographic apparatus, aberration detector and device manufacturing method
NL2010262A (en) * 2012-03-07 2013-09-10 Asml Netherlands Bv Lithographic method and apparatus.
JP2014143306A (ja) * 2013-01-24 2014-08-07 Canon Inc 露光方法、露光装置、それを用いたデバイスの製造方法
JP6516453B2 (ja) * 2014-11-26 2019-05-22 株式会社ミツトヨ 画像測定装置及び測定装置
JP6338778B2 (ja) * 2014-12-02 2018-06-06 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ方法及び装置
US20180045960A1 (en) 2015-12-02 2018-02-15 Augmenteum, LLC. System for and method of projecting augmentation imagery in a head-mounted display
NL2022459A (en) * 2018-02-27 2019-09-03 Asml Netherlands Bv Measurement apparatus and method for predicting aberrations in a projection system
NL2025685A (en) 2019-06-14 2020-12-22 Asml Holding Nv Lithographic patterning device multichannel position and level gauge

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4326800A (en) 1980-05-05 1982-04-27 Hughes Aircraft Company Laser beam wavefront and line-of-sight error correction system
US4490039A (en) 1980-12-12 1984-12-25 United Technologies Corporation Wave front sensor
US4932781A (en) 1983-11-04 1990-06-12 Canon Kabushiki Kaisha Gap measuring apparatus using interference fringes of reflected light
JP2924344B2 (ja) * 1991-08-09 1999-07-26 キヤノン株式会社 投影露光装置
US5233174A (en) 1992-03-11 1993-08-03 Hughes Danbury Optical Systems, Inc. Wavefront sensor having a lenslet array as a null corrector
US5610897A (en) 1992-08-31 1997-03-11 Canon Kabushiki Kaisha Optical information reproducing apparatus
JP3239962B2 (ja) 1992-09-10 2001-12-17 キヤノン株式会社 光学的情報記録再生装置
US5493381A (en) * 1993-12-13 1996-02-20 Xerox Corporation Optimizing preclean corona current for cleaning multiple toners
JP3254916B2 (ja) 1994-07-06 2002-02-12 キヤノン株式会社 投影光学系のコマ収差を検出する方法
US5493391A (en) 1994-07-11 1996-02-20 Sandia Corporation One dimensional wavefront distortion sensor comprising a lens array system
KR100210569B1 (ko) 1995-09-29 1999-07-15 미따라이 하지메 노광방법 및 노광장치, 그리고 이를 이용한 디바이스제조방법
US6052180A (en) 1996-07-10 2000-04-18 Wavefront Sciences, Inc. Apparatus and method for characterizing pulsed light beams
US6130419A (en) 1996-07-10 2000-10-10 Wavefront Sciences, Inc. Fixed mount wavefront sensor
US5936720A (en) 1996-07-10 1999-08-10 Neal; Daniel R. Beam characterization by wavefront sensor
US5864381A (en) 1996-07-10 1999-01-26 Sandia Corporation Automated pupil remapping with binary optics
US5898501A (en) 1996-07-25 1999-04-27 Nikon Corporation Apparatus and methods for measuring wavefront aberrations of a microlithography projection lens
US5978085A (en) 1997-03-07 1999-11-02 Litel Instruments Apparatus method of measurement and method of data analysis for correction of optical system
US5828455A (en) 1997-03-07 1998-10-27 Litel Instruments Apparatus, method of measurement, and method of data analysis for correction of optical system
JPH10289865A (ja) * 1997-04-11 1998-10-27 Nikon Corp 投影露光装置及び投影露光方法
DE69837483T2 (de) 1997-07-25 2007-12-20 Nikon Corp. Belichtungsverfahren und Belichtungsapparat
US5912731A (en) 1997-12-04 1999-06-15 Trw Inc. Hartmann-type optical wavefront sensor
JP4505989B2 (ja) 1998-05-19 2010-07-21 株式会社ニコン 収差測定装置並びに測定方法及び該装置を備える投影露光装置並びに該方法を用いるデバイス製造方法、露光方法
US6312373B1 (en) * 1998-09-22 2001-11-06 Nikon Corporation Method of manufacturing an optical system
US6256086B1 (en) * 1998-10-06 2001-07-03 Canon Kabushiki Kaisha Projection exposure apparatus, and device manufacturing method
JP3315658B2 (ja) * 1998-12-28 2002-08-19 キヤノン株式会社 投影装置および露光装置
WO2000055890A1 (fr) * 1999-03-18 2000-09-21 Nikon Corporation Systeme d'exposition et procede de mesure d'aberration pour son systeme optique de projection, et procede de production pour ce dispositif
JP3796368B2 (ja) * 1999-03-24 2006-07-12 キヤノン株式会社 投影露光装置
JP2000286189A (ja) * 1999-03-31 2000-10-13 Nikon Corp 露光装置および露光方法ならびにデバイス製造方法
US6118535A (en) * 1999-06-02 2000-09-12 Goldberg; Kenneth Alan In Situ alignment system for phase-shifting point-diffraction interferometry
US6360012B1 (en) 1999-06-25 2002-03-19 Svg Lithography Systems, Inc. In situ projection optic metrology method and apparatus
US6184974B1 (en) 1999-07-01 2001-02-06 Wavefront Sciences, Inc. Apparatus and method for evaluating a target larger than a measuring aperture of a sensor
US20020041377A1 (en) 2000-04-25 2002-04-11 Nikon Corporation Aerial image measurement method and unit, optical properties measurement method and unit, adjustment method of projection optical system, exposure method and apparatus, making method of exposure apparatus, and device manufacturing method
US6710856B2 (en) * 2000-09-01 2004-03-23 Asml Netherlands B.V. Method of operating a lithographic apparatus, lithographic apparatus, method of manufacturing a device, and device manufactured thereby
JPWO2002049083A1 (ja) 2000-12-11 2004-04-15 株式会社ニコン 位置計測方法、露光方法及びその装置、デバイスの製造方法

Also Published As

Publication number Publication date
JPWO2002063664A1 (ja) 2004-06-10
US6914665B2 (en) 2005-07-05
WO2002063664B1 (fr) 2003-05-08
WO2002063664A1 (fr) 2002-08-15
US20040090606A1 (en) 2004-05-13
KR20040007444A (ko) 2004-01-24
CN1491427A (zh) 2004-04-21

Similar Documents

Publication Publication Date Title
JP4345098B2 (ja) 露光装置及び露光方法、並びにデバイス製造方法
US7965387B2 (en) Image plane measurement method, exposure method, device manufacturing method, and exposure apparatus
US8125613B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP2004072076A (ja) 露光装置及びステージ装置、並びにデバイス製造方法
JPWO2002052620A1 (ja) 波面収差測定装置、波面収差測定方法、露光装置及びマイクロデバイスの製造方法
TWI431663B (zh) Measurement method and exposure method, and component manufacturing method
JP2011101056A (ja) 露光装置、露光方法及びデバイス製造方法
WO2005124834A1 (ja) ベストフォーカス検出方法及び露光方法、並びに露光装置
KR101070202B1 (ko) 계측방법, 전사특성 계측방법, 노광장치의 조정방법 및디바이스 제조방법
US20030197848A1 (en) Exposure apparatus, exposure method, and device manufacturing method
JP2005311020A (ja) 露光方法及びデバイス製造方法
JPWO2005038885A1 (ja) 光学特性計測装置及び光学特性計測方法、露光装置及び露光方法、並びにデバイス製造方法
US20050151947A1 (en) Position measuring method, position control method, exposure method and exposure apparatus, and device manufacturing method
WO2005117075A1 (ja) 較正方法、予測方法、露光方法、反射率較正方法及び反射率計測方法、露光装置、並びにデバイス製造方法
WO2002050506A1 (fr) Appareil de mesure de surface d'onde et son utilisation, procede et appareil pour determiner des caracteristiques de mise au point, procede et appareil pour corriger des caracteristiques de mise au point, procede pour gerer des caracteristiques de mise au point, et procede et appareil d'exposition
KR101019389B1 (ko) 노광 장치
JP2004241666A (ja) 計測方法及び露光方法
JP2006030021A (ja) 位置検出装置及び位置検出方法
JP2005116580A (ja) 位置検出装置及び方法、露光装置及び方法、並びにデバイス製造方法
US20070206167A1 (en) Exposure Method and Apparatus, and Device Manufacturing Method
JP2006032807A (ja) 露光装置及びデバイス製造方法
JP2006024674A (ja) ステージ制御装置及び方法、露光装置及び方法、並びにデバイス製造方法
JP2006073798A (ja) 位置決め装置及び露光装置
JPWO2004047156A1 (ja) 位置計測方法、位置計測装置及び露光方法並びに露光装置
JP2003100612A (ja) 面位置検出装置、合焦装置の調整方法、面位置検出方法、露光装置及びデバイスの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150724

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150724

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150724

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees