[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2004025673A1 - 積層コンデンサ - Google Patents

積層コンデンサ Download PDF

Info

Publication number
WO2004025673A1
WO2004025673A1 PCT/JP2003/011490 JP0311490W WO2004025673A1 WO 2004025673 A1 WO2004025673 A1 WO 2004025673A1 JP 0311490 W JP0311490 W JP 0311490W WO 2004025673 A1 WO2004025673 A1 WO 2004025673A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductors
divided
pair
conductor
multilayer capacitor
Prior art date
Application number
PCT/JP2003/011490
Other languages
English (en)
French (fr)
Inventor
Masaaki Togashi
Taisuke Ahiko
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002264822A external-priority patent/JP3847234B2/ja
Priority claimed from JP2002264821A external-priority patent/JP3824565B2/ja
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to US10/527,023 priority Critical patent/US7075774B2/en
Publication of WO2004025673A1 publication Critical patent/WO2004025673A1/ja
Priority to HK06103824.0A priority patent/HK1084502A1/xx
Priority to US11/433,358 priority patent/US7196897B2/en
Priority to US11/433,474 priority patent/US7224569B2/en
Priority to US11/433,479 priority patent/US7224572B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/38Multiple capacitors, i.e. structural combinations of fixed capacitors

Definitions

  • the present invention relates to a multilayer ceramic capacitor having a significantly reduced equivalent series inductance (ESL), and more particularly to a multilayer ceramic capacitor used as a decoupling capacitor.
  • ESL equivalent series inductance
  • a power supply for supplying power to the CPU causes a large current fluctuation at a higher speed, and it is extremely difficult to keep the voltage fluctuation caused by the current fluctuation within the allowable value of the power supply. .
  • a multilayer capacitor 100 called a decoupling capacitor is connected to a power supply 102 and is frequently used for stabilizing the power supply. Then, a current is supplied from the multilayer capacitor 100 to the CPU 104 by rapid charging and discharging at the time of a high-speed and transient fluctuation of the power supply, so that the voltage fluctuation of the power supply 102 is suppressed.
  • Equation 1 the level of ESL is related to the magnitude of the voltage fluctuation of the power supply.
  • dV is the transient voltage fluctuation (V)
  • i is the current fluctuation (A)
  • t is the fluctuation time (seconds).
  • a pair of ceramic layers 1 12 A provided with two types of internal conductors 114 and 116 shown in FIG. 22 are alternately laminated to form a dielectric element 112.
  • the structure is formed.
  • the two types of inner conductors 114 and 116 are drawn out to two opposing sides 111B and 112C of the dielectric element 112, respectively, and are disposed outside the dielectric element 112.
  • the terminal electrodes 118 and 120 are respectively connected.
  • the present invention has been made in consideration of the above-described circumstances, and has as its object to provide a multilayer capacitor in which ESL is significantly reduced.
  • a multilayer capacitor according to a first aspect of the present invention includes: A multilayer capacitor in which a plurality of internal conductors are respectively arranged in a dielectric body formed by laminating a plurality of dielectric sheets and sandwiched between the dielectric sheets, wherein the internal member is:
  • At least one pair of first inner conductors respectively drawn to two mutually facing side surfaces of the dielectric sheet
  • the second inner conductor is disposed between the pair of first inner conductors via the dielectric sheet,
  • the first internal conductor is disposed between the pair of second internal conductors via the dielectric sheet.
  • a plurality of internal conductors are arranged in a dielectric body formed by laminating a plurality of dielectric sheets so as to be sandwiched between the dielectric sheets. It has a configuration. Further, a pair of first inner conductors are respectively drawn out on two mutually facing side surfaces of the dielectric element body, and a pair of first inner conductors which are different from the two side surfaces from which the paired first inner conductors are drawn out. A pair of second inner conductors are drawn out from the side surfaces.
  • the pair of first inner conductors and the pair of second inner conductors constitute the plurality of inner conductors, and the pair of first inner conductors and one of the pair of second inner conductors have the same structure. Any one of the other inner conductors is disposed in the first position.
  • the pair of first inner conductors have the same polarity, and the pair of first inner conductors are respectively opposed to two opposite sides of the dielectric body. Therefore, currents flow in opposite directions in the pair of first inner conductors.
  • the pair of second inner conductors currents flow in opposite directions for the same reason. Become.
  • the multilayer capacitor according to the first aspect of the present invention is significantly reduced in ESL, and the attenuation in a high frequency band increases. Voltage fluctuation can be suppressed. That is, the multilayer capacitor according to the first aspect of the present invention can be suitably used as a decoupling capacitor in a CPU power supply circuit.
  • the multilayer capacitor according to the first aspect of the present invention includes:
  • a pair of second terminal electrodes respectively disposed on two mutually opposite side surfaces of the dielectric body different from the side surface on which the first terminal electrodes are disposed, and connected to the pair of second inner conductors, respectively; , And.
  • a pair of first terminal electrodes facing each other are connected to the outside of the multilayer capacitor so as to have the same polarity, and a pair of second terminal electrodes facing each other have the same polarity. Connected to the outside of the multilayer capacitor.
  • the pair of first inner conductors have the same polarity, and the pair of second inner conductors have the same polarity, so that the operation and effect of the multilayer capacitor according to the first aspect of the present invention are reduced. , It can be achieved more reliably.
  • the dielectric element is composed of a plurality of divided conductors that are divided so as to extend side by side and that alternately protrude from the two opposing side surfaces of the dielectric body.
  • a current flows in the opposite direction between a plurality of pairs of divided conductors obtained by dividing the pair of first inner conductors.
  • current flows in opposite directions between a plurality of pairs of divided conductors obtained by dividing the pair of second inner conductors.
  • the parasitic inductance of the multilayer capacitor itself can be further reduced and the effect of reducing the equivalent series inductance increases, as the magnetic field canceling action occurs between the divided conductors.
  • the divided conductors located in the same plane and adjacent to each other are connected to the terminal electrodes respectively arranged on two side surfaces facing each other. By doing so, the directions of the currents flowing in the adjacent divided conductors are reversed.
  • the first internal conductor and the second internal conductor are provided with lead portions connected to the first terminal electrode and the second terminal electrode, respectively.
  • the lead-out portion may have the same width, narrow width, or wide width as the first internal conductor and the second internal conductor.
  • a lead portion connected to the terminal electrode is formed in the divided conductor, and three or more divided conductors are arranged on the same plane, and one of these divided conductors is skipped and adjacent to the other. Are connected to each other via the lead portion. With this configuration, the current flows in the divided conductors adjacent to each other in the same plane are opposite to each other.
  • the widths of the drawers arranged in the same plane at positions facing each other are substantially the same.
  • the widths of the lead portions are substantially the same, the connection with the terminal electrode can be ensured.
  • the planar shape of the divided conductor is not particularly limited, and may be a rectangle, a triangle, or a trapezoid, or another shape.
  • a rectangle, Triangles or trapezoids are preferred.
  • the multilayer capacitor according to the second aspect of the present invention includes:
  • a multilayer capacitor in which a plurality of inner conductors are respectively arranged in a dielectric body formed by stacking a plurality of dielectric sheets and sandwiched between the dielectric sheets, wherein the inner conductor is:
  • At least one pair of first inner conductors respectively drawn to two mutually facing side surfaces of the dielectric sheet
  • the second inner conductor is disposed between the pair of first inner conductors via the dielectric sheet,
  • the first inner conductor is disposed between the pair of second inner conductors via the dielectric sheet,
  • the first inner conductor is constituted by a plurality of divided conductors which are divided into shapes extending side by side in the same plane, and which are alternately drawn to two mutually facing side surfaces of the dielectric element body,
  • the divided conductors of the first inner conductor that are adjacent to each other in the laminating direction with the second inner conductor interposed therebetween are arranged at overlapping positions when viewed from the plan arrow side, and overlap when viewed from the plan arrow side.
  • the divided conductors are drawn out alternately so as to be in opposite directions.
  • the multilayer capacitor of the second aspect of the present invention the following operation and effect can be obtained in addition to the operation and effect of the multilayer capacitor of the first aspect of the present invention. That is, the divided conductors of the first inner conductor adjacent to each other in the stacking direction with the second inner conductor interposed therebetween have the same polarity, and the current flows are opposite to each other. In addition, currents flow in opposite directions even between the divided conductors adjacent to each other on the same plane.
  • the current flows in the opposite direction between the split conductors of the first inner conductor arranged in the stacking direction, and the current also flows in the opposite direction between the pair of second inner conductors, thereby canceling the magnetic field. Occurs.
  • currents flow in opposite directions in adjacent divided conductors extending side by side in the same plane, so that an action of canceling a magnetic field occurs.
  • the second inner conductor may have a divided shape, like the first inner conductor, or may have a non-divided shape.
  • the multilayer capacitor according to the second aspect of the present invention includes:
  • a plurality of pairs of first terminal electrodes respectively arranged on two mutually facing side surfaces of the dielectric element and connected to a plurality of divided conductors
  • a pair of second terminals disposed on two mutually opposite side surfaces of the dielectric element body different from the two side surfaces on which a plurality of pairs of first terminal electrodes are disposed, and connected to the pair of second inner conductors, respectively. And an electrode.
  • the divided conductors constituting the first internal conductor have the same polarity, and the pair of second internal conductors have the same polarity. Become a pole. [0 0 3 5]
  • the specific shape of the dielectric element is not particularly limited, but is preferably formed in a rectangular parallelepiped shape. That is, the dielectric sheets are each formed in a quadrilateral such as a rectangle, and these dielectric sheets are laminated to form a dielectric element in a rectangular parallelepiped shape.
  • the first inner conductor and the second inner conductor are respectively arranged in the dielectric body in a laminating direction in pairs. In that case, not only does the capacitance of the multilayer capacitor increase, but also the effect of canceling the magnetic field becomes greater, and the inductance is further reduced, and ESL is reduced by one layer.
  • FIG. 1 is an exploded perspective view of a multilayer capacitor according to one embodiment of the present invention
  • FIG. 2 is a perspective view of the multilayer capacitor shown in FIG. 1,
  • Fig. 3 is a sectional view taken along the line III-III in Fig. 2,
  • Fig. 4 is an equivalent circuit diagram of the multilayer capacitor shown in Fig. 1,
  • FIG. 5 is an exploded perspective view of a multilayer capacitor according to another embodiment of the present invention
  • FIG. 6 is a cross-sectional view of the multilayer capacitor shown in FIG.
  • FIG. 7 is an exploded perspective view of a multilayer capacitor according to another embodiment of the present invention.
  • FIG. 8 is an exploded perspective view of a multilayer capacitor according to another embodiment of the present invention.
  • FIG. 9 is an exploded perspective view of a multilayer capacitor according to another embodiment of the present invention.
  • FIG. 10 is an exploded perspective view of a multilayer capacitor according to another embodiment of the present invention.
  • FIG. 11A is a circuit diagram showing connection of a capacitor of a comparative example of the present invention to a network analyzer.
  • FIG. 11B is a circuit diagram showing connection of the capacitor of the embodiment of the present invention to a network analyzer.
  • FIG. 12 is a graph showing the attenuation characteristics of the capacitors of Examples and Comparative Examples of the present invention
  • FIG. 13 is an exploded perspective view of a multilayer capacitor according to still another embodiment of the present invention
  • FIG. 14 is FIG. Perspective view of the multilayer capacitor shown,
  • FIG. 15 is a cross-sectional view taken along the line XV—XV shown in FIG.
  • FIG. 16 is a circuit diagram showing an example of use of the multilayer capacitor shown in FIGS. 13 to 15;
  • FIG. 17 is a table showing the attenuation characteristics of the capacitors of Examples and Comparative Examples of the present invention.
  • FIG. 18 is a circuit diagram using a multilayer capacitor of a conventional example.
  • Fig. 19 shows the relationship between current fluctuation and voltage fluctuation in the circuit shown in Fig. 18.
  • FIG. 20 is an equivalent circuit diagram of a conventional multilayer capacitor
  • FIG. 21 is a perspective view showing a multilayer capacitor according to a conventional example.
  • FIG. 22 is an exploded perspective view showing a portion of an internal conductor of a multilayer capacitor according to a conventional example.
  • FIGS. 1 to 4 show a multilayer ceramic capacitor 10 (hereinafter simply referred to as a multilayer capacitor) 10 according to the present embodiment.
  • this laminated capacitor 10 is a dielectric material that is a rectangular parallelepiped sintered body obtained by firing a laminate in which a plurality of ceramic Darline sheets, which are dielectric sheets, are laminated. It has elementary body 12 as its main part.
  • first inner conductors 21, second inner conductors 23, first inner conductors 22, and second inner conductors 24, each of which is formed in a substantially square (or rectangular) shape, are provided.
  • a ceramic layer 12A is arranged between the respective internal conductors.
  • four types of internal conductors 2 1, 2 3, 2 2, 2, and 3 a are formed in the dielectric body 12 while the ceramic layer 12 A, which is a dielectric sheet after firing, is sandwiched between the ceramic layers 12 A. 24 are arranged in order.
  • these four types of inner conductors 21, 23, 22 and 24 are repeatedly laminated as described above.
  • the four types of inner conductors 21, 23, 22, and 24 are arranged so that a total of two sets are provided. [0 0 4 0]
  • these internal conductors 21 to 24 not only nickel, nickel alloy, copper, or copper alloy which is a base metal material can be considered, but also a material mainly composed of these metals can be considered.
  • a lead portion 21 A drawn out to the left side surface 12 B (shown in FIG. 2) of the dielectric body 12 is provided on the left side of the first inner conductor 21. It is formed.
  • the inner conductor 21 extends from the extended side surface 12B to the opposite side surface 12D (shown in FIG. 2), and the side surfaces 12C, 12D, and 1B other than the side surface 12B. In E, it is not withdrawn.
  • the planar shape of the first inner conductor 21 except for the lead portion 21A is a square or rectangular shape slightly smaller than the planar shape of the ceramic layer 12A. In this embodiment, the width of the lead portion 21 A is smaller than the width of the first inner conductor 21.
  • the front side of the dielectric body 12 is provided on the front side of the second internal conductor 23 disposed below the first internal conductor 21 via the ceramic layer 12A.
  • a drawer 23A is formed to be drawn out (shown in FIG. 2).
  • the inner conductor 23 extends from the extended side 12 C to the opposite side 12 E (shown in FIG. 2), and the sides 12 B, 12 D, and 12 other than the side 12 C. In E, it is not withdrawn.
  • the planar shape of the second inner conductor 23 excluding the lead portion 23A is a square or rectangular shape slightly smaller than the planar shape of the ceramic layer 12A. In this embodiment, the width of the lead portion 23 A is smaller than the width of the second inner conductor 23.
  • the right side surface 1 2D of the dielectric body 12 (FIG. 2) is formed on the right side of the first inner conductor 22 arranged below the second inner conductor 23 via the ceramic layer 12 A.
  • the inner conductor 22 extends from the drawn side 12 D to the opposite side 12 B (shown in FIG. 2), and the sides 12 B, 12 C, and 12 other than the side 12 D. In E, it is not withdrawn.
  • the planar shape of the first inner conductor 22 except for the lead portion 22A is a square or rectangular shape slightly smaller than the planar shape of the ceramic layer 12A.
  • the width of the drawer 22 A is In the embodiment, the width is smaller than the width of the first inner conductor 22.
  • a drawer 24A is formed to be drawn out (shown in FIG. 2).
  • the inner conductor 24 extends from the extended side 12 E to the opposing side 12 C (shown in FIG. 2), and the sides 12 B, 12 C, and 12 other than the side 12 E. In D, it is not withdrawn.
  • the planar shape of the second inner conductor 24 except for the lead portion 24A is a square or rectangular shape slightly smaller than the planar shape of the ceramic layer 12A.
  • the width of the lead portion 24 A is smaller than the width of the first inner conductor 22 in this embodiment.
  • one second inner conductor 23 is disposed between the pair of first inner conductors 21 and 22.
  • a structure in which one first inner conductor 22 is arranged between 3 and 24 is provided.
  • four types of internal conductors 21, 23, 22, and 24 shown in FIG. 3 are sequentially arranged below the internal conductor 24 as well.
  • the first inner conductors 21 and 22 are extended to the mutually facing two side surfaces 12B and 12D of the dielectric element body 12, respectively.
  • the second inner conductors 23 and 24 are opposed to each other by a dielectric body 12 different from the drawn two side surfaces 12 B and 12 D of the first inner conductors 21 1 and 22. Sides 1 2C and 1 2E are pulled out respectively.
  • the lead portions 21 A, 23 A, 22 A, and 24 A of the four types of inner conductors 21, 23, 22, and 24 correspond to the arrows in FIGS. 1 and 2 of the dielectric sheet.
  • the dielectric elements 12 are respectively arranged on the four side surfaces so that they are projected in the stacking direction indicated by Z and do not overlap each other.
  • the first terminal electrode 31 shown in FIGS. 2 and 3 is connected to the side surface 1 2B of the dielectric body 12 by the dielectric element so as to be connected to the lead portion 21A of the inner conductor 21. It is attached to the outside of body 12. Also, connect the first terminal terminal so that it is connected to the lead portion 22 A of the inner conductor 22.
  • the pole 32 is attached to the outside of the dielectric body 12 on the side surface 1 2D of the dielectric body 12.
  • the second terminal electrode 33 is attached to the outside of the dielectric body 12 on the side surface 12 C of the dielectric body 12 so as to be connected to the lead portion 23 A of the internal conductor 23. It is. Also, the second terminal electrode 34 is attached to the outside of the dielectric body 12 on the side surface 1 E of the dielectric body 12 so as to be connected to the lead portion 24 A of the internal conductor 24. I have.
  • the pair of first terminal electrodes 31 and 32 are disposed on the two opposing side surfaces 12 B and 12 D of the dielectric element 12. Also, the pair of second terminal electrodes 33 and 34 are different from the two sides 1 2B and 1 2D on which the terminal electrodes 31 and 32 are arranged. Each is located at E.
  • the internal conductors 21 to 24 constitute electrodes facing each other of the capacitor, and are formed on the side surfaces 12 B to 12 E of the multilayer capacitor 10 and on the internal conductors 21 to 24.
  • Terminal electrodes 31 to 34 to be connected are arranged, and constitute an equivalent circuit shown in FIG.
  • the multilayer capacitor 10 according to the present embodiment has terminal electrodes 31 to 34 on all four sides 12 B to 12 E of the dielectric element 12 having a hexahedral shape that is a rectangular parallelepiped. Each has a structure to be arranged.
  • a plurality of dielectric sheets each serving as a ceramic layer 12 A are laminated and formed into a rectangular parallelepiped dielectric body 12, and these ceramic layers 12 A plurality of internal conductors are arranged so as to be sandwiched between A.
  • a pair of inner conductors 21 and 22 are respectively drawn out from two opposite sides 12 B and 12 D of the dielectric body 12, and the pair of inner conductors 21 and 22 are drawn out.
  • Out A pair of inner conductors 23 and 24 are respectively drawn out from two opposite sides 12C and 12E which are different from the two sides 12B and 12D.
  • the pair of internal conductors 21 and 22 and the pair of internal conductors 23 and 24 constitute the plurality of internal conductors.
  • the second inner conductor 23 is disposed between the first inner conductors 21 and 22, and the first inner conductor 22 is disposed between the second inner conductors 23 and 24. .
  • the pair of first terminal electrodes 31 and 32 arranged on the two opposing side surfaces 12 B and 12 D of the dielectric body 12 are formed by the pair of first terminal electrodes 31 and 32, respectively.
  • 1 Internal conductors 21 1 and 22 are connected respectively.
  • the electrodes 33 and 34 are connected to the pair of second inner conductors 23 and 24, respectively.
  • the pair of inner conductors 21 and 22 are respectively drawn out to the two opposite sides 12 B and 12 D of the dielectric body 12, and the pair of terminal electrodes 31 and 3 facing each other. Connected to 2 respectively. Moreover, as described above, one second inner conductor 23 is sandwiched between the first inner conductors 21 and 22. Then, the pair of terminal electrodes 31 and 32 are connected to external wirings and the like of the multilayer capacitor 10 so as to have the same polarity so as to exhibit a function as a capacitor. As a result, in the pair of inner conductors 21 and 22, as shown by arrows in FIG. 1, currents flow in opposite directions, and the pair of first inner conductors 21 and 22 mutually move. It becomes the same pole.
  • the wiring outside the multilayer capacitor 10 is arranged so that the pair of second terminal electrodes 33, 34 facing each other have the same polarity. And so on. Therefore, in the pair of second inner conductors 23, 24, for the same reason, as shown by arrows in FIG. 24 have the same polarity as each other. [0 0 5 7]
  • the current flows between the pair of inner conductors 21 and 22 in the opposite direction, which not only acts to cancel the magnetic field, but also flows between the pair of inner conductors 23 and 24 in the opposite direction. This also has the effect of canceling the magnetic field. Then, with the action of canceling out the magnetic field between these internal conductors, the parasitic inductance of the multilayer capacitor 10 itself can be reduced, and the effect of reducing the equivalent series inductance can be obtained.
  • the multilayer capacitor 10 of the present embodiment is suitably used as a decoupling capacitor, and the multilayer capacitor 10 is significantly reduced in ESL. Moreover, according to the multilayer capacitor 10 of the present embodiment, as the amount of attenuation in a high frequency band increases, the voltage fluctuation of the power supply can be suppressed, and the multilayer capacitor 10 can be suitably used for a power supply circuit of a CPU. Can be.
  • first inner conductors 21 and 22 and the second inner conductors 23 and 24 are arranged in the dielectric body 12 in plural pairs, so that the multilayer capacitor according to the present embodiment is provided. Not only does the capacitance of the sensor 10 increase, but also the effect of canceling the magnetic field is further increased, and the inductance is further reduced, and the ESL is reduced by one layer.
  • the dielectric element 12 can be formed in a rectangular parallelepiped shape by stacking dielectric sheets each formed in a rectangular shape such as a rectangle.
  • FIG. 5 a second embodiment of the multilayer capacitor according to the present invention will be described based on FIG. 5 and FIG.
  • the same members as those described in the first embodiment have the same reference numerals. And duplicate explanations are omitted.
  • each internal conductor is formed singly in the same plane.
  • the internal conductors located on the same plane are divided so as to extend side by side.
  • the first inner conductor 21 stacked on the top shown in FIG. 5 is alternately drawn out to two opposing sides 12 B and 12 D (shown in FIG. 2) of the dielectric body 12. (Two in the present embodiment) divided conductors 41 and 42. '
  • the first inner conductor 22, which forms a pair with the first inner conductor 21, is divided so as to extend alongside each other, and is formed on two opposing sides 1 2 B and 1 2 D of the dielectric body 12. It is composed of a plurality of (two in this embodiment) split conductors 43 and 44 alternately drawn out.
  • the split conductors 4 3 and 4 4 overlap with the split conductors 4 1 and 4 2 when viewed from the side of the plan view, but the overlapping split conductors themselves have two sides 1 2 B and 1 in opposite directions. Pulled out to 2D.
  • the divided conductor 41 and the divided conductor 43 which face each other in the laminating direction (the direction viewed from the plane viewed from the side of the plane), are drawn out to the two opposing sides 12B and 12D, respectively. It is. Similarly, the divided conductors 42 and 44 positioned to face each other in the laminating direction are drawn out to the two opposing sides 12D and 12B, respectively.
  • the divided conductors 41 and 44 are connected to the terminal electrodes 31 shown in FIG. 2, respectively, and the divided conductors 42 and 43 are connected to the terminal electrodes 3 shown in FIG. 2 connected to each.
  • the second inner conductor 23 is also divided so as to extend side by side, and the two opposing sides 12 C and 12 E of the dielectric body 12 (shown in FIG. 2) It consists of a plurality (two in this embodiment) of divided conductors 45 and 46 alternately drawn out.
  • the second inner conductor 24 is also divided so as to extend side by side and is alternately drawn out to two opposing side surfaces 12 C and 12 E of the dielectric body 12 (in this embodiment, Two) Of the divided conductors 47 and 48.
  • the split conductors 45 and 46 overlap the split conductors 47 and 48 when viewed from the side of the plan view, but the overlapping split conductors themselves have two sides in opposite directions. 1 2C, 1 2 Withdrawn to E.
  • the divided conductor 45 and the divided conductor 47 which are positioned to face each other in the laminating direction are respectively drawn to the two side surfaces 12 C and 12 E which face each other.
  • the divided conductor 46 and the divided conductor 48 positioned to face each other in the stacking direction are drawn out to the two side surfaces 12 E and 12 C facing each other.
  • the divided conductors 45 and 48 are respectively connected to the terminal electrodes 33 shown in FIG. 2, and the divided conductors 46 and 47 are connected to the terminal electrodes 3 shown in FIG. 4 respectively.
  • the current flows in the opposite direction between the divided conductors 41 and 42 and the divided conductors 43 and 44, as shown by arrows in FIG. 5, and the divided conductors 45 and 46 and the divided conductor
  • the current flows in the opposite direction between 47 and 48, as shown by the arrow in FIG.
  • the divided conductors 41, 42 that are adjacent to each other and extend adjacently to each other on the same plane, the divided conductors 43, 44, and the divided conductors 4 respectively.
  • Even in the case of 5, 46 and the divided conductors 47, 48 the current flows in the opposite direction, thereby canceling the magnetic field.
  • the parasitic inductance of the multilayer capacitor 10 itself can be further reduced along with the canceling action of the magnetic field between these internal conductors, and the effect of reducing the equivalent series inductance is increased.
  • the first inner conductor 21 is divided so as to extend side by side with each other, and the two sides 1 2B and 1 2D of the dielectric body 12 facing each other are opposed to each other. It consists of a plurality (three in this embodiment) of divided conductors 51, 52, 53 drawn out alternately (as shown in Fig. 2).
  • first inner conductors 22 are similarly divided so as to extend side by side with each other and are drawn out to two opposing side surfaces 12 B and 12 D of the dielectric element 12 (in this embodiment, Are composed of three) divided conductors 54, 55, and 56. These divided conductors 54, 55, and 56 overlap with the divided conductors 51, 52, and 53 when viewed from the plan arrow side, but the overlapping divided conductors are opposite to each other. Pulled towards two sides 1 2B, 1 2D in the direction.
  • the divided conductor 51 and the divided conductor 54 positioned to face each other in the laminating direction are drawn out to the two side surfaces 12B and 12D facing each other.
  • the divided conductor 52 and the divided conductor 55 that are located opposite to each other in the stacking direction are drawn out to two opposite sides 12D and 12B, respectively.
  • the divided conductor 53 and the divided conductor 56 located opposite to each other in the laminating direction are respectively drawn to two opposite sides 12B and 12D facing each other.
  • the divided conductors 51, 53, 55 are respectively connected to the terminal electrodes 31 shown in FIG. 2, and the divided conductors 52, 54, 56 force are also shown in FIG. Connected to the terminal electrodes 32 shown in the figure.
  • the second inner conductor 23 is divided so as to extend alongside each other, and is alternately drawn out to two opposing sides 12 C, 12 E (shown in FIG. 2) of the dielectric body 12.
  • the divided conductor 57 and the divided conductor 60 that are positioned to face each other in the laminating direction are respectively drawn to the two side surfaces 12C and 12E that face each other.
  • the divided conductor 58 and the divided conductor 61 and the force S, which are located opposite to each other in the laminating direction are drawn out to the opposing two side surfaces 12 E and 12 C, respectively.
  • the divided conductor 59 and the divided conductor 62 located opposite to each other in the laminating direction are respectively drawn to two opposite sides 12C and 12E facing each other.
  • the divided conductors 58, 60, and 62 are respectively connected to the terminal electrodes 33 shown in FIG. 2, and the divided conductors 57, 59, and 61 are also shown in FIG. Connected to the terminal electrodes 34 shown.
  • the divided conductors 51, 52, 53 extending side by side on the same plane with each other, the divided conductors 54, 55, 56 with each other, the divided conductors 57, '58, 59 with each other, and Even in the case of the divided conductors 60, 61, and 62, the currents flow in opposite directions between the adjacent divided conductors, so that the respective magnetic fields cancel each other out.
  • the parasitic inductance of the multilayer capacitor 10 itself can be further reduced, and the effect of reducing the equivalent series inductance increases.
  • the first inner conductor 21 is divided so as to extend alongside each other, and the two opposing sides 12 B, 1 B of the dielectric element body 12 are opposed to each other. It is composed of a plurality of divided conductors 71 and 72 alternately drawn out in 2D (shown in FIG. 2).
  • the divided conductors 71 are connected at the lead portions 71A, and are formed in a substantially U-shape as a whole.
  • the divided conductor 72 is integrally formed with a lead portion 72A having the same width as the lead portion 71A. The whole is formed in a substantially T-shape. The leading end of the divided conductor 72 enters between the pair of divided conductors 71.
  • the first inner conductor 22, which forms a pair with the first inner conductor 21, is similarly divided so as to extend side by side with each other, and the two opposing sides 1 2 B, 1 2 of the hypoelectric body 1 2 It is composed of a plurality of divided conductors 73 and 74 alternately drawn out to D.
  • the split conductors 7 3 and 7 4 overlap with the split conductors 7 1 and 7 2 when viewed from the side of the plan view, but the overlapping split conductors themselves have two sides 12 B, Pulled towards 1 2D.
  • the divided conductors 73 are connected at the lead-out portions 73A, and are formed in a substantially U-shape as a whole. Further, the divided conductor 74 has a lead portion 74A having the same width as the lead portion 73A, and is formed in a T-shape as a whole. The front end portion of the divided conductor 74 enters between the pair of divided conductors 73.
  • the second inner conductor 23 disposed between the first inner conductors 21 and 22 is divided so as to extend side by side, and the two opposing side surfaces 1 of the dielectric body 12 are divided. It is composed of a plurality of divided conductors 75 and 76 alternately drawn out to 2C and 12E (shown in FIG. 2). However, in the present embodiment, the divided conductors 75 are connected at the lead portions 75A, and are formed in a substantially U-shape as a whole. In addition, the divided conductor 76 has a lead portion 76A having the same width as the lead portion 75A, and is formed in a T-shape as a whole. You. The leading end portion of the split conductor 76 enters between the pair of split conductors 75.
  • the second inner conductor 24, which forms a pair with the second inner conductor 23, is similarly divided so as to extend side by side with each other, and the two opposing sides 1 2 C and 1 2 E of the dielectric body 12 It is composed of a plurality of divided conductors 77 and 78 alternately drawn out.
  • the divided conductors 77, 78 overlap with the divided conductors 75, 76 when viewed from the side of the plan arrow, but the overlapping divided conductors themselves have two sides 12 C, opposite to each other. Pulled out to 1 2 E.
  • the divided conductor 77 is connected at a lead portion 77A, and is formed in a substantially U shape as a whole. Further, the divided conductor 78 has a lead portion 78A having the same width as the lead portion 77A, and is formed in a T-shape as a whole. The leading end portion of the divided conductor 78 enters between the pair of divided conductors 77.
  • the split conductors 7 1 and 7 4 are connected to the terminal electrode 3 1, the split conductors 7 2 and 7 3 are connected to the terminal electrode 3 2, and the split conductors 7 5 and 7 8 are connected to the terminal electrode 3 3 and split.
  • the conductors 76, 77 are connected to the terminal electrodes 34, each of the divided conductors 71 to 78, S, as in the second embodiment, respectively, to each of the terminal electrodes 31 to 34 shown in FIG. Connected.
  • a current flows in the opposite direction between the divided conductor 71 and the divided conductor 73 that are positioned opposite to each other in the stacking direction, as indicated by the arrow in FIG.
  • a current flows in the opposite direction between the divided conductors 72 and 74, and between the divided conductors 75 and 77 positioned opposite to each other in the stacking direction.
  • the current flows in the opposite direction, as shown by the arrows in FIG.
  • the current flows in the opposite direction between the divided conductors 76 and 78, so that the magnetic fields cancel each other.
  • the T-shaped split conductor ⁇ 2 enters between the U-shaped split conductors 71, and the current flows in the opposite direction even between adjacent split conductors 7 1 and 7 2 extending side by side on the same surface. , The respective magnetic fields cancel each other out. Also, similarly, Even in the case of the split conductors 73 and 74, the split conductors 75 and 76, and the split conductors 77 and 78, the currents flow in opposite directions, thereby canceling the magnetic fields.
  • the parasitic inductance of the multilayer capacitor 10 itself can be further reduced, and the effect of reducing the equivalent series inductance increases.
  • the first inner conductor 21 is divided so as to extend side by side, and the two opposing sides 1 2B, 1 2 of the dielectric body 12 are divided. It is composed of a plurality (two in this embodiment) of divided conductors 81 and 82 alternately drawn out to D (shown in FIG. 2). However, in the present embodiment, each of the divided conductors 81 and 82 is formed in a substantially triangular shape.
  • first inner conductor 22 that forms a pair with the first inner conductor 21 is divided so as to extend alongside each other, and the two opposing sides 1 2B and 1 2D of the dielectric body 12 It consists of a plurality of (two in this embodiment) divided conductors 83 and 84 alternately drawn out.
  • each of the divided conductors 83 and 84 is formed in a substantially triangular shape.
  • These divided conductors 83 and 84 are arranged at point-symmetrical positions with respect to the divided conductors 81 and 82, respectively, when viewed from the side of the plan arrow, and the point-symmetrical divided conductors themselves are The two sides 1 2B, 1 2D are pulled in opposite directions to each other.
  • the second inner conductor 23 arranged between the first inner conductors 21 and 22 is divided so as to extend in parallel with each other, and the two opposing sides 1 2C of the dielectric body 12 are 1 2 E (shown in Fig. 2) alternately pulled out (two in this embodiment) It is composed of 8 6.
  • each of the divided conductors 85 and 86 is formed in a substantially triangular shape.
  • the second inner conductor 24 paired with the second inner conductor 23 is divided so as to extend side by side, and the two opposing sides 1 2C and 1 2E of the dielectric body 12 are divided. It consists of a plurality (two in this embodiment) of divided conductors 87 and 88 alternately drawn out.
  • each of the divided conductors 87 and 88 is formed in a substantially triangular shape.
  • These divided conductors 87 and 88 are disposed at point-symmetric positions with respect to the divided conductors 85 and 86, respectively, when viewed from the side of the plane arrow, and the point-symmetric divided conductor itself is The two sides 1 2 C, 1 2 E are pulled in opposite directions to each other.
  • split conductors 8 1 and 8 4 are connected to terminal electrode 3 1
  • split conductors 8 2 and 8 3 are connected to terminal electrode 3 2
  • split conductors 8 5 and 8 8 are connected to terminal electrode 3 3 and split.
  • Conductors 86 and 87 are connected to terminal electrode 34. That is, each of the divided conductors 81 to 88 is connected to each of the terminal electrodes 31 to 34 shown in FIG. 2 similarly to the second embodiment.
  • a current flows in the opposite direction between the divided conductors 81 and 83 located opposite to each other in the stacking direction, as indicated by arrows in FIG. Similarly, a current flows in the opposite direction between the divided conductors 82 and 84. In addition, a current flows in the opposite direction between the divided conductor 85 and the divided conductor 87 that are located opposite to each other in the stacking direction, as indicated by the arrow in FIG. Similarly, a current flows in the opposite direction between the divided conductors 86 and 88. As a result, the respective magnetic fields cancel each other.
  • the parasitic inductance of the multilayer capacitor 10 itself can be further reduced, and the effect of reducing the equivalent series inductance increases.
  • a pair of first inner conductors 21 and 22 are formed by an inner conductor 91 and an inner conductor 92 formed substantially in the same manner as in the first embodiment. is there. Further, a pair of second inner conductors 23 and 24 are formed of three divided conductors 57, 58, 59 and three divided conductors 60, 61, similarly to the third embodiment. 6 2 and, respectively.
  • the internal conductor 91 is connected to the terminal electrode 31, and the internal conductor 92 is connected to the terminal electrode 32.
  • the divided conductors 58, 60, and 62 are connected to the terminal electrodes 33, respectively, and the divided conductors 57, 59, and 61 are connected to the terminal electrodes 34, respectively.
  • the S21 characteristics of the following S parameters of each sample were measured, and the attenuation characteristics of each sample were obtained.
  • the contents of each sample will be described. That is, the two-terminal multilayer capacitors shown in FIGS. 21 and 22 are used as comparative examples 1 and the four-terminal multilayer capacitors according to the second embodiment shown in FIGS. 5 and 6 are used as examples. It was set to 1. Then, the capacitor of Comparative Example 1 is connected to Port 1 and Port 2 of the network analyzer as shown in FIG. 11A, and the capacitor of Example 1 is also shown in FIG. 11B. Were connected as follows.
  • the constant of the equivalent circuit was calculated so that the measured value of the attenuation characteristic matched the attenuation of the equivalent circuit shown in FIG. From the attenuation characteristics data for each sample shown in Fig. 12, the attenuation of Example 1 in the high frequency band of 2 O MHz or more was increased by about 15 dB compared to Comparative Example 1. I understand. From this data, it was confirmed that the high-frequency characteristics were improved in the examples.
  • C is the capacitance and ESL is the equivalent series resistance.
  • L the distance between the side surfaces of the dielectric element from which the pair of inner conductors was drawn
  • W the distance between the side surfaces perpendicular to the side surface of the dielectric body from which the inner conductor was drawn out
  • the multilayer capacitor 10 according to the above embodiment has been configured to have a total of eight layers, two sets each having four layers, the number of layers is not limited to these numbers and may be further increased. For example, it may be tens or hundreds.
  • the second and subsequent embodiments of the above embodiments a structure in which two or three divided conductors are arranged is shown. However, it is necessary to arrange four or more divided conductors. It may be.
  • FIGS. 13 to 15 show a multilayer ceramic capacitor (hereinafter simply referred to as a multilayer capacitor) 210 according to the present embodiment.
  • the multilayer capacitor 210 is a dielectric material that is a rectangular parallelepiped sintered body obtained by firing a multilayer body in which a plurality of ceramic sheets as dielectric sheets are stacked. It has a body element 212 as a main part.
  • the first inner conductor 21, the second inner conductor 23, the first inner conductor A partial conductor 22 and a second internal conductor 24 are arranged. Ceramic layers 212A are arranged between the respective layers.
  • the first inner conductor 21 is constituted by divided conductors 22, 222, 223, and another first inner conductor 22, which forms a pair with the divided conductors, is constituted by divided conductors 224, 225, 226.
  • the second inner conductors 23 and 24 are constituted by single inner conductors 227 and 228, respectively.
  • the divided conductors 221 to 223, the inner conductor 227, the divided conductors 224 to 226, and the inner conductor 228 are sequentially formed while the ceramic layer 212A as the fired dielectric sheet is sandwiched therebetween. It is arranged in the elementary body 12. Further, on the lower side of the internal conductor 228, as shown in FIG. 15, these four layers of electrodes are repeated in the same order as described above, and a total of two sets of these sets are arranged.
  • the material of each of the divided conductors 21 to 26 formed in a substantially rectangular shape and the internal conductors 27 and 28 formed in a substantially square shape nickel, nickel alloy, copper, or copper alloy which is a base metal material is used. Not only are materials used, but materials containing these metals as main components are used.
  • a lead portion 222A that is drawn out to the side surface 212D on the front side of the dielectric element 212 is formed.
  • the split conductor 222 extends from the drawn side surface 212D toward the opposing side surface 212B.
  • the plurality (three in this embodiment) of the divided conductors 221, 222, and 223 are divided into shapes extending side by side in the same plane, and The two side surfaces 212B and 212D facing each other are drawn out alternately.
  • an internal conductor 227 is arranged below these divided conductors 221 to 223.
  • a left side surface 212C (shown in FIG. 14) of the dielectric element 212 is drawn out.
  • a drawer 227A is formed.
  • the inner conductor 227 extends from the extended side surface 212C to the opposite side surface 212E (shown in FIG. 2).
  • a plurality (three in this embodiment) of divided conductors 224, 225, and 226 are arranged below the inner conductor 227.
  • lead portions 224A and 226A are formed to be drawn out to the side surface 212D on the front side of the dielectric element 212, respectively.
  • These divided conductors 224 and 226 extend from the side surface 212D toward the opposing side surface 212B.
  • a lead portion 225A that is drawn out to a side surface 212B on the back side of the dielectric element body 212 is formed in a back portion of the split conductor 225 disposed between the split conductors 224 and 226.
  • the divided conductor 225 extends from the side surface 212B to the opposite side surface 212D.
  • the plurality (three in this embodiment) of the divided conductors 224, 225, and 226 are divided into shapes that extend side by side in the same plane, and the two opposing sides 212D of the dielectric element body 12 are opposed to each other. , Extending alternately to 212B. Moreover, the divided conductors 2 24, 225, and 226 overlap with the divided conductors 221, 222, and 223 when viewed from the plan arrow side, and the overlapping divided conductors are configured to be drawn out in opposite directions. I have.
  • an inner conductor 228 is arranged below the divided conductors 224 to 226, below the divided conductors 224 to 226, an inner conductor 228 is arranged. On the right side of the inner conductor 228, a lead portion 228A drawn out to the right side surface 212E of the dielectric element 212 is provided. Is formed. The inner conductor 228 is It extends from E to the opposite side 12C.
  • the split conductor 221 and the split conductor 224 drawn to the two side surfaces 12B and 12D opposed to each other, although the inner conductor 227 is present between them, are stacked in the stacking direction (the direction indicated by the arrow Z). Are located opposite to each other.
  • the split conductor 222 and the split conductor 225 are located to face each other in the laminating direction, although the inner conductor 227 exists between them.
  • the divided conductor 223 and the divided conductor 226 are located to face each other in the laminating direction, although the inner conductor 227 exists between them. It should be noted that the same relationship as described above is established between the divided conductors 224, 225, and 226 and the divided conductors 221, 222, and 223 shown in FIG.
  • a plurality of (three in this embodiment) terminal electrodes 231, 232, 233 are connected to the lead portions 221A, 222A, 223A of the divided conductors 221, 222, 223, respectively.
  • a plurality of (three in this embodiment) terminal electrodes 234, 235, and 236 are connected to the lead portions 224A, 225A, and 226A of the divided conductors 224, 225, and 226, respectively.
  • terminal electrode 237 is disposed on the side surface 212C of the dielectric element 212 and outside the dielectric element 212 so as to be connected to the lead portion 227A of the internal conductor 227.
  • terminal electrode 38 is disposed on the side surface 212E of the dielectric body 212 and outside the dielectric body 12 so as to be connected to the lead portion 228A of the inner conductor 228. I have.
  • these terminal electrodes 231, 232, 233 and terminal electrodes 234, 235, 236 are arranged on two mutually facing side surfaces 212 B, 212 D of the dielectric body 212.
  • the terminal electrodes 237 and the terminal electrodes 238 are arranged on two opposite sides 212 C and 212 E which are different from the two sides 212 B and 212 D on which the terminal electrodes 231 to 236 are arranged.
  • the capacitor of the present embodiment is an array type multilayer capacitor.
  • the inner conductor 227 is disposed between the divided conductors 221 to 223 and the divided conductors 224 to 226, and the inner conductor 227 is disposed between the inner conductor 227 and the inner conductor 228.
  • the divided conductors 224 to 226 are arranged at the center. That is, between the divided conductors 221 to 223 and the inner conductor 227, between the inner conductor 227 and the divided conductors 224 to 226, and between the divided conductors 224 to 226 and the inner conductor 228, the mutually facing electrodes of the capacitor are connected. , Respectively, and functions as a capacitor.
  • the terminal electrodes 231 to 236 connected to the divided conductors 221 to 226 and disposed on the two side surfaces 212B and 212D constitute a plurality of pairs of first terminal electrodes.
  • the terminal electrodes 237 and 238 connected to the internal electrodes 227 and 228 and disposed on the two side surfaces 212C and 212E constitute a pair of second terminal electrodes.
  • the terminal electrodes 231 to 236 and the terminal electrodes 237 and 238 are provided on all four side surfaces 212 B to 212 E of the dielectric body 212 having a rectangular parallelepiped hexahedron shape. Each is arranged.
  • the three pairs of terminal electrodes 231 to 236 are connected to the external wiring of the multilayer capacitor 210 so that the three pairs of terminal electrodes 231 to 236 have the same polarity so as to exhibit the function as a capacitor.
  • FIG. 3 currents flow in opposite directions, and the three divided conductors 221 to 223 and the divided conductors 224 to 226 have the same polarity.
  • a pair of terminal electrodes 237 and 238 facing each other are connected to a wiring or the like outside the multilayer capacitor 210 so as to have the same polarity.
  • the parasitic inductance of the multilayer capacitor 210 itself can be reduced, and the effect of reducing the equivalent series inductance can be obtained.
  • the multilayer capacitor 210 is suitably used as a decoupling capacitor, and the multilayer capacitor 210 is significantly reduced in ESL.
  • the multilayer capacitor 210 according to the present embodiment can suppress the voltage fluctuation of the power supply as the attenuation in the high frequency band increases, and is suitably used for a power supply circuit of a CPU.
  • a plurality of sets of three divided conductors 221 to 223, three divided conductors 224 to 226, and a pair of inner conductors 227 and 228 are arranged in the dielectric body 12 respectively.
  • the capacitance of the multilayer capacitor 210 according to the present embodiment increases.
  • the action of canceling the magnetic field is further increased, the inductance is further reduced, and the ESL can be reduced by one layer.
  • the dielectric element 212 can be formed in a rectangular parallelepiped shape by laminating dielectric sheets each formed in a rectangular shape such as a rectangle.
  • the multilayer capacitor 210 of the present embodiment has all of the side surfaces 12B to 12 of the dielectric body 12 formed in a rectangular parallelepiped shape having four side surfaces 12B to 12E that are optimal from the viewpoint of productivity. E is provided with a lead portion of the conductor. Therefore, the effect of reducing ESL is maximized.
  • three sets of power supplies 241, 242, 243 and three sets of ICs 251, 252, 253 such as a CPU are connected to each other in pairs. That is, the power supply 241 and the IC 251 are connected, the power supply 242 and the IC 252 are connected, and the power supply 243 and the IC 253 are connected.
  • the terminal electrode 231 connected to the divided conductor 221 of the multilayer capacitor 210 and the terminal electrode 234 connected to the divided conductor 224 are connected between the power supply 241 and the IC 251. Further, a terminal electrode 232 connected to the divided conductor 222 and a terminal electrode 235 connected to the divided conductor 225 are connected between the power supply 242 and the IC 252, respectively. Further, a terminal electrode 233 connected to the divided conductor 223 and a terminal electrode 236 connected to the divided conductor 226 are connected between the power supply 243 and the IC 253, respectively.
  • the internal electrode 22 Terminal electrode 237 connected to 7 and terminal electrode 238 connected to internal conductor 228 are each grounded.
  • the terminal electrodes 231 to 236 have the same polarity as the positive electrode, and the terminal electrodes 237 to 238 have the same polarity as the negative electrode.
  • voltage fluctuations of the power supplies 241, 242, 243 can be suppressed.
  • the constant of the equivalent circuit was calculated such that the measured value of the attenuation characteristic matched the attenuation of the equivalent circuit shown in FIG. From the attenuation characteristics data of each sample shown in Fig. 17, it can be seen that the attenuation of Example 2 in the high frequency band of 20 MHz or more is increased by about 15 dB compared to Comparative Example 1. . From this data, it was confirmed that the improvement of the high frequency characteristics was observed in Example 2.
  • the multilayer capacitor 210 has a structure having a total of eight layers of two sets of four layers, the number of layers is not limited to these numbers and may be further increased. For example, it may be tens or hundreds.
  • three divided conductors are arranged on the same plane. However, two or four or more divided conductors may be arranged on the same plane.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)

Abstract

  誘電体素体12内に、第1内部導体21、第2内部導体23、第1内部導体22および第2内部導体24が、上から順に配置される。第1内部導体21、22は、誘電体素体の相互に対向する二側面にそれぞれ引き出される。第1内部導体21、22がそれぞれ引き出された相互に対向する二側面と異なる相互に対向する二側面には、一対の第2内部導体23、24がそれぞれ引き出される。これら4つの内部導体21~24にそれぞれ接続されるように、誘電体素体12の4側面にそれぞれ端子電極31~34が配置される。

Description

積層コ 技術分野
【0001】 明
本発明は、 等価直列インダクタンス (ESL) を大幅に低減した積層コ サに係り、 特にデカツプリングコンデンサとして用いられる積層セラミッタコン 書
デンサに好適なものである。
背景技術
【0002】
近年、 情報処理装置に用いられる CPU (主演算処理装置) は、 処理スピード の向上およぴ高集積化によって、 動作周波数が高くなる共に消費電力が著しく増 加している。 そしてこれに伴い、 消費電力の低減化によって動作電圧が減少する 傾向にある。
【0003】
従って、 CPUに電力を供給する為の電源では、 より高速で大きな電流変動が 生じるようになり、 この電流変動に伴う電圧変動をこの電源の許容値内に抑える ことが非常に困難になっている。
【0004】
この為、 図 18に示すように、 デカップリングコンデンサと呼ばれる積層コン デンサ 100が電源 102に接続される形で、 電源の安定化対策に頻繁に使用さ れるようになった。 そして、 電源の高速で過渡的な変動時に素早い充放電によつ て、 この積層コンデンサ 100から CPU 104に電流を供給して、 電源 102 の電圧変動を抑えるようにしている。
【0005】
しかし、 今日の CPUの動作周波数の一層の高周波数化に伴って、 電流変動は より高速且つ大きなものとなり、 図 18に示す積層コンデンサ 100自身が有し ている等価直列インダクタンス (ESL) 力 S、 電源の電圧変動に大きく影響する ようになった。
【0006】
つまり、 図 18に示す CPU 104の電源回路に用いられる従来の積層コンデ ンサ 100では、 その等価回路を表す図 18に示された寄生成分である ESしが 高いことから、 図 19に示す電流 Iの変動に伴って、 この E S Lが積層コンデン サ 100の充放電を阻害するようになる。 この為、 上記と同様に電源の電圧 Vの 変動が図 1 9のように大きくなり易く、 今後の CPUの高速化には対応できなく なりつつあった。
【0007】
この理由は、 電流の過渡時である充放電時における電圧変動が下記の式 1で近 似され、 E S Lの高低が電源の電圧変動の大きさと関係するからである。
【0008】
d V = E S L · d i /d t…式 1
【0009】
ここで、 dVは過渡時の電圧変動 (V) であり、 iは電流変動量 (A) であり、 tは変動時間 (秒) である。
【0010】
尚、 図 21に示す従来の積層コンデンサは、 図 22に示す二種類の内部導体 1 14, 116をそれぞれ設置した一対のセラミック層 1 12 Aが交互に積層され て、 誘電体素体 1 12が形成される構造となっている。 また、 二種類の内部導体 1 14、 1 16は、 誘電体素体 1 12の相互に対向する二つの側面 1 1 2B、 1 12 Cにそれぞれ引き出され、 誘電体素体 1 12の外部に配置された端子電極 1 18、 120にそれぞれ接続される形になっている。
発明の開示
【001 1】
本発明は上記事実を考慮し、 E S Lを大幅に低減した積層コンデンサを提供す ることを目的とする。
【001 2】
上記目的を達成するために、 本発明の第 1の観点に係る積層コンデンサは、 複数の誘電体シートが積層されて形成される誘電体素体内に、 誘電体シート間に 挟まれる形で複数の内部導体がそれぞれ配置される積層コンデンサであって、 前記内部尊体が、
前記誘電体シートの相互に対向する二側面にそれぞれ引き出される少なくとも一 対の第 1内部導体と、
一対の前記第 1内部導体が引き出された二側面と異なる前記誘電体素体の相互に 対向する二側面にそれぞれ引き出される少なくとも一対の第 2内部導体と、 で構 成され、
一対の前記第 1内部導体の間に、 前記誘電体シートを介して前記第 2内部導体が 配置され、
一対の前記第 2内部導体の間に、 前記誘電体シートを介して前記第 1内部導体が 配置されていることを特徴とする。
【0 0 1 3】
本発明の第 1の観点に係る積層コンデンサでは、 複数の誘電体シートが積層さ れて形成される誘電体素体内に、 誘電体シート間に挟まれる形で複数の内部導体 がそれぞれ配置される構成を有している。 また、 誘電体素体の相互に対向する二 側面に一対の第 1内部導体がそれぞれ引き出され、 これら一対の第 1内部導体が 引き出された二側面と異なる誘電体素体の相互に対向する二側面に一対の第 2内 部導体がそれぞれ引き出されている。
【0 0 1 4】
つまり、 これら一対の第 1内部導体および一対の第 2内部導体により上記複数 の内部導体が構成されており、 一対の第 1内部導体および一対の第 2内部導体の 内の一方の内部導体の間に他方の内部導体の何れか一つが配置されている。
【0 0 1 5】
例えば、 一つの第 2内部導体が間に挟まれることで、 一対の第 1内部導体同士 が相互に同極となり且つ、 これら一対の第 1内部導体がそれぞれ誘電体素体の対 向する二側面にそれぞれ引き出される構造となっているので、 これら一対の第 1 内部導体内において、 電流が相互に逆向きに流れるようになる。 この一方、 一対 の第 2内部導体においても、 同様の理由から電流が相互に逆向きに流れるように なる。
【0 0 1 6】
従って、 一対の第 1内部導体間で電流が逆向きに流れることで、 磁界を相殺す る作用が生じるだけでなく、 一対の第 2内部導体間で電流が逆向きに流れること でも、 磁界を相殺する作用が生じる。 そして、 これら各内部導体間での磁界の相 殺作用が生じるのに伴って、 積層コンデンサ自体が持つ寄生ィンダクタンスを少 なくでき、 等価直列インダクタンスを低減する効果が生じるようになる。
【0 0 1 7】
以上より、 本発明の第 1の観点に係る積層コンデンサによれば、 積層コンデン サの大幅な低 E S L化が図られて、 高周波数帯域での減衰量が大きくなるのに伴 レ、、 電源の電圧変動を抑制できるようになる。 すなわち、 本発明の第 1の観点に 係る積層コンデンサは、 C P Uの電源回路において、 デカップリングコンデンサ として好適に用いられることができる。
【0 0 1 8】
好ましくは、 本発明の第 1の観点に係る積層コンデンサは、
前記誘電体素体の相互に対向する二側面にそれぞれ配置され、 且つ一対の前記第
1内部導体にそれぞれ接続される少なくとも一対の第 1端子電極と、
前記第 1端子電極が配置される側面と異なる前記誘電体素体の相互に対向する二 側面にそれぞれ配置され、 且つ一対の前記第 2内部導体にそれぞれ接続される一 対の第 2端子電極と、 を備えている。
【0 0 1 9】
この場合には、 相互に対向する一対の第 1端子電極が相互に同極性を有する形 に積層コンデンサの外部に接続され、 また、 相互に対向する一対の第 2端子電極 が相互に同極性を有する形に積層コンデンサの外部に接続される。 その結果、 一 対の第 1内部導体同士が相互に同極となると共に、 一対の第 2内部導体同士が相 互に同極となり、 本発明の第 1の観点に係る積層コンデンサの作用効果を、 より 確実に達成できるようになる。
【0 0 2 0】
好ましくは、 前記第 1内部導体おょぴ第 2内部導体の少なくとも何れかが、 相 互に並んで延ぴる形で分割されて前記誘電体素体の相互に対向する二側面に交互 に突き出される複数の分割導体で構成してある。
【0 0 2 1】
つまり、 一対の第 1内部導体をそれぞれ分割した複数対の分割導体同士間で電 流が逆向きに流れる。 または、 一対の第 2内部導体をそれぞれ分割した複数対の 分割導体同士で電流が逆向きに流れる。 その結果、 積層方向に配置される内部導 体同士で、 それぞれ磁界を相殺する作用が生じるだけでなく、 それぞれ同一面上 で相互に並んで延びて隣り合う分割導体同士でも、 電流が逆向きに流れることで、 磁界を相殺する作用が生じる。
【0 0 2 2】
この結果として、 これら各分割導体間での磁界の相殺作用が生じるのに伴って、 積層コンデンサ自体が持つ寄生ィンダクタンスをより一層少なくでき、 等価直列 インダクタンスを低減する効果が増大するようになる。
【0 0 2 3】
好ましくは、 同一平面内に位置して相互に隣接する前記分割導体は、 相互に対 向する二側面にそれぞれ配置された前記端子電極にそれぞれ接続してある。 この ようにすることで、 隣り合う分割導体にそれぞれ流れる電流の向きが逆になる。
【0 0 2 4】
好ましくは、 前記第 1内部導体および第 2内部導体には、 前記第 1端子電極お よぴ第 2端子電極に対してそれぞれ接続される引出部が形成してある。 引出部は、 第 1内部導体およびノまたは第 2内部導体と同じ幅、 狭い幅、 広い幅の何れでも 良い。
【0 0 2 5】
好ましくは、 前記分割導体には、 前記端子電極と接続される引出部が形成して あり、 同一平面内に 3つ以上の分割導体が配置され、 これらの分割導体の内の 1 つ飛んで隣の分割導体同士が、 前記引出部を介して接続してある。 このように構 成することで、 同一平面内で相互に隣接する分割導体における電流の流れが相互 に逆になる。
【0 0 2 6】 好ましくは、 相互に対向する位置で同一平面内に配置される前記引出部の幅が 略同一である。 引出部の幅を略同一にすることで、 端子電極との接続を確実にす ることができる。
【0 0 2 7】
好ましくは、 前記分割導体の平面形状は、 特に限定されず、 長方形、 三角形、 または台形、 あるいはその他の形状であっても良いが、 限られたサイズで静電容 量を大きくするには、 長方形、 三角形または台形が好ましい。
【0 0 2 8】
本発明の第 2の観点に係る積層コンデンサは、
複数の誘電体シートが積層されて形成される誘電体素体内に、 誘電体シート間に 挟まれる形で複数の内部導体がそれぞれ配置される積層コンデンサであって、 前記内部導体が、
前記誘電体シートの相互に対向する二側面にそれぞれ引き出される少なくとも一 対の第 1内部導体と、
一対の前記第 1内部導体が引き出された二側面と異なる前記誘電体素体の相互に 対向する二側面にそれぞれ引き出される少なくとも一対の第 2内部導体と、 で構 成され、
一対の前記第 1内部導体の間に、 前記誘電体シートを介して前記第 2内部導体が 配置され、
一対の前記第 2内部導体の間に、 前記誘電体シートを介して前記第 1内部導体が 配置され、
前記第 1内部導体が、 同一平面内において相互に並んで延びる形に分割され、 誘 電体素体の相互に対向する二側面に交互に引き出される複数の分割導体で構成し てあり、
前記第 2内部導体を挟んで積層方向に相互に隣り合う前記第 1内部導体の分割導 体が、 平面矢視側から見てそれぞれ重複した位置に配置され、 平面矢視側から見 て重複する分割導体同士は、 それぞれ逆方向となるように交互に引き出されるこ とを特徴とする。
【0 0 2 9】 11490 本発明の第 2の観点に係る積層コンデンサによれば、 本発明の第 1の観点に係 る積層コンデンサの作用効果に加えて、 次に示す作用効果を奏する。 すなわち、 第 2内部導体を挟んで積層方向に隣り合う第 1内部導体の分割導体は、 相互に同 極となり、 しかも、 電流の流れが相互に逆になる。 しかも、 同一平面内で相互に 隣り合う分割導体同士においても、 電流が相互に逆向きに流れるようになる。
【0 0 3 0】
従って、 積層方向に配置される第 1内部導体の分割導体の間で電流が逆向きに 流れ、 また、 一対の第 2内部導体間でも電流が逆向きに流れ、 磁界を相殺する作 用がそれぞれ生じる。 さらに、 同一平面内において相互に並んで延びて隣り合う 分割導体同士でも電流が相互に逆向きに流れて、 磁界を相殺する作用が生じるよ うになる。
【0 0 3 1】
そして、 これら各導体間での磁界の相殺作用が生じるのに伴って、 積層コンデ ンサ自体が持つ寄生ィンダクタンスを少なくでき、 等価直列ィンダクタンスを低 減する効果が生じるようになる。
【0 0 3 2】
本発明の第 2の観点において、 前記第 2内部導体は、 第 1内部導体と同様に、 分割されている形状でも良いが、 分割されていない形状でも良い。
【0 0 3 3】
本発明の第 2の観点に係る積層コンデンサは、
前記誘電体素体の相互に対向する二側面にそれぞれ配置され且つ、 複数の分割導 体にそれぞれ接続される複数対の第 1端子電極と、
複数対の第 1端子電極が配置される二側面と異なる前記誘電体素体の相互に対向 する二側面にそれぞれ配置され且つ、 一対の前記第 2内部導体にそれぞれ接続さ れる一対の第 2端子電極と、 を備える。
【0 0 3 4】
これらの端子電極を誘電体素体の側面に形成することで、 第 1内部導体を構成 する分割導体が確実に相互に同極となると共に、 一対の第 2内部導体同士が確実 に相互に同極となる。 【0 0 3 5】
本発明の第 1およぴ第 2の観点において、 前記誘電体素体の具体的形状は、 特 に限定されないが、 直方体形状に形成されていることが好ましい。 つまり、 誘電 体シ一トがそれぞれ長方形等の四辺形に形成され、 これら誘電体シートが積層さ れることで、 直方体形状に誘電体素体が形成される。
【0 0 3 6】
本発明の第 1および第 2の観点において、 好ましくは、 第 1内部導体おょぴ第 2内部導体が、 それぞれ前記誘電体素体内に複数対づっ積層方向に配置してある。 その場合には、 積層コンデンサの静電容量が高まるだけでなく磁界を相殺する作 用がさらに大きくなり、 インダクタンスがより大幅に減少して E S Lがー層低減 されるようになる。
図面の簡単な説明
【0 0 3 7】
以下、 本発明を、 図面に示す実施形態に基づき、 詳細に説明する。 ここにおい て、
図 1は本発明の 1実施形態に係る積層コンデンサの分解斜視図、
図 2は図 1に示す積層コンデンサの斜視図、
図 3は図 2の III— III線に沿う断面図、
図 4は図 1に示す積層コンデンサの等価回路図、
図 5は本発明のその他の実施形態に係る積層コンデンサの分解斜視図、 図 6は図 5に示す積層コンデンサの断面図、
図 7は本発明の他の実施形態に係る積層コンデンサの分解斜視図、
図 8は本発明の他の実施形態に係る積層コンデンサの分解斜視図、
図 9は本発明の他の実施形態に係る積層コンデンサの分解斜視図、
図 1 0は本発明の他の実施形態に係る積層コンデンサの分解斜視図、
図 1 1 Aはネットワークアナライザへの本発明の比較例のコンデンサの接続を示 す回路図、
図 1 1 Bはネットワークアナライザへの本発明の実施例のコンデンサの接続を示 す回路図、 図 1 2は本発明の実施例および比較例のコンデンサの減衰特性を表すグラフ、 図 1 3は本発明のさらに他の実施形態に係る積層コンデンサの分解斜視図、 図 1 4は図 1 3に示す積層コンデンサの斜視図、
図 1 5は図 1 4に示す XV— XV線に沿う断面図、
図 1 6は図 1 3〜図 1 5に示す積層コンデンサの使用例を示す回路図、
図 1 7は本発明の実施例おょぴ比較例のコンデンサの減衰特性を表- 図 1 8は従来例の積層コンデンサを用いた回路図、
図 1 9は図 1 8に示す回路における電流変動と電圧変動との関係を表一
図 2 0は従来例に係る積層コンデンサの等価回路図、
図 2 1は従来例に係る積層コンデンサを示す斜視図、
図 2 2は従来例に係る積層コンデンサの内部導体の部分を表す分解斜視図である。 発明を実施するための最良の態様
第 1実施形態
【0 0 3 8】
本実施形態に係る積層セラミックコンデンサ (以下単に、 積層コンデンサと言 う) 1 0を、 図 1から図 4に示す。 これらの図に示すように、 この積層コンデン サ 1 0は、 誘電体シートであるセラミックダリ一ンシートを複数枚積層した積層 体を焼成することで得られた直方体状の焼結体である誘電体素体 1 2を主要部と して有する。 この誘電体素体 1 2内には、 それぞれ略正方形 (長方形でも良い) に形成された第 1内部導体 2 1、 第 2内部導体 2 3、 第 1内部導体 2 2および第 2内部導体 2 4が、 上から順に配置され、 それぞれの内部導体間には、 セラミツ ク層 1 2 Aがそれぞれ配置されている。
【0 0 3 9】
本実施形態では、 焼成後の誘電体シートであるセラミック層 1 2 Aがそれぞれ の間に挟まれつつ、 锈電体素体 1 2内に 4種類の内部導体 2 1、 2 3、 2 2、 2 4が順に配置されている。 内部導体 2 4のさらに下側には、 図 3に示すように、 上記と同様に、 これら 4種類の内部導体 2 1、 2 3、 2 2、 2 4が繰返されて積 層してある。 図 3に示す例では、 4種類の内部導体 2 1、 2 3、 2 2、 2 4の組 が、 合計で二組となるように配置してある。 【0 0 4 0】
これら内部導体 2 1〜2 4の材質としては、 卑金属材料であるニッケル、 ニッ ケル合金、 銅、 或いは、 銅合金が考えられるだけでなく、 これらの金属を主成分 とする材料が考えられる。
【0 0 4 1】
図 1〜図 3に示すように、 第 1内部導体 2 1の左側部分には、 誘電体素体 1 2 の左側の側面 1 2 B (図 2に示す) に引き出される引出部 2 1 Aが形成されてい る。 この内部導体 2 1は、 この引き出された側面 1 2 Bから対向する側面 1 2 D (図 2に示す) に向かって延ぴ、 側面 1 2 B以外の側面 1 2 C, 1 2 D , 1 E では、 引き出されない。 引出部 2 1 Aを除く第 1内部導体 2 1の平面形状は、 セ ラミック層 1 2 Aの平面形状より僅かに小さな正方形あるいは長方形の形状であ る。 引出部 2 1 Aの幅は、 この実施形態では、 第 1内部導体 2 1の幅よりも狭い。
【0 0 4 2】
この第 1内部導体 2 1の下側にセラミック層 1 2 Aを介して配置されている第 2内部導体 2 3の手前側部分には、 誘電体素体 1 2の手前側の側面 1 2 C (図 2 に示す) に引き出される引出部 2 3 Aが形成されている。 この内部導体 2 3は、 この引き出された側面 1 2 Cから対向する側面 1 2 E (図 2に示す) に向かって 延び、 側面 1 2 C以外の側面 1 2 B , 1 2 D , 1 2 Eでは、 引き出されない。 引 出部 2 3 Aを除く第 2内部導体 2 3の平面形状は、 セラミック層 1 2 Aの平面形 状より僅かに小さな正方形あるいは長方形の形状である。 引出部 2 3 Aの幅は、 この実施形態では、 第 2内部導体 2 3の幅よりも狭い。
【0 0 4 3】
この第 2内部導体 2 3の下側にセラミック層 1 2 Aを介して配置されている第 1内部導体 2 2の右側部分には、 誘電体素体 1 2の右側の側面 1 2 D (図 2に示 す) に引き出される引出部 2 2 Aが形成されている。 この内部導体 2 2は、 この 引き出された側面 1 2 Dから対向する側面 1 2 B (図 2に示す) に向かって延び、 側面 1 2 D以外の側面 1 2 B , 1 2 C , 1 2 Eでは、 引き出されない。 引出部 2 2 Aを除く第 1内部導体 2 2の平面形状は、 セラミック層 1 2 Aの平面形状より 僅かに小さな正方形あるいは長方形の形状である。 引出部 2 2 Aの幅は、 この実 施形態では、 第 1内部導体 2 2の幅よりも狭い。
【0 0 4 4】
この第 1内部導体 2 2の下側にセラミック層 1 2 Aを介して配置されている第 2内部導体 2 4の奥側部分には、 誘電体素体 1 2の奥側の側面 1 2 E (図 2に示 す) に引き出される引出部 2 4 Aが形成されている。 この内部導体 2 4は、 この 引き出された側面 1 2 Eから対向する側面 1 2 C (図 2に示す) に向かって延び、 側面 1 2 E以外の側面 1 2 B , 1 2 C , 1 2 Dでは、 引き出されない。 引出部 2 4 Aを除く第 2内部導体 2 4の平面形状は、 セラミック層 1 2 Aの平面形状より 僅かに小さな正方形あるいは長方形の形状である。 引出部 2 4 Aの幅は、 この実 施形態では、 第 1内部導体 2 2の幅よりも狭い。
【0 0 4 5】
つまり、 図 1およぴ図 3に示すように、 一対の第 1内部導体 2 1および 2 2の 間に、 1つの第 2内部導体 2 3が配置され、 また、 一対の第 2内部導体 2 3およ び 2 4の間に、 1つの第 1内部導体 2 2が配置される構造になっている。 そして、 この内部導体 2 4の下側にも、 上記と同様に、 図 3に示す 4種類の内部導体 2 1、 2 3、 2 2、 2 4が順次配置されている。
【0 0 4 6】
本実施形態では、 第 1内部導体 2 1および 2 2が、 誘電体素体 1 2の相互に対 向する二側面 1 2 Bおよび 1 2 Dにそれぞれ引き出されている。 また、 第 2内部 導体 2 3および 2 4が、 第 1内部導体 2 1および 2 2の引き出された二側面 1 2 Bおよび 1 2 Dとは異なる誘電体素体 1 2の相互に対向する二側面 1 2 Cおよび 1 2 Eにそれぞれ引き出されている。 つまり、 これら 4種類の内部導体 2 1、 2 3、 2 2、 2 4の引出部 2 1 A、 2 3 A、 2 2 A、 2 4 Aが、 誘電体シートの図 1および図 2の矢印 Zで示す積層方向に投影して相互に重ならない位置関係にな るように、 それぞれ誘電体素体 1 2の 4つの側面に各々配置されている。
【0 0 4 7】
内部導体 2 1の引出部 2 1 Aに接続されるように、 図 2およぴ図 3に示す第 1 端子電極 3 1が、 誘電体素体 1 2の側面 1 2 Bで、 誘電体素体 1 2の外側に装着 してある。 また、 内部導体 2 2の引出部 2 2 Aに接続されるように、 第 1端子電 極 3 2が、 誘電体素体 1 2の側面 1 2 Dで、 誘電体素体 1 2の外側に装着してあ る。
【0 0 4 8】
さらに、 内部導体 2 3の引出部 2 3 Aに接続されるように、 第 2端子電極 3 3 が誘電体素体 1 2の側面 1 2 Cで、 誘電体素体 1 2の外側に装着してある。 また、 内部導体 2 4の引出部 2 4 Aに接続されるように、 第 2端子電極 3 4が、 誘電体 素体 1 2の側面 1 2 Eで、 誘電体素体 1 2の外側に装着してある。
【0 0 4 9】
つまり、 本実施形態では、 一対の第 1端子電極 3 1および 3 2が、 誘電体素体 1 2の相互に対向する二側面 1 2 B、 1 2 Dにそれぞれ配置されている。 また、 —対の第 2端子電極 3 3および 3 4が、 端子電極 3 1および 3 2の配置される二 側面 1 2 B、 1 2 Dと異なる相互に対向する二側面 1 2 C、 1 2 Eにそれぞれ配 置されている。
【0 0 5 0】
本実施形態では、 内部導体 2 1〜2 4が、 コンデンサの相互に対向する電極を 構成し、 積層コンデンサ 1 0の側面 1 2 B〜l 2 Eに、 これらの内部導体 2 1〜 2 4に接続される端子電極 3 1〜3 4が配置され、 図 4に示す等価回路を構成し ている。 この為、 本実施形態に係る積層コンデンサ 1 0は、 直方体である六面体 形状とされる誘電体素体 1 2の四つの側面 1 2 B〜1 2 E全てに、 端子電極 3 1 〜3 4がそれぞれ配置される構造になっている。
【0 0 5 1】
次に、 本実施形態に係る積層コンデンサ 1 0の作用を説明する。
本実施形態に係る積層コンデンサ 1 0によれば、 それぞれセラミック層 1 2 Aと なる複数の誘電体シートが積層されて直方体形状に形成される誘電体素体 1 2内 に、 これらセラミック層 1 2 A間に挟まれる形で複数の内部導体がそれぞれ配置 される構成を有している。
【0 0 5 2】
また、 誘電体素体 1 2の相互に対向する二側面 1 2 B、 1 2 Dに一対の内部導 体 2 1、 2 2がそれぞれ引き出され、 これら一対の内部導体 2 1、 2 2が引き出 された二側面 1 2 B、 1 2 Dと異なる相互に対向する二側面 1 2 C、 1 2 Eに、 一対の内部導体 2 3、 2 4がそれぞれ引き出されている。
【0 0 5 3】
つまり、 これら一対の内部導体 2 1、 2 2および一対の内部導体 2 3、 2 4に より上記複数の内部導体が構成されている。 本実施形態では、 第 1内部導体 2 1、 2 2間に第 2内部導体 2 3が配置され、 また第 2内部導体 2 3、 2 4間に第 1内 部導体 2 2が配置されている。
【0 0 5 4】
さらに、 本実施形態では、 誘電体素体 1 2の相互に対向する二側面 1 2 B、 1 2 Dにそれぞれ配置される一対の第 1端子電極 3 1、 3 2が、 上記の一対の第 1 内部導体 2 1、 2 2にそれぞれ接続されている。 また、 これらの第 1端子電極 3 1、 3 2が配置される側面 1 2 B、 1 2 Dと異なる相互に対向する二側面 1 2 C、 1 2 Eにそれぞれ配置される一対の第 2端子電極 3 3、 3 4が、 上記の一対の第 2内部導体 2 3、 2 4にそれぞれ接続されている。
【0 0 5 5】
つまり、 一対の内部導体 2 1、 2 2が、 それぞれ誘電対素体 1 2の対向する二 側面 1 2 B、 1 2 Dにそれぞれ引き出されて、 相互に対向する一対の端子電極 3 1、 3 2とそれぞれ接続される。 しかも、 上記のように、 一つの第 2内部導体 2 3が、 これら第 1内部導体 2 1、 2 2の間に挟まれる。 そして、 コンデンサとし ての機能を発揮するように、 これら一対の端子電極 3 1、 3 2が、 相互に同極性 を有する形に積層コンデンサ 1 0の外部の配線等に接続される。 その結果、 これ ら一対の内部導体 2 1、 2 2内において、 図 1の矢印で示すように、 電流が相互 に逆向きに流れつつ、 一対の第 1内部導体 2 1、 2 2同士が相互に同極となる。
【0 0 5 6】
他方、 一対の第 2内部導体 2 3、 2 4においても、 相互に対向する一対の第 2 端子電極 3 3、 3 4カ 相互に同極性を有するように、 積層コンデンサ 1 0の外 部の配線等に接続される。 そのため、 これら一対の第 2内部導体 2 3、 2 4内に おいて、 同様の理由から図 1の矢印で示すように、 電流が相互に逆向きに流れつ つ、 一対の内部導体 2 3、 2 4同士が相互に同極となる。 【0 0 5 7】
従って、 一対の内部導体 2 1、 2 2間で電流が逆向きに流れることで、 磁界を 相殺する作用が生じるだけでなく、 一対の内部導体 2 3、 2 4間で電流が逆向き に流れることでも、 磁界を相殺する作用が生じることになる。 そして、 これら各 内部導体間での磁界の相殺作用が生じるのに伴って、 積層コンデンサ 1 0自体が 持つ寄生ィンダクタンスを少なくでき、 等価直列ィンダクタンスを低減する効果 が生じるようになる。
【0 0 5 8】
以上より、 本実施形態に係る積層コンデンサ 1 0によれば、 デカップリングコ ンデンサとして好適に用いられ、 積層コンデンサ 1 0の大幅な低 E S L化が図ら れる。 しかも、 本実施形態に係る積層コンデンサ 1 0によれば、 高周波数帯域で の減衰量が大きくなるのに伴い、 電源の電圧変動を抑制できるようになり、 C P Uの電源回路などに好適に用いることができる。
【0 0 5 9】
また、 第 1内部導体 2 1、 2 2および、 第 2内部導体 2 3、 2 4力 S、 それぞれ 誘電体素体 1 2内に複数対づっ配置されることで、 本実施形態に係る積層コンデ ンサ 1 0の静電容量が高まるだけでなく、 磁界を相殺する作用がさらに大きくな り、 ィンダクタンスがより大幅に減少して E S Lがー層低減される。
【0 0 6 0】
本実施形態に係る積層コンデンサ 1 0の製造に際しては、 それぞれ長方形等の 四辺形に形成された誘電体シートを積層することで、 誘電体素体 1 2を直方体形 状に形成することができる。 この結果として、 本実施形態では、 直方体形状に形 成された锈電体素体 1 2の全ての側面 1 2 B〜1 2 Eに、 内部導体 2 1〜2 4の 引き出し部分が設けられる形になるので、 E S Lが低減される効果が最大限に発 揮されるようになる。
第 2実施形態
【0 0 6 1】
次に、 本発明に係る積層コンデンサの第 2の実施形態を、 図 5および図 6に基 づき説明する。 尚、 第 1の実施形態で説明した部材と同一の部材には同一の符号 を付して、 重複した説明を省略する。
【0 0 6 2】
上記の第 1実施形態では、 各内部導体が、 同一平面内に単一で形成されている。 これに対して、 本実施形態の内部導体は、 図 5およぴ図 6に示すように、 同一平 面内に位置する内部導体は、 相互に並んで延びる形で分割されている。 図 5に示 す一番上に積層される第 1内部導体 2 1は、 誘電体素体 1 2の相互に対向する二 側面 1 2 B、 1 2 D (図 2に示す) に交互に引き出される複数 (本形態では 2つ) の分割導体 4 1、 4 2で構成してある。 '
【0 0 6 3】
この第 1内部導体 2 1と対を成す第 1内部導体 2 2は、 相互に並んで延びる形 で分割され、 誘電体素体 1 2の相互に対向する二側面 1 2 B、 1 2 Dに交互に引 き出される複数 (本形態では 2つ) の分割導体 4 3、 4 4で構成してある。 分割 導体 4 3、 4 4は、 分割導体 4 1、 4 2に対して、 平面矢視側から見て重複する が、 重複する分割導体自体は、 相互に逆方向に二側面 1 2 B、 1 2 Dに向けて引 き出される。
【0 0 6 4】
つまり、 積層方向 (平面矢視側から見た方向) で相互に対向して位置する分割 導体 4 1と分割導体 4 3とが、 相互に対向する二側面 1 2 B、 1 2 Dにそれぞれ 引き出される。 同様に、 積層方向で相互に対向して位置する分割導体 4 2と分割 導体 4 4とが、 相互に対向する二側面 1 2 D、 1 2 Bにそれぞれ引き出される。 本実施形態では、 分割導体 4 1および分割導体 4 4が、 図 2に示す端子電極 3 1 にそれぞれ接続されており、 分割導体 4 2およぴ分割導体 4 3が図 2に示す端子 電極 3 2にそれぞれ接続されている。
【0 0 6 5】
本実施形態では、 第 2内部導体 2 3も、 相互に並んで延びる形で分割され、 誘 電体素体 1 2の相互に対向する二側面 1 2 C、 1 2 E (図 2に示す) に交互に引 き出される複数 (本実施では 2つ) の分割導体 4 5、 4 6で構成してある。 また、 第 2内部導体 2 4も、 相互に並んで延びる形で分割されて誘電体素体 1 2の相互 に対向する二側面 1 2 C、 1 2 Eに交互に引き出される複数 (本実施では 2つ) の分割導体 4 7、 4 8で構成してある。 分割導体 4 5、 4 6は、 分割導体 4 7、 4 8に対して、 平面矢視側から見て重複するが、 重複する分割導体自体は、 相互 に逆方向に二側面 1 2 C、 1 2 Eに向けて引き出される。
【0 0 6 6】
つまり、 積層方向で相互に対向して位置する分割導体 4 5と分割導体 4 7とが、 相互に対向する二側面 1 2 C、 1 2 Eにそれぞれ引き出される。 また、 積層方向 で相互に対向して位置する分割導体 4 6と分割導体 4 8とが、 相互に対向する二 側面 1 2 E、 1 2 Cにそれぞれ引き出される。 本実施形態では、 分割導体 4 5お よび分割導体 4 8が、 図 2に示す端子電極 3 3にそれぞれ接続されており、 分割 導体 4 6および分割導体 4 7が、 図 2に示す端子電極 3 4にそれぞれ接続されて いる。
【0 0 6 7】
以上より、 分割導体 4 1、 4 2と分割導体 4 3、 4 4との間で、 図 5の矢印で 示すように電流が逆向きに流れ、 また、 分割導体 4 5 , 4 6と分割導体 4 7、 4 8との間で、 図 5の矢印で示すように、 電流が逆向きに流れる。 そのため、 それ ぞれ磁界を相殺する作用が生じるだけでなく、 それぞれ同一面上で相互に並んで 延びて隣り合う分割導体 4 1、 4 2同士、 分割導体 4 3、 4 4同士、 分割導体 4 5、 4 6同士おょぴ、 分割導体 4 7、 4 8同士でも、 電流が逆向きに流れること で、 それぞれ磁界を相殺する作用が生じる。
【0 0 6 8】
この結果として、 これら各内部導体間での磁界の相殺作用が生じるのに伴って、 積層コンデンサ 1 0自体が持つ寄生ィンダクタンスをより一層少なくでき、 等価 直列ィンダクタンスを低減する効果が增大するようになる。
第 3実施形態
【0 0 6 9】
次に、 本発明に係る積層コンデンサの第 3の実施形態を図 7に基づき説明する。 尚、 第 1の実施形態で説明した部材と同一の部材には同一の符号を付して、 重複 した説明を省略する。
【0 0 7 0】 本実施形態では、 図 7に示すように、 第 1内部導体 2 1力 相互に並んで延び る形で分割されて誘電体素体 1 2の相互に対向する二側面 1 2 B、 1 2 D (図 2 に示す) に交互に引き出される複数 (本実施では 3つ) の分割導体 5 1、 5 2、 5 3で構成してある。
【0 0 7 1】
また、 第 1内部導体 2 2が、 同様に相互に並んで延びる形で分割されて誘電体 素体 1 2の相互に対向する二側面 1 2 B、 1 2 Dに引き出される複数 (本形態で は 3つ) の分割導体 5 4、 5 5、 5 6で構成してある。 これらの分割導体 5 4、 5 5、 5 6は、 分割導体 5 1、 5 2、 5 3に対して、 平面矢視側から見て重複す るが、 重複する分割導体自体は、 相互に逆方向に二側面 1 2 B、 1 2 Dに向けて 引き出される。
【0 0 7 2】
つまり、 積層方向で相互に対向して位置する分割導体 5 1と分割導体 5 4とが、 相互に対向する二側面 1 2 B、 1 2 Dにそれぞれ引き出される。 同じく積層方向 で相互に対向して位置する分割導体 5 2と分割導体 5 5とが、 相互に対向する二 側面 1 2 D、 1 2 Bにそれぞれ引き出される。 同じく積層方向で相互に対向して 位置する分割導体 5 3と分割導体 5 6とが、 相互に対向する二側面 1 2 B、 1 2 Dにそれぞれ引き出される。
【0 0 7 3】
本実施形態では、 分割導体 5 1、 5 3、 5 5が、 図 2に示す端子電極 3 1にそ れぞれ接続されており、 分割導体 5 2、 5 4、 5 6力 同じく図 2に示す端子電 極 3 2にそれぞれ接続されている'。
【0 0 7 4】
第 2内部導体 2 3は、 相互に並んで延びる形で分割されて誘電体素体 1 2の相 互に対向する二側面 1 2 C、 1 2 E (図 2に示す) に交互に引き出される複数
(本形態では 3つ) の分割導体 5 7、 5 8、 5 9で構成してある。 また、 第 2内 部導体 2 4は、 同様に相互に並んで延びる形で分割されて誘電体素体 1 2の相互 に対向する二側面 1 2 C、 1 2 Eに引き出される複数 (本形態では 3つ) の分割 導体 6 0、 6 1、 6 2で構成してある。 これらの分割導体 6 0、 6 1、 6 2は、 分割導体 5 7、 5 8、 5 9に対して、 平面矢視側から見て重複するが、 重複する 分割導体自体は、 相互に逆方向に二側面 1 2 C、 1 2 Eに向けて引き出される。
【0 0 7 5】
つまり、 積層方向で相互に対向して位置する分割導体 5 7と分割導体 6 0とが、 相互に対向する二側面 1 2 C、 1 2 Eにそれぞれ引き出される。 同じく積層方向 で相互に対向して位置する分割導体 5 8と分割導体 6 1と力 S、 相互に対向する二 側面 1 2 E、 1 2 Cにそれぞれ引き出される。 同じく積層方向で相互に対向して 位置する分割導体 5 9と分割導体 6 2とが、 相互に対向する二側面 1 2 C、 1 2 Eにそれぞれ引き出される。
【0 0 7 6】
本実施形態では、 分割導体 5 8、 6 0、 6 2が、 図 2に示す端子電極 3 3にそ れぞれ接続されており、 分割導体 5 7、 5 9、 6 1力 同じく図 2に示す端子電 極 3 4にそれぞれ接続されている。
【0 0 7 7】
このため、 分割導体 5 1、 5 2、 5 3と分割導体 5 4、 5 5、 5 6との間で、 図 7の矢印に示すように、 逆向きに流れる。 また、 分割導体 5 7、 5 8、 5 9と 分割導体 6 0、 6 1、 6 2との間で、 図 7の矢印で示すように、 電流が逆向きに 流れる。 その結果、 それぞれ磁界を相殺する作用が生じるようになる。 さらに、 それぞれ同一面上で相互に並んで延びる分割導体 5 1、 5 2、 5 3同士、 分割導 体 5 4、 5 5、 5 6同士、 分割導体 5 7、 '5 8、 5 9同士および、 分割導体 6 0、 6 1、 6 2同士でも、 隣り合う分割導体同士で電流が逆向きに流れることで、 そ れぞれ磁界を相殺する作用が生じる。
【0 0 7 8】
この結果として、 第 2実施形態と同様に、 積層コンデンサ 1 0自体が持つ寄生 ィンダクタンスをより一層少なくでき、 等価直列ィンダクタンスを低減する効果 が増大するようになる。
第 4実施形態
【0 0 7 9】
次に、 本発明に係る積層コンデンサの第 4の実施形態を図 8に基づき説明する。 尚、 第 1の実施形態で説明した部材と同一の部材には同一の符号を付して、 重複 した説明を省略する。
【0 0 8 0】
本実施形態では、 図 8に示すように、 第 1内部導体 2 1が、 相互に並んで延ぴ る形で分割されて誘電体素体 1 2の相互に対向する二側面 1 2 B、 1 2 D (図 2 に示す) に交互に引き出される複数の分割導体 7 1、 7 2で構成してある。 但し、 本実施形態では、 分割導体 7 1は、 引出部 7 1 Aで接続され、 全体として略 U字 形に形成してある。 また、 分割導体 7 2には、 引出部 7 1 Aと同じ幅の引出部 7 2 Aが一体に形成してあり.、 全体として略 T字形に形成されている。 そして、 一 対の分割導体 7 1の間に、 分割導体 7 2の先端側部分が入り込むようになつてい る。
【0 0 8 1】
第 1内部導体 2 1と対を成す第 1内部導体 2 2は、 同様に相互に並んで延びる 形で分割されて綉電体素体 1 2の相互に対向する二側面 1 2 B、 1 2 Dに交互に 引き出される複数の分割導体 7 3、 7 4で構成してある。 分割導体 7 3、 7 4は、 分割導体 7 1、 7 2に対して、 平面矢視側から見て重複するが、 重複する分割導 体自体は、 相互に逆方向に二側面 1 2 B、 1 2 Dに向けて引き出される。
【0 0 8 2】
分割導体 7 3は、 引出部 7 3 Aで接続され、 全体として略 U字形に形成してあ る。 また、 分割導体 7 4には、 引出部 7 3 Aと同じ幅の引出部 7 4 Aがー体に形 成してあり、 全体として略 T字形に形成されている。 そして、 一対の分割導体 7 3の間に、 分割導体 7 4の先端側部分が入り込むようになつている。
【0 0 8 3】
また、 第 1内部導体 2 1および 2 2の間に配置される第 2内部導体 2 3は、 相 互に並んで延びる形で分割されて誘電体素体 1 2の相互に対向する二側面 1 2 C、 1 2 E (図 2に示す) に交互に引き出される複数の分割導体 7 5、 7 6で構成し てある。 但し、 本実施形態では、 分割導体 7 5は、 引出部 7 5 Aで接続され、 全 体として略 U字形に形成してある。 また、 分割導体 7 6には、 引出部 7 5 Aと同 じ幅の引出部 7 6 Aがー体に形成してあり、 全体として略 T字形に形成されてい る。 そして、 一対の分割導体 7 5の間に、 分割導体 7 6の先端側部分が入り込む ようになっている。
【0 0 8 4】
第 2内部導体 2 3と対を成す第 2内部導体 2 4は、 同様に相互に並んで延びる 形で分割されて誘電体素体 1 2の相互に対向する二側面 1 2 C、 1 2 Eに交互に 引き出される複数の分割導体 7 7、 7 8で構成してある。 分割導体 7 7、 7 8は、 分割導体 7 5、 7 6に対して、 平面矢視側から見て重複するが、 重複する分割導 体自体は、 相互に逆方向に二側面 1 2 C、 1 2 Eに向けて引き出される。
【0 0 8 5】
分割導体 7 7は、 引出部 7 7 Aで接続され、 全体として略 U字形に形成してあ る。 また、 分割導体 7 8には、 引出部 7 7 Aと同じ幅の引出部 7 8 Aがー体に形 成してあり、 全体として略 T字形に形成されている。 そして、 一対の分割導体 7 7の間に、 分割導体 7 8の先端側部分が入り込むようになつている。
【0 0 8 6】
これら分割導体 7 1、 7 4が端子電極 3 1に接続され、 分割導体 7 2、 7 3が 端子電極 3 2に接続され、 分割導体 7 5、 7 8が端子電極 3 3に接続され、 分割 導体 7 6、 7 7が端子電極 3 4に接続され、 各分割導体 7 1〜 7 8力 S、 第 2の実 施形態と同様に、 図 2に示す各端子電極 3 1〜3 4にそれぞれ接続される。
【0 0 8 7 1
以上より、 積層方向で相互に対向して位置した分割導体 7 1と分割導体 7 3と の間で、 図 8の矢印で示すように、 電流が逆向きに流れる。 また、 分割導体 7 2 と分割導体 7 4との間で同様に電流が逆向きに流れ、 また、 積層方向で相互に対 向して位置する分割導体 7 5と分割導体 7 7との間で、 図 8の矢印で示すように、 電流が逆向きで流れる。 さらに、 分割導体 7 6と分割導体 7 8との間で、 電流が 逆向きに流れることで、 それぞれ磁界を相殺する作用が生じるようになる。
【0 0 8 8】
さらに、 T字形の分割導体 Ί 2が U字形の分割導体 7 1の間に入り込む形で、 同一面上で相互に並んで延びて隣り合う分割導体 7 1、 7 2同士でも、 電流が逆 向きに流れることで、 それぞれ磁界を相殺する作用が生じる。 また、 同様に、 分 割導体 7 3、 7 4同士、 分割導体 7 5、 7 6同士おょぴ、 分割導体 7 7、 7 8同 士でも、 電流が逆向きに流れることで、 それぞれ磁界を相殺する作用が生じる。
【0 0 8 9】
この結果として、 本実施形態でも、 第 2実施形態と同様に、 積層コンデンサ 1 0自体が持つ寄生ィンダクタンスをより一層少なくでき、 等価直列ィンダクタン スを低減する効果が増大する。
第 5実施形態
【0 0 9 0】
次に、 本発明に係る積層コンデンサの第 5実施形態を図 9に基づき説明する。 なお、 第 1の実施形態で説明した部材と同一の部材には同一の符号を付して、 重 複した説明を省略する。
【0 0 9 1】
本実施形態では、 図 9に示すように、 第 1内部導体 2 1が、 相互に並んで延び る形で分割されて誘電体素体 1 2の相互に対向する二側面 1 2 B、 1 2 D (図 2 に示す) に交互に引き出される複数 (本形態では 2つ) の分割導体 8 1、 8 2で 構成してある。 但し、 本実施形態では、 これらの分割導体 8 1および分割導体 8 2がそれぞれ略三角形に形成されている。
【0 0 9 2】
また、 第 1内部導体 2 1と対を成す第 1内部導体 2 2が、 相互に並んで延びる 形で分割されて誘電体素体 1 2の相互に対向する二側面 1 2 B、 1 2 Dに交互に 引き出される複数 (本形態では 2つ) の分割導体 8 3、 8 4で構成してある。 本 実施形態では、 これら分割導体 8 3および分割導体 8 4がそれぞれ略三角形に形 成されている。 これらの分割導体 8 3および 8 4は、 分割導体 8 1、 8 2に対し て、 平面矢視側から見て、 それぞれ点対称位置に重複して配置され、 点対称の分 割導体自体は、 相互に逆方向に二側面 1 2 B、 1 2 Dに向けて引き出される。
【0 0 9 3】
第 1内部導体 2 1および 2 2の間に配置される第 2内部導体 2 3は、 相互に並 んで延びる形で分割されて誘電体素体 1 2の相互に対向する二側面 1 2 C、 1 2 E (図 2に示す) に交互に引き出される複数 (本形態では 2つ) の分割導 { 8 5、 8 6で構成してある。 但し、 本実施形態では、 これらの分割導体 8 5および分割 導体 8 6がそれぞれ略三角形に形成されている。
【0 0 9 4】
また、 第 2内部導体 2 3と対を成す第 2内部導体 2 4が、 相互に並んで延びる 形で分割されて誘電体素体 1 2の相互に対向する二側面 1 2 C、 1 2 Eに交互に 引き出される複数 (本形態では 2つ) の分割導体 8 7、 8 8で構成してある。 本 実施形態では、 これら分割導体 8 7および分割導体 8 8がそれぞれ略三角形に形 成されている。 これらの分割導体 8 7および 8 8は、 分割導体 8 5、 8 6に対し て、 平面矢視側から見て、 それぞれ点対称位置に重複して配置され、 点対称の分 割導体自体は、 相互に逆方向に二側面 1 2 C、 1 2 Eに向けて引き出される。
【0 0 9 5】
これら分割導体 8 1、 8 4が端子電極 3 1に接続され、 分割導体 8 2、 8 3が 端子電極 3 2に接続され、 分割導体 8 5、 8 8が端子電極 3 3に接続され、 分割 導体 8 6、 8 7が端子電極 3 4に接続される。 すなわち、 各分割導体 8 1〜8 8 が、 第 2の実施形態と同様に、 図 2に示す各端子電極 3 1〜 3 4にそれぞれ接続 される。
【0 0 9 6】
以上より、 積層方向で相互に対向して位置する分割導体 8 1と分割導体 8 3と の間で、 図 9の矢印で示すように、 電流が逆向きに流れる。 同様に、 分割導体 8 2と分割導体 8 4との間で同様に電流が逆向きに流れる。 また、 積層方向で相互 に対向して位置する分割導体 8 5と分割導体 8 7との間で、 図 9の矢印で示すよ うに、 電流が逆向きに流れる。 同様に、 分割導体 8 6と分割導体 8 8との間で電 流が逆向きに流れる。 それらの結果、 それぞれ磁界を相殺する作用が生じるよう になる。
【0 0 9 7】
さらに、 それぞれ同一面上で相互に並んで延びて隣り合う分割導体 8 1、 8 2 同士、 分割導体 8 3、 8 4同士、 分割導体 8 5、 8 6同士おょぴ、 分割導体 8 7、 8 8同士でも、 電流が逆向きに流れることで、 それぞれ磁界を相殺する作用が生 じる。 【0 0 9 8】
この結果として、 本実施形態でも、 第 2実施形態と同様に、 積層コンデンサ 1 0自体が持つ寄生ィンダクタンスをより一層少なくでき、 等価直列ィンダクタン スを低減する効果が増大するようになる。
第 6実施形態
【0 0 9 9】
次に、 本発明に係る積層コンデンサの第 6の実施形態を図 1 0に基づき説明す る。 尚、 第 1の実施形態で説明した部材と同一の部材には同一の符号を付して、 重複した説明を省略する。
【0 1 0
本実施形態では、 図 1 0に示すように、 一対の第 1内部導体 2 1および 2 2力 第 1の実施形態と略同様に形成された内部導体 9 1および内部導体 9 2で構成し てある。 また、 一対の第 2内部導体 2 3および 2 4が、 第 3の実施形態と同様に して、 3つの分割導体 5 7、 5 8、 5 9と、 3つの分割導体 6 0、 6 1、 6 2と で、 それぞれ構成してある。
【0 1 0 1】
本実施形態では、 内部導体 9 1が端子電極 3 1に接続されており、 内部導体 9 2が端子電極 3 2に接続されている。 また、 分割導体 5 8、 6 0、 6 2が端子電 極 3 3にそれぞれ接続されており、 分割導体 5 7、 5 9、 6 1が端子電極 3 4に それぞれ接続されている。
【0 1 0 2】
以上より、 積層方向で相互に対向して位置した内部導体 9 1と内部導体 9 2と の間で、 図 1 0の矢印で示すように、 電流が逆向きに流れ、 また、 分割導体 5 7、
5 8、 5 9と分割導体 6 0、 6 1、 6 2との間で、 同様に電流が逆向きに流れる ことで、 それぞれ磁界を相殺する作用が生じる。 さらに、 それぞれ同一面上で相 互に並んで延びる分割導体 5 7、 5 8、 5 9同士おょぴ、 分割導体 6 0、 6 1、
6 2同士でも、 隣り合う分割導体同士間で電流が逆向きに流れることで、 それぞ れ磁界を相殺する作用が生じる。
【0 1 0 3】 この結果として、 本実施形態でも、 第 2実施形態と同様に積層コンデンサ 2 0 自体が持つ寄生ィンダクタンスをより一層少なくでき、 等価直列ィンダクタンス を低減する効果が増大するようになる。
実施例 1
【0 1 0 4】
次に、 ネットワークアナライザを用いて、 以下の各試料の Sパラメータの S 2 1特性を測定し、 各試料の減衰特性をそれぞれ求めた。 まず、 各試料となるサン プルの内容を説明する。 つまり、 コンデンサとして一般的な図 2 1およぴ図 2 2 に示す 2端子型積層コンデンサを比較例 1とし、 図 5および図 6に示す第 2実施 形態に係る 4端子型積層コンデンサを実施例 1とした。 そして、 ネットワークァ ナライザの P o r t 1および P o r t 2に、 この比較例 1のコンデンサを図 1 1 Aに示すように接続し、 また、 同じくこの実施例 1のコンデンサを図 1 1 Bに示 すように接続して、 それぞれ測定した。
【0 1 0 5】
ここで、 減衰特性の実測値と図 2 0に示す等価回路の減衰量とが合致するよう に、 等価回路の定数を算出した。 図 1 2に示す各試料の減衰特性のデータから、 2 O MH z以上の高周波数の帯域における実施例 1の減衰量が、 比較例 1に比べ て約 1 5 d Bほど増えていることが分かる。 このデータによって、 高周波特性の 改善が実施例に見られることが確認できた。
【0 1 0 6】
他方、 算出した表 1に表す E S Lに関しても、 比較例 1に比べて実施例 1は大 幅に低減されており、 本発明の効果がこの表 1によっても実証されることが確認 できた。
【0 1 0 7】
【表 1】 ESR(mfi) ESし(pH) 比較例 1 1.038 6.3 825.2 実施例 1 0.954 3.3 102.3
この表 1で、 Cは静電容量であり、 E S Lは等価直列抵抗である。 また、 ここ で用いた各試料の寸法としては、 図 21およぴ図 2に示すように、 一対の内部導 体が引き出されている誘電体素体の側面間の距離を寸法 Lとし、 一対の内部導体 が引き出された誘電体素体の側面に対して直交する側面間の距離を寸法 Wとした 時に、 比較例 1では、 L= 2. Ommで W= 1.25mmであった。 また、 実施例 1では、 L= 1.6 mmで W= 1.6 mmであった。
【0108】
尚、 上記実施形態に係る積層コンデンサ 10では、 4層づつで二組の計 8層を 有する構造とされてきているものの、 層数はこれらの数に限定されずさらに多数 とし、 例えば層数を例えば数十或いは数百としても良い。 また、 上記実施形態の 内の第 2の実施形態以降には、 分割導体がそれぞれ 2つづつ或いは 3つづつ配置 される構造が示されているが、 これら分割導体を 4つづつ以上配置するようにし ても良い。
第 7実施形態
【0109】
本実施形態に係る積層セラミックコンデンサ (以下単に、 積層コンデンサと言 う) 2 10を図 13から図 1 5に示す。 これらの図に示すように、 積層コンデン サ 210は、 誘電体シートであるセラミックダリ一ンシ一トを複数枚積層した積 層体を焼成することで得られた直方体状の焼結体である誘電体素体 212を主要 部として有する。
【01 10】
この誘電体素体 212内には、 第 1内部導体 21、 第 2内部導体 23、 第 1内 部導体 22およぴ第 2内部導体 24が配置してある。 それぞれの層間には、 セラ ミック層 212 Aがそれぞれ配置されている。 第 1内部導体 21は、 分割導体 2 21、 222、 223で構成してあり、 それと対を成す別の第 1内部導体 22は、 分割導体 224、 225、 226で構成してある。 第 2内部導体 23および 24 は、 それぞれ単一の内部導体 227および 228で構成してある。
【0 1 1 1】
つまり、 本実施形態では、 焼成後の誘電体シートであるセラミック層 212A がそれぞれの間に挟まれつつ、 分割導体 221〜223、 内部導体 227、 分割 導体 224〜226および内部導体 228が順に誘電体素体 12内に配置されて いる。 さらに内部導体 228の下側には、 図 15に示すように、 上記と同じ順序 で、 これら 4層の電極が繰返されて、 これらの組が計二組配置されている。 尚、 これらそれぞれ略長方形に形成された分割導体 21〜 26および、 それぞれ略正 方形に形成された内部導体 27、 28の材質としては、 卑金属材料であるニッケ ル、 ニッケル合金、 銅或いは、 銅合金が用いられるだけでなく、 これらの金属を 主成分とする材料が用いられる。
【01 12】
さらに、 図 13から図 15に示すように、 分割導体 221、 223の奥側部分 には、 誘電体素体 212の奥側の側面 212 B (図 14に示す) に引き出される 引出部 221 A、 223 Aがそれぞれ形成されている。 分割導体 221、 223 は、 側面 212 Bから対向する側面 212D (図 2に示す) に向かってそれぞれ 延びている。
【01 13】
これら分割導体 221、 223の間に配置された分割導体 222の手前側部分 には、 誘電体素体 212の手前側の側面 212Dに引き出される引出部 222 A が形成されている。 分割導体 222は、 この引き出された側面 212Dから対向 する側面 212 Bに向かって延ぴている。
【01 14】
つまり、 これら複数 (本形態では 3つ) の分割導体 221、 222、 223は、 同一平面内において相互に並んで延びる形に分割されて、 誘電体素体 212の相 互に対向する二側面 212B、 212Dに交互に引き出される。
【0 1 1 5】
これら分割導体 221〜223の下側には、 内部導体 227が配置されており、 この内部導体 227の左側部分に、 誘電体素体 212の左側の側面 21 2C (図 14に示す) に引き出される引出部 227 Aが形成されている。 内部導体 227 は、 この引き出された側面 212Cから対向する側面 212E (図 2に示す) に 向かって延ぴている。
【01 16】
この内部導体 227の下側には、 複数 (本形態では 3つ) の分割導体 224、 225、 226が配置されている。 この内の分割導体 224、 226の手前側部 分には、 誘電体素体 212の手前側の側面 212Dに引き出される引出部 224 A、 226 Aがそれぞれ形成されている。 これら分割導体 224、 226は、 側 面 21 2Dから対向する側面 212 Bに向かってそれぞれ延びている。
【01 17】
これら分割導体 224、 226の間に配置された分割導体 225の奥側部分に は、 誘電体素体 212の奥側の側面 212 Bに引き出される引出部 225 Aが形 成されている。 この分割導体 225は、 側面 212 Bから対向する側面 212D に向かって延ぴている。
【01 18】
つまり、 これら複数 (本形態では 3つ) の分割導体 224、 225、 226は、 同一平面内において相互に並んで延びる形に分割されて、 誘電体素体 1 2の相互 に対向する二側面 212D、 212 Bに交互に延ぴている。 しかも、 分割導体 2 24、 225、 226は、 平面矢視側から見て、 分割導体 221、 222、 22 3と重複し、 重複する分割導体同士は、 相互に、 逆に引き出される構造とされて いる。
【01 19】
これら分割導体 224〜226の下側には、 内部導体 228が配置されており、 この内部導体 228の右側部分には、 誘電体素体 212の右側の側面 2 12Eに 引き出される引出部 228 Aが形成されている。 内部導体 228は、 側面 212 Eから対向する側面 12 Cに向かって延びている。
【0120】
以上より、 相互に対向する二側面 12 B、 12Dに引き出される分割導体 22 1と分割尊体 224とが、 間に内部導体 227が存在するものの、 積層方向 (矢 印 Zで示す方向) で相互に対向して位置している。 同様に、 分割導体 222と分 割導体 225とが、 間に内部導体 227が存在するものの、 積層方向で相互に対 向して位置している。 また、 同様に、 分割導体 223と分割導体 226とが、 間 に内部導体 227が存在するものの、 積層方向で相互に対向して位置している。 尚、 分割導体 224、 225、 226と、 これらの下側に配置された図 15に示 す分割導体 221、 222、 223との間でも、 上記と同様の関係とされている。
【0121】
そして、 これら 6つの分割導体 221〜226がそれぞれ引き出された相互に 対向する二側面 212B、 212Dと異なる相互に対向する二側面 21 2 C, 2 12Eに、 一対の内部導体 227、 228がそれぞれ引き出されている。
【0122】
図 14に示すように、 各分割導体 221、 222、 223の引出部 221 A、 222A、 223 Aにそれぞれ接続されるように、 複数 (本形態では 3つ) の端 子電極 231、 232、 233が、 誘電体素体 21 2の側面 212B、 212D で、 誘電体素体 212の外側に交互に配置されている。
【0123】
また、 各分割導体 224、 225、 226の引出部 224A、 225A、 22 6 Aにそれぞれ接続されるように、 同じく複数 (本形態では 3つ) の端子電極 2 34、 235、 236が誘電体素体 21 2の側面 212D、 212Bで、 誘電体 素体 1 2の外側に交互に配置されている。
【0 124】
さらに、 内部導体 227の引出部 227 Aに接続されるように、 端子電極 23 7が誘電体素体 212の側面 212Cで、 誘電体素体 212の外側に配置されて いる。 また、 内部導体 228の引出部 228 Aに接続されるように、 端子電極 3 8が 2誘電体素体 212の側面 212Eで、 誘電体素体 12の外側に配置されて いる。
【0125】
つまり、 図 14に示すように、 これら端子電極 231、 232、 233および 端子電極 234、 235、 236が、 誘電体素体 21 2の相互に対向する二側面 212B、 212Dにそれぞれ配置されている。 また、 端子電極 237およぴ端 子電極 238力 端子電極 231〜236の配置される二側面 212 B、 212 Dと異なる相互に対向する二側面 21 2C、 212 Eにそれぞれ配置されている。 本実施形態のコンデンサは、 アレイ型の積層コンデンサである。
【0126】
本実施形態では、 図 1 3およぴ図 1 5において、 分割導体 221〜223と分 割導体 224〜226との間に、 内部導体 227が配置され、 内部導体 227と 内部導体 228との間に分割導体 224〜 226が配置される。 つまり、 分割導 体 221〜 223と内部導体 227との間、 内部導体 227と分割導体 224〜 226との間、 分割導体 224〜 226と内部導体 228との間が、 コンデンサ の相互に対向する電極をそれぞれ構成し、 コンデンサとしての機能を生じるよう になる。
【01 27】
そして、 本実施形態では、 分割導体 221〜226にそれぞれ接続されて二側 面 212 B、 21 2Dに配置される端子電極 231〜236が複数対の第 1端子 電極を構成する。 内部電極 227, 228にそれぞれ接続されて二側面 21 2 C、 212 Eに配置される端子電極 237, 238がー対の第 2端子電極を構成する。 本実施形態に係る積層コンデンサ 210は、 直方体である六面体形状とされる誘 電体素体 212の四つの側面 212 B— 212E全てに、 端子電極 231〜23 6およぴ端子電極 237、 238がそれぞれ配置される。
【0128】
次に、 本実施形態に係る積層コンデンサ 210の作用を説明する。
コンデンサとしての機能を発揮するように、 3対の端子電極 231〜236が相 互に同極性を有するように、 積層コンデンサ 210の外部の配線等に接続されれ。 これら分割導体 221〜223および分割導体 224~226内において、 図 1 3の矢印で示すように、 電流が相互に逆向きに流れ、 それぞれ 3つの分割導体 2 21〜 223およぴ分割導体 224〜 226が相互に同極となる。
【0129 J
また、 相互に対向する一対の端子電極 237, 238が相互に同極性を有する 形に積層コンデンサ 210の外部の配線等に接続される。 これら一対の内部電極 227、 228内において、 同様の理由から、 図 1の矢印で示すように、 電流が 相互に逆向きに流れ、 一対の内部導体 227、 228同士が相互に同極となる。
【0130】
さらに、 隣り合う分割導体 221~223同士間でも、 電流が相互に逆向きに 流れるようになる。 また、 重複した位置の各分割導体 221〜 223とそれぞれ 逆方向になる形で、 各分割導体 224〜226も、 同様の理由により、 隣り合う 分割導体 224〜226同士間で電流が相互に逆向きに流れるようになる。
【0131】
従って、 3つの分割導体 221〜223と 3つの分割導体 224〜 226との 間で電流が逆向きに流れ、 また、 一対の内部導体 227, 228間で電流が逆向 きに流れる。 そのため、 積層方向でも、 磁界を相殺する作用がそれぞれ生じるだ けでなく、 同一平面内においても電流が相互に逆向きに流れて、 磁界を相殺する 作用が生じるようになる。
【0132】
そして、 これら各導体間での磁界の相殺作用が生じるのに伴って、 積層コンデ ンサ 210自体が持つ寄生ィンダクタンスを少なくでき、 等価直列ィンダクタン スを低減する効果が生じるようになる。
【0133】
以上より、 本実施形態に係る積層コンデンサ 21 0によれば、 デカップリング コンデンサとして好適に用いられ、 積層コンデンサ 210の大幅な低 ESL化が 図られる。 また、 本実施形態に係る積層コンデンサ 210は、 高周波数帯域での 減衰量が大きくなるのに伴い、 電源の電圧変動を抑制できるようになり、 CPU の電源回路などに好適に用いられる。
【0134】 また、 図 15に示すように、 3つの分割導体 221〜223、 3つの分割導体 224〜 226および一対の内部導体 227、 228が、 それぞれ誘電体素体 1 2内に複数組配置されることで、 本実施形態に係る積層コンデンサ 210の静電 容量が高まる。 しかも、 本実施形態に係る積層コンデンサ 210では、 磁界を相 殺する作用がさらに大きくなり、 インダクタンスがより大幅に減少して E S Lが —層低減することができる。
【0135】
本実施形態にかかる積層コンデンサ 210の製造に際して、 それぞれ長方形等 の四辺形に形成された誘電体シートを積層することで、 誘電体素体 21 2を直方 体形状に形成することができる。 この結果として、 本実施形態の積層コンデンサ 210は、 生産性の観点から最適な四つの側面 12B〜1 2 Eを有する直方体形 状に形成された誘電体素体 12の全ての側面 12B〜1 2 Eに導体の引き出し部 分が設けられる。 そのため、 E S Lが低減される効果が最大限に発揮されるよう になる。
【0136】
次に、 本実施形態に係る積層コンデンサ 210の使用例を図 1 6に基づき説明 する。
この使用例では、 三組の電源 241、 242、 243と CP U等の三組の I C 2 51、 252、 253とがそれぞれ対となって相互に接続されている。 つまり、 電源 241と I C 251とが接続され、 電源 242と I C252とが接続され、 電源 243と I C 253とが接続されている。
【0137】
そして、 この積層コンデンサ 210の分割導体 221に接鐃される端子電極 2 31および分割導体 224に接続される端子電極 234力 S、 電源 241と I C 2 51との間にそれぞれ接続されている。 さらに、 分割導体 222に接続される端 子電極 232および分割導体 225に接続される端子電極 235が、 電源 242 と I C 252との間にそれぞれ接続されている。 また、 分割導体 223に接続さ れる端子電極 233および分割導体 226に接続される端子電極 236が、 電源 243と I C 253との間にそれぞれ接続されている。 この一方、 内部電極 22 7に接続される端子電極 237および内部導体 228に接続される端子電極 23 8は、 それぞれ接地されている。
【0138】
以上より、 この使用例によれば、 たとえば端子電極 231~236が相互に同 極のプラスとされ、 端子電極 237〜238が相互に同極のマイナスとされ、 大 幅な低 E S L化が図られ、 電源 241、 242、 243の電圧変動を抑制できる ようになる。
実施例 2
【0139】
次に、 ネットワークアナライザを用いて、 以下の各試料の Sパラメータの S 2 1特性を測定し、 各試料の減衰特性をそれぞれ求めた。 まず、 各試料となるサン プルの内容を説明する。 つまり、 コンデンサとして一般的な図 21に示す 2端子 型積層コンデンサを比較例 1とし、 図 14に示す実施形態に係る多端子型積層コ ンデンサを実施例 2とした。
【0140】
ここで、 減衰特性の実測値と図 20に示す等価回路の減衰量とが合致するよう に、 等価回路の定数を算出した。 そして、 図 1 7に示す各試料の減衰特性のデー タから、 20MHz以上の高周波数の帯域における実施例 2の減衰量が、 比較例 1に比べて約 15 d Bほど増えていることが分かる。 このデータによって高周波 特性の改善が、 実施例 2に見られることが確認できた。
【0141】
他方、 算出した表 1に表す E S Lに関しても、 比較例 1に比べて実施例 2は、 大幅に低減されており、 本発明の効果がこの表 1によっても実証された。
【0142】
【表 2】 C(〃F) ESR(mQ) ESR(pH) 比較例 1 1.038 6.3 825.2 実施例 2 1.062 2.8 143.4
この表 2で、 Cは静電容量であり、 ESLは等価直列抵抗である。 また、 ここ で用いた各試料の寸法としては、 図 21およぴ図 14に示すように、 一対の内部 導体が引き出されている誘電体素体の側面間の距離を寸法 Lとし、 一対の内部導 体が引き出された誘電体素体の側面に対して直交する側面間の距離を寸法 Wとし た時に、 比較例 1が L=2. Ommで W= 1.25mmであった。 また、 実施例 2 は、 L=l. 6 mmで W= 1.6 mmであった。 .
【0143】
尚、 上記実施形態に係る積層コンデンサ 210では、 4層づつで二組の計 8層 を有する構造とされているものの、 層数はこれらの数に限定されずさらに多数と し、 例えば層数を例えば数十或いは数百としても良い。 また、 上記実施形態では、 分割導体がそれぞれ同一平面内に 3つづつ配置される構造としたが、 同一平面内 に 2つづつ或いは 4つづつ以上配置するようにしても良い。
なお、 本発明は、 上述した実施形態に限定されず、 本発明の範囲内で種々に改 変することができる。

Claims

請 求 の 範 囲
1 . 複数の誘電体シートが積層されて形成される誘電体素体内に、 誘電体シ一 ト間に挟まれる形で複数の内部導体がそれぞれ配置される積層コンデンサであつ て、
前記内部導体が、
前記誘電体シートの相互に対向する二側面にそれぞれ引き出される少なくとも 一対の第 1内部導体と、
一対の前記第 1内部導体が引き出されたニ側面と異なる前記誘電体素体の相互 に対向する二側面にそれぞれ引き出される少なくとも一対の第 2内部導体と、 で 構成され、
一対の前記第 1内部導体の間に、 前記誘電体シートを介して前記第 2内部導体 が配置され、
一対の前記第 2内部導体の間に、 前記誘電体シートを介して前記第 1内部導体 が配置されていることを特徴とする積層コンデンサ。
2 . 前記誘電体素体の相互に対向する二側面にそれぞれ配置され、 且つ一対の 前記第 1内部導体にそれぞれ接続される少なくとも一対の第 1端子電極と、 前記第 1端子電極が配置される側面と異なる前記誘電体素体の相互に対向する 二側面にそれぞれ配置され、 且つ一対の前記第 2内部導体にそれぞれ接続される 一対の第 2端子電極と、
を備えることを特徴とする請求項 1記載の積層コ
3 . 前記第 1内部導体おょぴ第 2内部導体の少なくとも何れかが、 相互に並ん で延びる形で分割されて前記誘電体素体の相互に対向する二側面に交互に突き出 される複数の分割導体で構成してあることを特徴とする請求項 1に記載の積層コ ンデンサ。
4 . 前記第 1内部導体おょぴ第 2内部導体の少なくとも何れかが、 相互に並ん で延びる形で分割されて前記誘電体素体の相互に対向する二側面に交互に突き出 される複数の分割導体で構成してあることを特徴とする請求項 2に記載の積層コ ンデンサ。
5 . 同一平面内に位置して相互に瞵接する前記分割導体は、 相互に対向する二 側面にそれぞれ配置された前記端子電極にそれぞれ接続してある請求項 4に記載 の積層コンデンサ。
6 . 前記第 1内部導体おょぴ第 2内部導体には、 前記第 1端子電極および第 2 端子電極に対してそれぞれ接続される引出部が形成してある請求項 2 , 4 , 5の いずれかに記載の積層コ
7 . 前記分割導体には、 前記端子電極と接続される引出部が形成してあり、 同一平面内に 3つ以上の分割導体が配置され、 これらの分割導体の内の 1つ飛 んで隣の分割導体同士が、 前記引出部を介して接続してある請求項 5に記載の積 層コンデンサ。
8 . 相互に対向する位置で同一平面内に配置される前記引出部の幅が略同一で ある請求項 Ίに記載の積層コンデンサ。
9 . 前記分割導体の平面形状が長方形、 三角形または台形である請求項 3また は 4に記載の積層コンデンサ。
1 0 . 複数の誘電体シートが積層されて形成される誘電体素体内に、 誘電体シ 一ト間に挟まれる形で複数の内部導体がそれぞれ配置される積層コンデンサであ つて、
前記内部導体が、
前記誘電体シートの相互に対向する二側面にそれぞれ引き出される少なくとも 一対の第 1内部導体と、 一対の前記第 1内部導体が引き出された二側面と異なる前記誘電体素体の相互 に対向する二側面にそれぞれ引き出される少なくとも一対の第 2内部導体と、 で 構成され、
一対の前記第 1内部導体の間に、 前記誘電体シートを介して前記第 2内部導体 が配置され、
一対の前記第 2内部導体の間に、 前記誘電体シートを介して前記第 1内部導体 が配置され、
前記第 1内部導体が、 同一平面内において相互に並んで延びる形に分割され、 誘電体素体の相互に対向する二側面に交互に引き出される複数の分割導体で構成 してあり、
前記第 2内部導体を挟んで積層方向に相互に隣り合う前記第 1内部導体の分割 導体が、 平面矢視側から見てそれぞれ重複した位置に配置され、 平面矢視側から 見て重複する分割導体同士は、 それぞれ逆方向となるように交互に引き出される ことを特徴とする積層コンデンサ。
1 1 . 前記第 2内部導体は、 分割されていない形状である請求項 1 0に記載の 積層コンデンサ。
1 2 . 前記誘電体素体の相互に対向する二側面にそれぞれ配置され且つ、 複数 の分割導体にそれぞれ接続される複数対の第 1端子電極と、
複数対の第 1端子電極が配置される二側面と異なる前記誘電体素体の相互に対 向する二側面にそれぞれ配置され且つ、 一対の前記第 2内部導体にそれぞれ接続 される一対の第 2端子電極と、
を備えることを特徴とする請求項 1 0または 1 1に記載の積層コンデンサ。
1 3 . 前記誘電体素体が直方体形状に形成されていることを特徴とする請求項 1力 ら 1 2の何れかに記載の積層コンデンサ。
1 4 . 第 1内部導体おょぴ第 2内部導体が、 それぞれ前記誘電体素体内に複数 対づっ積層方向に配置してあることを特徴とする請求項 1から 1 3の何れかに記 載の積層コ
PCT/JP2003/011490 2002-09-10 2003-09-09 積層コンデンサ WO2004025673A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/527,023 US7075774B2 (en) 2002-09-10 2003-09-09 Multilayer capacitor
HK06103824.0A HK1084502A1 (en) 2002-09-10 2006-03-27 Multilayer capacitor
US11/433,358 US7196897B2 (en) 2002-09-10 2006-05-15 Multilayer capacitor
US11/433,474 US7224569B2 (en) 2002-09-10 2006-05-15 Multilayer capacitor
US11/433,479 US7224572B2 (en) 2002-09-10 2006-05-15 Multilayer capacitor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002264822A JP3847234B2 (ja) 2002-09-10 2002-09-10 積層コンデンサ
JP2002264821A JP3824565B2 (ja) 2002-09-10 2002-09-10 積層コンデンサ
JP2002-264822 2002-09-10
JP2002-264821 2002-09-10

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US10527023 A-371-Of-International 2003-09-09
US11/433,358 Division US7196897B2 (en) 2002-09-10 2006-05-15 Multilayer capacitor
US11/433,479 Division US7224572B2 (en) 2002-09-10 2006-05-15 Multilayer capacitor
US11/433,474 Division US7224569B2 (en) 2002-09-10 2006-05-15 Multilayer capacitor

Publications (1)

Publication Number Publication Date
WO2004025673A1 true WO2004025673A1 (ja) 2004-03-25

Family

ID=31996136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011490 WO2004025673A1 (ja) 2002-09-10 2003-09-09 積層コンデンサ

Country Status (5)

Country Link
US (4) US7075774B2 (ja)
KR (1) KR100678496B1 (ja)
HK (1) HK1084502A1 (ja)
TW (1) TWI291186B (ja)
WO (1) WO2004025673A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8031460B2 (en) * 2008-02-14 2011-10-04 Tdk Corporation Multilayer capacitor
CN104576044A (zh) * 2013-10-25 2015-04-29 三星电机株式会社 阵列式多层陶瓷电子组件和其上安装有该电子组件的板

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004025673A1 (ja) * 2002-09-10 2004-03-25 Tdk Corporation 積層コンデンサ
JP2006245049A (ja) * 2005-02-28 2006-09-14 Tdk Corp 電子部品及び電子機器
KR100616687B1 (ko) * 2005-06-17 2006-08-28 삼성전기주식회사 적층형 칩 커패시터
CN101243527B (zh) * 2005-08-19 2010-12-08 株式会社村田制作所 层叠陶瓷电容器
US7697262B2 (en) * 2005-10-31 2010-04-13 Avx Corporation Multilayer ceramic capacitor with internal current cancellation and bottom terminals
US7414857B2 (en) * 2005-10-31 2008-08-19 Avx Corporation Multilayer ceramic capacitor with internal current cancellation and bottom terminals
JP4462194B2 (ja) * 2006-01-17 2010-05-12 Tdk株式会社 積層型貫通コンデンサアレイ
JP4915130B2 (ja) * 2006-04-18 2012-04-11 ソニー株式会社 可変コンデンサ
JP2007317786A (ja) * 2006-05-24 2007-12-06 Tdk Corp 積層コンデンサ
US7667949B2 (en) * 2006-08-05 2010-02-23 John Maxwell Capacitor having improved surface breakdown voltage performance and method for marking same
JP4626605B2 (ja) * 2006-11-07 2011-02-09 株式会社村田製作所 積層コンデンサ
DE102006056872A1 (de) * 2006-12-01 2008-06-12 Epcos Ag Vielschicht-Kondensator
US20080165468A1 (en) * 2007-01-05 2008-07-10 Avx Corporation Very low profile multilayer components
US20080174936A1 (en) * 2007-01-19 2008-07-24 Western Lights Semiconductor Corp. Apparatus and Method to Store Electrical Energy
JP4358873B2 (ja) * 2007-03-30 2009-11-04 Tdk株式会社 積層コンデンサアレイ
US8238116B2 (en) 2007-04-13 2012-08-07 Avx Corporation Land grid feedthrough low ESL technology
KR100887124B1 (ko) * 2007-08-06 2009-03-04 삼성전기주식회사 적층형 칩 커패시터
JP4501970B2 (ja) * 2007-08-23 2010-07-14 Tdk株式会社 積層コンデンサ
KR100905879B1 (ko) * 2007-09-28 2009-07-03 삼성전기주식회사 적층형 캐패시터
JP4450084B2 (ja) * 2008-03-14 2010-04-14 Tdk株式会社 積層コンデンサ及び積層コンデンサの実装構造
JP5217584B2 (ja) * 2008-04-07 2013-06-19 株式会社村田製作所 積層セラミック電子部品
GB2466097B (en) * 2008-08-18 2013-02-13 Avx Corp Ultra broadband capacitor
US8446705B2 (en) * 2008-08-18 2013-05-21 Avx Corporation Ultra broadband capacitor
KR100992286B1 (ko) * 2008-10-10 2010-11-05 삼성전기주식회사 적층형 칩 커패시터
JP4905497B2 (ja) * 2009-04-22 2012-03-28 株式会社村田製作所 電子部品
JP5532027B2 (ja) * 2010-09-28 2014-06-25 株式会社村田製作所 積層セラミック電子部品およびその製造方法
KR20130012715A (ko) * 2011-07-26 2013-02-05 삼성전기주식회사 적층형 세라믹 캐패시터
KR101963258B1 (ko) * 2012-02-07 2019-03-28 삼성전기주식회사 어레이형 적층 세라믹 전자 부품
JP5573868B2 (ja) * 2012-03-07 2014-08-20 株式会社村田製作所 等価回路作成方法、等価回路作成プログラム及び等価回路作成装置
DE102013102686A1 (de) * 2013-03-15 2014-09-18 Epcos Ag Elektronisches Bauelement
US10461040B2 (en) * 2017-06-28 2019-10-29 Apple Inc. Matched ceramic capacitor structures
JP2021500752A (ja) * 2017-10-23 2021-01-07 エイブイエックス コーポレイション 接続性を改善した多層電子デバイス、およびそれを作製する方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157128U (ja) * 1981-03-25 1982-10-02
JPS63117416A (ja) * 1986-11-06 1988-05-21 株式会社村田製作所 積層形多端子電子部品
JPH11340080A (ja) * 1998-05-27 1999-12-10 Murata Mfg Co Ltd 積層マイクロチップコンデンサ
JP2000021676A (ja) * 1998-07-02 2000-01-21 Murata Mfg Co Ltd ブリッジ回路用積層電子部品
JP2001284171A (ja) * 2000-03-30 2001-10-12 Tdk Corp 積層型電子部品
JP2002151349A (ja) * 2000-11-14 2002-05-24 Tdk Corp 積層型電子部品
JP2002231559A (ja) * 2001-02-05 2002-08-16 Tdk Corp 積層貫通型コンデンサ

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE425578B (sv) 1981-02-26 1982-10-11 Lkb Produkter Ab Metkropp avsedd att anvendas i en mikrokalorimeter
US4470096A (en) * 1982-06-18 1984-09-04 Motorola Inc. Multilayer, fully-trimmable, film-type capacitor and method of adjustment
JPH0635462Y2 (ja) * 1988-08-11 1994-09-14 株式会社村田製作所 積層型コンデンサ
JPH03215915A (ja) * 1990-01-19 1991-09-20 Murata Mfg Co Ltd 積層コンデンサ
US5815367A (en) * 1996-03-11 1998-09-29 Murata Manufacturing Co., Ltd. Layered capacitors having an internal inductor element
JPH09298127A (ja) * 1996-05-09 1997-11-18 Murata Mfg Co Ltd 積層コンデンサ
JP3102358B2 (ja) * 1996-08-15 2000-10-23 株式会社村田製作所 トリミングコンデンサおよびそのトリミング方法
US6097581A (en) * 1997-04-08 2000-08-01 X2Y Attenuators, Llc Paired multi-layered dielectric independent passive component architecture resulting in differential and common mode filtering with surge protection in one integrated package
US5880925A (en) * 1997-06-27 1999-03-09 Avx Corporation Surface mount multilayer capacitor
DE69833193T2 (de) * 1997-08-05 2006-09-21 Koninklijke Philips Electronics N.V. Verfahren zur herstellung mehrerer elektronischer bauteile
JP2991175B2 (ja) 1997-11-10 1999-12-20 株式会社村田製作所 積層コンデンサ
US6252177B1 (en) * 1998-02-18 2001-06-26 Compaq Computer Corporation Low inductance capacitor mounting structure for capacitors of a printed circuit board
JP2000357624A (ja) 1999-06-16 2000-12-26 Murata Mfg Co Ltd 積層セラミック電子部品
US6525628B1 (en) * 1999-06-18 2003-02-25 Avx Corporation Surface mount RC array with narrow tab portions on each of the electrode plates
US6327134B1 (en) * 1999-10-18 2001-12-04 Murata Manufacturing Co., Ltd. Multi-layer capacitor, wiring board, and high-frequency circuit
US6441459B1 (en) * 2000-01-28 2002-08-27 Tdk Corporation Multilayer electronic device and method for producing same
US6570210B1 (en) * 2000-06-19 2003-05-27 Koninklijke Philips Electronics N.V. Multilayer pillar array capacitor structure for deep sub-micron CMOS
KR100544908B1 (ko) * 2002-04-01 2006-01-24 가부시키가이샤 무라타 세이사쿠쇼 세라믹 전자부품 및 그 제조방법
WO2004025673A1 (ja) * 2002-09-10 2004-03-25 Tdk Corporation 積層コンデンサ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157128U (ja) * 1981-03-25 1982-10-02
JPS63117416A (ja) * 1986-11-06 1988-05-21 株式会社村田製作所 積層形多端子電子部品
JPH11340080A (ja) * 1998-05-27 1999-12-10 Murata Mfg Co Ltd 積層マイクロチップコンデンサ
JP2000021676A (ja) * 1998-07-02 2000-01-21 Murata Mfg Co Ltd ブリッジ回路用積層電子部品
JP2001284171A (ja) * 2000-03-30 2001-10-12 Tdk Corp 積層型電子部品
JP2002151349A (ja) * 2000-11-14 2002-05-24 Tdk Corp 積層型電子部品
JP2002231559A (ja) * 2001-02-05 2002-08-16 Tdk Corp 積層貫通型コンデンサ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8031460B2 (en) * 2008-02-14 2011-10-04 Tdk Corporation Multilayer capacitor
CN104576044A (zh) * 2013-10-25 2015-04-29 三星电机株式会社 阵列式多层陶瓷电子组件和其上安装有该电子组件的板

Also Published As

Publication number Publication date
TW200414239A (en) 2004-08-01
KR100678496B1 (ko) 2007-02-06
HK1084502A1 (en) 2006-07-28
US7075774B2 (en) 2006-07-11
TWI291186B (en) 2007-12-11
US7224569B2 (en) 2007-05-29
US20060203427A1 (en) 2006-09-14
US20060203425A1 (en) 2006-09-14
US7224572B2 (en) 2007-05-29
KR20060033855A (ko) 2006-04-20
US7196897B2 (en) 2007-03-27
US20060203426A1 (en) 2006-09-14
US20060007634A1 (en) 2006-01-12

Similar Documents

Publication Publication Date Title
WO2004025673A1 (ja) 積層コンデンサ
TW569253B (en) Multilayer ceramic electronic device
US6914767B2 (en) Multilayer capacitor
US7675733B2 (en) Multilayer capacitor
US20030102502A1 (en) Multilayer capacitor
JPH11144996A (ja) 積層コンデンサ
JP2000208361A (ja) 積層コンデンサ
US7974071B2 (en) Multilayer capacitor
JP3746989B2 (ja) 積層コンデンサ
TWI269326B (en) Stacked capacitor
US7050289B2 (en) Multilayer capacitor
JP3563665B2 (ja) 積層型電子回路部品
JP3563664B2 (ja) 積層型電子回路部品及び積層型電子回路部品の製造方法
JP3853152B2 (ja) 電子部品の実装構造
JP3847234B2 (ja) 積層コンデンサ
JP3824565B2 (ja) 積層コンデンサ
JP3821790B2 (ja) 積層コンデンサ
JP4255084B2 (ja) 電子部品の実装構造
JP3868389B2 (ja) 積層コンデンサ
JP2002231559A (ja) 積層貫通型コンデンサ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

ENP Entry into the national phase

Ref document number: 2006007634

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10527023

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020057004149

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038250306

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 10527023

Country of ref document: US