[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011052572A1 - 有機光電変換素子 - Google Patents

有機光電変換素子 Download PDF

Info

Publication number
WO2011052572A1
WO2011052572A1 PCT/JP2010/068946 JP2010068946W WO2011052572A1 WO 2011052572 A1 WO2011052572 A1 WO 2011052572A1 JP 2010068946 W JP2010068946 W JP 2010068946W WO 2011052572 A1 WO2011052572 A1 WO 2011052572A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
photoelectric conversion
conversion element
organic photoelectric
Prior art date
Application number
PCT/JP2010/068946
Other languages
English (en)
French (fr)
Inventor
岳仁 加藤
大西 敏博
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2011052572A1 publication Critical patent/WO2011052572A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an organic photoelectric conversion element.
  • the photoelectric conversion element is an element that can convert light energy into electric energy, and a solar cell is an example.
  • a silicon solar cell is known as a typical solar cell.
  • the manufacturing cost is high. For this reason, the organic solar cell whose manufacturing cost is cheap compared with a silicon-type solar cell attracts attention.
  • Patent Document 1 describes a configuration in which a getter agent made of a desiccant is provided in an organic photoelectric conversion element.
  • the organic photoelectric conversion element is provided with a getter agent made of a desiccant, the water in the organic photoelectric conversion element can be adsorbed by the getter agent, so that deterioration of the organic material in the organic photoelectric conversion element due to water is suppressed.
  • the life of the organic photoelectric conversion element can be extended.
  • the technique described in Patent Document 1 does not provide a long lifetime, and a technique for further extending the lifetime of the organic photoelectric conversion element has been desired.
  • the present invention has been made in view of the above problems, and provides a long-life organic photoelectric conversion element.
  • the present inventor has found that one of the major causes of the deterioration of the organic photoelectric conversion element is the deterioration of the electrode, and that oxygen and water are in direct contact with the electrode. It has been found that the electrode can be effectively prevented from being deteriorated by providing a getter layer capable of adsorbing and thus the present invention has been completed.
  • An organic photoelectric conversion element comprising a first electrode, a second electrode, an active layer, and a getter layer
  • the active layer is a layer that is provided between the first electrode and the second electrode, and is capable of generating an electric charge upon incidence of light
  • the getter layer is an organic photoelectric conversion element which is in contact with the surface of the second electrode opposite to the first electrode and can adsorb oxygen and water.
  • the organic photoelectric conversion element according to [1] wherein the active layer includes a p-type semiconductor and an n-type semiconductor.
  • FIG. 1 is a schematic cross-sectional view of an organic photoelectric conversion element according to an embodiment of the present invention.
  • the organic photoelectric conversion element of the present invention includes a first electrode, a second electrode, an active layer, and a getter layer.
  • the active layer is a layer that is provided between the first electrode and the second electrode and can generate an electric charge upon incidence of light.
  • the getter layer is in contact with the surface of the second electrode opposite to the first electrode, and is a layer that can adsorb oxygen and water. Therefore, the arrangement order of the layers is the order of the first electrode, the active layer, the second electrode, and the getter layer.
  • the getter layer adsorbs oxygen and water that have passed through the substrate, protective layer, sealing material layer, etc. and entered the organic photoelectric conversion element, or is organic in the active layer or the like constituting the organic photoelectric conversion element.
  • the organic photoelectric conversion element of the present invention Since residual oxygen and residual moisture mixed in the manufacturing process of the photoelectric conversion element can be adsorbed, it is possible to prevent the material in the organic photoelectric conversion element from being deteriorated by oxygen and water. Furthermore, in the organic photoelectric conversion element of the present invention, since the getter layer is provided in contact with the second electrode, the distance from the first electrode and the second electrode to the getter layer is very short. Therefore, it is possible to effectively prevent electrode deterioration (particularly oxidation), which is a major cause of deterioration of the organic photoelectric conversion element. Oxidation of the electrode is often the biggest cause of deterioration of the organic photoelectric conversion element. However, the organic photoelectric conversion element of the present invention can effectively prevent oxidation of the electrode, so that the life can be extended more than before. It has become.
  • the organic photoelectric conversion element of this invention may be provided with layers other than a 1st electrode, an active layer, a 2nd electrode, and a getter layer.
  • the organic photoelectric conversion element of this invention is equipped with the protective layer which covers the surface of an organic photoelectric conversion element.
  • the organic photoelectric conversion element of the present invention may include a functional layer between the first electrode and the active layer, and may include a functional layer between the active layer and the second electrode. Also good.
  • the organic photoelectric conversion element of the present invention usually comprises a substrate, and each layer constituting the organic photoelectric conversion element of the present invention on the substrate (for example, a first electrode, an active layer, a second electrode, a getter layer, a protective layer) A layer and a functional layer).
  • substrate is a member which functions as a support body of the organic photoelectric conversion element of this invention.
  • the substrate a member that does not change chemically is usually used when an electrode is formed or an organic material layer is formed.
  • the material for the substrate include glass, plastic, polymer film, and silicon.
  • substrate may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • a transparent or translucent member is used as the substrate, but an opaque substrate can also be used.
  • the electrode opposite to the substrate that is, the electrode farther from the opaque substrate among the first electrode and the second electrode
  • First electrode and second electrode One of the first electrode and the second electrode is an anode, and the other is a cathode. In order for light to easily enter the active layer located between the first electrode and the second electrode, at least one of the first electrode and the second electrode is preferably transparent or translucent.
  • Examples of the transparent or translucent electrode include a conductive metal oxide film and a translucent metal thin film.
  • Examples of the material of the transparent or translucent electrode include indium oxide, zinc oxide, tin oxide, and indium tin oxide (ITO), indium zinc oxide (IZO), NESA which are composites thereof. Examples thereof include a film manufactured using a conductive material such as gold, platinum, silver, and copper. Of these, ITO, indium / zinc / oxide, and tin oxide are preferable. It is also possible to use an organic material as the material of the transparent or translucent electrode. Examples of organic materials that can be used as an electrode material include conductive polymers such as polyaniline and derivatives thereof, polythiophene and derivatives thereof.
  • Examples of the material for the opaque electrode include metals and conductive polymers. Specific examples include lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and the like, Of the metals, two or more kinds of alloys, one or more kinds of the metals, and one or more kinds of metals selected from the group consisting of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, and tin Examples include alloys, graphite, graphite intercalation compounds, polyaniline and its derivatives, polythiophene and its derivatives.
  • the alloy examples include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, calcium-aluminum alloy, etc. Is mentioned.
  • the material of an electrode may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the thicknesses of the first electrode and the second electrode are different depending on the type of electrode material, but are preferably 500 nm or less from the viewpoint of improving the light transmittance and reducing the electric resistance. Preferably it is 200 nm or less. In addition, although there is no restriction
  • Examples of the method for forming the first electrode and the second electrode include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like. Further, when the first electrode and the second electrode are formed of, for example, a conductive polymer, they may be formed by a coating method.
  • the active layer is a layer that can generate an electric charge upon incidence of light, and usually includes a p-type semiconductor that is an electron-donating compound and an n-type semiconductor that is an electron-accepting compound.
  • the organic photoelectric conversion element of the present invention is referred to as an “organic” photoelectric conversion element because an organic compound is used as at least one of the p-type semiconductor and the n-type semiconductor, usually both. Note that the p-type semiconductor and the n-type semiconductor are relatively determined from the energy level of the energy level of the semiconductor.
  • charges are generated in the active layer in the following manner.
  • light energy incident on the active layer is absorbed by one or both of the n-type semiconductor and the p-type semiconductor, excitons in which electrons and holes are combined are generated.
  • the generated excitons move and reach the heterojunction interface where the n-type semiconductor and the p-type semiconductor are adjacent, the respective HOMO (highest occupied orbit) energy and LUMO (lowest empty orbit) at the heterojunction interface.
  • Electrons and holes are separated due to the difference in energy, and charges (electrons and holes) that can move independently are generated.
  • the generated charges can be taken out as electric energy (current) to the outside of the organic photoelectric conversion element of the present invention by moving to the respective electrodes.
  • the active layer may be a single-layered layer composed of only one layer or a layered structure including two or more layers.
  • Examples of the layer structure of the active layer include the following examples. However, the layer configuration of the active layer is not limited to the following examples.
  • Examples of p-type semiconductors include pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligothiophene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, and aromatic amines in side chains or main chains. And polysiloxane derivatives, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, and polythienylene vinylene and derivatives thereof.
  • suitable p-type semiconductors include organic polymer compounds having a structural unit represented by the following structural formula (1).
  • organic polymer compound a copolymer of a compound having a structural unit represented by the structural formula (1) and a compound represented by the following structural formula (2) is more preferable.
  • Ar 1 and Ar 2 are the same or different and each represents a trivalent heterocyclic group.
  • R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are the same or different and are a hydrogen atom, a halogen atom, an alkyl group, an alkyloxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, Arylalkyl group, arylalkyloxy group, arylalkylthio group, acyl group, acyloxy group, amide group, acid imide group, amino group, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, 1
  • a valent heterocyclic group, heterocyclic oxy group, heterocyclic thio group, arylalkenyl group, arylalkynyl group, carboxyl group or cyano group is represented.
  • R 50 is a hydrogen atom, halogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, acyl group, acyloxy group, amide Group, acid imide group, amino group, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, monovalent heterocyclic group, heterocyclic oxy group, heterocyclic thio group, arylalkenyl group, An arylalkynyl group, a carboxyl group or a cyano group is represented.
  • R 51 is an alkyl group having 6 or more carbon atoms, an alkyloxy group having 6 or more carbon atoms, an alkylthio group having 6 or more carbon atoms, an aryl group having 6 or more carbon atoms, an aryloxy group having 6 or more carbon atoms, or 6 or more carbon atoms.
  • one type of p-type semiconductor may be used, or two or more types may be used in combination at any ratio.
  • n-type semiconductor examples include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, fluorenone derivatives, diphenyl dicyanoethylene and derivatives thereof, diphenoquinone derivatives, 8-hydroxyquinoline and metal complexes of derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof, polyfluorene and derivatives thereof, fullerenes and derivatives thereof such as C 60, such as bathocuproine
  • fullerene examples include derivatives such as C 60 , C 70 , C 76 , C 78, and C 84 .
  • specific examples of the fullerene derivative include compounds having the following structures.
  • examples of another fullerene derivative [6,6] phenyl -C 61 butyric acid methyl ester C60PCBM, [6,6] -Phenyl C 61 butyric acid methyl ester), [6,6] phenyl -C 71 Butyric acid methyl ester (C70PCBM, [6,6] -Phenyl C 71 butyric acid methyl ester), [6,6] Phenyl-C 85 butyric acid methyl ester (C84PCBM, [6,6] -Phenyl C 85 butyric acid methyl ester) , and the like [6,6] thienyl -C 61 butyric acid methyl ester ([6,6] -Thienyl C 61 butyric acid methyl ester).
  • one type of n-type semiconductor may be used, or two or more types may be used in combination at any ratio.
  • the amount ratio of the p-type semiconductor and the n-type semiconductor in the active layer is arbitrary as long as the effect of the present invention is not impaired.
  • the amount of the n-type semiconductor with respect to 100 parts by weight of the p-type semiconductor is preferably 10 parts by weight or more. More preferably, it is 20 parts by weight or more, preferably 1000 parts by weight or less, more preferably 500 parts by weight or less.
  • the thickness of the active layer is usually 1 nm or more, preferably 2 nm or more, more preferably 5 nm or more, particularly preferably 20 nm or more, and usually 100 ⁇ m or less, preferably 1000 nm or less, more preferably 500 nm or less, particularly preferably 200 nm or less. is there.
  • the formation method of the active layer there is no limitation on the formation method of the active layer, and for example, a film deposition method from a liquid composition containing a material of the active layer (for example, one or both of a p-type semiconductor and an n-type semiconductor), a physical vapor deposition method such as a vacuum deposition method Examples thereof include a film formation method by a vapor deposition method such as (PVD method) and chemical vapor deposition (CVD method). Among these, a film forming method from a liquid composition is preferable because formation is easy and cost can be reduced.
  • solvents include toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, unsaturated hydrocarbon solvents such as n-butylbenzene, sec-butylbenzene, tert-butylbenzene, carbon tetrachloride, chloroform, dichloromethane , Halogenated saturated hydrocarbon solvents such as dichloroethane, chlorobutane, bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, and halogenated unsaturated hydrocarbons such as chlorobenzene, dichlorobenzene, and trichlorobenzene
  • the solvent include ether solvents such as tetrahydrofuran and tetrahydropyran.
  • a solvent may be used individually by 1 type and may be
  • the concentration of each of the p-type semiconductor and the n-type semiconductor in the liquid composition is usually 0.1% by weight or more based on the solvent.
  • liquid composition film forming method examples include spin coating, casting, micro gravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating, and screen.
  • printing method examples include gravure printing method, flexographic printing method, offset printing method, inkjet printing method, dispenser printing method, nozzle coating method, capillary coating method and the like. Of these, spin coating, flexographic printing, gravure printing, ink jet printing, and dispenser printing are preferred.
  • an active layer is obtained by performing a process such as removing the solvent from the formed film by drying as necessary.
  • the respective layers constituting the active layer may be sequentially laminated by, for example, the method described above.
  • the getter layer is a layer that can adsorb oxygen and water.
  • the getter layer adsorbs oxygen and water to reduce the amount of oxygen and water present in the organic photoelectric conversion element of the present invention, and the materials in the organic photoelectric conversion element of the present invention are deteriorated by oxygen and water. Can be prevented.
  • the getter layer is in contact with at least a part, preferably the whole, of the surface of the second electrode opposite to the first electrode. Therefore, since the getter layer is close to the electrode, it is possible to effectively prevent the oxidation of the electrode. Particularly, since the getter layer is in contact with the second electrode, the oxidation of the second electrode can be strongly prevented.
  • Oxidation of the electrode is considered to be one of the main causes of deterioration of the organic photoelectric conversion element. Therefore, by effectively preventing the oxidation of the electrode, the organic photoelectric conversion element of the present invention has a longer photoelectric conversion efficiency than before. It becomes a long-life organic photoelectric conversion element capable of maintaining the above.
  • the getter layer includes a getter agent that is a material capable of adsorbing oxygen and water.
  • the getter agent include alkoxides such as aluminum-S-butoxide, sodium methoxide, sodium ethoxide, potassium t-butoxide, potassium t-butoxide, and the like.
  • the alkoxide is capable of forming a getter layer by a coating method, has high affinity with the second electrode, can effectively prevent oxidation of the second electrode, and has high stability of the getter agent itself. Is preferred.
  • alkoxides selected from the group consisting of aluminum-s-butoxide and titanium isopropoxide are particularly preferable because they are particularly excellent in water absorption.
  • a getter agent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the getter layer may contain other components in addition to the getter agent as long as the effects of the present invention are not significantly impaired.
  • maintaining a getter agent will be mentioned.
  • the binder include a resin, and specific examples thereof include polyethylene trifluoride, poly (trifluoroethylene chloride) (PCTFE), polyimide, polycarbonate, polyethylene terephthalate, alicyclic polyolefin, and ethylene-vinyl alcohol copolymer. Etc.
  • additives such as a filler and antioxidant, are also mentioned, for example.
  • the other component may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the proportion of the getter agent in the getter layer is preferably 80% by volume or more and 100% by volume or less, more preferably 90% by volume or more and 100% by volume or less, particularly preferably from the viewpoint of effectively adsorbing oxygen and water. It is 95 volume% or more and 100 volume% or less.
  • the thickness of the getter layer is usually 5 ⁇ m or more, preferably 10 ⁇ m or more, more preferably 100 ⁇ m or more, and usually 500 ⁇ m or less, preferably 300 ⁇ m or less. If the getter layer is too thin, oxygen and water may not be sufficiently adsorbed, and if it is too thick, the organic photoelectric conversion element may be excessively thick.
  • the getter layer can be formed by any method depending on the type of getter agent.
  • the getter layer material (getter agent or the like) is formed by a vapor deposition method such as a physical vapor deposition method (PVD method) such as a sputtering method or a vacuum vapor deposition method and a chemical vapor deposition method (CVD method). do it.
  • the getter layer is preferably formed by a coating method.
  • a coating method is suitable when an alkoxide is used as a getter agent.
  • a method for forming a getter layer by a coating method when an alkoxide is used as a getter agent will be described.
  • the getter layer is preferably formed through a step of preparing a getter layer forming solution containing an alkoxide and an organic solvent and applying the getter layer forming solution.
  • Examples of the organic solvent contained in the solution for forming the getter layer include the same solvents as those contained in the liquid composition for forming the active layer.
  • an organic solvent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the getter layer contains a component other than the alkoxide, the component is usually included in the solution for forming the getter layer.
  • the amount of the organic solvent in the solution for forming the getter layer is usually 1000 parts by weight or more, preferably 5000 parts by weight or more, more preferably 10,000 parts by weight or more, and usually 20000 parts by weight with respect to 100 parts by weight of the alkoxide as the getter agent. It is 1 part by weight or less, preferably 15000 parts by weight or less, more preferably 12000 parts by weight or less.
  • the solution After preparing a solution for forming a getter layer, the solution is applied to a predetermined position where a getter layer is to be formed.
  • a solution for forming a getter layer is usually applied on the second electrode.
  • Examples of the application method of the solution for forming the getter layer include the same application method as the application method of the liquid composition for forming the active layer.
  • a film containing an alkoxide as a getter agent is formed by applying a solution for forming a getter layer. Therefore, after application of the solution for forming the getter layer, a getter layer containing an alkoxide can be obtained by performing a process such as drying the formed film and removing the organic solvent, if necessary.
  • the organic photoelectric conversion element of the present invention usually includes a protective layer.
  • a protective layer is a layer which protects the organic photoelectric conversion element of this invention from oxygen, water, etc., for example, hits a layer called a gas barrier layer, a gas barrier property film, etc.
  • a protective layer is provided so as to cover the first electrode, the second electrode, the active layer, and the getter layer. Therefore, usually, the first electrode, the second electrode, the active layer, and the getter layer are located in a space surrounded by the protective layer and the substrate.
  • the protective layer is preferably formed of a material having a property of blocking water vapor (water vapor barrier property) or a property of blocking oxygen (oxygen barrier property).
  • suitable materials for the protective layer include trifluorinated polyethylene, polytrifluoroethylene chloride (PCTFE), polyimide, polycarbonate, polyethylene terephthalate, alicyclic polyolefin, and ethylene-vinyl alcohol copolymer.
  • organic materials such as resins, inorganic materials such as silicon oxide, silicon nitride, aluminum oxide, and diamond-like carbon.
  • the material of a protective layer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • An additive may be included in the protective layer as necessary.
  • the said getter agent will be mentioned.
  • the protective layer contains a getter agent, the protective layer itself can function in the same manner as the getter layer, so that the amount of oxygen and water that enter the organic light source conversion element of the present invention can be further reduced. Thereby, it can prevent more effectively that the material in the organic photoelectric conversion element of this invention deteriorates with oxygen and water, and can implement
  • the additive contained in a protective layer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the amount of the getter agent in the protective layer is usually 3% by volume or more, preferably 5% by volume or more, more preferably 10% by volume or more, and usually 50% by volume or less, preferably 30% by volume or less, more preferably 25%. % By volume or less. If the amount of the getter agent is too small, the effect of the getter agent may not be sufficiently exhibited, and if it is too large, oxygen and water may not be sufficiently blocked.
  • the thickness of the protective layer depends on the type of material of the protective layer, but is usually 5 ⁇ m or more, preferably 10 ⁇ m or more, and usually 300 ⁇ m or less, preferably 100 ⁇ m or less, from the viewpoint of protection performance by the protective layer and production cost. is there.
  • the active layer may be a single-layer structure including only one layer, or may be a layered structure including two or more layers.
  • the protective layer can be formed by an arbitrary method depending on the type of material of the protective layer, and examples thereof include a vapor deposition method. Further, for example, the protective layer may be formed by applying a liquid composition containing a material for the protective layer by a coating method such as a spin coating method, a dip method, or a spray method. Furthermore, for example, a film-shaped molded product formed in advance may be formed by sticking with an adhesive or the like.
  • the organic photoelectric conversion element of the present invention may include a functional layer between the first electrode and the active layer and between the second electrode and the active layer.
  • the functional layer is a layer that can transport the charge generated in the active layer to the electrode, and the functional layer between the first electrode and the active layer can transport the charge generated in the active layer to the first electrode.
  • a functional layer between the second electrode and the active layer can transport charges generated in the active layer to the second electrode.
  • the functional layer may be provided on one or both of the first electrode and the active layer and between the second electrode and the active layer.
  • the functional layer provided between the active layer and the anode can transport holes generated in the active layer to the anode, and is sometimes called a hole transport layer or an electron blocking layer.
  • the functional layer provided between the active layer and the cathode can transport electrons generated in the active layer to the cathode, and is sometimes referred to as an electron transport layer or a hole blocking layer.
  • the effective photoelectric conversion element of the present invention can increase the efficiency of extracting holes generated in the active layer at the anode, increase the efficiency of extracting electrons generated in the active layer at the cathode, It is possible to prevent holes generated in the layer from moving to the cathode and to prevent electrons generated in the active layer from moving to the anode, and to improve photoelectric conversion efficiency.
  • the material of the functional layer may be any material that has the ability to transport charges generated in the active layer.
  • the functional layer between the active layer and the anode preferably contains a material that has the ability to transport holes and can prevent electrons from moving to the functional layer.
  • the functional layer between the active layer and the cathode preferably contains a material that has the ability to transport electrons and can prevent holes from moving to the functional layer.
  • Examples of functional layer materials include alkali metal or alkaline earth metal halides and oxides such as lithium fluoride, inorganic semiconductors such as titanium dioxide, bathocuproine, bathophenanthroline and derivatives thereof, triazole compounds, tris ( 8-hydroxyquinolinate) aluminum complex, bis (4-methyl-8-quinolinato) aluminum complex, oxadiazole compound, distyrylarylene derivative, silole compound, 2,2 ′, 2 ′′-(1,3,5 -Benzenetolyl) tris- [1-phenyl-1H-benzimidazole] (TPBI) phthalocyanine derivative, naphthalocyanine derivative, porphyrin derivative, N, N'-bis (3-methylphenyl)-(1,1'-biphenyl) -4,4'-diamine (TPD), 4,4'-bi Aromatic diamine compounds such as [N- (naphthyl) -N-phenyl-amino] biphenyl
  • the functional layer may contain other components in addition to the materials described above as long as the effects of the present invention are not significantly impaired.
  • the other component may be used individually by 1 type, and may use 2 or more types together by arbitrary ratios.
  • the thickness of the functional layer is usually 0.01 nm or more, preferably 0.1 nm or more, more preferably 1 nm or more, and usually 1000 nm or less, preferably 500 nm or less, more preferably 100 nm or less. If the functional layer is too thin, the function of the functional layer described above may not be sufficiently exhibited, and if it is too thick, the organic photoelectric conversion element may be excessively thick.
  • the functional layer may be formed by, for example, a vapor deposition method, but is easy to form and can be manufactured at a low cost. Therefore, the functional layer is formed through a step of applying a liquid composition containing the functional layer material to a predetermined position. It is preferable.
  • the method for forming the functional layer from the liquid composition will be described.
  • the liquid composition for forming the functional layer usually contains a functional layer material and a solvent.
  • the liquid composition may be a dispersion in which the functional layer material is dispersed in the solvent, or may be a solution in which the functional layer material is dissolved in the solvent.
  • Examples of the solvent contained in the liquid composition for forming a functional layer include the same solvents as those contained in the liquid composition for forming an active layer.
  • a solvent may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • the amount of the solvent in the liquid composition is usually 100 parts by weight or more, preferably 1000 parts by weight or more, more preferably 10,000 parts by weight or more, and usually 1000000 parts by weight or less, preferably 100 parts by weight of the functional layer material. Is less than 100,000 parts by weight.
  • the liquid composition After preparing the liquid composition for forming the functional layer, the liquid composition is applied to a predetermined position where the functional layer is to be formed. Usually, the liquid composition is applied onto a layer (usually a first electrode, a second electrode, or an active layer) that comes into contact with the functional layer in the organic photoelectric conversion device of the present invention.
  • a layer usually a first electrode, a second electrode, or an active layer
  • the coating method of a liquid composition the coating method similar to the coating method of the liquid composition for active layer formation is mentioned.
  • the film containing the functional layer material is formed by applying the liquid composition for forming the functional layer. Therefore, after applying the liquid composition, the functional layer can be obtained by performing a process such as drying the formed film and removing the solvent, if necessary.
  • the organic photoelectric conversion device of the present invention includes layers other than the substrate, the first electrode, the second electrode, the active layer, the getter layer, the protective layer, and the functional layer, as long as the effects of the present invention are not significantly impaired. May be.
  • the photoelectric conversion element of the present invention may include a sealing material layer.
  • a sealing material layer is a layer which protects the organic photoelectric conversion element of this invention from external air, dust, etc.
  • the sealing material layer is formed as a sealing material layer covering the first electrode, the second electrode, the active layer, the getter layer, the protective layer, and the functional layer. Therefore, usually, the first electrode, the second electrode, the active layer, the getter layer, the protective layer, and the functional layer are located in the space formed by the sealant layer and the substrate.
  • an inorganic sealing material or an organic sealing material may be used.
  • inorganic sealing materials include silicon compounds such as silicon oxide, silicon nitride, silicon oxynitride and silicon carbide, aluminum compounds such as aluminum oxide, aluminum nitride and aluminum silicate, zirconium oxide, tantalum oxide and titanium oxide. And metal oxides such as titanium nitride, diamond-like carbon, and the like.
  • organic sealing material include a photocurable resin and a thermosetting resin, and preferable examples include a silicone resin, an epoxy resin, a fluorine resin, and a wax.
  • a sealing material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the thickness of the sealing material layer depends on the type of the sealing material, but is usually 1 ⁇ m or more, preferably 10 ⁇ m or more, and usually 100 ⁇ m or less from the viewpoints of the protection performance by the sealing material layer and the manufacturing cost.
  • a method for forming the sealing material layer for example, in the case of a sealing material layer using an inorganic sealing material, a vapor-phase film-forming method may be mentioned.
  • spin Examples thereof include a coating method, a dip method, a coating method such as a spray method, and a method of attaching a previously formed film-like molded product.
  • an additive may be included in the sealing material layer as necessary.
  • preferred additives include getter agents, wavelength conversion agents, and ultraviolet absorbers.
  • an additive may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • FIG. 1 is a schematic cross-sectional view of an organic photoelectric conversion device according to an embodiment of the present invention. In the following embodiments, a state in which the substrate of the organic photoelectric conversion element is placed horizontally will be described.
  • An organic photoelectric conversion element 100 shown in FIG. 1 includes a first electrode 2 that functions as an anode, a functional layer 3 that functions as a hole transport layer, and an active layer 4 that can generate an electric charge upon incidence of visible light.
  • a functional layer 5 functioning as an electron transporting layer a second electrode 6 functioning as a cathode, and a getter layer 7 capable of adsorbing oxygen and water.
  • a terminal (not shown) is connected to the first electrode 2 and the second electrode 6 so that electricity can be taken out to the outside.
  • the first electrode 2, the functional layer 3, the active layer 4, the functional layer 5, the second electrode 6 and the getter layer 7 are sealed by covering portions other than the terminals with the protective layer 8.
  • a substrate 9 is provided on the protective layer 8.
  • the organic photoelectric conversion element 100 is provided between the first electrode 2 and the second electrode 6 via the first electrode 2, the second electrode 6, and the functional layer 3 and the functional layer 5.
  • An active layer 4 and a getter layer 7 are provided.
  • the getter layer 7 is in contact with the entire surface of the upper surface (surface opposite to the first electrode 2) 6U of the second electrode 6.
  • the organic photoelectric conversion element 100 is configured as described above, when irradiated with light, the irradiated light enters the active layer 4 and charges are generated in the active layer 4. As for the electric charges generated in the active layer 4, holes are transported from the functional layer 3 to the first electrode 2, and electrons are transported from the functional layer 5 to the second electrode 6, and are taken out through the terminals.
  • the organic photoelectric conversion element 100 includes the protective layer 8, it is difficult for oxygen and water to enter the space surrounded by the substrate 1 and the protective layer 8. Further, even if oxygen and moisture penetrate through the protective layer 8 and enter the space, the penetrated oxygen and moisture can be adsorbed by the getter layer 7. Further, even if oxygen and moisture remaining in the device during the manufacturing process of the organic photoelectric conversion device 100 exist, the remaining oxygen and moisture can be adsorbed by the getter layer 7.
  • the organic photoelectric conversion element 100 of the present embodiment the first electrode 2, the functional layer 3, the active layer 4, the functional layer 5, and the second electrode 6 can be hardly deteriorated by oxygen and moisture.
  • the second electrode 6 since the second electrode 6 is in direct contact with the getter layer 7, deterioration (particularly oxidation) of the second electrode 6 due to oxygen and water can be effectively prevented.
  • the organic photoelectric conversion element 100 is a long-life organic photoelectric conversion element that can maintain photoelectric conversion efficiency over a long period of time as compared with a conventional organic photoelectric conversion element.
  • the example in which the far side to the getter layer 7 is an anode and the near side is a cathode is shown. Conversely, the far side to the getter layer 7 is a cathode and the near side is an anode. The same effect can be obtained.
  • a photovoltaic force is generated between the electrodes of the organic photoelectric conversion element of the present invention by irradiation with light such as sunlight in the manner described above.
  • the organic photoelectric conversion element of this invention can be used as a solar cell, for example using the said photovoltaic power.
  • the organic photoelectric conversion element of the present invention is usually used as a solar battery cell of an organic thin film solar battery.
  • a plurality of solar cells may be integrated into a solar cell module (organic thin film solar cell module) and used in the form of a solar cell module. Since the organic photoelectric conversion element of the present invention has a long lifetime as described above, a solar cell including the organic photoelectric conversion element of the present invention can be expected to have a long lifetime.
  • the organic photoelectric conversion element of the present invention can be used as an organic photosensor.
  • the organic photoelectric conversion element of the present invention when light is applied to the organic photoelectric conversion element of the present invention with voltage applied between the electrodes or without application, charges are generated. Therefore, if the charges are detected as photocurrents,
  • the organic photoelectric conversion element can be operated as an organic light sensor. Furthermore, it can also be used as an organic image sensor by integrating a plurality of organic optical sensors.
  • the solar cell module can basically have the same module structure as a conventional solar cell module.
  • a solar cell module generally has a configuration in which solar cells are provided on a support substrate such as metal or ceramic, and the solar cell is covered with a filling resin, protective glass, or the like. Light can be captured through the opposite surface.
  • the solar cell module has a configuration in which a transparent material such as tempered glass is used as a support substrate and solar cells are provided on the support substrate, and light can be taken in through the transparent support substrate. It may be.
  • the configuration of the solar cell module for example, a super straight type, a substrate type, a potting type or the like module structure, a substrate integrated module structure used in an amorphous silicon solar cell, or the like is known.
  • an appropriate module structure may be appropriately selected according to the purpose of use, the place of use, the environment, and the like.
  • a super straight type and substrate type solar cell module which is a typical module structure, has a structure in which solar cells are arranged at regular intervals between a pair of support substrates.
  • One or both of the support substrates are transparent and are usually subjected to antireflection treatment.
  • Adjacent solar cells are electrically connected to each other by wiring such as metal leads and flexible wiring, and an integrated electrode is disposed on the outer edge portion of the solar cell module so that power generated in the solar cells can be taken out to the outside. It has become.
  • a layer of a filling material such as a plastic material such as ethylene vinyl acetate (EVA) may be provided as necessary for protecting the solar cells and improving the current collection efficiency.
  • the filling material may be attached after being formed into a film shape in advance, or may be cured after filling a resin at a desired position.
  • one support substrate may not be provided.
  • a surface protective layer is provided on the surface of the solar cell module on which the support substrate is not provided, for example, by covering with a transparent plastic film or by curing the resin after coating with a filling resin, thereby providing a protective function. It is preferable.
  • the periphery of the support substrate is fixed by sandwiching the solar cell module with a metal frame in order to ensure the internal sealing and the rigidity of the solar cell module. Further, a hermetic seal is usually applied between the support substrate and the frame with a sealing material.
  • the solar cell module can be used in a mode that takes advantage of the organic photoelectric conversion element.
  • an organic photoelectric conversion element can be configured as a flexible element
  • a solar cell module can be provided on a curved surface by using a flexible material as a support substrate, a filling material, a sealing material, and the like.
  • a solar cell module can also be manufactured using a coating method.
  • a coating method For example, when manufacturing a solar cell module using a flexible support such as a polymer film as a support substrate, solar cells are sequentially formed using a coating method or the like while feeding a roll-shaped flexible support, After cutting to a desired size, the solar cell module main body can be manufactured by sealing the periphery of the cut piece with a flexible and moisture-proof material.
  • a solar cell module having a module structure called “SCAF” described in Solar Energy Materials and Solar Cells, 48, p383-391 can be obtained.
  • the solar cell module using a flexible support can be used by being bonded and fixed to curved glass or the like.
  • Example 1 A glass substrate on which an ITO film having a thickness of about 150 nm was patterned as a first electrode by sputtering was prepared.
  • the prepared glass substrate was washed with an organic solvent, an alkaline detergent, and ultrapure water, dried, and then subjected to ultraviolet-ozone treatment (UV-O 3 treatment) using a UV-O 3 apparatus.
  • UV-O 3 treatment ultraviolet-ozone treatment
  • a suspension of poly (3,4) ethylenedioxythiophene / polystyrene sulfonic acid (manufactured by HC Starck B-Tech, Bytron P TP AI 4083) was prepared and filtered through a filter having a pore size of 0.5 micron.
  • the filtered suspension was spin-coated on the surface of the glass substrate on which the ITO film was formed to form a film with a thickness of 70 nm. Thereafter, the film was dried on the hot plate at 200 ° C. for 10 minutes in the atmosphere to form a functional layer.
  • polymer compound A which is an alternating polymer of the monomer represented by formula (3) and the monomer represented by formula (4), and [6,6] -phenyl C 61 butyric
  • An orthodichlorobenzene solution containing acid methyl ester (hereinafter abbreviated as “[6,6] -PCBM” as appropriate) at a weight ratio of 1: 3 was prepared.
  • the polymer compound A was 1% by weight with respect to orthodichlorobenzene.
  • the prepared solution was stirred and mixed and subjected to ultrasonic treatment.
  • the solution subjected to ultrasonic treatment was spin-coated on the functional layer, and then dried in an N 2 atmosphere. As a result, an active layer having a thickness of 100 nm was obtained.
  • the polymer compound A had a polystyrene equivalent weight average molecular weight of 17,000 and a polystyrene equivalent number average molecular weight of 5,000. Furthermore, the light absorption edge wavelength of the polymer compound A was 925 nm.
  • a functional layer is formed by forming a LiF film with a thickness of about 2.3 nm in a resistance heating vapor deposition apparatus, and subsequently forming a second electrode with a film of Al having a thickness of about 70 nm. Formed. A solution in which 5% by weight of titanium isopropoxide was dropped into acetone and mixed by stirring was prepared. The prepared solution was spin-coated on the second electrode and dried under reduced pressure to form a getter layer having a thickness of about 100 ⁇ m. Furthermore, sealing treatment was performed by adhering a glass substrate with an epoxy resin (rapid curing type araldite) as a sealing material from above the getter layer to obtain an organic photoelectric conversion element.
  • an epoxy resin rapid curing type araldite
  • Example 2 An organic photoelectric conversion device was produced in the same manner as in Example 1 except that aluminum-S-butoxide was used instead of titanium isopropoxide used in Example 1.
  • Example 3 An organic photoelectric conversion element was obtained in the same manner as in Example 1 except that the active layer was formed as described below.
  • the active layer was formed as follows. First, an orthodichlorobenzene solution containing poly (3-hexylthiophene) (hereinafter abbreviated as “P3HT” as appropriate) and [6,6] -PCBM at a weight ratio of 1: 0.8 was prepared. P3HT was 1% by weight with respect to orthodichlorobenzene. The prepared solution was stirred and mixed and subjected to ultrasonic treatment. The solution subjected to ultrasonic treatment was spin-coated on the functional layer, and then dried in an N 2 atmosphere. As a result, an active layer having a thickness of 150 nm was obtained.
  • P3HT poly (3-hexylthiophene)
  • the organic photoelectric conversion element of the present invention can be used for, for example, a solar cell, an optical sensor and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 長寿命な有機光電変換素子を提供する。有機光電変換素子100に、第一の電極2と、第二の電極6と、活性層4と、ゲッター層7とを設ける。活性層4は第一の電極2及び第二の電極6の間に設け、光の入射により電荷を生じうる層にする。ゲッター層7は第二の電極6の第一の電極2とは反対側の表面6Uに接して、酸素及び水を吸着しうる層にする。

Description

有機光電変換素子
 本発明は有機光電変換素子に関する。
 光電変換素子は光エネルギーを電気エネルギーに変換しうる素子であり、その例として太陽電池が挙げられる。代表的な太陽電池としては、シリコン系太陽電池が知られている。しかし、シリコン系太陽電池は、製造工程において高真空環境及び高圧環境を用意することになるため、製造コストが高い。このため、製造コストがシリコン系太陽電池に比べて安価な有機太陽電池が注目されている。
 しかしながら、有機太陽電池は有機材料を使用しているため、酸素及び水等により有機材料が劣化しやすく、シリコン系太陽電池と比較して寿命が短い傾向がある。そこで、有機太陽電池において長寿命化を実現するため、様々な技術開発がなされている。例えば特許文献1では、有機光電変換素子に乾燥剤からなるゲッター剤を設ける構成が記載されている。
特開2007-317565号公報
 有機光電変換素子に乾燥剤からなるゲッター剤を設ければ、有機光電変換素子内の水をゲッター剤に吸着させることができるので、有機光電変換素子内の有機材料の水による劣化を抑制して、有機光電変換素子の寿命を延ばすことができる。しかし、特許文献1記載の技術では長寿命化は十分ではなく、有機光電変換素子の寿命を更に延ばす技術が望まれていた。
 本発明は上記の課題に鑑みてなされたものであって、長寿命な有機光電変換素子を提供する。
 本発明者は、上述した課題を解決するために鋭意検討した結果、有機光電変換素子の劣化の大きな要因の一つが電極の劣化であること、並びに、電極に直接に接するようにして酸素及び水を吸着しうるゲッター層を設けることにより電極の劣化を効果的に防止できることを見出し、本発明を完成させた。
 すなわち、本発明は以下の通りである。
〔1〕 第一の電極と、第二の電極と、活性層と、ゲッター層とを備える有機光電変換素子であって、
 前記活性層は、前記第一の電極及び前記第二の電極の間に設けられて、光の入射により電荷を生じうる層であり、
 前記ゲッター層は、前記第二の電極の前記第一の電極とは反対側の表面に接しており、酸素及び水を吸着しうる層である、有機光電変換素子。
〔2〕 前記活性層がp型半導体とn型半導体とを含む〔1〕に記載の有機光電変換素子。
〔3〕 前記ゲッター層がアルコキシドを含む〔1〕又は〔2〕に記載の有機光電変換素子。
〔4〕 前記アルコキシドが、アルミニウム-s-ブトキシド及びチタンイソプロポキシドからなる群より選ばれるアルコキシドである〔3〕に記載の有機光電変換素子。
〔5〕 前記ゲッター層が、アルコキシド及び有機溶媒を含む溶液を塗布する工程を経て形成された〔3〕又は〔4〕に記載の有機光電変換素子。
図1は、本発明の一実施形態に係る有機光電変換素子の模式的な断面図である。
 1 基板
 2 第一の電極
 3 機能層
 4 活性層
 5 機能層
 6 第二の電極
 6U 第二の電極の上面(第一の電極2とは反対側の表面)
 7 ゲッター層
 8 保護層
 9 基板
 100 有機光電変換素子
 以下、本発明について実施形態及び例示物等を示して詳細に説明するが、本発明は以下に示す実施形態及び例示物等に限定されず、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。
[1.概要]
 本発明の有機光電変換素子は、第一の電極と、第二の電極と、活性層と、ゲッター層とを備える。活性層は、第一の電極及び第二の電極の間に設けられて、光の入射により電荷を生じうる層である。また、ゲッター層は、第二の電極の第一の電極とは反対側の表面に接しており、酸素及び水を吸着しうる層である。したがって、各層の並び順は、第一の電極、活性層、第二の電極及びゲッター層の順となる。ゲッター層は、基板、保護層、封止材層等を通過して有機光電変換素子の内部に浸入した酸素及び水を吸着したり、有機光電変換素子を構成する活性層等の層中に有機光電変換素子の製造過程において混入した残留酸素及び残留水分を吸着したりできるので、有機光電変換素子内の材料が酸素及び水により劣化することを防止できる。
 さらに、本発明の有機光電変換素子では、ゲッター層は第二の電極に接して設けられるため、第一の電極及び第二の電極からゲッター層までの距離が非常に近い。したがって、有機光電変換素子の劣化の主要な要因である電極の劣化(特に酸化)を効果的に防止できる。前記の電極の酸化はしばしば有機光電変換素子の劣化の最大の要因となるが、本発明の有機光電変換素子は前記電極の酸化を効果的に防止できるため、従来よりも寿命を延ばすことが可能となっている。
 また、本発明の有機光電変換素子は、第一の電極、活性層、第二の電極、及びゲッター層以外の層を備えていてもよい。通常、本発明の有機光電変換素子は、有機光電変換素子の表面を覆う保護層を備える。また、例えば、本発明の有機光電変換素子は、第一の電極と活性層との間に機能層を備えていてもよく、活性層と第二の電極との間に機能層を備えていてもよい。
 さらに、本発明の有機光電変換素子は通常は基板を備え、基板上に本発明の有機光電変換素子を構成する各層(例えば、第一の電極、活性層、第二の電極、ゲッター層、保護層及び機能層等)が積層された構造を有している。
[2.基板]
 基板は、本発明の有機光電変換素子の支持体として機能する部材である。基板としては、通常、電極を形成したり有機材料の層を形成したりする際に化学的に変化しない部材を用いる。基板の材料としては、例えば、ガラス、プラスチック、高分子フィルム、シリコン等が挙げられる。なお、基板の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 通常は基板として透明又は半透明な部材を用いるが、不透明な基板を用いることも可能である。ただし、不透明な基板を用いる場合には、当該基板とは反対側の電極(即ち、第一の電極及び第二の電極のうち、不透明な基板から遠い方の電極)が透明又は半透明であることが好ましい。
[3.第一の電極及び第二の電極]
 第一の電極及び第二の電極のうち、一方は陽極であり、他方は陰極である。第一の電極及び第二の電極の間に位置する活性層に光が進入しやすくするため、第一の電極及び第二の電極のうち少なくとも一方は透明又は半透明であることが好ましい。
 透明又は半透明の電極の例としては、導電性の金属酸化物膜、半透明の金属薄膜等が挙げられる。前記の透明又は半透明の電極の材料の例としては、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド(IZO)、NESA等の導電性材料を用いて作製された膜や、金、白金、銀、銅等が挙げられる。中でも、ITO、インジウム・亜鉛・オキサイド、酸化スズが好ましい。
 また、透明又は半透明の電極の材料として有機材料を用いることも可能である。電極の材料として使用できる有機材料の例を挙げると、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体などの導電性高分子が挙げられる。
 不透明の電極の材料としては、例えば、金属、導電性高分子等が挙げられる。その具体例を挙げると、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、前記金属のうち2種類以上の合金、1種類以上の前記金属と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン及び錫からなる群から選ばれる1種類以上の金属との合金、グラファイト、グラファイト層間化合物、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体などが挙げられる。前記の合金の具体例を挙げると、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金等が挙げられる。
 なお、電極の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 第一の電極及び第二の電極の厚みは、電極の材料の種類により異なるが、光の透過性を良好にする観点、及び、電気抵抗を小さく抑える観点から、好ましくは500nm以下であり、より好ましくは200nm以下である。なお、下限に制限は無いが、通常は10nm以上である。
 第一の電極及び第二の電極の形成方法の例を挙げると、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。また、第一の電極及び第二の電極を例えば導電性高分子によって形成する場合には、塗布法により形成してもよい。
[4.活性層]
 活性層は、光の入射により電荷を生じうる層であり、通常、電子供与性化合物であるp型半導体と電子受容性化合物であるn型半導体とを含む。本発明の有機光電変換素子は、p型半導体及びn型半導体のうち少なくとも一方、通常は両方として有機化合物を用いていることから、「有機」光電変換素子と称される。なお、p型半導体及びn型半導体は、前記の半導体のエネルギー準位のエネルギーレベルから相対的に決定される。
 活性層においては、以下のような要領で電荷が生じるようになっていると考えられる。活性層に入射した光エネルギーがn型半導体及びp型半導体の一方又は両方で吸収されると、電子と正孔(ホール)とが結合した励起子を生成する。生成した励起子が移動して、n型半導体とp型半導体とが隣接しているヘテロ接合界面に達すると、ヘテロ接合界面でのそれぞれのHOMO(最高被占軌道)エネルギー及びLUMO(最低空軌道)エネルギーとの違いにより電子と正孔が分離し、独立に動くことができる電荷(電子及び正孔)が発生する。発生した電荷は、それぞれ電極へ移動することにより、本発明の有機光電変換素子の外部へ電気エネルギー(電流)として取り出すことができるようになっている。
 光の入射により電荷を生じうる層であれば、活性層は1層のみからなる単層構造の層であってもよく、2層以上の層を備える積層構造の層であってもよい。活性層の層構成の例を挙げると、以下のような例が挙げられる。ただし、活性層の層構成は、下記の例示に限定されない。
 層構成(i) p型半導体を含有する層と、n型半導体を含有する層とを備える積層構造の活性層。
 層構成(ii) p型半導体及びn型半導体を含有する単層構造の活性層。
 層構成(iii) p型半導体を含有する層と、p型半導体及びn型半導体を含有する層と、n型半導体を含有する層とを備える積層構造の活性層。
 p型半導体としては、例えば、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、オリゴチオフェン及びその誘導体、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体等が挙げられる。
 さらに、好適なp型半導体として、下記構造式(1)で示される構造単位を有する有機高分子化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000001
 上記有機高分子化合物としては、上記構造式(1)で示される構造単位を有する化合物と、下記構造式(2)で示される化合物との共重合体がより好ましい。
Figure JPOXMLDOC01-appb-C000002
〔式(2)中、Ar及びArは、同一又は相異なり、3価の複素環基を表す。Xは、-O-、-S-、-C(=O)-、-S(=O)-、-SO-、-Si(R)(R)-、-N(R)-、-B(R)-、-P(R)-又は-P(=O)(R)-を表す。R、R、R、R、R及びRは、同一又は相異なり、水素原子、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、酸イミド基、アミノ基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、1価の複素環基、複素環オキシ基、複素環チオ基、アリールアルケニル基、アリールアルキニル基、カルボキシル基又はシアノ基を表す。R50は、水素原子、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、酸イミド基、アミノ基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、1価の複素環基、複素環オキシ基、複素環チオ基、アリールアルケニル基、アリールアルキニル基、カルボキシル基又はシアノ基を表す。R51は、炭素数6以上のアルキル基、炭素数6以上のアルキルオキシ基、炭素数6以上のアルキルチオ基、炭素数6以上のアリール基、炭素数6以上のアリールオキシ基、炭素数6以上のアリールチオ基、炭素数7以上のアリールアルキル基、炭素数7以上のアリールアルキルオキシ基、炭素数7以上のアリールアルキルチオ基、炭素数6以上のアシル基又は炭素数6以上のアシルオキシ基を表す。XとArは、Arに含まれる複素環の隣接位に結合し、C(R50)(R51)とArは、Arに含まれる複素環の隣接位に結合している。〕
 なお、p型半導体は、1種類を用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 n型半導体としては、例えば、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8-ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、C60等のフラーレン類及びその誘導体、バソクプロイン等のフェナントレン誘導体、二酸化チタン等の金属酸化物、カーボンナノチューブ等が挙げられる。中でも、二酸化チタン、カーボンナノチューブ、フラーレン及びフラーレン誘導体が好ましく、フラーレン及びフラーレン誘導体が特に好ましい。
 フラーレンの例としては、C60フラーレン、C70フラーレン、C76フラーレン、C78フラーレン、C84フラーレンなどが挙げられる。
 フラーレン誘導体の例としては、C60、C70、C76、C78及びC84等の誘導体が挙げられる。フラーレン誘導体の具体例を挙げると、以下のような構造を有する化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 また、別のフラーレン誘導体の例としては、[6,6]フェニル-C61酪酸メチルエステル(C60PCBM、[6,6]-Phenyl C61 butyric acid methyl ester)、[6,6]フェニル-C71酪酸メチルエステル(C70PCBM、[6,6]-Phenyl C71 butyric acid methyl ester)、[6,6]フェニル-C85酪酸メチルエステル(C84PCBM、[6,6]-Phenyl C85 butyric acid methyl ester)、[6,6]チェニル-C61酪酸メチルエステル([6,6]-Thienyl C61 butyric acid methyl ester)などが挙げられる。
 なお、n型半導体は、1種類を用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 活性層におけるp型半導体とn型半導体との量比は本発明の効果を損なわない限り任意である。例えば、前記の層構成(i)及び(iii)におけるp型半導体及びn型半導体の両方を含有する層においては、p型半導体100重量部に対するn型半導体の量は、好ましくは10重量部以上、より好ましくは20重量部以上であり、好ましくは1000重量部以下、より好ましくは500重量部以下である。
 活性層の厚みは、通常1nm以上、好ましくは2nm以上、より好ましくは5nm以上、特に好ましくは20nm以上であり、通常100μm以下、好ましくは1000nm以下、より好ましくは500nm以下、特に好ましくは200nm以下である。
 活性層の形成方法に制限は無く、例えば、活性層の材料(例えば、p型半導体及びn型半導体の一方又は両方)を含む液状組成物からの成膜方法、真空蒸着法等の物理蒸着法(PVD法)及び化学気相成長法(CVD法)などの気相成膜法による成膜方法などが挙げられる。なかでも、形成が容易でコストを安価にできるため、液状組成物からの成膜方法が好ましい。
 液状組成物からの成膜方法では、液状組成物を用意し、前記の液状組成物を所望の位置に成膜することにより、活性層が形成される。
 液状組成物は、通常、活性層の材料と溶媒とを含む。溶媒を含む場合、液状組成物は溶媒中に活性層の材料が分散した分散液であってもよいが、溶媒中に活性層の材料が溶解した溶液であることが好ましい。したがって、溶媒としては、活性層の材料を溶解させうる溶媒を使用することが好ましい。溶媒の例を挙げると、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、n-ブチルベンゼン、sec-ブチルベンゼン、tert-ブチルベンゼン等の不飽和炭化水素系溶媒、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素系溶媒、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化不飽和炭化水素系溶媒、テトラヒドロフラン、テトラヒドロピラン等のエーテル類系溶媒などが挙げられる。なお、溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 p型半導体及びn型半導体それぞれの液状組成物中における濃度は、通常、溶媒に対して0.1重量%以上とする。
 液状組成物の成膜方法としては、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等の塗布法が挙げられる。中でも、スピンコート法、フレキソ印刷法、グラビア印刷法、インクジェット印刷法、ディスペンサー印刷法が好ましい。
 液状組成物の成膜後、成膜された膜から必要に応じて乾燥により溶媒を除去する等の工程を行なうことにより、活性層が得られる。
 また、活性層が2層以上の積層構造を有する場合には、例えば上述した方法によって、活性層を構成する各層を順次積層するようにすればよい。
[5.ゲッター層]
 ゲッター層は、酸素及び水を吸着しうる層である。ゲッター層が酸素及び水を吸着することにより、本発明の有機光電変換素子の内部に存在する酸素及び水の量を減らして、本発明の有機光電変換素子内の材料が酸素及び水により劣化することを防止できるようになっている。さらに、本発明の有機光電変換素子では、ゲッター層は、第二の電極の第一の電極とは反対側の表面の、少なくとも一部、好ましくは全体に接している。したがって、ゲッター層は電極までの距離が近いことから電極の酸化を効果的に防止でき、特に第二の電極に接しているため第二の電極の酸化を強力に防止できる。電極の酸化は有機光電変換素子の劣化の主要な要因の一つと考えられるため、前記電極の酸化を効果的に防止することにより、本発明の有機光電変換素子は従来よりも長期にわたって光電変換効率を維持できる長寿命の有機光電変換素子となる。
 酸素及び水を吸着する機能を実現するため、ゲッター層は、酸素及び水を吸着しうる材料であるゲッター剤を含む。ゲッター剤の例としては、アルミニウム-S-ブトキシド、ナトリウムメトキシド、ナトリウムエトキシド、カリウム t-ブトキシド、カリウム t-ブトキシド等のアルコキシド等が挙げられる。中でも、塗布法によりゲッター層を形成できる点、第二の電極との親和性が高く第二の電極の酸化を効果的に防止できる点、及び、ゲッター剤自体の安定性が高い点から、アルコキシドが好ましい。アルコキシドの中でもアルミニウム-s-ブトキシド及びチタンイソプロポキシドからなる群より選ばれるアルコキシドは、特に吸水性に優れるため、特に好ましい。
 なお、ゲッター剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 ゲッター層には、本発明の効果を著しく損なわない限り、ゲッター剤以外にその他の成分を含ませてもよい。その他の成分の例を挙げると、ゲッター剤を保持するためのバインダが挙げられる。バインダとしては、例えば樹脂が挙げられ、その具体例としては、三フッ化ポリエチレン、ポリ三フッ化塩化エチレン(PCTFE)、ポリイミド、ポリカーボネート、ポリエチレンテレフタレート、脂環式ポリオレフィン、エチレン-ビニルアルコール共重合体等が挙げられる。
 また、その他の成分としては、例えば、充填剤、酸化防止剤等の添加剤も挙げられる。
 なお、その他の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 ただし、ゲッター層に占めるゲッター剤の割合は、酸素及び水を効果的に吸着する観点から、好ましくは80体積%以上100体積%以下、より好ましくは90体積%以上100体積%以下、特に好ましくは95体積%以上100体積%以下である。
 ゲッター層の厚みは、通常5μm以上、好ましくは10μm以上、より好ましくは100μm以上であり、通常500μm以下、好ましくは300μm以下である。ゲッター層が薄すぎると酸素及び水を十分に吸着できない可能性があり、厚すぎると有機光電変換素子が過度に厚くなる可能性がある。
 ゲッター層は、ゲッター剤の種類に応じて任意の方法で形成できる。例えば、ゲッター層の材料(ゲッター剤等)をスパッタリング法及び真空蒸着法等の物理蒸着法(PVD法)及び化学気相成長法(CVD法)などの気相成膜法で成膜するようにすればよい。ただし、ゲッター層の形成が容易でコストを安価にできるため、ゲッター層は塗布法によって形成することが好ましい。特に、ゲッター剤としてアルコキシドを用いる場合に、塗布法が適している。以下、ゲッター剤としてアルコキシドを用いた場合にゲッター層を塗布法で形成する方法を説明する。
 ゲッター剤としてアルコキシドを用いる場合、ゲッター層は、アルコキシド及び有機溶媒を含むゲッター層形成用の溶液を用意し、前記のゲッター層形成用の溶液を塗布する工程を経て形成することが好ましい。
 ゲッター層形成用の溶液に含まれる有機溶媒の例としては、活性層形成用の液状組成物に含まれる溶媒と同様の溶媒が挙げられる。なお、有機溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。また、ゲッター層がアルコキシド以外の成分を含む場合、通常は当該成分もゲッター層形成用の溶液に含ませるようにする。
 ゲッター層形成用の溶液における有機溶媒の量は、ゲッター剤であるアルコキシド100重量部に対して、通常1000重量部以上、好ましくは5000重量部以上、より好ましくは10000重量部以上であり、通常20000重量部以下、好ましくは15000重量部以下、より好ましくは12000重量部以下である。
 ゲッター層形成用の溶液を用意した後、当該溶液を、ゲッター層を形成しようとする所定の位置に塗布する。本発明の有機光電変換素子においてゲッター層は第二の電極に接するため、通常は第二の電極上にゲッター層形成用の溶液を塗布する。ゲッター層形成用の溶液の塗布方法の例としては、活性層形成用の液状組成物の塗布方法と同様の塗布方法が挙げられる。
 ゲッター層形成用の溶液の塗布により、ゲッター剤としてアルコキシドを含む膜が成膜される。したがって、ゲッター層形成用の溶液の塗布後に、必要に応じて、成膜された膜を乾燥させて有機溶媒を除去する等の工程を行なうことにより、アルコキシドを含むゲッター層が得られる。
[6.保護層]
 本発明の有機光電変換素子は、通常、保護層を備える。保護層は本発明の有機光電変換素子を酸素及び水等から保護する層であり、例えばガスバリア層、ガスバリア性フィルム等と呼ばれる層に当たる。通常、第一の電極、第二の電極、活性層、及びゲッター層を覆うように保護層が設けられる。したがって、通常は、保護層及び基板により囲まれる空間内に、第一の電極、第二の電極、活性層、及びゲッター層が位置するようになっている。
 保護層は、水蒸気を遮断する性質(水蒸気バリア性)または酸素を遮断する性質(酸素バリア性)を有する材料により形成することが好ましい。保護層の材料として好適な材料の例を挙げると、三フッ化ポリエチレン、ポリ三フッ化塩化エチレン(PCTFE)、ポリイミド、ポリカーボネート、ポリエチレンテレフタレート、脂環式ポリオレフィン、エチレン-ビニルアルコール共重合体等の樹脂などの有機材料、酸化ケイ素、窒化ケイ素、酸化アルミニウム、ダイヤモンドライクカーボン等の無機材料などが挙げられる。なお、保護層の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 保護層には、必要に応じて添加剤を含ませてもよい。好ましい添加剤の例を挙げると、前記のゲッター剤が挙げられる。保護層がゲッター剤を含むと保護層自身をゲッター層と同様に機能させることができるため、本発明の有機光源変換素子に浸入する酸素及び水の量を更に減少させることができる。これにより、本発明の有機光電変換素子内の材料が酸素及び水により劣化することを更に効果的に防止して、有機光電変換素子の更なる長寿命化を実現できる。
 なお、保護層に含ませる添加剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 保護層中のゲッター剤の量は、通常3体積%以上、好ましくは5体積%以上、より好ましくは10体積%以上であり、通常50体積%以下、好ましくは30体積%以下、より好ましくは25体積%以下である。ゲッター剤の量が少なすぎるとゲッター剤の効果が十分に発揮できない可能性があり、多すぎるとかえって酸素及び水を十分に遮断できない可能性がある。
 保護層の厚さは、保護層の材料の種類によるが、保護層による保護性能と製造コスト等との観点から、通常5μm以上、好ましくは10μm以上であり、通常300μm以下、好ましくは100μm以下である。
 保護層は、活性層は1層のみからなる単層構造の層であってもよく、2層以上の層を備える積層構造の層であってもよい。
 保護層は、保護層の材料の種類に応じて任意の方法で形成することができるが、例えば気相成膜法などが挙げられる。また、例えば、保護層の材料を含む液状組成物をスピンコート法、ディップ法、スプレー法等の塗布法で塗布することにより保護層を形成してもよい。さらに、例えば、予め成形したフィルム状成形物を粘着剤等で貼り付けることにより形成してもよい。
[7.機能層]
 本発明の有機光電変換素子は、第一の電極と活性層との間、及び、第二の電極と活性層との間に、機能層を備えていてもよい。機能層は、活性層で生じた電荷を電極に輸送しうる層であり、第一の電極と活性層との間の機能層は活性層で生じた電荷を第一の電極に輸送でき、第二の電極と活性層との間の機能層は活性層で生じた電荷を第二の電極に輸送できるようになっている。機能層は、第一の電極と活性層との間、及び、第二の電極と活性層との間のうち、一方に設けるようにしてもよく、両方に設けるようにしてもよい。
 活性層と陽極との間に設けられた機能層は、活性層で生じた正孔を陽極に輸送しうるようになっており、正孔輸送層又は電子ブロック層等と呼ばれることがある。一方、活性層と陰極との間に設けられた機能層は、活性層で生じた電子を陰極に輸送しうるようになっており、電子輸送層又は正孔ブロック層等と呼ばれることがある。前記の機能層を備えることにより、本発明の有効光電変換素子は、活性層で生じた正孔を陽極で取り出す効率を高めたり、活性層で生じた電子を陰極で取り出す効率を高めたり、活性層で生じた正孔が陰極に移動することを防止したり、活性層で生じた電子が陽極に移動することを防止したりすることが可能となり、光電変換効率を向上させることができる。
 機能層の材料は、活性層で生じた電荷を輸送する能力を有する材料であればよい。中でも、活性層と陽極との間の機能層には、正孔を輸送する能力を有し、電子が当該機能層に移動することを防止できる材料を含ませることが好ましい。また、活性層と陰極との間の機能層には、電子を輸送する能力を有し、正孔が当該機能層に移動することを防止できる材料を含ませることが好ましい。
 機能層の材料の例を挙げると、フッ化リチウム等のアルカリ金属又はアルカリ土類金属のハロゲン化物及び酸化物、二酸化チタン等の無機半導体、バソクプロイン、バソフェナントロリン及びそれらの誘導体、トリアゾール化合物、トリス(8-ヒドロキシキノリナート)アルミニウム錯体、ビス(4-メチル-8-キノリナート)アルミニウム錯体、オキサジアゾール化合物、ジスチリルアリーレン誘導体、シロール化合物、2,2’,2”-(1,3,5-ベンゼントリル)トリス-[1-フェニル-1H-ベンツイミダゾール](TPBI)フタロシアニン誘導体、ナフタロシアニン誘導体、ポルフィリン誘導体、N,N’-ビス(3-メチルフェニル)-(1,1’-ビフェニル)-4,4’-ジアミン(TPD)、4,4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(α-NPD)等の芳香族ジアミン化合物、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、イミダゾロン、スチルベン誘導体、ピラゾリン誘導体、テトラヒドロイミダゾール、ポリアリールアルカン、ブタジエン、4,4’,4”-トリス(N-(3-メチルフェニル)N-フェニルアミノ)トリフェニルアミン(m-MTDATA)、ポリビニルカルバゾール、ポリシラン、ポリ-3,4-エチレンジオキサイドチオフェン(PEDOT)などが挙げられる。なお、前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 機能層には、本発明の効果を著しく損なわない限り、上述した材料以外にその他の成分を含ませてもよい。
 なお、その他の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で併用してもよい。
 機能層の厚みは、通常0.01nm以上、好ましくは0.1nm以上、より好ましくは1nm以上であり、通常1000nm以下、好ましくは500nm以下、より好ましくは100nm以下である。機能層が薄すぎると上述した機能層の機能を十分に発揮できない可能性があり、厚すぎると有機光電変換素子が過度に厚くなる可能性がある。
 機能層は、例えば気相成膜法により形成してもよいが、形成が容易でコストを安価にできるため、機能層の材料を含む液状組成物を所定の位置に塗布する工程を経て形成することが好ましい。以下、液状組成物から機能層を形成する前記の方法について説明する。
 機能層形成用の液状組成物は、通常、機能層の材料と溶媒とを含む。溶媒を含む場合、液状組成物は溶媒中に機能層の材料が分散した分散液であってもよく、溶媒中に機能層の材料が溶解した溶液であってもよい。
 機能層形成用の液状組成物に含まれる溶媒の例としては、活性層形成用の液状組成物に含まれる溶媒と同様の溶媒が挙げられる。なお、溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 液状組成物における溶媒の量は、機能層の材料100重量部に対して、通常100重量部以上、好ましくは1000重量部以上、より好ましくは10000重量部以上であり、通常1000000重量部以下、好ましくは100000重量部以下である。
 機能層形成用の液状組成物を用意した後、前記の液状組成物を、機能層を形成しようとする所定の位置に塗布する。通常は、本発明の有機光電変換素子において機能層に接することになる層(通常は、第一の電極、第二の電極又は活性層)上に、前記の液状組成物を塗布する。液状組成物の塗布方法の例としては、活性層形成用の液状組成物の塗布方法と同様の塗布方法が挙げられる。
 機能層形成用の液状組成物の塗布により、機能層の材料を含む膜が成膜される。したがって、液状組成物の塗布後に、必要に応じて、成膜された膜を乾燥させて溶媒を除去する等の工程を行なうことにより、機能層が得られる。
[8.その他の層]
 本発明の有機光電変換素子は、本発明の効果を著しく損なわない限り、上述した基板、第一の電極、第二の電極、活性層、ゲッター層、保護層及び機能層以外の層を備えていてもよい。
 例えば、本発明の有光電変換素子は、封止材層を備えていてもよい。封止材層は、本発明の有機光電変換素子を外気及び塵等から保護する層である。通常、封止材層は、上述した第一の電極、第二の電極、活性層、ゲッター層、保護層及び機能層を覆う封止材の層として形成される。したがって、通常は、封止剤層及び基板によって形成される空間内に、第一の電極、第二の電極、活性層、ゲッター層、保護層及び機能層が位置するようになっている。
 封止材としては、無機封止材を用いてもよく、有機封止材を用いてもよい。無機封止材の例を挙げると、酸化ケイ素、窒化ケイ素、酸窒化ケイ素、炭化ケイ素等のケイ素系化合物、酸化アルミニウム、窒化アルミニウム、珪酸アルミニウム等のアルミニウム系化合物、酸化ジルコニウム、酸化タンタル、酸化チタン等の金属酸化物、窒化チタン等の金属窒化物、ダイヤモンドライクカーボンなどが挙げられる。また、有機封止材の例を挙げると、光硬化性樹脂及び熱硬化性樹脂等が挙げられ、好適な例としてはシリコーン樹脂、エポキシ樹脂、フッ素系樹脂、ワックスなどが挙げられる。
 なお、封止材は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 封止材層の厚さは、封止材の種類によるが、封止材層による保護性能と製造コスト等との観点から、通常1μm以上、好ましくは10μm以上であり、通常100μm以下である。
 封止材層の形成方法は、例えば無機封止材を用いた封止材層の場合は気相成膜法などが挙げられ、例えば有機封止材を用いた封止材層の場合はスピンコート法、ディップ法、スプレー法等の塗布法並びに予め成形したフィルム状成形物を貼り付ける方法などが挙げられる。
 ところで、封止材層には、必要に応じて添加剤を含ませてもよい。好ましい添加剤の例を挙げると、ゲッター剤、波長変換剤及び紫外線吸収剤等が挙げられる。なお、添加剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[9.実施形態]
 以下、本発明の有機光電変換素子の好ましい実施形態について、図面を示して説明する。図1は本発明の一実施形態に係る有機光電変換素子の模式的な断面図である。なお、以下の実施形態では、有機光電変換素子の基板を水平に置いた様子を示して説明する。
 図1に示す有機光電変換素子100は、基板1上に、陽極として機能する第一の電極2、正孔輸送層として機能する機能層3、可視光の入射により電荷を発生しうる活性層4、電子輸送層として機能する機能層5、陰極として機能する第二の電極6、及び、酸素及び水を吸着しうるゲッター層7を、前記の順に備える。第一の電極2及び第二の電極6には図示しない端子が接続され、電気を外部に取り出せるようになっている。また、第一の電極2、機能層3、活性層4、機能層5、第二の電極6及びゲッター層7は、前記の端子以外の部分が保護層8で被覆されることにより封止され、保護層8上には基板9が設けられている。したがって、有機光電変換素子100は、第一の電極2と、第二の電極6と、機能層3及び機能層5を介して第一の電極2及び第二の電極6の間に設けられた活性層4と、ゲッター層7とを備える。また、第二の電極6の上側の表面(第一の電極2とは反対側の表面)6Uの全面にゲッター層7が接している。
 有機光電変換素子100は以上のように構成されているため、光が照射されると、照射された光は活性層4に入射し、活性層4において電荷が生じる。活性層4で生じた電荷は、正孔が機能層3から第一の電極2に輸送され、電子が機能層5から第二の電極6に輸送されて、それぞれ端子を通じて外部に取り出される。
 また、有機光電変換素子100は保護層8を備えているので、基板1及び保護層8で囲まれた空間内に酸素及び水が浸入し難くなっている。また、保護層8を透過して前記空間内に酸素及び水分が浸入しても、浸入した酸素及び水分はゲッター層7により吸着できる。さらに、有機光電変換素子100の製造過程で素子内に残留した酸素及び水分が存在したとしても、前記の残留した酸素及び水分もゲッター層7で吸着できる。
 したがって、本実施形態の有機光電変換素子100によれば、第一の電極2、機能層3、活性層4、機能層5及び第二の電極6の酸素及び水分による劣化を進行しにくくできる。中でも、第二の電極6はゲッター層7に直接に接していることから、第二の電極6の酸素及び水による劣化(特に、酸化)を効果的に防止できる。このため、有機光電変換素子100は、従来の有機光電変換素子に比べて長期間にわたって光電変換効率を維持できる長寿命の有機光電変換素子となっている。
 なお、本実施形態に係る有機光電変換素子100ではゲッター層7に遠い方を陽極、近い方を陰極とした例を示したが、逆にゲッター層7に遠い方を陰極、近い方を陽極としても同様の効果を得ることができる。
[10.有機光電変換素子の用途]
 本発明の有機光電変換素子の電極間には、上述した要領によって、太陽光等の光の照射により光起電力が発生する。前記の光起電力を利用して、本発明の有機光電変換素子は、例えば太陽電池として使用できる。太陽電池として使用する場合、通常、本発明の有機光電変換素子は有機薄膜太陽電池の太陽電池セルとして使用される。また、太陽電池セルは、複数個集積することによって太陽電池モジュール(有機薄膜太陽電池モジュール)とし、太陽電池モジュールの態様で使用してもよい。本発明の有機光電変換素子は上述したように長寿命であるため、本発明の有機光電変換素子を備える太陽電池は長寿命化が期待できる。
 また、本発明の有機光電変換素子は、有機光センサーとして使用することもできる。例えば、電極間に電圧を印加した状態又は無印加の状態で本発明の有機光電変換素子に光を照射すると電荷が生じるため、前記の電荷を光電流として検出するようにすれば、本発明の有機光電変換素子を有機光センサーとして動作させることが可能となる。さらに、有機光センサーを複数個集積することにより、有機イメージセンサーとして用いることもできる。
[11.太陽電池モジュール]
 本発明の有機光電変換素子を太陽電池セルとして用いて太陽電池モジュールを構成する場合、当該太陽電池モジュールは、従来の太陽電池モジュールと基本的には同様のモジュール構造をとりうる。太陽電池モジュールは、一般的には金属、セラミック等の支持基板の上に太陽電池セルが設けられ、前記太陽電池セルの上を充填樹脂や保護ガラス等で覆う構成を有し、支持基板とは反対側の面を通じて光を取り込めるようになっている。また、太陽電池モジュールは、支持基板として強化ガラス等の透明材料を用い、前記の支持基板の上に太陽電池セルを設けた構成を有し、前記の透明の支持基板を通じて光を取り込めるようになっていてもよい。
 太陽電池モジュールの構成としては、例えば、スーパーストレートタイプ、サブストレートタイプ、ポッティングタイプ等のモジュール構造、アモルファスシリコン太陽電池等で用いられる基板一体型モジュール構造などが知られている。本発明の有機光電変換素子を用いた太陽電池モジュールは、使用目的、使用場所及び環境などに応じて、適宜、適切なモジュール構造を選択すればよい。
 例えば、代表的なモジュール構造であるスーパーストレートタイプ及びサブストレートタイプの太陽電池モジュールでは、一対の支持基板の間に一定間隔に太陽電池セルが配置された構造を有している。前記支持基板のうち片方又は両方は透明であり、通常、反射防止処理を施されている。また、隣り合う太陽電池セル同士は金属リード及びフレキシブル配線等の配線により電気的に接続され、太陽電池モジュールの外縁部には集積電極が配置され、太陽電池セルで発生した電力を外部に取り出せるようになっている。
 支持基板と太陽電池セルとの間には、太陽電池セルの保護及び集電効率向上のため、必要に応じてエチレンビニルアセテート(EVA)等のプラスチック材料などの充填材料の層を設けてもよい。前記の充填材料は、予めフィルム状に成形してから装着してもよく、樹脂を所望の位置に充填させてから硬化させるようにしてもよい。
 また、例えば外部からの衝撃が少ない場所など、表面を硬い素材で覆う必要のない場所において太陽電池モジュールを使用する場合には、片方の支持基板を設けないようにしてもよい。ただし、太陽電池モジュールの支持基板を設けていない方の表面には、例えば透明プラスチックフィルムで覆ったり、充填樹脂で被覆後に樹脂を硬化させたりすることで表面保護層を設け、保護機能を付与することが好ましい。
 さらに、通常、支持基板の周囲は、内部の密封及び太陽電池モジュールの剛性を確保するため、金属製のフレームで太陽電池モジュールを挟み込むようにして固定する。また、支持基板とフレームとの間は、通常は封止材料で密封シールを施す。
 有機材料を用いた光電変換素子である本発明の有機光電変換素子を備えるため、前記の太陽電池モジュールは、有機光電変換素子の利点を活かした態様で使用することも可能である。例えば、有機光電変換素子は可撓性の素子として構成できるため、支持基板、充填材料及び封止材料等として可撓性の素材を用いれば、曲面の上に太陽電池モジュールを設けることができる。
 また、有機光電変換素子は塗布法を利用して低コストで製造できるため、太陽電池モジュールも塗布法を用いて製造可能である。例えば、支持基板としてポリマーフィルム等のフレキシブル支持体を用いて太陽電池モジュールを製造する場合、ロール状のフレキシブル支持体を送り出しながら塗布法等を用いて順次太陽電池セルを形成し、フレキシブル支持体を所望のサイズに切断した後、切り出した切断片の周縁部をフレキシブルで防湿性のある素材でシールすることにより、太陽電池モジュール本体を製造できる。さらに、例えばSolar Energy Materials and Solar Cells, 48,p383-391記載の「SCAF」と呼ばれるモジュール構造を有する太陽電池モジュールを得ることもできる。
 また、フレキシブル支持体を用いた太陽電池モジュールは、曲面ガラス等に接着固定して使用することもできる。
 以下、実施例を示して本発明について具体的に説明するが、本発明は以下の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。
[評価方法]
 以下に説明する実施例及び比較例では、2mm×2mmの正四角形の有機光電変換素子を製造した。製造された有機光電変換素子について、ソーラシミュレーター(分光計器製、商品名:CEP-2000型、放射照度100mW/cm)を用いて一定の光を照射し、発生する電流と電圧を測定して、光電変換効率を評価する。
[実施例1]
 スパッタ法により第一の電極として膜厚約150nmのITO膜がパターニングされたガラス基板を用意した。用意したガラス基板を、有機溶媒、アルカリ洗剤、超純水で洗浄し、乾かし、UV-O装置にて紫外線-オゾン処理(UV-O処理)を行なった。
 ポリ(3,4)エチレンジオキシチオフェン/ポリスチレンスルフォン酸(HCスタルクビーテック社製、Bytron P TP AI 4083)の懸濁液を用意し、孔径0.5ミクロンのフィルターでろ過した。濾過した懸濁液を、前記ガラス基板のITO膜が形成された面にスピンコートして、70nmの厚みで成膜した。その後、大気中においてホットプレート上で200℃で10分間乾燥させて、機能層を形成した。
 次に、式(3)で表される単量体と式(4)で表される単量体との交互重合体である高分子化合物Aと、[6,6]-フェニルC61ブチリックアシッドメチルエステル(以下、適宜「[6,6]-PCBM」と略称する。)とを重量比1:3で含むオルトジクロロベンゼン溶液を調製した。なお、高分子化合物Aはオルトジクロロベンゼンに対して1重量%とした。調製した溶液について攪拌混合を行い、超音波処理を施した。超音波処理を施した溶液を、前記の機能層上にスピンコートした後、N雰囲気中で乾燥を行った。これにより、厚み100nmの活性層を得た。なお、高分子化合物Aは、ポリスチレン換算の重量平均分子量が17000であり、ポリスチレン換算の数平均分子量が5000であった。さらに、高分子化合物Aの光吸収端波長は、925nmであった。
Figure JPOXMLDOC01-appb-C000004
 さらに、前記活性層上に、抵抗加熱蒸着装置内にて、LiFを厚み約2.3nmで成膜して機能層を形成し、続いてAlを厚み約70nmで成膜して第二の電極を形成した。
 チタンイソプロポキシドをアセトンに5重量%滴下し、攪拌混合した溶液を用意した。用意した溶液を、第二の電極上にスピンコートし、減圧乾燥することにより、厚み100μm程度のゲッター層を形成した。
 さらに、ゲッター層の上から封止材としてエポキシ樹脂(急速硬化型アラルダイト)にてガラス基板を接着することで封止処理を施し、有機光電変換素子を得た。
[実施例2]
 実施例1に用いたチタンイソプロポキシドの代わりにアルミニウム-S-ブトキシドを用いたこと以外は実施例1と同様に有機光電変換素子を作製した。
[実施例3]
 活性層を、以下に説明する要領で形成したこと以外は実施例1と同様にして、有機光電変換素子を得た。
 活性層は、次の要領で形成した。まず、ポリ(3-ヘキシルチオフェン)(以下、適宜「P3HT」と略称する。)と[6,6]-PCBMとを重量比1:0.8で含むオルトジクロロベンゼン溶液を調製した。なお、P3HTはオルトジクロロベンゼンに対して1重量%とした。調製した溶液について攪拌混合を行い、超音波処理を施した。超音波処理を施した溶液を、前記の機能層上にスピンコートした後、N雰囲気中で乾燥を行った。これにより、厚み150nmの活性層を得た。
[比較例1]
 ゲッター層を形成しなかったこと以外は実施例1と同様にして、有機光電変換素子を得た。
[比較例2]
 ゲッター層を形成しなかったこと以外は実施例3と同様にして、有機光電変換素子を得た。
[評価結果]
 実施例1から3、並びに比較例1及び2のそれぞれについて、有機光電変換素子の作製直後の変換効率および有機光電変換素子の作製から24時間後の変換効率を求め、作製から24時間後の変換効率を作製直後の変換効率で割ることにより維持率を算出した。結果を下記の表に示す。実施例1、2及び3で製造した有機光電変換素子は、比較例1及び2で製造した有機光電変換素子に比べて、長期間にわたって光電変換効率を維持することができた。すなわち、実施例1から3の有機光電変換素子は、比較例1及び2の有機光電変換素子よりも長寿命であった。
Figure JPOXMLDOC01-appb-T000005
 本発明の有機光電変換素子は、例えば太陽電池、光センサー等に用いることができる。

Claims (5)

  1.  第一の電極と、第二の電極と、活性層と、ゲッター層とを備える有機光電変換素子であって、
     前記活性層は、前記第一の電極及び前記第二の電極の間に設けられて、光の入射により電荷を生じうる層であり、
     前記ゲッター層は、前記第二の電極の前記第一の電極とは反対側の表面に接しており、酸素及び水を吸着しうる層である、有機光電変換素子。
  2.  前記活性層がp型半導体とn型半導体とを含む請求項1に記載の有機光電変換素子。
  3.  前記ゲッター層がアルコキシドを含む請求項1に記載の有機光電変換素子。
  4.  前記アルコキシドが、アルミニウム-s-ブトキシド及びチタンイソプロポキシドからなる群より選ばれるアルコキシドである請求項3に記載の有機光電変換素子。
  5.  前記ゲッター層が、アルコキシド及び有機溶媒を含む溶液を塗布する工程を経て形成された請求項3に記載の有機光電変換素子。
PCT/JP2010/068946 2009-10-30 2010-10-26 有機光電変換素子 WO2011052572A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-250770 2009-10-30
JP2009250770 2009-10-30

Publications (1)

Publication Number Publication Date
WO2011052572A1 true WO2011052572A1 (ja) 2011-05-05

Family

ID=43921996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068946 WO2011052572A1 (ja) 2009-10-30 2010-10-26 有機光電変換素子

Country Status (2)

Country Link
JP (1) JP5608040B2 (ja)
WO (1) WO2011052572A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150303318A1 (en) * 2012-01-06 2015-10-22 Hitachi Chemical Company, Ltd. Composition for forming passivation film, semiconductor substrate provided with passivation film and production method therefor, and photovoltaic cell element and production method therefor
CN111430549A (zh) * 2020-03-24 2020-07-17 杭州纤纳光电科技有限公司 一种钙钛矿太阳能电池及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017065058A1 (ja) * 2015-10-16 2017-04-20 住友化学株式会社 有機光電変換素子

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198832A (ja) * 1991-09-30 1993-08-06 Canon Inc 太陽電池
JP2006068729A (ja) * 2004-08-02 2006-03-16 Dynic Corp 透明性乾燥剤
JP2009099805A (ja) * 2007-10-17 2009-05-07 Komatsu Seiren Co Ltd 有機薄膜太陽電池用ホットメルト型部材及び有機薄膜太陽電池素子筐体封止パネル

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009522818A (ja) * 2006-01-04 2009-06-11 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 光電池用不動態化層
JP2010034489A (ja) * 2008-06-30 2010-02-12 Mitsubishi Chemicals Corp 膜状太陽電池及び太陽電池パネル

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198832A (ja) * 1991-09-30 1993-08-06 Canon Inc 太陽電池
JP2006068729A (ja) * 2004-08-02 2006-03-16 Dynic Corp 透明性乾燥剤
JP2009099805A (ja) * 2007-10-17 2009-05-07 Komatsu Seiren Co Ltd 有機薄膜太陽電池用ホットメルト型部材及び有機薄膜太陽電池素子筐体封止パネル

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150303318A1 (en) * 2012-01-06 2015-10-22 Hitachi Chemical Company, Ltd. Composition for forming passivation film, semiconductor substrate provided with passivation film and production method therefor, and photovoltaic cell element and production method therefor
CN111430549A (zh) * 2020-03-24 2020-07-17 杭州纤纳光电科技有限公司 一种钙钛矿太阳能电池及其制备方法
CN111430549B (zh) * 2020-03-24 2023-02-21 杭州纤纳光电科技有限公司 一种钙钛矿太阳能电池及其制备方法

Also Published As

Publication number Publication date
JP2011119684A (ja) 2011-06-16
JP5608040B2 (ja) 2014-10-15

Similar Documents

Publication Publication Date Title
JP5553727B2 (ja) 有機光電変換素子及びその製造方法
JP5608041B2 (ja) 有機光電変換素子及び有機光電変換モジュール
WO2011052571A1 (ja) 有機光電変換素子
WO2011052573A1 (ja) 有機光電変換素子
WO2011052565A1 (ja) 有機光電変換素子
US20120216866A1 (en) Organic photovoltaic cell
US20120211741A1 (en) Organic photovoltaic cell
KR101033304B1 (ko) 발광특성을 가지는 유기 태양전지 및 그 제조방법
JP2014053383A (ja) タンデム型の有機光電変換素子およびこれを用いた太陽電池
JP5608040B2 (ja) 有機光電変換素子
JP5715796B2 (ja) 有機光電変換素子の製造方法
JP5553728B2 (ja) 有機光電変換素子
WO2011052580A1 (ja) 有機光電変換素子及びその製造方法
WO2012121274A1 (ja) 光電変換素子の製造方法
WO2011052579A1 (ja) 有機光電変換素子及びその製造方法
JP2013077760A (ja) 有機光電変換素子およびこれを用いた太陽電池
JP2011054947A (ja) 光電変換素子用電極バッファー材料ならびにこれを用いた光電変換素子
JP7166756B2 (ja) 有機光電変換素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826704

Country of ref document: EP

Kind code of ref document: A1