[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

タグ

数学に関するn_pikarin7のブックマーク (27)

  • NIKKEI STYLEは次のステージに

    キャリア、転職、人材育成のヒントを提供してきた「リスキリング」チャンネルは新生「NIKKEIリスキリング」としてスタート。 ビジネスパーソンのためのファッション情報を集めた「Men’s Fashion」チャンネルは「THE NIKKEI MAGAZINE」デジタル版に進化しました。 その他のチャンネルはお休みし、公開コンテンツのほとんどは「日経電子版」ならびに課題解決型サイト「日経BizGate」で引き続きご覧いただけます。

    NIKKEI STYLEは次のステージに
  • Wikipediaがわかりにくいので(数学とか)、わかりやすいサイトを作ってみた - 大人になってからの再学習

    このブログをはじめてから2年8か月と少し(ちょうど1000日くらい)が経った。 これまでに公開したエントリの数は299。 つまり、このエントリは記念すべき第300号!というわけ。 ブログとしてある程度の存在を認められるには300記事が1つの目安であるという説があるので[要出典]、 この300回目のエントリは当ブログにとって大きな節目と言える。 前回299号のエントリでは「なぜWikioediaはわかりにくいのか(数学とか)」という内容を書いた。 そこで言いたかったことを3行でまとめると次の通り。 ■ Wikipediaの説明は理工系の初学者にはわかりにくいね。 ■ そもそも説明のアプローチ(思想とも言う)が違うので、わかりにくくて当然だね。 ■ もっとわかりやすい説明の仕方がありそうだね。特に図を使った説明は直観的な理解を助ける力があるね。 まぁ、だいたいこんな感じ。 そして、その記事につ

    Wikipediaがわかりにくいので(数学とか)、わかりやすいサイトを作ってみた - 大人になってからの再学習
  • 違法素数 - Wikipedia

    違法素数(いほうそすう/英: illegal prime)とは、素数のうち、違法となるような情報やコンピュータプログラムを含む数字。違法数(英語版)の一種である。 2001年、違法素数の1つが発見された。この数はある規則に従って変換すると、DVDのデジタル著作権管理を回避するコンピュータプログラムとして実行可能であり、そのプログラムはアメリカ合衆国のデジタルミレニアム著作権法で違法とされている[1]。 DVDのコピーガードを破るコンピュータプログラムDeCSSのソースコード 1999年、ヨン・レック・ヨハンセンはDVDのコピーガード (Content Scramble System; CSS)を破るコンピュータプログラム「DeCSS」を発表した。ところが2001年5月30日、アメリカ合衆国の裁判所は、このプログラムの使用を違法としただけではなく、ソースコードの公表も違法であると判断した[2

  • サービス終了のお知らせ - NAVER まとめ

    サービス終了のお知らせ NAVERまとめは2020年9月30日をもちましてサービス終了いたしました。 約11年間、NAVERまとめをご利用・ご愛顧いただき誠にありがとうございました。

  • 海外FXボーナス(口座開設ボーナス・入金ボーナス)全195社完全比較【2024年12月キャンペーン最新版】

    海外FX業者を利用する上で、ボーナスは絶対に欠かせません。口座を新規開設するだけでもらえる「口座開設ボーナス」、入金時にもらえる「入金ボーナス」、その他にもキャッシュバックなど、様々なボーナスがもらえます。 受け取ったボーナスはそのまま取引に使え、利益が出た時は出金することも可能です。お得はあっても損はないボーナスなので、海外FX業者を選ぶ際には必ず比較しておきたいところです。 そこでこの記事では、海外FXボーナス(口座開設ボーナス・入金ボーナスキャンペーン)全195社を徹底的に研究した上で、おすすめ完全比較ランキングにまとめました。日人に人気のFX業者だけでなく、マイナーの海外FX業者や注意点なども詳しく解説していきます。 「海外FXボーナスが豪華な業者をすぐに知りたい」という方向けに、海外FXボーナス選びに役立つカオスマップを作成したのでこちらも併せて参考にしてください。 「どのFX

  • 京大オリジナルグッズ・素数ものさし

    えふわん @formula1_99 【ティザー広告】 3月中に学大学生協にて,とある不便益グッズが発売される予定です.詳細についてはまだ明かせませんが… 乞うご期待!うふ. 2013-01-22 23:46:58

    京大オリジナルグッズ・素数ものさし
  • なぜこれが日本式!? 日本人が知らない線と点を使ったかけ算の方法 | ライフハッカー・ジャパン

    「線を引いて交差した点の数でかけ算の答えが分かる」という驚くべき計算方法がありました。 アメリカでは「日の子どもはこうやってかけ算を計算している」と紹介されていますが、日で生まれ育ってきたもののこんな計算方法は初めて見ました。古来インド式の計算方法ではとも言われています。 どのような計算方法なのかは、記事冒頭のビデオを見てもらえれば分かると思います。かけ算をしたい最初の数字の大きい位から順に斜めに線を引き、次の数字も大きい位から順に、今度は最初に引いた線に交差するように反対側から斜めに線を引きます。エリア毎の交差した点の数を左から順番に並べると、かけ算の答えになるというものです。 一体どうしてこの方法でかけ算の答えが導き出せるのか、そのからくりはまったくもって謎ですし、これがなぜ外国では「日の」計算方法だと言われているのかも謎です。とはいえ面白いので、話のネタに覚えておくといいかもし

    なぜこれが日本式!? 日本人が知らない線と点を使ったかけ算の方法 | ライフハッカー・ジャパン
  • http://yaruomatome.blog.2nt.com/?no=371

  • 微分方程式を図解する

    物理では(実は物理によらず、いろいろな場面では)「微分方程式を解く」必要があることが多い。なぜなら、物理法則のほとんどが「微分形」で書かれているからである。「微分形で書かれている」というのは「微小変化と微小変化の関係式で書かれている」と言ってもよい。物理の主な分野における基礎方程式は、運動方程式 を初めとして、微分方程式だらけなのである。 微分方程式を解くには、積分という数学的技巧が必要になる。そのため「ややこしい」と嫌われる場合もあるようだ。 計算ではなく図形で「微分方程式を解いて関数を求める」というのはどういうことなのかを感じていただけたらと思い、アニメーションプログラムを作った。ただ計算するのではなく、「何を計算しているのか」をわかった上で計算のテクニックを学んだ方が理解は深まると思う。 ここでは微分方程式の中でも一番単純な「一階常微分方程式」を考える。「一階常微分方程式を解く」とは

    n_pikarin7
    n_pikarin7 2012/12/19
    あとでちゃんとね。
  • https://jp.techcrunch.com/2012/11/08/20121107pundit-forecasts-all-wrong-silver-perfectly-right-is-punditry-dead/

    https://jp.techcrunch.com/2012/11/08/20121107pundit-forecasts-all-wrong-silver-perfectly-right-is-punditry-dead/
  • 無料で自宅でやりなおす→小学校の算数・数学 | 学校・教育算数から大学数学までweb上教材をリストにした 読書猿Classic: between / beyond readers

    先日の記事 誰もがどこかでつまずいた→小学校の算数から大学数学まで126の難所を16種類に分類した 読書猿Classic: between / beyond readers を読んだ人から「やりなおし魂に火をつけるだけつけて放置するのは無責任だ、何をやればいいのか教えろ」という問い合わせがあった。 小学校の算数レベルから微積分など高校+αまで、ついている予備テストをやれば、どの章は飛ばしていいか、どこの章のどの問題を勉強すればよいかを教えてくれる往年の名著(が復刻してた) を紹介しようと思ったが(科学を志さない人にも勧められる)、買い損なった場合と人のために、web上の教材をリストにして、先の記事の補いとする。 (2017.9.6 リンク切れ等、訂正しました) 小学校〜高校 小学校の算数 中学校の数学 高校数学 大学数学基礎 小学校〜高校 小学校「算数科」,中学校・高等学校「数学科」の内容

    無料で自宅でやりなおす→小学校の算数・数学 | 学校・教育算数から大学数学までweb上教材をリストにした 読書猿Classic: between / beyond readers
  • 組み合わせ爆発のはなし - 大人になってからの再学習

    YouTube 上に公開された 「『フカシギの数え方』 おねえさんといっしょ! みんなで数えてみよう!」 という動画が話題になっている。 http://youtube.com/watch?v=Q4gTV4r0zRs 下の図のようなNxNの格子を用意して、左上のスタート地点から、右下のゴール地点にたどり着くルートの数を数えてみよう、というもの。 この例は3x3の格子。 さて、何通りあるか? ルートは最短ルートである必要はなくて、下から上に向かっても構わない。ただし、ルートは自分自身に交わってはいけない。 3x3の格子の例では、答えは184通りある。 意外とたくさんあることに驚かされる。 では、4x4の場合は? 動画の中では「おねえさん」が手で数えているけど、答えは8,512通り。 5x5の場合は、もはや手で数えるわけにはいかなくなる。動画の中のコンピュータを使って求めた答えは1,262,81

    組み合わせ爆発のはなし - 大人になってからの再学習
    n_pikarin7
    n_pikarin7 2012/09/12
    おお…20*20はまだなのか…
  • 『フカシギの数え方』 おねえさんといっしょ! みんなで数えてみよう! - YouTube

    「フカシギの数え方」おねえさんといっしょ!みんなで数えてみよう! ※LINEスタンプ「フカシギお姉さんと仲間たち」をリリースしました。※ "The Art of 10^64 -Understanding Vastness-" Time with class! Let's count! LINE sticker "Combinatorial Explosion!" has been launched! http://line.me/S/sticker/1143771 「フカシギの数え方」で紹介している、組み合わせ爆発の例です。 「それでもね。私はみんなに「組み合わせ爆発のすごさ」を教えたいの!止めないで!」 お姉さんと子どもたちが実際に数え上げる大変さを伝えます。 This is an example about combinatorial explosion. "I want to de

    『フカシギの数え方』 おねえさんといっしょ! みんなで数えてみよう! - YouTube
    n_pikarin7
    n_pikarin7 2012/09/10
    おねぇさあああーん!!
  • 第14回:全ての植物をフィボナッチの呪いから救い出す

    連載コラム 「生命科学の明日はどっちだ」 目次 第14回:全ての植物をフィボナッチの呪いから救い出す ロマネスコ(左)とマンデルブロ集合の一部(右) 植物にかかったフィボナッチの魔法 このオーラ全開の野菜、なんだか知ってますか。 そう、最近デパートなんかではよく見るようになったロマネスコというカリフラワーの仲間である。 一説によると、悪魔の野菜とか、神が人間を試すために作った野菜とか言われているらしい。 なんと言っても凄いのは、フラクタル構造がめちゃめちゃはっきり見えること。 まるでマンデルブロ集合みたいだ。 ね、似てるでしょう。フラクタルがこんなにはっきり見える構造物は、他には無いんじゃないかな。 この植物が面白いのは、それだけでは無い。 実の出っ張った部分をつなげていくと、らせん構造がくっきり見えてくるでしょう? そのらせんの数を数えてみよう。 右向きのらせんと左向

    n_pikarin7
    n_pikarin7 2012/07/24
    「確かめもせず信じる」
  • システム・エンジニアの基礎知識

    静岡理工科大学情報学部コンピュータシステム学科菅沼研究室のページです.主として,プログラミング言語( HTML,C/C++, Java, JavaScript, PHP, HTML,VB,C# ),及び,システムエンジニアとしての基礎知識(数学,オペレーションズ・リサーチやシステム工学関連の手法)を扱っています.

  • コンプガチャだけじゃない!? ガチャに潜む確率の罠 - てっく煮ブログ

    twitter をみていたら、こんなツイートが回ってきました。 モバゲー・GREEが確率明示しないのは、搾り取るためというよりは、クレーム対応減らすため。1%でSR、って書くと「100回引いたのに出ない。詐欺だ」。確率だから、って説明すると彼らはこう返す「だから、100回に1回出るんでしょ?」さあ、どう返そうか。 2012-05-06 17:15:49 via モバツイたしかに「1% のガチャを 100 回引いたら当たる」と思い込んでしまう人は多そうです。では、1% のガチャを 100 回引くと、どれぐらいの人が当たり、どれぐらいの人が当たらないのでしょうか。1% のガチャを 100 回引いて当たらない確率は?さっそく計算してみましょう。1 回ガチャを引いて当たらない確率は です。当たる確率は なので 1% と求まります。2 回ガチャを引いたときに、1 度も当たらない確率は です。つまり、

    n_pikarin7
    n_pikarin7 2012/05/17
    なるへそ
  • 円 (数学) - Wikipedia

    数学において、円(えん、英: circle)とは、平面(2次元ユークリッド空間)上の、定点O(オー) からの距離が等しい点の集合でできる曲線のことをいう。 その「定点 O(オー)」を円の中心という。円の中心と円周上の 1 点を結ぶ線分や、その線分の長さは半径という[1][2] 円は定幅図形の一つ。 なお円が囲む部分すなわち「円の内部」を含めて「円」ということもある。この場合、厳密さを必要とする時は、境界となる曲線のほうは「円周 (circumference)」 という。これに対して、内部を含めていることを強調するときには「円板 (disk)」 という。また、三角形、四角形などと呼称を統一して「円形」ということもある。 習慣的に、とりあえず円をひとつ挙げその中心に名称をつける時は「O (オー)」と呼ぶことが多い。これは原点を英語で「オリジン(英: Origin)」というのでその頭文字をとった

    円 (数学) - Wikipedia
    n_pikarin7
    n_pikarin7 2011/04/26
    ちゃんと読んでないけど、円。あれ、円(〇)が元(くすだま割れた)になると、いいことあるはず。基準通貨、ドルが円になるのはまだまだ先だろうけど。
  • 円周率3.14に驚くべき秘密があったと海外で話題に : らばQ

    円周率3.14に驚くべき秘密があったと海外で話題に 円周率と言えば、3.14。 「ゆとり教育では『およそ3』と教えられている」と言った、やや誤解された報道がされたりもしましたが、基的に円周率は3.14として、中学ではπ(パイ)として、学校で学びます。 そんな3.14の驚きべき秘密が、海外サイトで人気となっていました。 その画像をご覧ください。 3.14を鏡文字にすると、なんとパイ"Pie"という文字になっています。 ちょっと意外性があって驚きなのですが、これを見て海外サイトのコメントも盛り上がっていました。 一部抜粋してご紹介します。 ・うーわっ。 ・ただしπの当のつづりは「Pi」が正しい。(Pieはべる方のパイ) ・これはゼロで割ったらどうなるかってやつだ。 ・オレはパイが大好きだ。 ・3.14 = おいしい。 ・気に入った! ・一番正確なネタである。 ・おーまいがっ。 ・これは自

    円周率3.14に驚くべき秘密があったと海外で話題に : らばQ
    n_pikarin7
    n_pikarin7 2011/04/26
    このトリビア、侮ってはいけない。メッセージだね、きっと。
  • 円周率 - Wikipedia

    円周率(えんしゅうりつ、英: Pi、独: Kreiszahl、中: 圓周率)とは、円の直径に対する円周の長さの比率のことをいい[1]、数学定数の一つである。通常、円周率はギリシア文字である π[注 1]で表される。円の直径から円周の長さや円の面積を求めるときに用いる[1]。また、数学をはじめ、物理学、工学といった科学の様々な理論の計算式にも出現し、最も重要な数学定数とも言われる[5]。 円周率は無理数であり、超越数でもある。 円周率の計算において功績のあったルドルフ・ファン・クーレンに因み、ルドルフ数とも呼ばれる。ルドルフは小数点以下35桁まで計算した[6]。小数点以下35桁までの値は次の通りである。 ギリシャ文字の π は円周率に代表される。 円周率を表すギリシア文字 π は、ギリシア語でいずれも周辺・円周・周を意味する περίμετρος[7][8](ペリメトロス)あるいは περι

    円周率 - Wikipedia
    n_pikarin7
    n_pikarin7 2011/04/26
    「産医師異国に向かう 産後厄なく 産婦みやしろ(社)に 虫散々闇に鳴く」ぞっとする。予言じゃないか。人間遺伝子継続の輝かしい未来。半径πの円の面積は、31.4…つまり10敗かな。人類は何敗目なんだろ。
  • 円周率の歴史 - Wikipedia

    記事では、数学定数のひとつである円周率歴史(えんしゅうりつのれきし)について詳述する。 円周率 π は無理数であるため、小数部分は循環せず無限に続く。さらに、円周率 π は超越数でもあるため、その連分数表示は循環しない。その近似値は何千年にも亘り世界中で計算されてきた。 紀元前2000年頃 [値] (2) 1936年にスーサで発見された粘土板などから、古代バビロニアでは、正六角形の周と円周を比べ、円周率の近似値として 3 や 3+1/7 = 22/7, 3+1/8 などが使われたと考えられている[1]。 紀元前1650年頃 [学][値] 既に、古代エジプトでは、円周と直径の比の値と、円の面積と半径の平方の比の値が等しいことは知られていた。神官アハメスが書き残したリンド・パピルスには、円積問題の古典的な解法の一つが記されており、円の直径からその 1/9 を引いた長さを一辺とする正方形の面

    円周率の歴史 - Wikipedia
    n_pikarin7
    n_pikarin7 2011/04/26
    人類における円周率4000千年の歴史の先っぽに、長野県の近藤さんがいることに、もっと驚いていい。