はてなキーワード: date.とは
First dates can be exciting and nerve-wracking all at once. You’re meeting someone new, learning about their interests, and trying to figure out if there’s chemistry between you. And then there’s flirting, that delicate dance of showing someone you’re interested without being too forward or awkward.
Flirting doesn’t have to be a high-pressure situation. In fact, it can be the most fun part of getting to know someone. Whether you're meeting someone on MixerDates or any other platform, the most important thing is to be genuine, stay calm, and let the connection develop naturally.
If you’ve ever found yourself wondering how to flirt on a first date without feeling uncomfortable, you’re not alone. Everyone has their awkward moments, but the more you understand the art of flirting, the easier it becomes. In this article, we’ll break down how to flirt in a way that feels natural, exciting, and authentic to who you are. So, let's dive in and learn how to make the most of your first date experience—without overthinking it.
When it comes to flirting, confidence is key. But what does it really mean to be confident on a first date? Confidence doesn’t mean you need to be perfect, or even outgoing—it simply means being comfortable in your own skin and showing up as your authentic self.
Have you ever noticed how people are drawn to those who radiate self-assurance? It’s not about bragging or dominating the conversation—it’s about presenting yourself with ease. If you feel good about yourself, it will naturally show. A great smile, good posture, and eye contact can go a long way in making a good first impression.
For instance, think about the last time someone walked into a room and immediately caught your attention—not because they were the most attractive person in the room, but because of their energy. They were confident, they were present, and they made you feel at ease. That’s the kind of confidence you want to project on your date.
When you're confident, you're not worried about saying the perfect thing. Instead, you focus on enjoying the moment, making the other person feel comfortable, and letting the connection happen naturally. That’s the magic of confidence—it allows you to be present, fun, and, most importantly, yourself.
Let’s face it—no one wants to feel like they’re being “worked” or put through a game. That’s why subtlety is such a powerful tool when it comes to flirting. It's all about showing interest without being over-the-top or too obvious.
Flirting doesn’t always mean complimenting someone non-stop or using cheesy pickup lines. In fact, the most successful flirting is the kind that happens behind the scenes—subtle, playful, and lighthearted. Think about the little moments, like a teasing comment about how they always order the same thing at a restaurant or the way you laugh at a silly joke they make.
The key is to find a balance. A simple smile or a playful comment can convey interest without being too much. For example, if your date tells you they love hiking but they tend to get lost easily, you could say something like, “So, you’re telling me you need a personal guide? I could get behind that!” It’s lighthearted, humorous, and most importantly, it keeps the conversation fun without putting too much pressure on the situation.
By keeping it subtle, you allow your date to feel at ease. It takes the pressure off them to be perfect and allows both of you to enjoy the interaction more naturally. Flirting doesn’t need to be a performance—it’s about creating an environment where both of you can feel comfortable and authentic.
Now, let’s talk about something incredibly important in the flirting game: active listening. When we’re on a date, we often get caught up in thinking about what to say next, how we’re coming across, or if we’re being interesting enough. But the best way to make an impression? Truly listening to your date.
Active listening means you’re fully engaged in the conversation, giving your date your full attention and responding thoughtfully. It’s about showing that you care about what they’re saying and that you’re genuinely interested in getting to know them better. When you listen actively, you’re also giving them space to open up, and that can create an immediate connection.
For example, if your date mentions they recently traveled to Japan, instead of simply saying, “That’s cool!” you could follow up with something like, “What was the most memorable experience you had there?” This shows that you’re not just hearing their words but are genuinely curious and invested in their experiences. It’s a great way to build rapport and let them know you’re not just there to impress them—you’re there to connect.
While your words are important, body language often speaks louder than anything you can say. Whether you realize it or not, your body is constantly communicating how you feel. How you sit, stand, and move tells your date whether you’re relaxed, engaged, or distracted.
Small gestures can go a long way in flirting. A light touch on the arm, a subtle lean in when they’re speaking, or maintaining good eye contact—all these body language cues help signal your interest. And the great thing is, when done naturally, these cues can be just as effective as words.
For example, if you’re sitting at a café on your date and you lean in slightly when they’re sharing a funny story, you’re not just showing that you’re interested—you’re inviting them into your space. It’s an invitation to connect further. And when they respond by leaning in too, that’s when the magic happens—the unspoken connection that tells you both that there’s potential for more.
Flirting through body language doesn’t mean making grand gestures or being overly touchy. It’s about being present and showing that you’re engaged with your date in a subtle, but meaningful way.
It’s easy to get caught up in overthinking how to flirt or trying to figure out if your date is into you. But here’s a secret—when you let go of the pressure and allow yourself to have fun, everything flows much more naturally. Flirting on a first date doesn’t need to feel like a test or an assignment. It’s supposed to be a fun, lighthearted experience that sets the stage for more great dates ahead.
When was the last time you had a genuinely fun date? Was it when you were trying too hard to impress, or when you were both laughing, chatting, and enjoying each other's company? Flirting becomes effortless when you're present, enjoying the moment, and letting the connection grow naturally.
Sometimes, it's the small moments—like sharing a laugh or swapping embarrassing stories—that make a first date truly special. When you focus on having fun, you create an environment where both of you can relax, flirt, and let the chemistry grow. That’s the secret to a great date.
One of the best things about using a platform like MixerDates is that it takes the guesswork out of the equation. By connecting with someone who already shares your interests and values, you’ve got a head start on making a real connection. No more swiping through countless profiles hoping for a spark—on MixerDates, you already know there’s something in common.
When you’re already on the same page with your date, flirting comes more easily. There’s less of that awkward, “Are we even on the same wavelength?” feeling, and more of the fun, “Wow, we really click!” vibe. Whether you’re talking about favorite hobbies, movies, or life goals, the conversation flows naturally, making the flirting feel effortless.
If you're looking for a place to meet like-minded people and build genuine connections, MixerDates is the perfect platform. It's a great place to find someone who appreciates you for who you are and who you can naturally flirt with, without the stress.
Flirting on a first date is all about confidence, connection, and fun. When you let go of the pressure and focus on enjoying the experience, the chemistry will naturally follow. Remember, the best way to flirt is by being yourself—let your personality shine through, listen with intention, and embrace the moment.
And if you’re ready to meet someone new, who’s just as interested in making a connection as you are, MixerDates is the perfect place to start. So go ahead, take the leap, and see where it leads. Who knows? Your next great connection might be just a click away.
Sign up for MixerDates today and start your journey to exciting first dates and meaningful connections!
Please consider the histroy of humanity from biological perpsecitve and current known fact in nearby universe, which expo-planet (from the Sol system perspective) is most likely to have civlizaed society? Please add percentage next to it in the chart
ChatGPT
Reasoned about exoplanet civilization likelihoodを28 秒行う
Evaluating planetary prospects
OK, I’m looking at the likelihood of a civilized society on an exoplanet within our Solar System. I’ll consider biological history and current space knowledge, aiming to identify the most promising candidate.
Identifying potential candidates
I'm considering exoplanets like Proxima Centauri b and TRAPPIST-1e, which might suggest they are within or observed from our Solar System.
Assessing potential candidates
I’m evaluating Proxima Centauri b, Barnard's Star, LHS 1140, and TRAPPIST-1, focusing on their habitable zones and available data. The Drake equation might help estimate their civilized society likelihoods.
Identifying promising exoplanets
I’m noting key exoplanets like Proxima Centauri b and TRAPPIST-1, which have Earth-like characteristics and are in habitable zones. This narrows down the potential candidates for advanced civilizations.
I'm gathering info on planets like Proxima Centauri b and TRAPPIST-1, considering factors like magnetic fields, atmospheres, and proximity to G-type stars for their potential to support advanced civilizations.
Evaluating exoplanet prospects
I'm noting that Proxima Centauri b, despite being close and around a red dwarf star, might support life if it has a magnetic field and atmosphere. This makes me think about its potential.
Charting probabilities
I'm estimating civilization probabilities for exoplanets like Proxima Centauri b and TRAPPIST-1 e, using speculative percentages based on the Drake equation and the lack of evidence for intelligent life.
I'm crafting a chart with exoplanet names and civilization likelihood percentages, grounded in the long timeline of life's evolution, despite the speculative nature of these figures.
Identifying exoplanet contenders
I’m evaluating exoplanets like Proxima Centauri b, TRAPPIST-1 e, and Kepler-186f, considering their star types and distances, to gauge their potential for supporting advanced civilizations from our solar system's viewpoint.
Weighing proximity and observation
I'm leaning towards Proxima Centauri b due to its closeness and observational potential, despite concerns about its flare star dynamics. TRAPPIST-1 e, f, or g are also worth considering.
I'm focusing on exoplanets like Proxima Centauri b, Ross 128 b, LHS 1140 b, TRAPPIST-1 e/f/g, and K2-18b, aiming to chart their likelihood of hosting a civilized society based on current knowledge.
Assessing exoplanet potentials
I'm gathering speculative probabilities for exoplanets like Proxima Centauri b and TRAPPIST-1 e/f/g, using the Drake equation and current understanding, to better estimate their chances of hosting a civilized society.
Refining speculative probabilities
I’m refining speculative probabilities for exoplanets, including Proxima Centauri b and TRAPPIST-1 e/f/g, to estimate their chances of hosting a civilized society, considering Earth's long biological history.
Refining odds
I'm considering the astronomical timeline for intelligent life on Earth, leading me to assign even lower speculative odds for exoplanets like Proxima Centauri b and TRAPPIST-1 e.
I’m crafting a simplified chart with arbitrary percentages, clearly noting the speculative nature and lack of scientific data, while considering the target audience's basic understanding of the topic.
I’m charting arbitrary percentages for exoplanets, clarifying their speculative nature, and ensuring the data is accessible for young audiences with minimal scientific detail.
Crafting a chart
I’m creating a markdown table with speculative percentages for the likelihood of civilized life on exoplanets, emphasizing their purely theoretical nature and considering the understanding level of an 8-year-old.
Integrating speculative analysis
I’m mapping out a markdown chart with speculative percentages for the likelihood of a civilized society on exoplanets, mindful of the complexity and simplifying for an 8-year-old's understanding.
I’m piecing together markdown for exoplanets, noting Proxima Centauri b's reduced civilized life chance due to the red dwarf's activity. This inclusion highlights the speculative nature of the analysis.
Piecing together speculative odds
I’m detailing a markdown chart for audience-friendly exoplanet likelihoods, considering environmental challenges and adding a disclaimer about the speculative nature and lack of evidence.
Piecing together
I’m leaning towards Proxima Centauri b for its proximity and silent star, but I’ll add a speculative chart ranking nearby exoplanets, noting their advanced civilizations' hypothetical likelihood.
Assessing civilization probabilities
I'm emphasizing the slow emergence of intelligent life on Earth, which suggests that the odds of any habitable planet developing a complex civilization might be as low as a few percent.
Below is a very speculative chart that—based on what we know about Earth’s long, winding path from simple life to a “civilized society” and our limited observations of nearby exoplanets—gives some fun, made‑up percentage chances for a few of our best candidate exoplanets. Remember: Scientists have not yet found any proof of life (let alone advanced civilizations) on any exoplanet. These numbers are just playful estimates to help you think about the ideas!
Speculative Chances of Finding an Advanced Civilization on Nearby Exoplanets
Exoplanet Estimated Likelihood of a Civilized Society
Proxima Centauri b ~2%
LHS 1140 b ~0.5%
How Did We (Very Roughly) Guess These Numbers?
Earth’s Example:
On Earth, life began as simple single‑celled organisms and took billions of years to evolve into a species that built complex societies. This long journey suggests that—even if a planet is in the “habitable zone” (where liquid water could exist)—developing an advanced, civilized society might be rare.
Proxima Centauri b:
This is the closest exoplanet to us. Even though its star (Proxima Centauri) is a red dwarf that sometimes sends out strong flares (which might harm life), its closeness makes it one of our most interesting candidates. That’s why we give it a slightly higher guess (~2%).
These planets are part of a group orbiting a very cool star. Their environments might be challenging (for example, they could be tidally locked, meaning one side always faces the star), so the chance of a complex, advanced civilization might be a bit lower.
LHS 1140 b:
This planet is promising in some ways but is a little farther away and around a dimmer star, so our playful estimate is even lower.
All of these percentages are extremely rough guesses based on what little we understand about the conditions for life and intelligence. Scientists use ideas like the Drake Equation to think about these chances—but until we have concrete evidence, these numbers remain just for fun and imagination.
Enjoy exploring these ideas—and remember, space is full of mysteries waiting to be discovered!
あなた:
Please examine the Drake Equation itself and see if this euqation is acculate or more opition in the equation you will use
ChatGPT
Reasoned about the Drake Equationを6 秒行う
re-examining the Drake Equation
evaluating the Drake Equation's value
OK, let me see. The Drake Equation isn't a precise formula; it's more of a guiding heuristic that tackles numerous uncertainties regarding extraterrestrial civilizations.
Thinking through the Drake Equation, I’m evaluating its conceptual nature, its uncertain parameters, and its criticism to conclude on its reliability as an accurate predictive model.
Understanding the Drake Equation
I’m mapping out the Drake Equation as a conceptual guide, detailing its parameters, which are often based on estimates or opinions, to evaluate its reliability for predicting extraterrestrial civilizations.
The Drake Equation is a famous formula that was created to help scientists think about the many factors involved in estimating the number of detectable extraterrestrial civilizations in our galaxy. However, when we look at the equation closely, we see that it is more of a conceptual framework or heuristic tool than a precise, predictive formula. Let’s break down why:
The equation is usually written as:
𝑁
=
𝑅
∗
×
𝑓
𝑝
×
𝑛
𝑒
×
𝑓
𝑙
×
𝑓
𝑖
×
𝑓
𝑐
×
𝐿
N=R
∗
×f
p
×n
e
×f
l
×f
i
×f
c
×L
Where:
𝑅
∗
R
∗
: The average rate of star formation per year in our galaxy.
𝑓
𝑝
f
p
: The fraction of those stars that have planetary systems.
𝑛
𝑒
n
e
: The average number of planets that could potentially support life per star with planets.
𝑓
𝑙
f
l
: The fraction of those planets where life actually develops.
𝑓
𝑖
f
i
: The fraction of planets with life where intelligent life evolves.
𝑓
𝑐
f
c
: The fraction of civilizations that develop technology that releases detectable signals into space.
𝐿
L: The length of time such civilizations release detectable signals.
Why the Drake Equation Is More of a Guideline Than a Precise Formula
Uncertain Inputs:
𝑅
∗
R
∗
𝑓
𝑝
f
p
(fraction of stars with planets), have become better known through modern astronomy.
The parameters related to the development of life and intelligence—
𝑓
𝑙
f
l
,
𝑓
𝑖
f
i
,
𝑓
𝑐
f
c
, and
𝐿
L—are based on very limited data. For example, Earth is the only planet we know where life has developed, so we have no way to compare or derive a statistically robust estimate for these factors. This means that the values chosen for these parameters are largely subjective estimates or educated guesses.
Wide Ranges of Possible Values:
Because many of these factors are not well-constrained, if you change one of the more uncertain parameters even slightly, the final estimate for
𝑁
N (the number of civilizations) can vary by many orders of magnitude. This wide range shows that the equation can lead to very different outcomes based on personal or theoretical assumptions.
The Drake Equation was never meant to provide a precise answer. Instead, it serves as a way to organize our thinking about what conditions might be necessary for the development of extraterrestrial civilizations. It encourages discussion about the relative importance of different factors and highlights where our scientific knowledge is limited.
Is the Drake Equation Accurate or More Opinion-Based?
Accurate?
In the sense of being a strict mathematical model with well-defined inputs and predictable outputs, the Drake Equation is not accurate. Its accuracy is limited by the extreme uncertainties in several of its key parameters.
Many of the terms in the equation, especially those concerning the evolution of life and intelligence, are based on opinion, interpretation, and the single example of Earth. Therefore, while the structure of the equation is logical, the numbers you put into it (and hence the final result) are often more reflective of our current opinions and assumptions than of robust empirical data.
The Drake Equation is a valuable tool for framing the question of extraterrestrial life. It helps scientists and enthusiasts break down a complex problem into smaller, more manageable questions. However, because several of its factors are highly uncertain and subject to personal interpretation, it is more of a conceptual guide—or even a way to stimulate discussion—than a formula that provides a definitive, accurate prediction of the number of extraterrestrial civilizations.
In summary, while the Drake Equation is useful for thinking about the various factors that might lead to the emergence of a civilization, its outputs should be taken as highly speculative estimates rather than precise measurements.
あなた:
Please also consider the possiblities of non-human intelligent emrgencing from the long history of Sol system and nearby planets and see if there is any possiblites that in one time intelligent life emerged in nearby planets and see this to the equation
ChatGPT
Reasoned about non-human intelligence and the Drake Equationを19 秒行う
Evaluating non-human intelligence
I'm thinking about the potential for non-human intelligent life forms in the Sol system and neighboring planets, and how this might factor into the equation.
Piecing together possibilities
I'm thinking about how to integrate the emergence of non-human intelligent life, possibly on Mars or Europa, into the Drake Equation for the Sol system and neighboring planets.
It's interesting to think about the hypothesis of intelligent life emerging on Mars or Venus, though Earth remains the only known life-supporting planet in the solar system.
Considering other realms
I'm examining if intelligent life could have emerged on planets like Mars, Venus, or Europa, and how this possibility aligns with the predictions of the Drake Equation.
Hmm, I’m thinking about how non-human intelligent life on Mars or Venus could intersect with the assumptions of the Drake Equation, which seems to focus solely on Earth-based evolution.
I’m piecing together the hypothesis of non-human, advanced, intelligent life in the solar system. Mars, Venus, and Titan present challenges, but Europa and Enceladus might harbor microbial life.
Please consider the histroy of humanity from biological perpsecitve and current known fact in nearby universe, which expo-planet (from the Sol system perspective) is most likely to have civlizaed society? Please add percentage next to it in the chart
ChatGPT
Reasoned about exoplanet civilization likelihoodを28 秒行う
Evaluating planetary prospects
OK, I’m looking at the likelihood of a civilized society on an exoplanet within our Solar System. I’ll consider biological history and current space knowledge, aiming to identify the most promising candidate.
Identifying potential candidates
I'm considering exoplanets like Proxima Centauri b and TRAPPIST-1e, which might suggest they are within or observed from our Solar System.
Assessing potential candidates
I’m evaluating Proxima Centauri b, Barnard's Star, LHS 1140, and TRAPPIST-1, focusing on their habitable zones and available data. The Drake equation might help estimate their civilized society likelihoods.
Identifying promising exoplanets
I’m noting key exoplanets like Proxima Centauri b and TRAPPIST-1, which have Earth-like characteristics and are in habitable zones. This narrows down the potential candidates for advanced civilizations.
I'm gathering info on planets like Proxima Centauri b and TRAPPIST-1, considering factors like magnetic fields, atmospheres, and proximity to G-type stars for their potential to support advanced civilizations.
Evaluating exoplanet prospects
I'm noting that Proxima Centauri b, despite being close and around a red dwarf star, might support life if it has a magnetic field and atmosphere. This makes me think about its potential.
Charting probabilities
I'm estimating civilization probabilities for exoplanets like Proxima Centauri b and TRAPPIST-1 e, using speculative percentages based on the Drake equation and the lack of evidence for intelligent life.
I'm crafting a chart with exoplanet names and civilization likelihood percentages, grounded in the long timeline of life's evolution, despite the speculative nature of these figures.
Identifying exoplanet contenders
I’m evaluating exoplanets like Proxima Centauri b, TRAPPIST-1 e, and Kepler-186f, considering their star types and distances, to gauge their potential for supporting advanced civilizations from our solar system's viewpoint.
Weighing proximity and observation
I'm leaning towards Proxima Centauri b due to its closeness and observational potential, despite concerns about its flare star dynamics. TRAPPIST-1 e, f, or g are also worth considering.
I'm focusing on exoplanets like Proxima Centauri b, Ross 128 b, LHS 1140 b, TRAPPIST-1 e/f/g, and K2-18b, aiming to chart their likelihood of hosting a civilized society based on current knowledge.
Assessing exoplanet potentials
I'm gathering speculative probabilities for exoplanets like Proxima Centauri b and TRAPPIST-1 e/f/g, using the Drake equation and current understanding, to better estimate their chances of hosting a civilized society.
Refining speculative probabilities
I’m refining speculative probabilities for exoplanets, including Proxima Centauri b and TRAPPIST-1 e/f/g, to estimate their chances of hosting a civilized society, considering Earth's long biological history.
Refining odds
I'm considering the astronomical timeline for intelligent life on Earth, leading me to assign even lower speculative odds for exoplanets like Proxima Centauri b and TRAPPIST-1 e.
I’m crafting a simplified chart with arbitrary percentages, clearly noting the speculative nature and lack of scientific data, while considering the target audience's basic understanding of the topic.
I’m charting arbitrary percentages for exoplanets, clarifying their speculative nature, and ensuring the data is accessible for young audiences with minimal scientific detail.
Crafting a chart
I’m creating a markdown table with speculative percentages for the likelihood of civilized life on exoplanets, emphasizing their purely theoretical nature and considering the understanding level of an 8-year-old.
Integrating speculative analysis
I’m mapping out a markdown chart with speculative percentages for the likelihood of a civilized society on exoplanets, mindful of the complexity and simplifying for an 8-year-old's understanding.
I’m piecing together markdown for exoplanets, noting Proxima Centauri b's reduced civilized life chance due to the red dwarf's activity. This inclusion highlights the speculative nature of the analysis.
Piecing together speculative odds
I’m detailing a markdown chart for audience-friendly exoplanet likelihoods, considering environmental challenges and adding a disclaimer about the speculative nature and lack of evidence.
Piecing together
I’m leaning towards Proxima Centauri b for its proximity and silent star, but I’ll add a speculative chart ranking nearby exoplanets, noting their advanced civilizations' hypothetical likelihood.
Assessing civilization probabilities
I'm emphasizing the slow emergence of intelligent life on Earth, which suggests that the odds of any habitable planet developing a complex civilization might be as low as a few percent.
Below is a very speculative chart that—based on what we know about Earth’s long, winding path from simple life to a “civilized society” and our limited observations of nearby exoplanets—gives some fun, made‑up percentage chances for a few of our best candidate exoplanets. Remember: Scientists have not yet found any proof of life (let alone advanced civilizations) on any exoplanet. These numbers are just playful estimates to help you think about the ideas!
Speculative Chances of Finding an Advanced Civilization on Nearby Exoplanets
Exoplanet Estimated Likelihood of a Civilized Society
Proxima Centauri b ~2%
LHS 1140 b ~0.5%
How Did We (Very Roughly) Guess These Numbers?
Earth’s Example:
On Earth, life began as simple single‑celled organisms and took billions of years to evolve into a species that built complex societies. This long journey suggests that—even if a planet is in the “habitable zone” (where liquid water could exist)—developing an advanced, civilized society might be rare.
Proxima Centauri b:
This is the closest exoplanet to us. Even though its star (Proxima Centauri) is a red dwarf that sometimes sends out strong flares (which might harm life), its closeness makes it one of our most interesting candidates. That’s why we give it a slightly higher guess (~2%).
These planets are part of a group orbiting a very cool star. Their environments might be challenging (for example, they could be tidally locked, meaning one side always faces the star), so the chance of a complex, advanced civilization might be a bit lower.
LHS 1140 b:
This planet is promising in some ways but is a little farther away and around a dimmer star, so our playful estimate is even lower.
All of these percentages are extremely rough guesses based on what little we understand about the conditions for life and intelligence. Scientists use ideas like the Drake Equation to think about these chances—but until we have concrete evidence, these numbers remain just for fun and imagination.
Enjoy exploring these ideas—and remember, space is full of mysteries waiting to be discovered!
あなた:
Please examine the Drake Equation itself and see if this euqation is acculate or more opition in the equation you will use
ChatGPT
Reasoned about the Drake Equationを6 秒行う
re-examining the Drake Equation
evaluating the Drake Equation's value
OK, let me see. The Drake Equation isn't a precise formula; it's more of a guiding heuristic that tackles numerous uncertainties regarding extraterrestrial civilizations.
Thinking through the Drake Equation, I’m evaluating its conceptual nature, its uncertain parameters, and its criticism to conclude on its reliability as an accurate predictive model.
Understanding the Drake Equation
I’m mapping out the Drake Equation as a conceptual guide, detailing its parameters, which are often based on estimates or opinions, to evaluate its reliability for predicting extraterrestrial civilizations.
The Drake Equation is a famous formula that was created to help scientists think about the many factors involved in estimating the number of detectable extraterrestrial civilizations in our galaxy. However, when we look at the equation closely, we see that it is more of a conceptual framework or heuristic tool than a precise, predictive formula. Let’s break down why:
The equation is usually written as:
𝑁
=
𝑅
∗
×
𝑓
𝑝
×
𝑛
𝑒
×
𝑓
𝑙
×
𝑓
𝑖
×
𝑓
𝑐
×
𝐿
N=R
∗
×f
p
×n
e
×f
l
×f
i
×f
c
×L
Where:
𝑅
∗
R
∗
: The average rate of star formation per year in our galaxy.
𝑓
𝑝
f
p
: The fraction of those stars that have planetary systems.
𝑛
𝑒
n
e
: The average number of planets that could potentially support life per star with planets.
𝑓
𝑙
f
l
: The fraction of those planets where life actually develops.
𝑓
𝑖
f
i
: The fraction of planets with life where intelligent life evolves.
𝑓
𝑐
f
c
: The fraction of civilizations that develop technology that releases detectable signals into space.
𝐿
L: The length of time such civilizations release detectable signals.
Why the Drake Equation Is More of a Guideline Than a Precise Formula
Uncertain Inputs:
𝑅
∗
R
∗
𝑓
𝑝
f
p
(fraction of stars with planets), have become better known through modern astronomy.
The parameters related to the development of life and intelligence—
𝑓
𝑙
f
l
,
𝑓
𝑖
f
i
,
𝑓
𝑐
f
c
, and
𝐿
L—are based on very limited data. For example, Earth is the only planet we know where life has developed, so we have no way to compare or derive a statistically robust estimate for these factors. This means that the values chosen for these parameters are largely subjective estimates or educated guesses.
Wide Ranges of Possible Values:
Because many of these factors are not well-constrained, if you change one of the more uncertain parameters even slightly, the final estimate for
𝑁
N (the number of civilizations) can vary by many orders of magnitude. This wide range shows that the equation can lead to very different outcomes based on personal or theoretical assumptions.
The Drake Equation was never meant to provide a precise answer. Instead, it serves as a way to organize our thinking about what conditions might be necessary for the development of extraterrestrial civilizations. It encourages discussion about the relative importance of different factors and highlights where our scientific knowledge is limited.
Is the Drake Equation Accurate or More Opinion-Based?
Accurate?
In the sense of being a strict mathematical model with well-defined inputs and predictable outputs, the Drake Equation is not accurate. Its accuracy is limited by the extreme uncertainties in several of its key parameters.
Many of the terms in the equation, especially those concerning the evolution of life and intelligence, are based on opinion, interpretation, and the single example of Earth. Therefore, while the structure of the equation is logical, the numbers you put into it (and hence the final result) are often more reflective of our current opinions and assumptions than of robust empirical data.
The Drake Equation is a valuable tool for framing the question of extraterrestrial life. It helps scientists and enthusiasts break down a complex problem into smaller, more manageable questions. However, because several of its factors are highly uncertain and subject to personal interpretation, it is more of a conceptual guide—or even a way to stimulate discussion—than a formula that provides a definitive, accurate prediction of the number of extraterrestrial civilizations.
In summary, while the Drake Equation is useful for thinking about the various factors that might lead to the emergence of a civilization, its outputs should be taken as highly speculative estimates rather than precise measurements.
あなた:
Please also consider the possiblities of non-human intelligent emrgencing from the long history of Sol system and nearby planets and see if there is any possiblites that in one time intelligent life emerged in nearby planets and see this to the equation
ChatGPT
Reasoned about non-human intelligence and the Drake Equationを19 秒行う
Evaluating non-human intelligence
I'm thinking about the potential for non-human intelligent life forms in the Sol system and neighboring planets, and how this might factor into the equation.
Piecing together possibilities
I'm thinking about how to integrate the emergence of non-human intelligent life, possibly on Mars or Europa, into the Drake Equation for the Sol system and neighboring planets.
It's interesting to think about the hypothesis of intelligent life emerging on Mars or Venus, though Earth remains the only known life-supporting planet in the solar system.
Considering other realms
I'm examining if intelligent life could have emerged on planets like Mars, Venus, or Europa, and how this possibility aligns with the predictions of the Drake Equation.
Hmm, I’m thinking about how non-human intelligent life on Mars or Venus could intersect with the assumptions of the Drake Equation, which seems to focus solely on Earth-based evolution.
I’m piecing together the hypothesis of non-human, advanced, intelligent life in the solar system. Mars, Venus, and Titan present challenges, but Europa and Enceladus might harbor microbial life.
➤「救いようが最もうない、極東の自称他称の〝ジャーナリスト〟や〝学者〟、〝知米派〟は読まなくても構い。読んでもその肥大化した自己承認欲求、度し難い自己愛性人格では読むことはできないし、理解もできない。ただ見下した目線で見やるだけで、そこに自分が利用できる素材がなければ鼻で嗤うだけだ。この文章は、我がU.S.を領りたい、領ろうと下向きの反省的眼光で欲する諸君に読んで貰いたい。
I Traveled to 46 States in America This Summer. Here’s Why Trump Won.
By Frank S. Zhou
By Ezekiel A. Wells
Ezekiel A. Wells ’27 is a Double Concentrator in Environment Science & Engineering and Economics in Eliot House. He spent last summer traveling to 46 American states conducting interviews for his YouTube series, “Crossroads America.”
A week after Democrats’ election loss, accusations have flown in every direction within their Party. Some fault President Joe Biden for an egoistic refusal to drop out of the race earlier. Some blame the Harris campaign for failing to serve key demographics and communicate a clear vision for the country. And some blame Americans, claiming that racism and sexism drove voters toward Trump.
These factors certainly exist, but we’re missing a larger piece of the picture.
Over the summer, I traveled to 46 states in the U.S., creating a YouTube series highlighting slices of life across the country. In conversations from my nearly three-month road trip, I spoke with Republicans who were certain that inflation is entirely Biden’s fault and Democrats who, despite their frustrations with corporate profits and desires for universal healthcare, hoped for a more moderate candidate. From supporters of all candidates, I heard a shocking amount of misinformation.
After combing through hundreds of hours of interview footage from swing state Trump voters, I am certain that, as much as other factors influenced the outcome of the election, our crumbling media landscape — which has caused a rift in our democracy — is most to blame.
In the postwar period, news was dominated by three main channels, and because of the Fairness Doctrine, each station reported the same stories and covered multiple sides of each issue. Viewers picked which channels they watched mainly based on their preferences for news anchors’ personalities. Of course, this model had its problems, but, at the end of the day, it meant that Americans worked with a shared set of facts.
A shared set of facts is not the world we live in today.
Throughout my interviews, conspiracy theories were rampant, and on at least five separate occasions across separate states, I was told that Bill Gates tampers with our food, adding plastic to our fruits and vegetables to make his medical investments more profitable.
In conversations with voters, neither side seemed able to name many specific policy issues they cared about; everyone just seemed to repeat the words of their favorite pundits, podcast hosts, and internet personalities.
Although this behavior is harmful, I don’t blame everyday Americans. Blame falls on the media that has ostracized, disillusioned, and misinformed them.
Advertisement
I first saw this trend with low-wage workers in West Virginia, who — despite falling inflation rates — have seen stagnated salaries and clear increases in food costs. Channels like Fox News bred anger and resentment for many of them.
Take July of this summer, for example, when for the first time in his presidency, prices actually fell under the Biden administration. Traditional media establishments rushed to celebrate this victory, with one article from CNN declaring, “The White House can finally cross out ‘inflation’ on its list of presidential liabilities.” However, outside these bubbles, I observed many Americans held a different view.
In late July, I was welcomed at a massive family reunion in Tylertown, Mississippi, where one Trump voter — a middle-aged, Black, family man, pastor, and soul food enthusiast — made this clear.
“When I go in the grocery stores, and I gotta spend my last to get groceries, you mean to tell me I’m not gonna look and see who’s gonna vote to help me? I voted for Trump and I’d vote for him again, because he put money in our pocket,” he told me.
In their coverage, mainstream news organizations obsess over the Federal Reserve’s next rate cuts while failing to connect with people concerned with their next meals. With titles like “Vance: Young Americans ‘Are Becoming Paupers’ Due To Inflation, High Housing Costs,” sites like The Daily Wire had their fingers on the pulse of American sentiment, welcoming new readership from those who felt neglected by traditional media.
This problem was not just confined to the economy. While Biden’s mental state was deteriorating, liberal media outlets seemed to under-cover these stories, sheltering him from scrutiny of his declining capabilities, until the infamous presidential debate.
Formerly trusted networks slowly made themselves indigestible to the polarized American public, and in 2024, for the third year in a row, a Gallup poll found that more Americans indicated having “no trust” in the media than those who trust it a “great deal/fair amount”.
So where does the average American turn when the nation’s media cannot be trusted? For many people, it was YouTube talk shows, Newsmax, and podcasters such as Joe Rogan.
While Democrats seek to blame various internal factors for this election’s loss, I cannot help but think of Joe Rogan’s Trump endorsement, the many blind lies I heard from ordinary citizens across the country, and declining trust in American journalism.
As Harvard students and members of higher education institutions, we have a part to play in the problem. At Harvard’s Institute of Politics, those who denied the 2020 election results have been precluded from speaking at the JFK Jr. Forum. While the goal is understandable, it shields students from understanding the American viewpoints they represent.
Advertisement
There is a difference between platforming intentional and manipulative misinformation and listening to and learning about where people are and what they believe.
As a pipeline to mainstream media, Harvard, and its future journalists, have to consider the audience they lose when they stay inside of their bubble and ignore the issues of everyday Americans.
The disappearance of factual importance in our world is alarming and dangerous, but if we, as aspiring journalists, politicians, and engaged citizens, want to be taken seriously in communicating Trump’s threat to democracy, inflationary tariff policies, and so on, we owe American voters that seriousness, too.
Ezekiel A. Wells ’27 is a Double Concentrator in Environment Science & Engineering and Economics in Eliot House. He spent last summer traveling to 46 American states conducting interviews for his YouTube series, “Crossroads America."
その2はここ https://anond.hatelabo.jp/20241014165955
これまでのあらすじ
・俺「調べてみたら、確かに男性未婚者と短命に相関はあるっぽい」
離別者も短命になるっぽい、女性も未婚者・離別者は短命気味だけど、男性が顕著
相関はしてるが因果関係はまだ謎
_______
気づいたんだけど、以下の事実があるよね
「男性は、年収が低いほど未婚者が多い傾向にある(女性はあまり傾向がない)」
で、たぶんこれも合ってるよね
じゃあ、「貧乏な男性である→短命」の疑似相関として「未婚男性→短命」なのでは?という仮説を思いついたので調べた
ただこの件、めんどくさいことに「お年寄りが貧乏かどうか」に端的な指標がない(若いなら年収でいいけど)
なので厳密には調べようがなかった
あくまで「傾向がある」の積み重ねで仮説の可能性を上げるくらい
ちゃんとしたデータはアメリカのものしか無かった、アメリカのデータを日本にどれだけ適用できるかは謎だね
「収入の格差」が健康に悪いのか?それとも「貧困」が悪いのか?
https://healthpolicyhealthecon.com/2016/10/14/income-inequality-vs-poverty/
この研究の結果、収入が少ない人の寿命は短く、収入が多い人の寿命は長いということが明らかになりました。収入上位1%の人は下位1%の人と比べると、男性では約15年も、女性では約10年も、収入が高い人の方が寿命が長いことが分かりました(図1)
ここでも男性の方が大きな差が出ているが、これは世帯の収入源が男性が多かったからだろう
一応大和総研のまとめもある
https://www.dir.co.jp/report/research/introduction/economics/disparity/20170217_011733.pdf
・当然だが世帯収入が高いほどかける保健医療サービスの金額は上がる
・特に男性で、収入が低い人は健康診断の未受験者が多い(おそらく雇用形態の差)
当然と言えば当然だが、収入が低いほど健康に積極的ではなくなるので、相関があるのは明らかだと思われる
ただ、「医療費が高すぎて払えない」みたいなのは日本では少なそうだった(1割負担なので医療費が激安なので)
なので「それだけで未婚/既婚で13年もの寿命差がでるのか?」は疑問でもある
参考:死亡前1年間にかかった医療費と介護費の総額は?85歳以上で死亡した人が最も安かった
https://www.tmghig.jp/research/release/2020/0318.html
https://www5.cao.go.jp/j-j/wp/wp-je23/h06_hz020206.html
アメリカでも同様に、既婚男性/未婚男性で収入差が大きい(女性はほぼ同じ)
https://www.rand.org/pubs/research_briefs/RB5018.html
読むと分かるが、「未婚男性は短命(?)」はアメリカでも同様らしい(未婚女性はそうでもないというのも同様)
そして皆が想像するような理由を並べているが、根本的原因は複雑なので不明としている(1998年であることに注意)
ChatGPTにこれもおすすめされたけど、ちょっと違う気がする、これは年次経過観察
https://www.cdc.gov/nchs/data/hestat/mortality/mortality_marital_status_10_17.htm
ただこれに載ってる以下が気になる、今夜にでも読んでみる(公開されてたら)
Robards J, Evandrou M, Falkingham J, Vlachantoni A. Marital status, health and mortality. Maturitas 73(4):295–9. 2012.
Rendall MS, Weden MM, Favreault MM, Waldron H. The protective effect of marriage for survival: A review and update. Demography 48(2):481–506. 2011.
これも面白い、今回と同じような議論がもう15年以上前にアメリカで起きている
Single vs. Married — Who Really Lives Longer?
https://www.unmarried.org/single-vs-married-who-really-lives-longer/
「独身の皆さん、ご注意ください。独身のままでいると死んでしまいます!」 2006 年 9 月号の Journal of Epidemiology and Community Healthに掲載された研究に基づくこの「発見」は、国中の見出しで大々的に取り上げられました。
...
最近の長寿研究は、19歳以上のアメリカ人のサンプルのうち、1989年から1997年の間に死亡する可能性が最も高かったのは誰かという疑問に答えています。メディアの報道では、既婚者と比較すると、離婚した人は死亡する可能性が27%高く、未亡人は39%高く、ずっと独身だった人は58%高いと報じられています。これらは、未婚者の種類によって意味のある違いがあるように思えますが、実際はそうではありません。
やっぱりというか、「病気な人が未婚のままで居たため」というような因果関係の逆転で疑似相関を排除できない的な話
では、これまでのところ、この研究で実際にわかったことは次の通りです。8年間の期間において、離婚した、配偶者に先立たれた、あるいはずっと独身だったアメリカ人の死亡率に有意な差はありませんでした。
あれ、このテーマってひょっとして沼では?
もうこれ↓だけでよくね?知らんけど
____
金なのか、パートナーなのか、子なのか、寂しいのか、生活習慣なのか、発見の早さなのか、健康への気遣いなのか、その全部か
でもまあ30年後くらいにハッキリしそうでもあるけどね、選択的未婚者がかなり増えるし、経済的理由なら女性にも差が出てくるはずだから
____
追記:
所得や資産と寿命の相関データ見つからないんだよね、誰か探して
一応人口動態にはないっぽい
都道府県ごとに調べることで収入格差との相関を調べてる人は居るっぽい
国立がん研究センターでは、教育歴と死亡率の相関を調べてるっぽい
あと所得が低い→健康リテラシーが低い という可能性は俺も考えた
横じゃが、こんな感じでいいんかね?ChatGPTじゃなくてBing先生だが同じ事やろ
わいの問:
今週の水曜日の日付を出力するJavaコードを教えてください。
import java.time.LocalDate; import java.time.DayOfWeek; import java.time.format.DateTimeFormatter; public class Main { public static void main(String[] args) { // 現在の日付を取得 LocalDate today = LocalDate.now(); // 今週の水曜日の日付を取得 LocalDate wednesday = today.with(DayOfWeek.WEDNESDAY); // 日付をフォーマットして出力 DateTimeFormatter formatter = DateTimeFormatter.ofPattern("yyyy年MM月dd日"); System.out.println(wednesday.format(formatter)); } }
(動かしてはないけど、まあパッと見でおかしい所は無さそうやし、動くやろ。。。)
もうこのやりとりの時点でダメやん?
ダメじゃねえよ。要件を正確に記述できないならコードなんて書けるわけない。
空気読んでいい感じに読み取ってよというのを求めてるなら、仕様書すら書けないダメプログラマーってことだろ。
コンピューターの中では数字で日付は管理されててそれはJavaでは日付のオブジェクトとして表されるんだけど、「今週=現在の週の水曜日」を表すオブジェクトが欲しい
やったぞ
java.time パッケージの LocalDate クラスや TemporalAdjusters クラスを使用して、「今週の水曜日」の日付オブジェクトを取得できます。
以下のコードは、現在の日付に基づいて今週の水曜日の LocalDate オブジェクトを返す Java の関数です。
import java.time.temporal.TemporalAdjusters;
public static void main(String[] args) {
System.out.println(getThisWeeksWednesday());
}
public static LocalDate getThisWeeksWednesday() {
LocalDate today = LocalDate.now();
return today.with(TemporalAdjusters.nextOrSame(DayOfWeek.WEDNESDAY));
}
}
この関数は現在の日付を取得し、それを TemporalAdjusters.nextOrSame(DayOfWeek.WEDNESDAY) メソッドに渡して、今週の水曜日の日付を取得します。今日が水曜日である場合、それが返されます。それ以外の場合は、次の水曜日の日付が返されます。
今日が週内のどの日であったとしても(木曜日や金曜日であったとしても)その週の水曜日を表すオブジェクトを返す関数を示してください。
それには、今週の最初の日を求め、そこから水曜日までの日数を加算するアプローチを使用します。以下のコードでは、週の最初の日を月曜日と仮定しています:
import java.time.temporal.TemporalAdjusters;
public static void main(String[] args) {
System.out.println(getThisWeeksWednesday());
}
public static LocalDate getThisWeeksWednesday() {
LocalDate today = LocalDate.now();
LocalDate monday = today.with(TemporalAdjusters.previousOrSame(DayOfWeek.MONDAY));
return monday.plusDays(2);
}
}
このコードは、まず今日の日付を取得し、それから TemporalAdjusters.previousOrSame(DayOfWeek.MONDAY) メソッドを使用して今週の月曜日の日付を取得します。そして、月曜日から2日後の日付(水曜日)を取得するために plusDays(2) メソッドを使用します。
ChatGPTさんも、そんな考えは時代遅れやって言うてはるぞ。
Sure, I'd be happy to discuss that with you! The question of who should pay on a first date is a common one and there's no one-size-fits-all answer. It really depends on the situation and the preferences of the people involved.
Traditionally, it was often expected that the man would pay for the first date. However, in modern times, many people prefer to split the bill or take turns paying for dates. Some people may feel strongly about paying on a first date as a way to show their interest or to demonstrate their ability to provide for their partner, while others may feel that splitting the bill or taking turns paying is more fair and equitable.
Ultimately, the decision of who should pay on a first date should be based on what both people are comfortable with. It's a good idea to discuss it ahead of time so that there are no surprises or awkward moments at the end of the date. Communication is key in any relationship, so it's important to be open and honest about your preferences and expectations.
俺:
javascript言語で、現在時刻のタイムスタンプからMD5のハッシュ値を出力する関数、timeToMd5 を作ってください
JavaScriptでは、次のような関数を作成することができます。
function timeToMd5() { // 現在時刻のタイムスタンプを取得します const timestamp = Date.now(); // ハッシュ値を出力するために、MD5ライブラリをロードします const md5 = require('md5'); // timestampを文字列に変換し、それをMD5ハッシュ値に変換して出力します const hash = md5(timestamp.toString()); return hash; }
このような関数を作成することで、現在時刻のタイムスタンプからMD5のハッシュ値を出力することができます。
ご参考までに。
俺:
nodeコマンドで実行しましたが、"Error: Cannot find module 'md5'" というエラーになってしまいました。なにか解決方法がありますか?
ご質問のように、JavaScriptで定義した関数を実行すると、"Error: Cannot find module 'md5'" というエラーが発生しているようです。
このエラーが発生する原因は、JavaScriptのコード内で、MD5ライブラリをロードしようとしたときに、そのライブラリがインストールされていないためです。
JavaScriptのコードで、MD5ライブラリを利用するには、まず、そのライブラリをインストールする必要があります。
インストールするには、次のように、nodeコマンドを実行します。
$ npm install md5
このコマンドを実行することで、MD5ライブラリがインストールされ、JavaScriptのコードから利用することができるようになります。
また、JavaScriptのコードを実行するには、次のようにnodeコマンドを使用します。
$ node [JavaScriptのファイル名]
このようにすることで、JavaScriptのコードを実行することができます。
ご参考までに。
俺:
ありがとうございます。実行できました😁
おめでとうございます!ご質問いただいた内容について、正しく解決されたようで嬉しいです。
もしまだご質問があるようでしたら、お気軽にお問い合わせください。今後とも、Assistantをご利用いただけますよう、よろしくお願いいたします。
Four years after the Fukushima accident, TC screening data from the first and second round (up to December 2014) were compared with the Japanese nationwide annual TC incidence, and with the incidence in one area of Fukushima prefecture selected as reference (Tsuda et al., 2016). The authors reported that the observed number of TCs was substantially higher than the expected number based on national and regional incidence data, and concluded that this increase could be attributed to ionizing radiation exposure from the accident. This ecological study has been strongly criticized by scientists around the world because of serious methodology limitations; further, the study conclusions are not supported by the results (Davis, 2016, Jorgensen, 2016, Korblein, 2016, Shibata, 2016, Suzuki, 2016, Takahashi et al., 2016, Takamura, 2016, Wakeford et al., 2016). Limitations of ecological study design are well-known, although the authors did not acknowledge the issue of ecologic fallacy. Another criticism was that the data from the Fukushima screening program are not directly comparable with the cancer registry data from the rest of Japan where systematic advanced ultrasound technology is not used to detect cases. The authors of these criticisms suggested that though the increased TC number could be associated with the exposure from radioactive fallout, a more plausible conclusion would be that the screening program is finding an anticipated increase in TC detection across the Fukushima prefecture. Indeed, Tsuda and colleagues did not consider the latent properties of TC, nor the fact that a prevalent cancer detected by screening might have had first preclinical manifestations of abnormality before the nuclear accident.Thereafter, several researchers have analysed the relationship between radiation exposure (with different estimated exposure levels, mostly using an external dose) and TC prevalence and incidence in residents aged ≤18 years in the Fukushima prefecture at time of the disaster (Kato, 2019, Nakaya et al., 2018, Ohira et al., 2019a, Ohira et al., 2020, Ohira et al., 2019b, Ohira et al., 2016, Ohira et al., 2018, Suzuki et al., 2016, Toki et al., 2020, Yamamoto et al., 2019), but no radiation-related risks have been demonstrated to date.
https://www.sciencedirect.com/science/article/pii/S0160412020321851
参議院議員選挙が近づき、れいわ新選組の山本太郎議員がした減税のためなら安倍内閣とも組むとの発言が支持者の間で炎上する一方、立憲民主党が経済政策を発表するなど、経済がニュースになった1週間でした。山本太郎議員は「2%を目指して物価を上げる」を公約にし、立憲民主党は「上げるべきは物価ではない、賃金だ」を公約にしています。どちらが正しいのでしょうか?
おまんじゅうが10,000個の経済があったします。1コ100円ならGDPは1,000,000円です。
これが翌年90円に値下がりしたとします。数量が同じであればGDPは900,000円です。物価全体が下がることを「デフレ」といいます。
「名目成長率」はマイナス10%ですが、これは物価が10%下落したからで、それを差し引いて考えた「実質成長率」は0%で、名目成長率<実質成長率となりました。
ところでおまんじゅうの値段が下がれば、同じお金でおまんじゅうが余分に買えるようになったのだから、とてもよいことのように思います。でも、来年の物価が下がるとしたら、企業は人を雇うでしょうか。お金を金庫にしまっておけば同じお金でも来年は価値があがって余分に物が買えるようになるのだから、人なんて雇いませんよね。借金して投資するなんてトンデモない。返済の負担が重くなるのですから。投資が落ち込み、雇われる人が少なくなります。雇われる人が少なく、お給料の総額が減れば物を買う人が少なくなり、次の年はさらに消費も落ち込みます。さらに物の値段が下がるのだから、ますますお金は使われなくなります。こうして物価の下落と経済の縮小がらせん階段を下っていくように進むありさまを「デフレスパイラル」といいます。企業の「内部留保」が増えているのはデフレだからです。
民主党政権時代、物価はほぼ全期間下がり続け、名目成長率は常に実質成長率を下回っていました。だから民主党政権時代は、現金を持っている人、安定した職がある人は「物が安くなった」と幸せでも、不安定な職しかつけなかった人、これから職に就こうとする人にとっては最悪で-デフレになれば売上も下がりますが仕入れも下がります。ただ同じように下がらないものがあります。それは「借金」と「賃金」です。借金は物価が下がっても減りませんし、正社員の賃金には下方硬直性があります。それゆえデフレ化で企業にとって借金と並んで一番負担に感じられるのは賃金です。だからデフレになると新卒の採用と不安定な就労層の雇用が一番打撃を受けるのです。-安月給で長時間労働を強いるブラック企業が全盛でした。
物価が上がればどうでしょうか?お金を持ったままだと来年価値が減ってしまいますから、人を雇ってより儲けなければなりません。だから企業はより人を雇うようになります。
デフレを放置した民主党政権下で雇用がヘロヘロだったのも、2014年に成長率の名実逆転を解消し(17年ぶり)、2017年に需給ギャップを解消した(9年ぶり)安倍政権下で雇用が劇的に改善したのも、経済学的にはまったく理に適っています(なお、先日朝日新聞に"年収200万円未満が75% 非正規のリアルに政治は"という記事がありましたが、この記事がアベノミクスによっても雇用に成果がでていないというのであれば明確に誤りです。また雇用環境が改善したのは少子高齢化や団塊世代の大量退職のせいだという人がいますが、それも誤りです。この記事はその点を説明するためのものではないので、詳しくは論じませんが、失業率の分母は生産年齢人口ではなくて労働力人口で、労働力人口は民主党政権化では増えておらず、安倍政権下では増え続けているとだけ指摘しておきます。)。
党首討論で、枝野議員は、「経済の数字の最終成績はどこなのかと言ったら、やはり実質経済成長率。2010年から12年の実質経済成長率は1.8%。2013年から18年は1.1%。これが客観的な経済のトータルの総合成績であることは、自信をもって申し上げたい。」と発言し、安倍首相に「実質成長の自慢をなされたが、名実逆転をしている実質成長の伸びは、デフレ自慢にしかならない。」と諭されていましたが、まさにそのとおりです。立憲民主党は物価を上げずに賃金をあげて雇用も増やすとしていますが、それは卵を割らずにオムレツを作りますといってるのと同じです。
では、上がった方がいいとして、毎年10%も20%も上がるのがよろしくないのは当然として、なぜ2%なのでしょうか?
理由は3つです。まず、それが経済成長にとって最適というのが現時点のコンセンサスだからであり、為替レートの安定のためであり、デフレに陥らないためです。
FRBは「年2%」が物価の安定と雇用の最大化という2つのマンデートを達成するには最適としています。
"The FOMC noted in its statement that the Committee judges that inflation at the rate of 2 percent (as measured by the annual change in the price index for personal consumption expenditures, or PCE) is most consistent over the longer run with the Federal Reserve's statutory mandate."
https://www.federalreserve.gov/faqs/money_12848.htm
ECB(欧州中央銀行)は中期的に「2%を超えない、但しそこに近いところ」を目指しています。
"The primary objective of the ECB’s monetary policy is to maintain price stability. The ECB aims at inflation rates of below, but close to, 2% over the medium term."
https://www.ecb.europa.eu/mopo/html/index.en.html
イングランド銀行(イギリスの中央銀行)もすべての人の将来の計画を立てるのに資するとして「2%」をターゲットにしています。
"To keep inflation low and stable, the Government sets us an inflation target of 2%. This helps everyone plan for the future."
https://www.bankofengland.co.uk/monetary-policy/inflation
オーストラリア準備銀行(オーストラリアの中央銀行)も「2~3%」のインフレ率を目指しています。
"The Governor and the Treasurer have agreed that the appropriate target for monetary policy in Australia is to achieve an inflation rate of 2–3 per cent, on average, over time. This is a rate of inflation sufficiently low that it does not materially distort economic decisions in the community. "
https://www.rba.gov.au/inflation/inflation-target.html
世界の中銀が2%にしているのはそれが経済成長と物価の安定のためには最適というのがコンセンサスだからですが(1つめ)、そのなかで日本だけがそれより低い目標を掲げるということは、ちょっと物価が上がると他国に先駆けて引き締めますと事前にアナウンスしているのと同じことになりますから、事あるごとに円高が進んでしまいます(2つめ)。
3つめの理由は、いったんデフレに落ち込むとなかなか抜け出せないからです。日本の経営者はアベノミクスでデフレが解消しても内部留保を取り崩すことには慎重なままです。経営者もマクロ経済学を理解しているわけではないので、この20年間合理的だった経営=金をできるだけ使わない=が行動原理として染みついてしまっています。そして高齢化が進行し、低成長が常態になって、常にデフレ圧力がかかっている環境で、インフレ目標をたとえば1%などに設定して、低い物価上昇率をもって金融緩和を止めてしまうと、すぐにデフレに陥ってしまうのです。その失敗を日本は2000年と2006年に経験済みで、最近だと昨年末にECBが同じミスを犯しました。
麻生財務大臣から財界の幹部や朝日新聞まで、ことあるごとに「2%なんて無理なんだからさっさとその目標を放棄せよ」と提言していますが、彼らより山本議員の方が正確に経済を理解しています。
物価が上がった方がいいというのは、私たちが生活で感じる直感とは異なります。私も物の値段は下がった方がうれしいです。但し、直感にしたがった行動が、悪い結果をもたらすことはしばしばあります。法学、経済学、社会学、それを知ることに学問の価値があるのだと思います。
(追記)
dc42jk 現在の経済状況からは金融緩和と財政拡張政策の両方が必要だと思う。その両方を掲げているのはれいわしかない。自民も金融政策に触れてないし立民は金融引締めを示唆している。
まさに。賃金の上昇はどうしても物価の上昇に遅れますし、デフレ脳に染まった経営者を変えるのは簡単ではないので、デフレ脱却の過程ではどうしても、特に安定した雇用を得ていた層の実質賃金が低下します(新たに職を得た人が増えたので、総雇用者所得は増えてはいますが)。それを補うために積極的な財政支出が求められるのですが、1年目を除き高齢化に伴う社会保障費増以外の財政支出の拡大を渋ったのが安部政権の最大の問題点です。現在、国債は新規発行のたびに0.1%程度しかクーポンがつかないのにその4倍も5倍も札が入り(落札利回りはマイナス)、政府債務の調達はただ同然、これはデフレ現象そのものである民間部門の過剰貯蓄、特に企業のISバランスのI<S化と表裏一体です。ご指摘のとおり金融緩和とあわせて財政拡張をしない手はないのに、その両方を掲げているのは国債を財源に、奨学金をチャラにして、最低賃金1500円を政府が補償し、公務員を増やし、公共事業を積極的に行いますとしているれいわ新撰組だけです。
(ご参考)
「日本の財政政策の選択肢」オリヴィエ・ブランシャール・田代毅(2019年5月)
https://piie.com/system/files/documents/pb19-7japanese.pdf
「景気の回復が感じられないのはなぜかー長期停滞論争」ローレンス・サマーズ、ベン・バーナンキ 、ポール・クルーグマン、アルヴィン・ハンセン(山形浩生:翻訳)(2019年4月)
"Macroeconomics"(12th Edition) " Robert J Gordon (2013年)
https://www.amazon.com/Macroeconomics-12th-Pearson-Economics-Hardcover/dp/0138014914
(未翻訳ですがアメリカの代表的なマクロ経済学の教科書です。IS-LM分析の箇所で日本に対する処方箋が取り上げられています。"combined monetary-fiscal policy expansion""The IS and LM curves shift rightward together"れいわの政策はそれに合致しています。)
(追記2)
左派・リベラルはほんとうに山本太郎に乗ってほしい。今まで何か提言する度に、財源はどうするんだ、そんなことして景気はだいじょうぶなのかと突っ込まれ、やれ法人税の増税だ、富裕層の増税だ、行政改革で埋蔵金だと、見当外れなことを言うだけで(法人税は支払うのは企業ですが負担するのは庶民です。富裕層の増税は格差縮小の意味はあっても財源にはなりません。埋蔵金なんて結局みつからなかったし、公務員減らせば貧しくなるだけです)、結局有効な提案を何ひとつできませんでした。何を言っても信用されないのはそのせいです。
そこに、自民党と異なる価値観を唱えながら、景気はむしろ良くします、財源はありますという政治家が現れました。しかもブランシャールやサマーズ、ゴードンのような権威ある学者の提案と軌を一にしている。これに乗らない手はないでしょ?
(追記3)
立憲民主党は「アベノミクスによって事実上の財政ファイナンス化した弛緩した金融政策について、市場と丁寧に対話しつつ、正常化を図っていく。」要するに、日銀による長期国債の買い入れ=量的緩和は財政ファイナンスであり、やめますとしています。そのうえで消費税増税凍結を訴えています。国債発行も減らして消費税増税分の2兆円もあきらめる、足りない分は金融所得と法人税に課税するというのだから、その二つの税金は大幅にアップするということになります。金融所得に対する課税強化はリスクプレミアムを高めるので、日銀による買入れ縮小と同じく金融引き締め効果があります。すべての経済学の教科書に書いてあるとおり、法人税を支払うのは企業ですが、負担するのは庶民です。
彼らの政策を実現したらどうなるか。FRBが利下げを示唆し、ECBが量的緩和への復帰を口にしているなか、日本だけ量的緩和をやめます、リスクプレミアムを高めます、金融は大幅に引き締めますというのだから、円高が急速に進みます。物価上昇率は下落し、またデフレに戻るでしょう。企業業績は悪化し、円高で特に製造業が打撃を受け、そこに増税が追い打ちをかける。雇用がシュリンクし、製造業の海外移転が拍車をかける。特に地方の高学歴でない層の雇用やこれから就職する人たちの雇用環境が大幅に悪くなります。民主党政権のころの方が実質成長率が高かったから良かったと今でも主張する人たちなので当然なのかも知れませんが、彼らは要するに民主党政権当時に戻します、と言っています。同じく消費税増税に反対していても、デフレが最大の問題だとするれいわ新選組(「新撰組」じゃなくて「新選組」でした。ややこしいのは良くないと思いますが…)とは方向性がまったく違います。
昨日、RSS受信ツールでGoogleニュースを
以下の表示がありました。
---------------------------------------------
「Google News RSS feed URL deprecation
This RSS feed URL is deprecated, please update. New URLs can be found in the footers at https://news.google.com/news」
このRSSフィードURLは推奨されていません。更新してください。 新しいURLはhttps://news.google.com/newsのフッターにあります」
---------------------------------------------
しかしGoogle ニュースの下部を見てもそんな情報は
どこにも載っていません。
Google News to deprecate old RSS feed URLs on December 1, 2017
https://searchengineland.com/google-news-deprecate-old-rss-feed-urls-december-1-2017-286149
---------------------------------------------
・Googleニュースは、2017年12月1日までに古いRSSフィードの購読URLを非推奨にする予定
・UTLを更新するには、news.google.comにアクセスして、必要なセクションを選択するか、カスタムセクションを作成する。
・セクションのページの下部にある[RSS]をクリックします。 これにより、フィードが表示されます。
---------------------------------------------
[RSS]は表示されません。
もしかしてと思いGoogleニュースの言語設定を
セクションの下部に[RSS]が表示されました。
---------------------------------------------
---------------------------------------------
あとは強引な実験です。
さらにURLを直接「android タブレット」を「ノートパソコン」に
強引に変えても動きました。
どうも以下のような感じみたいです。
news.google.com/news/rss/headlines/section/q/(検索文字列)/(カテゴリー名)?ned=jp&hl=ja&gl=JP
これでいけるならイチイチ、カスタムセクション作らないで
これか?国内の胡散臭い勢力が参照透明じゃないて断言してたけど海外じゃ全く温度が違うようだ
Is Date.now referential transparent?
http://stackoverflow.com/questions/37244023/is-date-now-referential-transparent
まず、原理原則として「時間」ってのは、グローバルだ。これが一点。
次に、Date.nowはともかく、__hoge.tがグローバルである必要など何もないし、
なんでそう思い込んでるの?
あんな単純な、マウス座標を扱うときに、マウス座標の状態変数(FRPのストリーム)の階層がグローバルなのは当たり前だけど、
なんか変な思い込みできちゃった?w
まず、原理原則として「時間」ってのは、グローバルだ。これが一点。
次に、Date.nowはともかく、__hoge.tがグローバルである必要など何もないし、
なんでそう思い込んでるの?
まず、原理原則として「時間」ってのは、グローバルだ。これが一点。
次に、Date.nowはともかく、__hoge.tがグローバルである必要など何もないし、
なんでそう思い込んでるの?
てことか?おまえ同一人物?住井と別人?
それはとにかく、ほんで?
アプリの現在時刻しか取り扱わないケースで、現在あるいは直近の状態を得るために
だからさあw、その「何らかの状態を表現したオブジェクト」ってのが、すなわち
Date.now や __foo.tだ
って話なんだが、わかってきたかい?
わかってきたかい?というか、最初からわかってて、それをグローバル変数で持つのは関数型的じゃないよね、という話をしていたのだけど
>それ以外ならカウントの代わりに何らかの状態を表現したオブジェクトとかにすればいいでしょ?
だからさあw、その「何らかの状態を表現したオブジェクト」ってのが、すなわち
Date.now や __foo.tだ
って話なんだが、わかってきたかい?
そういう話をしてるところに、
正確には、
「関数型って時間はパラメータで与えて結果を得るんじゃないの」とか意味不明なこといってる馬鹿がいて、
hoge.t あるいは、date.now やらで指定してたインデックスというのは、関数型プログラミングの文脈から、インデックスが得られるんだとさ。
初期値0からはじまる時無限の再帰のカウントから、どうやって時刻を得るパラメータが得られるのか、頭のおかしい奴の考えるコードは想像不能。