[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20180002427A1 - Cll1-specific multi-chain chimeric antigen receptor - Google Patents

Cll1-specific multi-chain chimeric antigen receptor Download PDF

Info

Publication number
US20180002427A1
US20180002427A1 US15/546,619 US201615546619A US2018002427A1 US 20180002427 A1 US20180002427 A1 US 20180002427A1 US 201615546619 A US201615546619 A US 201615546619A US 2018002427 A1 US2018002427 A1 US 2018002427A1
Authority
US
United States
Prior art keywords
seq
cll1
epitope1
chain
epitope2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/546,619
Other languages
English (en)
Inventor
Julianne Smith
Julien Valton
Philippe Duchateau
Alexandre Juillerat
Arvind Rajpal
Barbra Johnson Sasu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cellectis SA
Original Assignee
Cellectis SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cellectis SA filed Critical Cellectis SA
Publication of US20180002427A1 publication Critical patent/US20180002427A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2866Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for cytokines, lymphokines, interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/17Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/39558Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/463Cellular immunotherapy characterised by recombinant expression
    • A61K39/4631Chimeric Antigen Receptors [CAR]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/70517CD8
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/70535Fc-receptors, e.g. CD16, CD32, CD64 (CD2314/705F)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70578NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70596Molecules with a "CD"-designation not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2887Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against CD20
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3061Blood cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0081Purging biological preparations of unwanted cells
    • C12N5/0093Purging against cancer cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • C12N5/0638Cytotoxic T lymphocytes [CTL] or lymphokine activated killer cells [LAK]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1031Investigating individual particles by measuring electrical or magnetic effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/149Optical investigation techniques, e.g. flow cytometry specially adapted for sorting particles, e.g. by their size or optical properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5156Animal cells expressing foreign proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5158Antigen-pulsed cells, e.g. T-cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/6056Antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/64Medicinal preparations containing antigens or antibodies characterised by the architecture of the carrier-antigen complex, e.g. repetition of carrier-antigen units
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/53Hinge
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/03Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/33Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/01Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials specially adapted for biological cells, e.g. blood cells
    • G01N2015/016White blood cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1028Sorting particles

Definitions

  • the present invention relates to a new generation of chimeric antigen receptors (CAR) referred to as multi-chain CARs, which are made specific to the antigen CLL1.
  • CARs aim to redirect immune cell specificity and reactivity toward malignant cells expressing the tumor antigen CLL1.
  • the polypeptides composing these CARs are designed to assemble in juxtamembrane position, which forms flexible architecture closer to natural receptors, that confers tunable signal transduction.
  • the invention encompasses the polynucleotides, vectors encoding said multi-chain CAR and the isolated cells resulting from their heterologous expression in immune cells, in particularly for their use in immunotherapy.
  • the invention opens the way to efficient adoptive immunotherapy strategies for treating cancer, especially acute myeloid leukemia (AML).
  • AML acute myeloid leukemia
  • Adoptive immunotherapy which involves the transfer of antigen-specific T cells generated ex vivo, is a promising strategy to treat viral infections and cancer.
  • the T cells used for adoptive immunotherapy can be generated either by expansion of antigen-specific T cells or redirection of T cells through genetic engineering (Park, Rosenberg et al. (2011) Treating Cancer with Genetically Engineered T Cells. Trends Biotechnol. 29(11): 550-557)
  • Transfer of viral antigen specific T cells is a well-established procedure used for the treatment of transplant associated viral infections and rare viral-related malignancies. Similarly, isolation and transfer of tumor specific T cells has been shown to be successful in treating melanoma.
  • CARs transgenic T cell receptors or chimeric antigen receptors
  • CARs are synthetic receptors consisting of a targeting moiety that is associated with one or more signaling domains to form a single-chain fusion molecule.
  • ALL acute lymphoblastic leukemia
  • AML acute myeloid leukemia
  • AML acute myeloid leukemia
  • AML is a disease characterized by the rapid proliferation of immature myeloid cells in the bone marrow resulting in dysfunctional hematopoiesis.
  • standard induction chemotherapy can induce complete remissions, many patients eventually relapse and succumb to the disease, calling for the development of novel therapeutics for AML.
  • AML acute myeloid leukemia
  • induction treatments for acute myeloid leukemia have remained largely unchanged for nearly 50 years and AML remains a disease of poor prognosis.
  • AML is a disease characterized by the rapid proliferation of immature myeloid cells in the bone marrow resulting in dysfunctional hematopoiesis.
  • standard induction chemotherapy can induce complete remissions, many patients eventually relapse and succumb to the disease, calling for the development of novel therapeutics for AML.
  • Recent advances in the immunophenotyping of AML cells have revealed several AML associated cell surface antigens that may act as targets for future therapies.
  • CLL1 C-Type Lectin-Like Molecule-1
  • CLL1 appears to be an interesting tumoral antigen target as it is expressed by leukemic blasts at diagnosis from 85-92% of AML patients analysed It is a 75 kDa member of the group V C-type lectin-like receptor family of molecules. Group V molecules have a lectin-like domain that binds to non-sugar ligands.
  • CLL1 is a 265 aminoacid type II transmembrane glycoprotein (Uniprot database: Q5QGZ9 for human protein encoded by gene n° 160364 in “Entrez Gene” database) that contains a 200 AA extracellular domain.
  • CLL1 is also referred to in the literature and databases as MICL, CLEC12 and KLRL1.
  • CLL1 antigen is associated with AML stem cells.
  • CLL1 is a cell surface protein that is specifically expressed on most malignant lymphoid stem cells (AML LSC), while not being expressed on normal HSC (Van Rhenen et al, 2007). Meanwhile, CLL1 was revealed to be a diagnostic marker in AML (Larsen et al, 2012).
  • Anti-CLL-1 antibodies enable both AML-specific stem-cell detection and possibly antigen-targeting as distinguishing malignant cells from normal stem cells both at diagnosis and in remission (van Rhenen et al, 2007). However, none of these antibodies have been reported to date as being tested in clinical trials as therapeutic antibodies.
  • Gemtuzumab ozogamicin (Mylotarg®) is a monoclonal antibody with a cell poison attached to it. Previously approved to treat AML in older patients, it was withdrawn from the market after studies found some toxicity associated with the product (press release of Dec. 10, 2010 in PMLIVE “ASH: Pfizer eyes re-launch of Mylotarg”). Other monoclonal therapeutic antibodies have shown adverse effects over the last decade (Klastersky, J. (2006) “Adverse effects of the humanized antibodies used as cancer therapeutics” Current Opinion in Oncology. 18(4):316-320)
  • micellar nanoparticles covalently decorated with CLL1-targeting peptides have been described for targeted drug delivery (daunorubicin); these “targeting nanomicelles” transport the drug load to the interior of cells expressing CLL1 and to LSCs isolated from clinical specimens in vitro. It was showed that CLL1-targeting nanomicelles had the potential to be used for targeted drug delivery to leukemia stem cells. However, no therapeutic effects could be attributed to the CCL-1 targeting peptide per se.
  • the inventors have pursued a new approach to target CCL1 using immune cells endowed with specific chimeric antigen receptors based on anti-CLL1 monoclonal antibodies, which redirect immune cell specificity towards CLL1 positive cells
  • multi-chain CARs a new generation of CARs involving separate polypeptide sub-units according to the present invention, referred to as “multi-chain CARs”.
  • the signaling domains and co-stimulatory domains are located on different polypeptide chains.
  • Such multi-chain CARs can be derived from Fc ⁇ RI (see FIG.
  • the inventors have now designed multi-chain CAR bearing scFv extracellular domain binding CLL1, which are particularly suited to target malignant cells bearing CLL1 as a marker. This was achieved, whereas very few antibodies had been so far described to act efficiently against CLL1 positive cells for treating or preventing leukemia, in particular AML.
  • T cells expressing anti-CLL1 multi chain CARS Due to the design and architecture of these new anti-CLL1 CARs and to the properties of the present engineered immune cells, the kinetic of action and activity of engineered immune cells is unexpectedly modified so that less tumor cells may escape and long term effect is observed with reduced GVHD and side effects.
  • CARs specifically bind to and affect the survival of CLL1 positive T cells, in particular to malignant CLL1 positive cells developing during AML and selectively alter the viability of these malignant cells, with an expectation of displaying less toxic side effects including cytokine release.
  • the present invention provides with engineered allogeneic immune cells that may be used as “off-the-shelf” allogeneic therapeutic products.
  • the CAR positive engineered cells can be made compatible (i.e. resistant) with chemotherapy or immunodepleting treatments, thereby enabling synergistic effects between chemotherapy and immunotherapy.
  • the inventors have generated CLL1 specific multi-chain (mcCAR) having different design and comprising different scFV derived from anti-CLL1 specific antibodies.
  • Said multi-chain CARs are preferably based on the alpha, beta and gamma polypeptides from Fc ⁇ RI as detailed herein.
  • mcCAR anti-CLL1 specific multi-chain CAR
  • mcCAR anti-CLL1 specific multi-chain CAR
  • SC02-357, SC02-378, SC02-161, M26, M31, G4, M22, M29, M2, M5, G12, 21.26 and 1075.7 antibodies with different architectures and identified highly specific and very selective mcCARs constructions that bind to CLL1 expressing cells and selectively destroy CLL1 expressing cancer cells.
  • T-cells from donors have been transformed with polynucleotides expressing these mcCARs using viral transduction.
  • the T-cells were further engineered to create less or non-alloreactive T-cells, more especially by disruption of a component of TCR ( ⁇ -T-Cell receptors) to prevent Graft versus host reaction.
  • Immune-cells endowed with CLL1 specific CARs according to the invention may be further engineered to create T cells resistant to anti-cancer drugs, to be used in combination or sequentially with said classical anti-cancer drugs.
  • the resulting engineered T-cells displayed reactivity in-vitro against CLL1 positive cells to various extend, showing that the mcCARs of the present invention contribute to antigen dependent activation, and also proliferation, of the T-cells, making them useful for immunotherapy.
  • the resulting engineered T-cells displayed reactivity in-vivo against CLL1 positive cells and significantly reduce the number of cancer cells in vivo.
  • the engineered T-cells of the invention are designed to display in-vivo reactivity against CLL1 positive cells, can be used in concomitance with anti-cancer drugs, are well tolerated. In a particular embodiment, the engineered T-cells of the invention remain efficient even after several administrations, making them useful for immunotherapy as a first treatment (induction), as a consolidation treatment, as a treatment in combination with classical anticancer chemotherapy.
  • the polypeptides and polynucleotide sequences encoding the CARs of the present invention are detailed in the present specification.
  • the CLL1 specific CARs of the present invention comprises at least one epitope tagging sequence such as a CD20 mimotope, allowing a depletion of said immune cells by the use of antibodies against such epitope, to modulate the immune response of the CAR positive cells (i.e occurrence of adverse effect during their use in immunotherapy such as acytokine storm).
  • said at least one epitope is inserted in the extracellular ligand binding domain of the CAR, more preferably on the alpha chain of the multi-chain CAR exemplified herein.
  • the engineered immune cells of the present invention are particularly useful for therapeutic applications such as acute myeloma leukemia (AML) treatments.
  • AML acute myeloma leukemia
  • FIG. 1 Schematic representation of the native Fc ⁇ RI from which derivate the multi-chain CAR architecture according to the invention.
  • FIG. 2 General structure of the polycistronic construct encoding the CLL1 multi-chain CAR according to the invention.
  • FIG. 3 Different architectures of the CLL1 specific multi-chain CAR according to the invention. From left to right: polypeptide gamma (fused to ITAM of CD3zeta), polypeptide alpha (fused to ScFv), polypeptide beta (fused to co-stimulatory domain from either CD28 or 41BB). A and B: polypeptide beta is fused to co-stimulatory domain from 41BB, VL and VH fragments being in opposite orders. C and D: polypeptide beta is fused to co-stimulatory domain from CD28, VL and VH fragments being in opposite orders.
  • VL and VH fragments are in opposite order as compared to construction in FIG. 3D .
  • the VL fragment of the extracellular CLL1 ligand binding domain is fused to a transmembrane polypeptide from the alpha chain of high-affinity IgE receptor (Fc ⁇ RI), more precisely to a peptide comprising a CD8 fragment and a fragment of the alpha chain of high-affinity IgE receptor (Fc ⁇ RI).
  • FIG. 4 Two architectures of the CLL1 specific multi-chain CAR according to the invention (mcCLL1-41BB and mcCLL1-CD28) wherein the alpha fragment comprises a VL fragment is linked to a polypeptide comprising a CD8 fragment and to a VH fragment, and the beta chain comprises a co-stimulatory domain located in the C-terminus of the beta chain, said co-stimulatory domain is from 41BB (mcCLL1-41BB) or from CD28 (mcCLL1-CD28).
  • FIGS. 5A and 5B Schematic representation of different strategies based mAb-epitope tagging using for instance the CD20 mimotope for T cell depletion designed to mitigate possible side effects associated with CAR positive cells injection: V1 and v2 represents either VH or VL chain respectively, TM: transmembrane domain, L: linker.
  • V1 anti-CLL1 monoclonal antibody VH;
  • L GS linker;
  • V2 anti-CLL1 monoclonal antibody VH;
  • Hinge preferably CD8 hinge;
  • TM preferably Fc ⁇ RI ⁇ -TM-IC.
  • both architectures presented here correspond to examples where two epitopes are inserted in the extracellular ligand binding domain of the CAR, one is inserted between the N-terminal end of the CAR and the VH chain, said epitope being bordered by at least one or two linkers; the second epitope is inserted between the VH and VL chains, said 2 nd epitope being also bordered by 2 at least one or two linkers.
  • the architectures illustrated herein differ by the linkers used bordering the 2 nd epitope.
  • both architectures presented here correspond to examples where two epitopes are inserted in the extracellular ligand binding domain of the CAR, one is inserted between the VH and VL chains; the other epitope is inserted between the VL chain and the hinge, each said epitope being also bordered by at least one or two linkers.
  • the architectures illustrated herein differ by the linkers used bordering the 1 st epitope.
  • both architectures presented here correspond to examples, where three epitopes are inserted in the extracellular domain of the CAR, one is inserted between the N-terminal end of the CAR and the VH chain, said epitope being bordered by at least one or two linkers; the second epitope is inserted between the VH and VL chains, said epitope being also bordered by such linkers, and the third epitope being inserted between the VL chain et the hinge.
  • These two architectures differ by the linkers used bordering the 2 nd epitope.
  • one CD34 epitope is included between two CD20 epitopes. Further architectures can be considered where CD34 replaces any other previous CD20 epitopes.
  • RVKFSRSADAPAYQQGQNQLYN CD3-IC intracellular domain ELNLGRREEYDVLDKRRGRDPEM comprising ITAM GGKPRRKNPQEGLYNELQKDKM AEAYSEIGMKGERRRGKGHDGLY QGLSTATKDTYDALHMQALPPR
  • the present invention relates to:
  • extracellular ligand-binding domain as used herein is defined as an oligo- or polypeptide that is capable of binding a ligand.
  • the domain will be capable of interacting with a cell surface molecule. More preferably, said domain will be capable of interacting with a CLL1 cell surface molecule.
  • the term “derived from” means a polypeptide having an amino acid sequence which is equivalent to that an Fc ⁇ receptor which include one or more amino acid modification(s) of the sequence of the Fc ⁇ receptor.
  • Such amino acid modification(s) may include amino acid substitution(s), deletion(s), addition(s) or a combination of any of those modifications, and may alter the biological activity of the Fc binding region relative to that of an Fc receptor.
  • Fc binding regions derived from a particular Fc receptor may include one or more amino acid modification(s) which do not substantially alter the biological activity of the Fc binding region relative to that of an Fc receptor. Amino acid modification(s) of this kind will typically comprise conservative amino acid substitution(s).
  • identity refers to sequence identity between two nucleic acid molecules or polypeptides. Identity can be determined by comparing a position in each sequence which may be aligned for purposes of comparison. When a position in the compared sequence is occupied by the same base, then the molecules are identical at that position. A degree of similarity or identity between nucleic acid or amino acid sequences is a function of the number of identical or matching nucleotides at positions shared by the nucleic acid sequences. Various alignment algorithms and/or programs may be used to calculate the identity between two sequences, including FASTA, or BLAST which are available as a part of the GCG sequence analysis package (University of Wisconsin, Madison, Wis.), and can be used with, e.g., default setting.
  • polypeptides having at least 70%, 85%, 90%, 95%, 98% or 99% identity to specific polypeptides described herein and preferably exhibiting substantially the same functions, as well as polynucleotide encoding such polypeptides are contemplated.
  • a similarity score will be based on use of BLOSUM62.
  • BLASTP is used, the percent similarity is based on the BLASTP positives score and the percent sequence identity is based on the BLASTP identities score.
  • BLASTP “Identities” shows the number and fraction of total residues in the high scoring sequence pairs which are identical; and BLASTP “Positives” shows the number and fraction of residues for which the alignment scores have positive values and which are similar to each other.
  • amino acid sequences having these degrees of identity or similarity or any intermediate degree of identity of similarity to the amino acid sequences disclosed herein are contemplated and encompassed by this disclosure.
  • the polynucleotide sequences of similar polypeptides are deduced using the genetic code and may be obtained by conventional means, in particular by reverse translating its amino acid sequence using the genetic code.
  • the present invention relates to a multi-chain chimeric antigen receptor (CAR) particularly adapted to immune cells used in immunotherapy.
  • CAR multi-chain chimeric antigen receptor
  • the present invention provides a CLL1 specific multi-chain Chimeric Antigen Receptor (mc CAR) comprising at least:
  • the signal transducing domain(s) of the multi-chain Chimeric Antigen Receptor is present on a polypeptide distinct from that carrying the extracellular ligand-binding domain(s).
  • polypeptide distinct from that carrying the extracellular ligand-binding domain(s) it is meant that there is no peptidic binding between the two polypeptides.
  • the present invention provides an anti-CLL1 multi-chain chimeric antigen receptor (CAR) (CLL1 mcCAR anti-CLL1 mc) having a structure as illustrated in FIG. 2 , FIG. 3 , or FIG. 4 , and according to claim 1 , 2 and/or 3 said structure comprising an extra cellular ligand binding-domain VH and V L from a monoclonal anti-CLL1 antibody or CDR sequences.
  • CAR multi-chain chimeric antigen receptor
  • said second polypeptide comprising at least one signal-transducing domain containing polypeptide is a transmembrane polypeptide.
  • said least one transmembrane polypeptide comprises a part of Fc receptor. More preferably, said part of Fc receptor is selected from the group consisting of: (a) Fc ⁇ RI alpha chain, (b) Fc ⁇ RI beta chain and (c) Fc ⁇ RI gamma chain.
  • said first transmembrane polypeptide from the alpha chain of high-affinity IgE receptor (Fc ⁇ RI) which is fused to an extracellular CLL1 ligand binding domain.
  • the present invention provides a CLL1 specific multi-chain Chimeric Antigen Receptor (mc CAR) as above further comprising:
  • the present invention provides a CLL1 specific multi-chain Chimeric Antigen Receptor (mc CAR) according as above, further comprising:
  • the present invention preferably provides a CLL1 specific multi-chain Chimeric Antigen Receptor (mc CAR) comprising:
  • said anti-CLL1 CARs are constructed with these sequences and correspond to the constructions illustrated in FIG. 4 .
  • said multi-chain CAR can comprise a part of Fc ⁇ RI alpha chain and a part of Fc ⁇ RI beta chain or variant thereof such that said Fc ⁇ RI chains spontaneously dimerize together to form a dimeric Chimeric Antigen Receptor.
  • the multi-chain Chimeric Antigen can comprise a part of Fc ⁇ RI alpha chain and a part of a Fc ⁇ RI gamma chain or variant thereof such that said Fc ⁇ RI chains spontaneously trimerize together to form a trimeric Chimeric Antigen Receptor
  • the multi-chain Chimeric Antigen Receptor can comprise a part of Fc ⁇ RI alpha chain, a part of Fc ⁇ RI beta chain and a part of Fc ⁇ RI gamma chain or variants thereof such that said Fc ⁇ RI chains spontaneously tetramerize together to form a tetrameric Chimeric Antigen Receptor.
  • the multi-chain CARs of the present invention comprises a polypeptide comprising amino acid sequences as set forth in Table 6.
  • the multi-chain CAR comprise a polypeptide with amino acid sequence that has at least 70%, preferably at least 80%, more preferably at least 90%, 95% 97% or 99% sequence identity with such amino acid sequences or with the polynucleotide sequence encoding one two or three of the polypeptides constitutive of the multi-chain polypeptide structure.
  • the present invention provides a polypeptide encoding a CLL1 specific multi-chain Chimeric Antigen Receptor as above, comprising a polypeptide sequence displaying at least 80% identity to the full amino acid sequence of anti-CLL1 SC02-357, SC02-378, SC02-161, M26, M31, G4, M22, M29, M2, M5, G12, 21.26 and 1075.7 as referred to in Table 6.
  • transmembrane polypeptides comprise the ability to be expressed at the surface of an immune cell, in particular lymphocyte cells or Natural killer (NK) cells, and to interact together for directing cellular response of immune cell against a predefined target cell.
  • the different transmembrane polypeptides of the multi-chain CAR of the present invention comprising an extracellular ligand-binding domain and/or a signal transducing domain interact together to take part in signal transduction following the binding with a target ligand and induce an immune response.
  • the transmembrane domain can be derived either from a natural or from a synthetic source.
  • the transmembrane domain can be derived from any membrane-bound or transmembrane protein.
  • the transmembrane polypeptide can be a subunit of the T cell receptor such as ⁇ , ⁇ , ⁇ or , polypeptide constituting CD3 complex, IL2 receptor p55 ( ⁇ chain), p75 ( ⁇ chain) or ⁇ chain, subunit chain of Fc receptors, in particular Fc ⁇ receptor III or CD proteins.
  • the transmembrane domain can be synthetic and can comprise predominantly hydrophobic residues such as leucine and valine.
  • the present invention provides a CLL1 specific multi-chain Chimeric Antigen Receptor according to any one of the above, wherein said CLL1 ligand binding domain fused to said alpha chain of Fc ⁇ RI is a single-chain variable fragment (scFv) comprising heavy (V H ) and light (V L ) chains conferring specificity to CLL1.
  • scFv single-chain variable fragment
  • said extracellular ligand-binding domain is a single chain antibody fragment (scFv) comprising the light (V L ) and the heavy (V H ) variable fragment of a target antigen specific monoclonal antibody specific to CLL1 joined by a flexible linker.
  • said scFv is an anti-CLL1 scFV, preferably provided in Table 5 as SEQ ID NO. 13 to 36.
  • Binding domain specific to CLL1 other than scFv can also be used for predefined targeting of lymphocytes, such as camelid or shark (VNAR) single-domain antibody fragments or receptor ligands like a vascular endothelial growth factor polypeptide, an integrin-binding peptide, heregulin or an IL-13 mutein, antibody binding domains, antibody hypervariable loops or CDRs as non-limiting examples.
  • VNAR camelid or shark
  • the present invention provides a CLL1 specific multi-chain Chimeric Antigen Receptor as above, wherein said V H comprises a polypeptide sequence having at least 80% to at least 90% identity with one of the polypeptide sequences selected from SEQ ID NO. 13, 14, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33 and 35.
  • the present invention provides a CLL1 specific multi-chain Chimeric Antigen Receptor as above wherein said V L comprises a polypeptide having at least 80% to at least 90% identity with one of the polypeptide sequences selected from SEQ ID NO. 16, 18, 20, 22, 24, 26, 28, 30, 32, 34 and 36.
  • the present invention provides a CLL1 specific multi-chain Chimeric Antigen Receptor (mcAR) wherein said extra cellular ligand binding-domain comprises a VH from a monoclonal anti-CLL1 antibody containing at least one of the following CDR sequences: GSISSSNWWS (SEQ ID NO 37), WIGEIYHSGSPDY (SEQ ID NO 38), KVSTGGFFDY (SEQ ID NO 39), and GSISSSNWWS (SEQ ID NO 40), WIGEIYHSGSPNY (SEQ ID NO 41), RSSSGGFFDY (SEQ ID NO 42), and GSISSSNWWS (SEQ ID NO 43), WIGEIYHSGSPNY (SEQ ID NO 44), RQTTAGSFDY (SEQ ID NO 45), and GYTFTSYFIH (SEQ ID NO 49), WIGFINPYNDGSKY (SEQ ID NO 50), TRDDGYYGYAMDY (SEQ ID NO 51), and GYTFTSYVMH (mcAR) wherein
  • the present invention provides a CLL1 specific multi-chain Chimeric Antigen Receptor as above, wherein said alpha chain of Fc ⁇ RI is fused to said extracellular ligand-binding domain by a hinge from CD8 ⁇ , IgG1 or FcRIII ⁇ proteins.
  • the present invention provides a CLL1 specific multi-chain Chimeric Antigen Receptor as above, wherein said hinge comprises a polypeptide sequence displaying at least 90% identity with SEQ ID NO. 2.
  • said hinge comprises a polypeptide of SEQ ID NO. 2.
  • said first transmembrane polypeptide further comprises a stalk region between said extracellular ligand-binding domain and said transmembrane domain.
  • stalk region generally means any oligo- or polypeptide that functions to link the transmembrane domain to the extracellular ligand-binding domain. In particular, stalk region are used to provide more flexibility and accessibility for the extracellular ligand-binding domain.
  • a stalk region may comprise up to 300 amino acids, preferably 10 to 100 amino acids and most preferably 25 to 50 amino acids.
  • Stalk region may be derived from all or part of naturally occurring molecules, such as from all or part of the extracellular region of CD8, CD4 or CD28, or from all or part of an antibody constant region.
  • the stalk region may be a synthetic sequence that corresponds to a naturally occurring stalk sequence, or may be an entirely synthetic stalk sequence.
  • said stalk region is a part of human CD8 alpha chain (e.g. NP_001139345.1) (SEQ ID NO: 2).
  • the present invention provides a CLL1 specific multi-chain Chimeric Antigen Receptor as above, wherein said alpha chain of Fc ⁇ RI is fused to said extracellular ligand-binding domain by a hinge from CD8 ⁇ , IgG1 or FcRIII ⁇ proteins.
  • the present invention provides a CLL1 specific multi-chain Chimeric Antigen Receptor as above, wherein said hinge comprises a polypeptide sequence displaying at least 90% identity to SEQ ID NO. 2.
  • the multi-chain CAR can comprise several extracellular ligand-binding domains, to simultaneously bind different elements in target thereby augmenting immune cell activation and function.
  • the extracellular ligand-binding domains can be placed in tandem on the same transmembrane polypeptide, and optionally can be separated by a linker.
  • said different extracellular ligand-binding domains can be placed on different transmembrane polypeptides composing the multi-chain CAR.
  • the present invention relates to a population of multi-chain CARs comprising each one different extracellular ligand binding domains.
  • the present invention relates to a method of engineering immune cells comprising providing an immune cell and expressing at the surface of said cell a population of multi-chain CAR each one comprising different extracellular ligand binding domains.
  • the present invention relates to a method of engineering an immune cell comprising providing an immune cell and introducing into said cell polynucleotides encoding polypeptides composing a population of multi-chain CAR each one comprising different extracellular ligand binding domains.
  • the method of engineering an immune cell comprises expressing at the surface of the cell at least a part of Fc ⁇ RI beta and/or gamma chain fused to a signal-transducing domain and several part of Fc ⁇ RI alpha chains fused to different extracellular ligand binding domains.
  • said method comprises introducing into said cell at least one polynucleotide which encodes a part of Fc ⁇ RI beta and/or gamma chain fused to a signal-transducing domain and several Fc ⁇ RI alpha chains fused to different extracellular ligand binding domains.
  • population of multi-chain CARs it is meant at least two, three, four, five, six or more multi-chain CARs each one comprising different extracellular ligand binding domains.
  • the different extracellular ligand binding domains according to the present invention can preferably simultaneously bind different elements in target thereby augmenting immune cell activation and function.
  • the signal transducing domain or intracellular signaling domain of the multi-chain CAR of the invention is responsible for intracellular signaling following the binding of extracellular ligand binding domain to the target resulting in the activation of the immune cell and immune response.
  • the signal transducing domain is responsible for the activation of at least one of the normal effector functions of the immune cell in which the multi-chain CAR is expressed.
  • the effector function of a T cell can be a cytolytic activity or helper activity including the secretion of cytokines.
  • the term “signal transducing domain” refers to the portion of a protein which transduces the effector signal function signal and directs the cell to perform a specialized function.
  • the present invention provides a CLL1 specific multi-chain Chimeric Antigen Receptor according to any one of the above embodiments, wherein said signal transducing domain fused to the gamma or beta chain of Fc ⁇ RI is from the TCR zeta chain, the Fc ⁇ R ⁇ chain, the Fc ⁇ RI ⁇ chain, or includes an immunoreceptor tyrosine-based activation motif (ITAM), preferably said signal transducing domain is from CD3zeta, more preferably comprising a polypeptide sequence of SEQ ID NO. 10.
  • ITAM immunoreceptor tyrosine-based activation motif
  • the present invention provides a CLL1 specific multi-chain Chimeric Antigen Receptor according to any one of the above embodiments, wherein said signal transducing domain fused to the gamma or beta chain of Fc ⁇ RI is from the TCR zeta chain, the Fc ⁇ R ⁇ chain, the Fc ⁇ RI ⁇ chain, or includes an immunoreceptor tyrosine-based activation motif (ITAM).
  • ITAM immunoreceptor tyrosine-based activation motif
  • the present invention provides a CLL1 specific multi-chain Chimeric Antigen Receptor according to any one of the above embodiments, wherein said signal transducing domain fused to the gamma or beta chain of Fc ⁇ RI is from the TCR zeta chain.
  • the present invention provides a CLL1 specific multi-chain Chimeric Antigen Receptor according to any one of the above embodiments, wherein said signal transducing domain fused to the gamma or beta chain of Fc ⁇ RI is from the Fc ⁇ R ⁇ chain.
  • the present invention provides a CLL1 specific multi-chain Chimeric Antigen Receptor according to any one of the above embodiments, wherein said signal transducing domain fused to the gamma or beta chain of Fc ⁇ RI is from the Fc ⁇ RI ⁇ chain.
  • the present invention provides a CLL1 specific multi-chain Chimeric Antigen Receptor according to any one of the above embodiments, wherein said signal transducing domain fused to the gamma or beta chain of Fc ⁇ RI comprises an immunoreceptor tyrosine-based activation motif (ITAM).
  • ITAM immunoreceptor tyrosine-based activation motif
  • the present invention provides a CLL1 specific multi-chain Chimeric Antigen Receptor as above, wherein said signal transducing domain is from CD3zeta, preferably the present invention provides a CLL1 specific multi-chain Chimeric Antigen Receptor as above, wherein said signal transducing domain comprises a polypeptide sequence displaying at least 90% identity to SEQ ID NO. 10. In one embodiment, said signal transducing domain comprises a polypeptide sequence of SEQ ID NO. 10.
  • Preferred examples of signal transducing domain for use in multi-chain CAR can be the cytoplasmic sequences of the Fc receptor or T cell receptor and co-receptors that act in concert to initiate signal transduction following antigen receptor engagement, as well as any derivate or variant of these sequences and any synthetic sequence that as the same functional capability.
  • Signal transduction domain comprises two distinct classes of cytoplasmic signaling sequence, those that initiate antigen-dependent primary activation, and those that act in an antigen-independent manner to provide a secondary or co-stimulatory signal.
  • Primary cytoplasmic signaling sequence can comprise signaling motifs which are known as immunoreceptor tyrosine-based activation motifs of ITAMs.
  • ITAMs are well defined signaling motifs found in the intracytoplasmic tail of a variety of receptors that serve as binding sites for syk/zap70 class tyrosine kinases.
  • ITAM used in the invention can include as non limiting examples those derived from TCRzeta, FcRgamma, FcRbeta, FcRepsilon, CD3gamma, CD3delta, CD3epsilon, CD5, CD22, CD79a, CD79b and CD66d.
  • the signaling transducing domain of the multi-chain CAR can comprise the CD3zeta signaling domain, or the intracytoplasmic domain of the Fc ⁇ RI beta or gamma chains.
  • the present invention provides a CLL1 specific multi-chain Chimeric Antigen Receptor according to any one of the above, wherein said signal transducing domain fused to the gamma or beta chain of Fc ⁇ RI is from the TCR zeta chain, the Fc ⁇ R ⁇ chain, the Fc ⁇ RI ⁇ chain, or includes an immunoreceptor tyrosine-based activation motif (ITAM).
  • ITAM immunoreceptor tyrosine-based activation motif
  • the present invention provides a CLL1 specific multi-chain Chimeric Antigen Receptor as above, wherein said signal transducing domain is from CD3zeta.
  • the present invention provides a CLL1 specific multi-chain Chimeric Antigen Receptor as above, wherein said signal transducing domain comprises a polypeptide sequence displaying at least 90% identity to SEQ ID NO. 10.
  • said signal transducing domain is a TNFR-associated Factor 2 (TRAF2) binding motifs, intracytoplasmic tail of costimulatory TNFR member family.
  • Cytoplasmic tail of costimulatory TNFR family member contains TRAF2 binding motifs consisting of the major conserved motif (P/S/A)X(Q/E)E) or the minor motif (PXQXXD), wherein X is any amino acid.
  • TRAF proteins are recruited to the intracellular tails of many TN FRs in response to receptor trimerization.
  • the signal transduction domain of the multi-chain CAR of the present invention comprises a part of co-stimulatory signal molecule selected from the group consisting of 4-1BB (GenBank: AAA53133.) and CD28 (NP_006130.1).
  • the signal transduction domain of the multi-chain CAR of the present invention comprises a co-stimulatory signal molecule.
  • a co-stimulatory molecule is a cell surface molecule other than an antigen receptor or their ligands that is required for an efficient immune response.
  • a “co-stimulatory molecule” refers to the cognate binding partner on a T-cell that specifically binds with a co-stimulatory ligand, thereby mediating a co-stimulatory response by the cell, such as, but not limited to proliferation.
  • Co-stimulatory molecules include, but are not limited to an MHC class I molecule, BTLA and Toll ligand receptor.
  • the present invention is related to a CLL1 specific multi-chain Chimeric Antigen Receptor as any of the above embodiment, wherein said second or third polypeptide comprises a co-stimulatory domain from the cytoplasmic domain of a costimulatory molecule selected from CD7, B7-1 (CD80), B7-2 (CD86), PD-L1, PD-L2, 4-1BBL, OX40L, inducible costimulatory ligand (ICOS-L), intercellular adhesion molecule (ICAM, CD30L, CD40, CD70, CD83, HLA-G, MICA, M1CB, HVEM, lymphotoxin beta receptor, 3/TR6, ILT3, ILT4, an agonist or antibody that binds Toll ligand receptor and a ligand that specifically binds with B7-H3.
  • a costimulatory molecule selected from CD7, B7-1 (CD80), B7-2 (CD86), PD-L1, PD-L2, 4-1BBL, O
  • a co-stimulatory ligand also encompasses, inter alia, an antibody that specifically binds with a co-stimulatory molecule present on a T cell, such as but not limited to, CD27, CD28, 4-IBB, OX40, CD30, CD40, PD-1, ICOS, lymphocyte function-associated antigen-1 (LFA-1), CD2, CD7, LTGHT, NKG2C, B7-H3, a ligand that specifically binds with CD83.
  • an antibody that specifically binds with a co-stimulatory molecule present on a T cell such as but not limited to, CD27, CD28, 4-IBB, OX40, CD30, CD40, PD-1, ICOS, lymphocyte function-associated antigen-1 (LFA-1), CD2, CD7, LTGHT, NKG2C, B7-H3, a ligand that specifically binds with CD83.
  • the present invention is related to a CLL1 specific multi-chain Chimeric Antigen Receptor as any of the above embodiment, wherein said second or third polypeptide comprises a co-stimulatory domain from the cytoplasmic domain of a costimulatory molecule from CD28.
  • the present invention is related to a CLL1 specific multi-chain Chimeric Antigen Receptor as any of the above embodiment, wherein said second or third polypeptide comprises a co-stimulatory domain from the cytoplasmic domain of a costimulatory molecule from 4-1BB.
  • the present invention provides a CLL1 specific multi-chain Chimeric Antigen Receptor as above, wherein said co-stimulatory domain is from 4-1BB and comprises a polypeptide sequence displaying at least 90% identity with SEQ ID NO. 6. In one embodiment, said co-stimulatory domain is from 4-1BB and comprises a polypeptide sequence of SEQ ID NO. 6.
  • the present invention provides a CLL1 specific multi-chain Chimeric Antigen Receptor as above, wherein said co-stimulatory domain is from CD28 and comprises a polypeptide sequence displaying at least 90% identity to SEQ ID NO. 7.
  • the present invention provides a CLL1 specific multi-chain Chimeric Antigen Receptor (mc CAR) comprising:
  • said extra cellular ligand binding-domain comprising a VH from a monoclonal anti-CLL1 antibody containing at least one of the following CDR sequences: GSISSSNWWS (SEQ ID NO 37), WIGEIYHSGSPDY (SEQ ID NO 38), KVSTGGFFDY (SEQ ID NO 39), and GSISSSNWWS (SEQ ID NO 40), WIGEIYHSGSPNY (SEQ ID NO 41), RSSSGGFFDY (SEQ ID NO 42), and GSISSSNWWS (SEQ ID NO 43), WIGEIYHSGSPNY (SEQ ID NO 44), RQTTAGSFDY (SEQ ID NO 45), and GYTFTSYFIH (SEQ ID NO 49), WIGFINPYNDGSKY (SEQ ID NO 50), TRDDGYYGYAMDY (SEQ ID NO 51), and GYTFTSYVMH (SEQ ID NO 55), WIGYINPYNDGTKY (SEQ ID NO 56), ARPIYFDNDY (SEQ
  • the present invention provides a CLL1 specific multi-chain Chimeric Antigen Receptor (CLL1 mc CAR) comprising:
  • said extra cellular ligand binding-domain comprising a VH from a monoclonal anti-CLL1 antibody containing at least one of the following CDR sequences: GSISSSNWWS (SEQ ID NO 37), WIGEIYHSGSPDY (SEQ ID NO 38), KVSTGGFFDY (SEQ ID NO 39), and GSISSSNWWS (SEQ ID NO 40), WIGEIYHSGSPNY (SEQ ID NO 41), RSSSGGFFDY (SEQ ID NO 42), and GSISSSNWWS (SEQ ID NO 43), WIGEIYHSGSPNY (SEQ ID NO 44), RQTTAGSFDY (SEQ ID NO 45), and GYTFTSYFIH (SEQ ID NO 49), WIGFINPYNDGSKY (SEQ ID NO 50), TRDDGYYGYAMDY (SEQ ID NO 51), and GYTFTSYVMH (SEQ ID NO 55), WIGYINPYNDGTKY (SEQ ID NO 56), ARPIYFDNDY (SEQ
  • CLL1 specific multi-chain Chimeric Antigen Receptors (CLL1 mc CARs) as any of the above embodiments, comprising the peptide sequences according to Table 6 as follows, and wherein the polypeptide sequences has at least 80% identity with the following peptide sequences:
  • the present invention provides CLL1 specific multi-chain Chimeric Antigen Receptors (CLL1 mc CARs), wherein the polypeptide sequences has at least 90% identity with the preceeding peptide sequences.
  • CLL1 mc CARs CLL1 specific multi-chain Chimeric Antigen Receptors
  • the present invention provides CLL1 specific multi-chain Chimeric Antigen Receptors (CLL1 mc CARs), wherein the polypeptide sequences has at least 95% identity with the preceeding peptide sequences.
  • CLL1 mc CARs CLL1 specific multi-chain Chimeric Antigen Receptors
  • the present invention provides CLL1 specific multi-chain Chimeric Antigen Receptors (CLL1 mc CARs), wherein the polypeptide sequences has at least 99% identity with the preceeding peptide sequences.
  • CLL1 mc CARs CLL1 specific multi-chain Chimeric Antigen Receptors
  • said CLL1 specific multi-chain Chimeric Antigen Receptor retains, continuously or temporarily, their properties of binding to CLL1 expressing cells and/or to affect the survival of said CLL1 expressing cancer cells.
  • An anti-CLL1 mcCAR of the invention may include at least the insertion of at least one epitope in one extracellular domain of said CAR, preferably the extracellular domain binding CLL1 as illustrated in Figure, This is intended to deplete the immune cells endowed with the CAR in the event these later would cause adverse effects in vivo such as a cytokine storm.
  • insertion of epitope or “epitope-tagging” may be useful to sort in vitro engineered immune cells for sake of purification. For instance, this can be obtained, for instance, by inserting at least one, and preferably two copies of a CD20 mimotope, preferably of sequence CPYSNPSLCS (SEQ ID NO. 110), into the CAR polypeptide sequence. Different positions of the at least one CD20 mimotope are schematized in FIG. 5 .
  • the order of the scFvs from the N terminal end to the C terminal end is presented as follows: the VH chain and then the VL chain.
  • this order is inversed: VL chain and then the VL chain.
  • said at least one epitope iss inserted between the VH and VL chains of the anti-CLL1.1 CAR, optionally linked to said VH and VL chains by one linker.
  • said at least one epitope is inserted at the N terminal end of the CAR—so upfront of the scFvs—, optionally linked to the VH chain and to the N terminal end of the CAR by one linker.
  • said at least one epitope is inserted between the scFvs and the hinge of the CAR, optionally linked to the VL chain and to the hinge by one linker.
  • At least two epitopes are inserted in the extracellular domain of the anti-CLL1 CAR.
  • two epitopes are inserted in such a way that the VH is located between them, all these components being optionally interspaced by at least one linker.
  • two epitopes are inserted in such a way that the VLs located between them, all these components being optionally interspaced by at least one linker.
  • two epitopes are inserted in such a way that the VH and VL chains are located between them, all these components being optionally interspaced by at least one linker.
  • three epitopes are inserted in such a way that the VH and VL chains are located between them, all these components being optionally interspaced by at least one linker.
  • Said linker may be the GS linker of SEQ ID NO. 10 or the like.
  • Said at least one epitope may be any antigenic peptide which is enough immunogenic to be bound by a specific antibody recognizing such peptide.
  • the epitope introduced within the chimeric scFv is the CD20 antigen (SEQ ID NO. 110) and the infused mAb which is being used to target it—for sorting and/or depletion purpose(s) is rixutimab.
  • the epitope is a mimotope.
  • the mimotope As a macromolecule, often a peptide, which mimics the structure of an epitope, the mimotope has the advantage to be smaller than conventional epitope, and therefore may be beneficial for a non-conformational sequence and easier to reproduce in a long polypeptide such a CAR.
  • Mimotopes are known for several pharmaceutically-approved mAb such as two 10 amino acid peptides for cetuximab (Riemer et al., 2005), or a 24 aa for palivizumab (Arbiza et al, 1992). As these mimotopes can be identified by phage display, it is possible to try several of them in order to obtain a sequence which does not perturb the scFv for the same mAb. Furthermore, their use can enhance a complement-dependentcytotoxicity (CDC).
  • CDC complement-dependentcytotoxicity
  • CD20 mimotopes can be linked to each other and also to the V L by a linker. They can also be inserted between the anti-CLL1 scFv and the hinge (such as CD8alpha), by using an optional linker.
  • the CD20 mimotopes can be bound by anti-CD20 antibodies, such as Rituximab (McLaughlin P, et al. 1998).
  • the anti-CLL1 CAR of the present invention may thus comprise VH and a VL chains which are able to bind to CLL1 cell surface antigen, optionally humanized, a linker L, a suicide domain, a hinge or part of it, a transmembrane domain, a co-stimulatory domain and a stimulatory domain.
  • the epitope introduced within the chimeric scFv is the CD20 mimotope of SEQ ID NO. 109 and the corresponding antibody used for depleting the CAR positive cells into the patient is rituximab.
  • linker refers to a peptide linker that consists of amino acids such as glycine and/or serine residues, used alone or in combination, to link variable heavy and variable light chain regions together.
  • the flexible polypeptide linker is a Glycine/Serine linker and comprises the amino acid sequence (Gly-Gly-Gly-Ser) n or (Gly-Gly-Gly-Gly-Ser) n , where n is a positive integer equal to or greater than 1.
  • the flexible polypeptide linkers include, but are not limited to, (Gly 4 Ser) 4 or (Gly 4 Ser) 3 .
  • the present invention relates to a CLL1 specific multi-chain Chimeric Antigen Receptor (mc CAR) comprising at least:
  • the signal transducing domain(s) of the multi-chain Chimeric Antigen Receptor is present on a polypeptide distinct from that carrying the extracellular ligand-binding domain(s).
  • said anti-CLL1 mcCAR contains said signal-transducing domain containing polypeptide is a transmembrane polypeptide, and at least one transmembrane polypeptide comprises a part of Fc receptor.
  • the present invention relates to a CLL1 specific multi-chain Chimeric Antigen Receptor (mc CAR) comprising at least: (a) Fc ⁇ RI alpha chain, (b) Fc ⁇ RI beta chain and (c) Fc ⁇ RI gamma chain,
  • mc CAR CLL1 specific multi-chain Chimeric Antigen Receptor
  • transmembrane polypeptide from the alpha chain of high-affinity IgE receptor (Fc ⁇ RI) is fused to an extracellular CLL1 ligand binding domain, and,
  • said extracellular CLL1 ligand binding domain contains at least one epitope.
  • the present invention relates to a CLL1 specific multi-chain Chimeric Antigen Receptor (mc CAR) comprising at least: (a) Fc ⁇ RI alpha chain, (b) Fc ⁇ RI beta chain and (c) Fc ⁇ RI gamma chain,
  • mc CAR CLL1 specific multi-chain Chimeric Antigen Receptor
  • transmembrane polypeptide from the alpha chain of high-affinity IgE receptor (Fc ⁇ RI) is fused to an extracellular CLL1 ligand binding domain
  • transmembrane polypeptide from the gamma or beta chain of Fc ⁇ RI fused to a signal transducing domain, preferably CD3 ITAM;
  • transmembrane polypeptide from the gamma or beta chain of Fc ⁇ RI comprising a co-stimulatory domain, preferably 4-1 BB costimulatory domain,
  • said CLL1 ligand binding domain fused to said alpha chain of Fc ⁇ RI is a single-chain variable fragment (scFv) comprising heavy (V H ) and light (V L ) chains conferring specificity to CLL1. and,
  • said extracellular CLL1 ligand binding domain contains at least one epitope.
  • said previous CLL1 specific multi-chain Chimeric Antigen Receptor comprises said Fc ⁇ RI alpha chain in which one epitope is inserted between the 2 scFvs in its extracellular domain, said epitope being optionally bordered by one linker.
  • the present invention relates to a CLL1 specific multi-chain Chimeric Antigen Receptor (mc CAR) comprising at least: (a) Fc ⁇ RI alpha chain, (b) Fc ⁇ RI beta chain and (c) Fc ⁇ RI gamma chain,
  • mc CAR CLL1 specific multi-chain Chimeric Antigen Receptor
  • transmembrane polypeptide from the alpha chain of high-affinity IgE receptor (Fc ⁇ RI) is fused to an extracellular CLL1 ligand binding domain
  • transmembrane polypeptide from the gamma or beta chain of Fc ⁇ RI comprising a co-stimulatory domain
  • said CLL1 ligand binding domain fused to said alpha chain of Fc ⁇ RI is a single-chain variable fragment (scFv) comprising heavy (V H ) and light (V L ) chains conferring specificity to CLL1. and,
  • said scFvs being linked to the transmembrane (TM) domain of said Fc ⁇ RI alpha chain by a hinge, preferably IgG1, CD8alpha or Fc ⁇ RIII ⁇ hinge, and
  • said extracellular CLL1 ligand binding domain contains two epitopes.
  • said previous CLL1 specific multi-chain Chimeric Antigen Receptor comprises said Fc ⁇ RI alpha chain in which two epitopes are inserted in the extracellular domain of the CAR, one being inserted between the N-terminal end of the CAR and the VH chain, said epitope being optionally bordered by 2 linkers; the second epitope is inserted between the 2 scFvs, said 2 nd epitope being optionally bordered by 2 linkers.
  • said CLL1 specific multi-chain Chimeric Antigen Receptor comprises said Fc ⁇ RI alpha chain in which two epitopes are inserted in the extracellular domain of the CAR, one being inserted between the N-terminal end of the CAR and the VH chain, said epitope being optionally bordered by 2 linkers; the second epitope being inserted between the VL chain and the hinge, said 2 nd epitope being optionally bordered by 2 linkers.
  • the present invention relates to a CLL1 specific multi-chain Chimeric Antigen Receptor (mc CAR) comprising at least: (a) Fc ⁇ RI alpha chain, (b) Fc ⁇ RI beta chain and (c) Fc ⁇ RI gamma chain,
  • mc CAR CLL1 specific multi-chain Chimeric Antigen Receptor
  • transmembrane polypeptide from the alpha chain of high-affinity IgE receptor (Fc ⁇ RI) is fused to an extracellular CLL1 ligand binding domain
  • transmembrane polypeptide from the gamma or beta chain of Fc ⁇ RI comprising a co-stimulatory domain
  • said CLL1 ligand binding domain fused to said alpha chain of Fc ⁇ RI is a single-chain variable fragment (scFv) comprising heavy (V H ) and light (V L ) chains conferring specificity to CLL1. and,
  • said extracellular CLL1 ligand binding domain contains three epitopes.
  • said previous CLL1 specific multi-chain Chimeric Antigen Receptor comprises said Fc ⁇ RI alpha chain in which three epitopes are inserted in the extracellular domain of the CAR, the first one being inserted between the N-terminal end of the CAR and the VH chain, said epitope being optionally bordered by 2 linkers; the second epitope being inserted between the 2 scFvs, said epitope being optionally bordered by 2 linkers, and the third epitope being inserted between the VL chain et the hinge.
  • Said at least one epitope may be chosen preferably among those for which a corresponding monoclonal antibody exists and is approved by the National Health Organization (such as FDA). For instance, said epitope may be chosen among SEQ ID NO. 109 to SEQ ID NO. 116. Another epitope which may be selected is a CD34 epitope such as those of SEQ ID NO. 117 or 118.
  • said above anti-CLL1 mcCARs comprising at least an extra cellular ligand binding-domain including VH and VL domains of monoclonal anti-CLL1 antibodies.
  • the present invention relates also to a method for depleting in a patient engineered lymphoid immune cell expressing a CLL1 specific mcCAR and at least one epitope such as disclosed in this application, by administering in said patient an antibody—preferably monoclonal—specific to said epitope in case of need, i.e. to avoid adverse effects such as cytokine storm.
  • the monoclonal antibody rituximab specific to the at least one CD20 antigen inserted in the extracellular domain of the CLL1 specific mcCAR is administered to the patient in order to deplete said engineered immune cells.
  • epitopes can be included into the extracellular domain of the CAR according to the present invention as follows:
  • the extracellular binding domain comprises at least 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 mAb-specific epitopes.
  • the extracellular binding domain comprises at least 1, 2 or 3 mAb-specific epitopes.
  • the extracellular binding domain comprises several mAb-specific epitopes
  • all the mAb-specific epitopes are identical.
  • the extracellular binding domain when the extracellular binding domain comprises several mAb-specific epitopes, the mAb-specific epitopes are not identical.
  • the extracellular binding domain can comprises three mAb-specific epitopes, two of them being identical and the third one being different.
  • the extracellular binding domain comprises a VH, a VL, one or more mAb-specific epitopes, preferably 1, 2 or 3, more preferably 2 or 3 mAb-specific epitopes.
  • the extracellular binding domain comprises the following sequence (Nterm is located on the left hand side):
  • V 1 and V 2 are V H and V L of an ScFv (i.e, V 1 is V L and V 2 is V H or V 1 is V H and V 2 is V L );
  • L 1 is any linker suitable to link the VH chain to the VL chain in an ScFv;
  • L is a linker, preferably comprising glycine and serine residues, and each occurrence of L in the extracellular binding domain can be identical or different to other occurrence of L in the same extracellular binding domain, and,
  • x is 0 or 1 and each occurrence of x is independently from the others;
  • epitope 1 epitope 2 and epitope 3 are mAb-specific epitopes and can be identical or different.
  • the extracellular binding domain comprises the following sequence (Nterm is located on the left hand side):
  • L 1 is a linker comprising Glycine and/or Serine. In some embodiment, L 1 is a linker comprising the amino acid sequence (Gly-Gly-Gly-Ser) n or (Gly-Gly-Gly-Gly-Ser) n , where n is 1, 2, 3, 4 or 5. In some embodiments L 1 is (Gly 4 Ser) 4 or (Gly 4 Ser) 3 .
  • L is a flexible linker, preferably comprising Glycine and/or Serine.
  • L has an amino acid sequence selected from SGG, GGS, SGGS, SSGGS, GGGG, SGGGG, GGGGS, SGGGGS, GGGGGS, SGGGGGS, SGGGGG, GSGGGGS, GGGGGGGS, SGGGGGGG, SGGGGGGGS, or SGGGGSGGGGS preferably SGG, SGGS, SSGGS, GGGG, SGGGGS, SGGGGGS, SGGGGG, GSGGGGS or SGGGGSGGGGS.
  • all the Ls are identical.
  • the extracellular binding domain comprises several occurrences of L
  • the Ls are not all identical.
  • L is SGGGGS.
  • the extracellular binding domain comprises several occurrences of L and all the Ls are SGGGGS.
  • Epitope 1, Epitope 2 and Epitope 3 are identical or different and are selected from mAb-specific epitopes having an amino acid sequence of SEQ ID NO 109, SEQ ID NO 110, SEQ ID NO 111, SEQ ID NO 112, SEQ ID NO 113, SEQ ID NO 114, SEQ ID NO 115 or SEQ ID NO 116.
  • Epitope 1, Epitope 2 and Epitope 3 are identical or different and are selected from mAb-specific epitopes specifically recognized by ibritumomab, tiuxetan, muromonab-CD3, tositumomab, abciximab, basiliximab, brentuximab vedotin, cetuximab, infliximab, rituximab, alemtuzumab, bevacizumab, certolizumab pegol, daclizumab, eculizumab, efalizumab, gemtuzumab, natalizumab, omalizumab, palivizumab, ranibizumab, tocilizumab, trastuzumab, vedolizumab, adalimumab, belimumab, canakinumab, denosumab, golimumab, i
  • Epitope 1 is an mAb-specific epitope having an amino acid sequence of SEQ ID NO 109.
  • Epitope 2 is an mAb-specific epitope having an amino acid sequence of SEQ ID NO 109.
  • Epitope 3 is an mAb-specific epitope having an amino acid sequence of SEQ ID NO 109.
  • Epitope 4 is an mAb-specific epitope having an amino acid sequence of SEQ ID NO 109.
  • Epitope 2 is an mAb-specific epitope having an amino acid sequence of SEQ ID NO 109 and Epitope 3 is an mAb-specific epitope having an amino acid sequence of SEQ ID NO 117.
  • one of Epitope 1, Epitope 2, Epitope 3 and Epitope 4 is a CD34 epitope, preferably an epitope of SEQ ID NO 117 or SEQ ID NO 118.
  • one of Epitope1, Epitope 2, Epitope 3 and Epitope 4 is a CD34 epitope, preferably an epitope of SEQ ID NO 117 or SEQ ID NO. 118 and the other mAb specific epitopes are CD20 mimotopes, preferably mimotope of SEQ ID NO 109.
  • the immune cells expressing the CLL1 specific CAR according to the present invention may comprise epitope(s) in their extracellular domain such as described above, so that they can be depleted in a patient in the event of adverse or too acute immune response (e.g. cytokine storm) by administering to said patient an antibody—preferably monoclonal—specific to said epitope (s).
  • adverse or too acute immune response e.g. cytokine storm
  • in vivo depletion is meant in the present invention the administration of a treatment to a mammalian organism aiming to stop the proliferation of CAR-expressing immune cells by inhibition or elimination.
  • One aspect of the invention is related to a method for in vivo depleting an engineered immune cell expressing a CAR comprising an m-Ab specific epitope as previously described, comprising contacting said engineered immune cell or said CAR-expressing immune cell with at least one epitope-specific mAbs.
  • Another aspect of the invention relates to a method for in vivo depleting immune CAR-expressing immune cell which comprises the above chimeric scFv (formed by insertion of a mAb-specific epitope) by contacting said engineered immune cell with epitope-specific antibodies.
  • said immune cells are T-cells and/or the antibodies are monoclonal.
  • the in vivo depletion of immune engineered cell is performed on engineered immune cell which has been previously sorted using the in vitro method of the present invention. In this case, this will be the same infused mAb used.
  • the mAb-specific antigen is CD20 antigen and the epitope-specific mAb is rituximab.
  • the invention relates to a method for in vivo depleting an engineered immune cell expressing a CAR comprising an mAb-specific epitope (CAR-expressing immune cell) as previously described, in a patient comprising contacting said CAR-expressing immune cell with at least one epitope-specific mAbs.
  • CAR-expressing immune cell mAb-specific epitope
  • said mAb-specific epitope is a CD20 epitope or mimotope, preferably SEQ ID NO 35 and the epitope-specific mAbs is rituximab.
  • the step of contacting said engineered immune cell or said CAR-expressing immune cell with at least one epitope-specific mAb comprises infusing the patient with epitope-specific mAb, preferably rituximab.
  • the amount of viable CAR-expressing immune cells decreases, preferably by at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% or 90%.
  • the CDC assay is the assay disclosed in Example 3, Example 4 or Example 7.4.
  • said mAb-specific epitope is a CD20 epitope or mimotope, preferably SEQ ID NO 35 and the epitope-specific mAbs is rituximab.
  • the epitopes inserted into the extracellular domain of the CARs may be useful to the steps of sorting or purifying the immune cells expressing said CARs, as part of the method for producing them.
  • the present invention also relates to polynucleotides, vectors encoding the above described multi-chain CAR according to the invention.
  • the present invention provides polynucleotides, including DNA and RNA molecules that encode the transmembrane polypeptides disclosed herein that can be included in the multi-chain CAR.
  • the invention relates to a polynucleotide comprising a nucleic acid sequence encoding at least one transmembrane polypeptide composing the multi-chain CAR as described above. More particularly the invention relates to a polynucleotide comprising two or more nucleic acid sequences encoding transmembrane polypeptides composing the multi-chain CAR as described above.
  • the polynucleotide may consist in an expression cassette or expression vector (e.g. a plasmid for introduction into a bacterial host cell, or a viral vector such as a baculovirus vector for transfection of an insect host cell, or a plasmid or viral vector such as a lentivirus for transfection of a mammalian host cell).
  • an expression cassette or expression vector e.g. a plasmid for introduction into a bacterial host cell, or a viral vector such as a baculovirus vector for transfection of an insect host cell, or a plasmid or viral vector such as a lentivirus for transfection of a mammalian host cell.
  • the different nucleic acid sequences can be included in one polynucleotide or vector which comprises a nucleic acid sequence encoding ribosomal skip sequence such as a sequence encoding a 2A peptide.
  • 2A peptides which were identified in the Aphthovirus subgroup of picornaviruses, causes a ribosomal “skip” from one codon to the next without the formation of a peptide bond between the two amino acids encoded by the codons (see Donnelly et al., J. of General Virology 82: 1013-1025 (2001); Donnelly et al., J. of Gen.
  • RNA 13: 803-810 (2007) By “codon” is meant three nucleotides on an mRNA (or on the sense strand of a DNA molecule) that are translated by a ribosome into one amino acid residue.
  • two polypeptides can be synthesized from a single, contiguous open reading frame within an mRNA when the polypeptides are separated by a 2A oligopeptide sequence that is in frame.
  • ribosomal skip mechanisms are well known in the art and are known to be used by several vectors for the expression of several proteins encoded by a single messenger RNA.
  • 2A peptides have been used to express into the cell the different polypeptides of the multi-chain CAR.
  • a secretory signal sequence (also known as a leader sequence, prepro sequence or pre sequence) is provided in polynucleotide sequence or vector sequence.
  • the secretory signal sequence may be that of Fc ⁇ R, or may be derived from another secreted protein (e.g., t-PA) or synthesized de novo.
  • the secretory signal sequence is operably linked to the transmembrane nucleic acid sequence, i.e., the two sequences are joined in the correct reading frame and positioned to direct the newly synthesized polypeptide into the secretory pathway of the host cell.
  • Secretory signal sequences are commonly positioned 5′ to the nucleic acid sequence encoding the polypeptide of interest, although certain secretory signal sequences may be positioned elsewhere in the nucleic acid sequence of interest (see, e.g., Welch et al., U.S. Pat. No. 5,037,743; Holland et al., U.S. Pat. No. 5,143,830).
  • the signal peptide comprises the residues 1 to 25 of the Fc ⁇ RI alpha chain (NP_001992.1) and has the amino acid sequence SEQ ID NO: 5.
  • the nucleic acid sequences of the present invention are codon-optimized for expression in mammalian cells, preferably for expression in human cells. Codon-optimization refers to the exchange in a sequence of interest of codons that are generally rare in highly expressed genes of a given species by codons that are generally frequent in highly expressed genes of such species, such codons encoding the amino acids as the codons that are being exchanged.
  • the present invention provides a polynucleotide comprising a nucleic acid sequence encoding a CLL1 specific multi-chain Chimeric Antigen Receptor according to any one of the above embodiments.
  • the present invention provides a polynucleotide comprising a nucleic acid sequence encoding a CLL1 specific multi-chain Chimeric Antigen Receptor comprising the following peptide sequences:
  • the present invention provides a vector comprising a polynucleotide as above, preferably a vector encoding a CLL1 specific multi-chain Chimeric Antigen Receptor comprising the following peptide sequences:
  • the present invention also provides with a method of engineering an immune cell as above comprising the following steps of:
  • the present invention provides a method of engineering an immune cell as above comprising:
  • a method of engineering an immune cell endowing a CLL1 specific multi-chain Chimeric Antigen Receptor according to any one of the above embodiments is part of the present invention, said method of engineering an immune cell is comprising the following steps:
  • the present invention provides method of engineering an immune cell endowing a CLL1 specific multi-chain Chimeric Antigen Receptor according to any one of the above embodiments comprising:
  • said method of engineering an immune cell is comprising:
  • the method of engineering an immune cell is further comprising:
  • the present invention provides an isolated immune cell obtainable from the method according to any one of the above embodiments, preferably an isolated immune cell expressing a CLL1 multi-chain Chimeric Antigen Receptors comprising the following peptide sequences:
  • the present invention provides an isolated cell said isolated cell is selected from the group consisting of inflammatory T-lymphocytes, cytotoxic T-lymphocytes, regulatory T-lymphocytes or helper T-lymphocytes, said isolated cell further comprises at least one anti-CLL1 multi-chain (CAR) of the invention.
  • CAR anti-CLL1 multi-chain
  • said isolated cell provided in the present invention is an isolated immune T cell and said isolated immune T cell expresses at least one anti-CLL1 multi-chain (CAR) of the invention.
  • CAR anti-CLL1 multi-chain
  • said isolated immune cell is an isolated immune T cell and said isolated immune T cell expresses at least one anti-CLL1 multi-chain (CAR) of the invention.
  • CAR multi-chain
  • said isolated immune cell is further engineered and is an engineered primary isolated immune cell comprising at least one anti-CLL1 multi-chain (CAR) of the invention.
  • CAR multi-chain
  • said engineered primary isolated immune cell comprises at least one anti-CLL1 multi-chain (CAR) of the invention.
  • CAR anti-CLL1 multi-chain
  • said engineered primary isolated immune cell comprises at least one anti-CLL1 multi-chain (CAR) comprising at least one anti-CLL1 multi-chain (CAR) of the invention.
  • CAR anti-CLL1 multi-chain
  • the present invention provides a pharmaceutical composition as described above.
  • the present invention provides pharmaceutical composition comprising at least one pharmaceutically acceptable vehicle and at least one primary cell endowed with at least one anti-CLL1 multi-chain (CAR).
  • CAR anti-CLL1 multi-chain
  • said pharmaceutical composition comprises at least one pharmaceutically acceptable vehicle and at least one primary cell endowed with at least one anti-CLL1 multi-chain (CAR) of the invention.
  • CAR multi-chain
  • said pharmaceutical composition comprises at least one pharmaceutically acceptable vehicle and at least one anti-CLL1 multi-chain (CAR) of the invention.
  • CAR anti-CLL1 multi-chain
  • the invention relates to a method of preparing immune cells for immunotherapy comprising introducing into said immune cells the polypeptides composing said multi-chain CAR and expanding said cells.
  • the invention relates to a method of engineering an immune cell comprising providing a cell and expressing at the surface of said cell at least one multi-chain CAR as described above.
  • the method comprises transforming the cell with at least one polynucleotide encoding polypeptides composing at least one multi-chain CAR as described above, and expressing said polynucleotides into said cell.
  • the present invention relates to a method of preparing cells for immunotherapy comprising introducing into said cells the different polypeptides composing said multi-chain CAR and expanding said cells.
  • said polynucleotides are included in lentiviral vectors in view of being stably expressed in the cells.
  • the invention relates to a method of preparing primary immune cells for immunotherapy comprising introducing into said primary immune cells the polypeptides composing at least one anti-CLL1 multi-chain (CAR) of the invention.
  • CAR anti-CLL1 multi-chain
  • the present invention provides a method of preparing primary immune cells for immunotherapy comprising introducing into said immune cells a polynucleotide encoding at least one anti-CLL1 multi-chain (CAR) of the invention.
  • the different methods described above involve introducing multi-chain CAR, pTalpha or functional variants thereof, rare cutting endonuclease, TALE-nuclease, CAR optionally with DNA-end processing enzyme or exogenous nucleic acid into a cell.
  • said multi-chain CAR can be introduced as transgenes encoded by one or as different plasmidic vectors.
  • Different transgenes can be included in one vector which comprises a nucleic acid sequence encoding ribosomal skip sequence such as a sequence encoding a 2A peptide.
  • 2A peptides which were identified in the Aphthovirus subgroup of picornaviruses, causes a ribosomal “skip” from one codon to the next without the formation of a peptide bond between the two amino acids encoded by the codons (see Donnelly et al., J. of General Virology 82: 1013-1025 (2001); Donnelly et al., J. of Gen.
  • RNA 13: 803-810 (2007) By “codon” is meant three nucleotides on an mRNA (or on the sense strand of a DNA molecule) that are translated by a ribosome into one amino acid residue.
  • two polypeptides can be synthesized from a single, contiguous open reading frame within an mRNA when the polypeptides are separated by a 2A oligopeptide sequence that is in frame.
  • ribosomal skip mechanisms are well known in the art and are known to be used by several vectors for the expression of several proteins encoded by a single messenger RNA.
  • 2A peptides have been used to express into the cell the rare-cutting endonuclease and a DNA end-processing enzyme or the different polypeptides of the multi-chain CAR.
  • Said plasmid vector can also contain a selection marker which provides for identification and/or selection of cells which received said vector.
  • Polypeptides may be synthesized in situ in the cell as a result of the introduction of polynucleotides encoding said polypeptides into the cell. Alternatively, said polypeptides could be produced outside the cell and then introduced thereto.
  • Methods for introducing a polynucleotide construct into animal cells are known in the art and including as non-limiting examples stable transformation methods wherein the polynucleotide construct is integrated into the genome of the cell, transient transformation methods wherein the polynucleotide construct is not integrated into the genome of the cell and virus mediated methods.
  • Said polynucleotides may be introduced into a cell by for example, recombinant viral vectors (e.g.
  • retroviruses adenoviruses
  • liposome adenoviruses
  • transient transformation methods include for example microinjection, electroporation or particle bombardment.
  • Said polynucleotides may be included in vectors, more particularly plasmids or virus, in view of being expressed in cells.
  • polynucleotides encoding polypeptides according to the present invention can be mRNA which is introduced directly into the cells, for example by electroporation.
  • the inventors determined the optimal condition for mRNA electroporation in T-cell.
  • the inventor used the cytoPulse technology which allows, by the use of pulsed electric fields, to transiently permeabilize living cells for delivery of material into the cells.
  • the technology based on the use of PulseAgile (Cellectis property) electroporation waveforms grants the precise control of pulse duration, intensity as well as the interval between pulses (U.S. Pat. No. 6,010,613 and International PCT application WO2004083379). All these parameters can be modified in order to reach the best conditions for high transfection efficiency with minimal mortality.
  • the first high electric field pulses allow pore formation, while subsequent lower electric field pulses allow moving the polynucleotide into the cell.
  • the inventor describe the steps that led to achievement of >95% transfection efficiency of mRNA in T cells, and the use of the electroporation protocol to transiently express different kind of proteins in T cells.
  • the invention relates to a method of transforming T cell comprising contacting said T cell with RNA and applying to T cell an agile pulse sequence consisting of:
  • step (a) one electrical pulse with a voltage range from 2250 to 3000 V per centimeter, a pulse width of 0.1 ms and a pulse interval of 0.2 to 10 ms between the electrical pulses of step (a) and (b);
  • step (b) one electrical pulse with a voltage range from 2250 to 3000 V with a pulse width of 100 ms and a pulse interval of 100 ms between the electrical pulse of step (b) and the first electrical pulse of step (c);
  • the method of transforming T cell comprising contacting said T cell with RNA and applying to T cell an agile pulse sequence consisting of:
  • step (a) one electrical pulse with a voltage of 2250, 2300, 2350, 2400, 2450, 2500, 2550, 2400, 2450, 2500, 2600, 2700, 2800, 2900 or 3000V per centimeter, a pulse width of 0.1 ms and a pulse interval of 0.2, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 ms between the electrical pulses of step (a) and (b);
  • step (b) one electrical pulse with a voltage range from 2250, of 2250, 2300, 2350, 2400, 2450, 2500, 2550, 2400, 2450, 2500, 2600, 2700, 2800, 2900 or 3000V with a pulse width of 100 ms and a pulse interval of 100 ms between the electrical pulse of step (b) and the first electrical pulse of step (c); and
  • Electroporation medium can be any suitable medium known in the art.
  • the electroporation medium has conductivity in a range spanning 0.01 to 1.0 milliSiemens.
  • said RNA encodes a rare-cutting endonuclease, one monomer of the rare-cutting endonuclease such as Half-TALE-nuclease, a Chimeric Antigen Receptor, at least one component of the multi-chain chimeric antigen receptor, a pTalpha or functional variant thereof, an exogenous nucleic acid, one additional catalytic domain.
  • a rare-cutting endonuclease one monomer of the rare-cutting endonuclease such as Half-TALE-nuclease, a Chimeric Antigen Receptor, at least one component of the multi-chain chimeric antigen receptor, a pTalpha or functional variant thereof, an exogenous nucleic acid, one additional catalytic domain.
  • the present invention also relates to isolated cells or cell lines susceptible to be obtained by said method to engineer cells.
  • said isolated cell comprises at least one multi-chain CAR as described above.
  • said isolated cell comprises a population of multi-chain CARs each one comprising different extracellular ligand binding domains.
  • said isolated cell comprises exogenous polynucleotide sequences encoding polypeptides composing at least one multi-chain CAR.
  • an isolated immune cell preferably a T-cell obtained according to any one of the methods previously described.
  • Said immune cell refers to a cell of hematopoietic origin functionally involved in the initiation and/or execution of innate and/or adaptative immune response.
  • Said immune cell according to the present invention can be derived from a stem cell.
  • the stem cells can be adult stem cells, embryonic stem cells, more particularly non-human stem cells, cord blood stem cells, progenitor cells, bone marrow stem cells, induced pluripotent stem cells, totipotent stem cells or hematopoietic stem cells.
  • Representative human cells are CD34+ cells.
  • said isolated cell is an isolated stem CD34+ cell, said isolated stem CD34+ cell comprises at least one anti-CLL1 multi-chain (CAR) of the present invention.
  • CAR anti-CLL1 multi-chain
  • said isolated cell is an isolated stem CD34+ cell, said isolated stem CD34+ cell comprises at least one anti-CLL1 multi-chain (CAR) comprising comprises at least one anti-CLL1 multi-chain (CAR) of the present invention.
  • CAR anti-CLL1 multi-chain
  • Said isolated cell can also be a dendritic cell, killer dendritic cell, a mast cell, a NK-cell, a B-cell or a T-cell selected from the group consisting of inflammatory T-lymphocytes, cytotoxic T-lymphocytes, regulatory T-lymphocytes or helper T-lymphocytes.
  • said cell can be derived from the group consisting of CD4+ T-lymphocytes and CD8+ T-lymphocytes.
  • a source of cells can be obtained from a subject through a variety of non-limiting methods.
  • Cells can be obtained from a number of non-limiting sources, including peripheral blood mononuclear cells, bone marrow, lymph node tissue, cord blood, thymus tissue, tissue from a site of infection, ascites, pleural effusion, spleen tissue, and tumors.
  • any number of T cell lines available and known to those skilled in the art may be used.
  • said cell can be derived from a healthy donor, from a patient diagnosed with cancer or from a patient diagnosed with an infection.
  • said cell is part of a mixed population of cells which present different phenotypic characteristics.
  • a cell line obtained from a transformed T-cell according to the method previously described.
  • Modified cells resistant to an immunosuppressive treatment and susceptible to be obtained by the previous method are encompassed in the scope of the present invention.
  • such cells can be also genetically engineered to inactivate one or several genes selected, for instance, from the group consisting of CD52, GR, TCR alpha, TCR beta, HLA gene, immune check point genes such as PD1 and CTLA-4, or can express a pTalpha transgene.
  • TCR is rendered not functional in the cells according to the invention by inactivating TCR alpha gene and/or TCR beta gene(s).
  • the above strategies are used more particularly to avoid GvHD.
  • a particular aspect of the present invention is a method to obtain modified cells derived from an individual, wherein said cells can proliferate independently of the Major Histocompatibility Complex signaling pathway. Said method comprises the following steps:
  • the present invention provides primary engineered T cell comprising at least one anti-CLL1 multi-chain (CAR) of the present invention.
  • CAR multi-chain
  • the present invention provides primary engineered T cell comprising at least one anti-CLL1 multi-chain (CAR) of the present invention.
  • CAR multi-chain
  • Modified cells which can proliferate independently of the Major Histocompatibility Complex signaling pathway, susceptible to be obtained by this method are encompassed in the scope of the present invention.
  • Said modified cells can be used in a particular aspect of the invention for treating patients in need thereof against Host versus Graft (HvG) rejection and Graft versus Host Disease (GvHD); therefore in the scope of the present invention is a method of treating patients in need thereof against Host versus Graft (HvG) rejection and Graft versus Host Disease (GvHD) comprising treating said patient by administering to said patient an effective amount of modified cells comprising inactivated TCR alpha and/or TCR beta genes.
  • said method comprises:
  • T-cell preferably from a cell culture or from a blood sample
  • T cell (b) Transforming said T cell with nucleic acid encoding a rare-cutting endonuclease able to selectively inactivate by DNA cleavage, preferably by double-strand break at least one gene encoding a component of the T-cell receptor (TCR);
  • said rare-cutting endonuclease can be a meganuclease, a Zinc finger nuclease or a TALE-nuclease.
  • said rare-cutting endonuclease is a TALE-nuclease. Preferred methods and relevant TALE-nucleases have been described in WO2013176915.
  • the present invention provides primary engineered T cell comprising at least one anti-CLL1 multi-chain (CAR) of the present invention inducing from 50% to 100% less Host versus Graft (HvG) rejection than primary non engineered T cell.
  • CAR anti-CLL1 multi-chain
  • the present invention provides primary engineered T cell comprising at least one anti-CLL1 multi-chain (CAR) of the present invention inducing from 50% to 100% less Host versus Graft (HvG) rejection than primary non engineered T cell.
  • CAR anti-CLL1 multi-chain
  • the immune cells endowed with an anti CLL1 multi-chain CAR are engineered to be resistant to chemotherapy drugs, in particular to purine nucleotide analogues (PNAs), making them suitable for cancer treatments in order to combine adoptive immunotherapy and chemotherapy.
  • Purine nucleotide analogues enter chemotherapy compositions for many cancer treatments, especially leukemia. It is particularly used as a standard of care in AML.
  • the most widely used PNAs are clofarabine, fludarabine, cytarabine and decitabine (Dacogen), alone or in combination.
  • PNAs are metabolized by enzymes having deoxycytidine kinase (dCK) activity [EC 2.7.1.74] into mono, -di and tri-phosphate PNA.
  • dCK deoxycytidine kinase
  • Their tri-phosphate forms and particularly clorofarabine triphosphate compete with ATP for DNA synthesis, acts as pro-apotptotic agent and are potent inhibitors of ribonucleotide reductase (RNR), which is involved in trinucleotide production.
  • RNR ribonucleotide reductase
  • the present invention thus includes a method of producing ex-vivo immune cells, preferably T-cells, which are resistant to a purine analogue drug and that can target CLL1 positive malignant cells. Said method comprises one or several of the following steps of:
  • the present inventors have successfully created anti-CLL1 T-cells resistant to purine nucleotide analogues, more particularly clorofarabine and/or fludarabine, by mediating the inactivation of dcK gene expression into said cells particularly by using TAL-nucleases.
  • the present application thus provides with anti-CLL1 T-cells, which expression of deoxycytidine kinase has been repressed or inactivated for the treatment of leukemia.
  • the present invention provides primary engineered T cell comprising at least one anti-CLL1 multi-chain (CAR) of the present invention, in which expression of deoxycytidine kinase has been repressed or inactivated for the treatment of leukemia, preferably AML
  • the present invention provides primary engineered T cell comprising at least one anti-CLL1 multi-chain (CAR) of the present invention, in which expression of deoxycytidine kinase has been repressed or inactivated for the treatment of leukemia, preferably AML.
  • CAR anti-CLL1 multi-chain
  • the T cells can be activated and expanded generally using methods as described, for example, in U.S. Pat. Nos. 6,352,694; 6,534,055; 6,905,680; 6,692,964; 5,858,358; 6,887,466; 6,905,681; 7,144,575; 7,067,318; 7,172,869; 7,232,566; 7,175,843; 5,883,223; 6,905,874; 6,797,514; 6,867,041; and U.S. Patent Application Publication No. 20060121005.
  • T cells can be expanded in vitro or in vivo.
  • the T cells of the invention are expanded by contact with an agent that stimulates a CD3 TCR complex and a co-stimulatory molecule on the surface of the T cells to create an activation signal for the T-cell.
  • chemicals such as calcium ionophore A23187, phorbol 12-myristate 13-acetate (PMA), or mitogenic lectins like phytohaemagglutinin (PHA) can be used to create an activation signal for the T-cell.
  • PMA phorbol 12-myristate 13-acetate
  • PHA phytohaemagglutinin
  • T cell populations may be stimulated in vitro such as by contact with an anti-CD3 antibody, or antigen-binding fragment thereof, or an anti-CD2 antibody immobilized on a surface, or by contact with a protein kinase C activator (e.g., bryostatin) in conjunction with a calcium ionophore.
  • a protein kinase C activator e.g., bryostatin
  • a ligand that binds the accessory molecule is used for co-stimulation of an accessory molecule on the surface of the T cells.
  • a population of T cells can be contacted with an anti-CD3 antibody and an anti-CD28 antibody, under conditions appropriate for stimulating proliferation of the T cells.
  • an anti-CD3 antibody and an anti-CD28 antibody may be in solution or coupled to a surface.
  • the ratio of particles to cells may depend on particle size relative to the target cell.
  • the cells such as T cells, are combined with agent-coated beads, the beads and the cells are subsequently separated, and then the cells are cultured.
  • the agent-coated beads and cells are not separated but are cultured together.
  • Conditions appropriate for T cell culture include an appropriate media (e.g., Minimal Essential Media or RPMI Media 1640 or, X-vivo 5, (Lonza)) that may contain factors necessary for proliferation and viability, including serum (e.g., fetal bovine or human serum), interleukin-2 (IL-2), insulin, IFN-g, 1L-4, 1L-7, GM-CSF, -10, -2, 1L-15, TGFp, and TNF- or any other additives for the growth of cells known to the skilled artisan.
  • Other additives for the growth of cells include, but are not limited to, surfactant, plasmanate, and reducing agents such as N-acetyl-cysteine and 2-mercaptoethanol.
  • Media can include RPMI 1640, A1M-V, DMEM, MEM, a-MEM, F-12, X-Vivo 1, and X-Vivo 20, Optimizer, with added amino acids, sodium pyruvate, and vitamins, either serum-free or supplemented with an appropriate amount of serum (or plasma) or a defined set of hormones, and/or an amount of cytokine(s) sufficient for the growth and expansion of T cells.
  • Antibiotics e.g., penicillin and streptomycin, are included only in experimental cultures, not in cultures of cells that are to be infused into a subject.
  • the target cells are maintained under conditions necessary to support growth; for example, an appropriate temperature (e.g., 37° C.) and atmosphere (e.g., air plus 5% CO2). T cells that have been exposed to varied stimulation times may exhibit different characteristics
  • said cells can be expanded by co-culturing with tissue or cells. Said cells can also be expanded in vivo, for example in the subject's blood after administrating said cell into the subject.
  • the pharmaceutical composition of the invention for use as a medicament to prevent or treat AML comprises engineered primary immune cells, preferably primary immune T cells, comprising at least one anti-CLL1 multi-chain (CAR) of the invention, with at least one pharmaceutically acceptable vehicle.
  • engineered primary immune cells preferably primary immune T cells, comprising at least one anti-CLL1 multi-chain (CAR) of the invention, with at least one pharmaceutically acceptable vehicle.
  • CAR anti-CLL1 multi-chain
  • the present invention provides an isolated immune cell according to above embodiments for its use as a medicament, preferably an isolated immune T cell endowed with a CLL1 mc CAR of the invention for its use as a medicament.
  • the present application provides an isolated immune T cells endowed with at least one anti-CLL1 multi-chain (CAR) of the invention for its use as a medicament to prevent or treat refractory/relapse AML.
  • CAR anti-CLL1 multi-chain
  • the present invention provides an isolated inflammatory T-lymphocyte with at least one anti-CLL1 multi-chain (CAR) of the invention for its use as a medicament to prevent or treat AML.
  • CAR anti-CLL1 multi-chain
  • the present invention provides an isolated cytotoxic T-lymphocyte endowed with at least one anti-CLL1 multi-chain (CAR) of the invention for its use as a medicament to prevent or treat AML.
  • CAR anti-CLL1 multi-chain
  • the present invention provides an isolated regulatory T-lymphocyte endowed with at least one anti-CLL1 multi-chain (CAR) of the invention for its use as a medicament to prevent or treat AML.
  • CAR anti-CLL1 multi-chain
  • the present invention provides an isolated helper T-lymphocyte endowed with at least one anti-CLL1 multi-chain (CAR) of the invention for its use as a medicament to prevent or treat AML.
  • CAR anti-CLL1 multi-chain
  • the present invention provides an isolated immune NK cell endowed with at least one anti-CLL1 multi-chain (CAR) of the invention for its use as a medicament to prevent or treat AML
  • the present invention provides a pharmaceutical composition for use as a medicament for the prevention or treatment of a pathological condition such as cancer, in particular a cancer of hematopoietic cells, more particularly AML.
  • a pathological condition such as cancer, in particular a cancer of hematopoietic cells, more particularly AML.
  • the present invention provides a method for treating a patient in need thereof comprising:
  • said patients is suffering from a cancer selected from AML, more preferably refractory/relapse AML.
  • the present invention provides a method for treating a patient as above wherein said immune cells are recovered from donors.
  • the present invention provides a method for treating a patient as above wherein said immune cells are recovered from a patient, preferably from the patient itself, the patient to be treated by said method.
  • a patient or a subject means non-human primates or humans.
  • a donor means a healthy individual or an individual suffering from a disease.
  • hematologic malignancy refers to a cancer of the body's blood-bone marrow and/or lymphatic tissue.
  • hematological malignancies include, in particular leukemia, such as acute myeloid leukemia (AML).
  • AML acute myeloid leukemia
  • leukemia refers to malignant neoplasms of the blood-forming tissues, including, in particular, acute myelogenous leukemia (AML).
  • AML acute myelogenous leukemia
  • relapsed refers to a situation where a subject who has had a remission of cancer after therapy has a return of cancer cells.
  • T cells comprising an anti CLL1 multi-chain CAR of the invention are provided as a treatment in patients diagnosed with a pre-malignant or malignant cancer condition characterized by CLL1-expressing cells, especially by an overabundance of CLL1-expressing cells.
  • a pre-malignant or malignant cancer condition characterized by CLL1-expressing cells, especially by an overabundance of CLL1-expressing cells.
  • Such conditions are found in hematologic cancers, such as leukemia and in particular acute myelogenous leukemia (AML).
  • AML acute myelogenous leukemia
  • AML or AML subtypes that may be treated using the anti CLL1 multi-chain CAR-expressing cells of the present invention may be in particular, acute myeloblastic leukemia, minimally differentiated acute myeloblastic leukemia, acute myeloblastic leukemia without maturation, acute myeloblastic leukemia with granulocytic maturation, promyelocytic or acute promyelocytic leukemia (APL), acute myelomonocytic leukemia, myelomonocytic together with bone marrow eosinophilia, acute monoblastic leukemia (M5a) or acute monocytic leukemia (M5b), acute erythroid leukemias, including erythroleukemia (M6a) and very rare pure erythroid leukemia (M6b), acute megakaryoblastic leukemia, acute basophilic leukemia, acute panmyelosis with myelofibrosis, whether involving CLL1
  • Subtypes of AML also include, hairy cell leukemia, Philadelphia chromosome-positive acute lymphoblastic leukemia.
  • AML or AML subtypes that may be treated using the anti CLL1 multi-chain CAR-expressing cells of the present invention may be AML with specific genetic abnormalities. Classification is based on the ability of karyotype to predict response to induction therapy, relapse risk, survival.
  • AML that may be treated using the anti CLL1 multi-chain CAR-expressing cells of the present invention may be AML with a translocation between chromosomes 8 and 21, AML with a translocation or inversion in chromosome 16, AML with a translocation between chromosomes 9 and 11, APL (M3) with a translocation between chromosomes 15 and 17, AML with a translocation between chromosomes 6 and 9, AML with a translocation or inversion in chromosome 3, AML (megakaryoblastic) with a translocation between chromosomes 1 and 22.
  • the present invention is particularly useful for the treatment of AML associated with these particular cytogenetic markers.
  • the present invention also provides an anti CLL1 multi-chain CAR-expressing cells for the treatment of patients with specific cytogenetic subsets of AML, such as patients with t(15;17)(q22;q21) identified using all-trans retinoic acid (ATRA)16-19 and for the treatment of patients with t(8;21)(q22;q22) or inv(16)(p13q22)/t(16;16)(p13;q22) identified using repetitive doses of high-dose cytarabine.
  • ATRA all-trans retinoic acid
  • the present invention provides an anti CLL1 multi-chain CAR-expressing cells for the treatment of AML suffering patients with aberrations, such as -5/del(5q), -7, abnormalities of 3q, or a complex karyotype, who have been shown to have inferior complete remission rates and survival.
  • aberrations such as -5/del(5q), -7, abnormalities of 3q, or a complex karyotype, who have been shown to have inferior complete remission rates and survival.
  • isolated cell obtained by the different methods or cell line derived from said isolated cell as previously described can be used as a medicament.
  • said medicament can be used for treating cancer or infections in a patient diagnosed with a pathology linked to CLL1 positive cells.
  • said isolated cell according to the invention or cell line derived from said isolated cell can be used in the manufacture of a medicament for treatment of a cancer, especially AML.
  • the present invention relies on methods for treating patients in need thereof, said method comprising at least one of the following steps:
  • said T cells of the invention can undergo robust in vivo T cell expansion and can persist for an extended amount of time.
  • Said treatment can be ameliorating, curative or prophylactic. It may be either part of an autologous immunotherapy or part of an allogenic immunotherapy treatment.
  • autologous it is meant that cells, cell line or population of cells used for treating patients are originating from said patient or from a Human Leucocyte Antigen (HLA) compatible donor.
  • HLA Human Leucocyte Antigen
  • allogeneic is meant that the cells or population of cells used for treating patients are not originating from said patient but from a donor.
  • the invention is particularly suited for allogenic immunotherapy, insofar as it enables the transformation of T-cells, typically obtained from donors, into non-alloreactive cells. This may be done under standard protocols and reproduced as many times as needed.
  • the resulted modified T cells may be pooled and administrated to one or several patients, being made available as an “off the shelf” therapeutic product.
  • Cancers that can be used with the disclosed methods are described in the previous section. Said treatment can be used to treat patients diagnosed with cancer, viral infection, autoimmune disorders or Graft versus Host Disease (GvHD). Cancers that may be treated include tumors that are not vascularized, or not yet substantially vascularized, as well as vascularized tumors.
  • the cancers may comprise nonsolid tumors (such as hematological tumors, for example, leukemias and lymphomas) or may comprise solid tumors.
  • Types of cancers to be treated with the multi-chain CARs of the invention include, but are not limited to, carcinoma, blastoma, and sarcoma, and certain leukemia or lymphoid malignancies, benign and malignant tumors, and malignancies e.g., sarcomas, carcinomas, and melanomas.
  • carcinoma a malignant neoplasm
  • blastoma a malignant na
  • sarcoma e.g., sarcomas, carcinomas, and melanomas.
  • malignancies e.g., sarcomas, carcinomas, and melanomas.
  • adult tumors/cancers and pediatric tumors/cancers are also included.
  • said treatment can be administrated into patients undergoing an immunosuppressive treatment.
  • the present invention preferably relies on cells or population of cells, which have been made resistant to at least one immunosuppressive agent due to the inactivation of a gene encoding a receptor for such immunosuppressive agent.
  • the immunosuppressive treatment should help the selection and expansion of the T-cells according to the invention within the patient.
  • the administration of the cells or population of cells according to the present invention may be carried out in any convenient manner, including by aerosol inhalation, injection, ingestion, transfusion, implantation or transplantation.
  • compositions described herein may be administered to a patient subcutaneously, intradermally, intratumorally, intranodally, intramedullary, intramuscularly, by intravenous or intralymphatic injection, or intraperitoneally.
  • the cell compositions of the present invention are preferably administered by intravenous injection.
  • said effective amount of cells or composition comprising those cells are administrated parenterally.
  • Said administration can be an intravenous administration.
  • Said administration can be directly done by injection within a tumor.
  • the administration of the cells or population of cells can consist of the administration of 10 4 -10 9 cells per kg body weight, preferably 10 5 to 10 6 cells/kg body weight including all integer values of cell numbers within those ranges.
  • the cells or population of cells can be administrated in one or more doses.
  • said effective amount of cells are administrated as a single dose.
  • said effective amount of cells are administrated as more than one dose over a period time. Timing of administration is within the judgment of managing physician and depends on the clinical condition of the patient.
  • the cells or population of cells may be obtained from any source, such as a blood bank or a donor. While individual needs vary, determination of optimal ranges of effective amounts of a given cell type for a particular disease or conditions within the skill of the art.
  • An effective amount means an amount which provides a therapeutic or prophylactic benefit.
  • the dosage administrated will be dependent upon the age, health and weight of the recipient, kind of concurrent treatment, if any, frequency of treatment and the nature of the effect desired.
  • It can be a treatment in combination with one or more therapies against cancer selected from the group of antibodies therapy, chemotherapy, cytokines therapy, dendritic cell therapy, gene therapy, hormone therapy, laser light therapy and radiation therapy.
  • therapies against cancer selected from the group of antibodies therapy, chemotherapy, cytokines therapy, dendritic cell therapy, gene therapy, hormone therapy, laser light therapy and radiation therapy.
  • cells are administered to a patient in conjunction with (e.g., before, simultaneously or following) any number of relevant treatment modalities, including but not limited to treatment with agents such as antiviral therapy, cidofovir and interleukin-2, Cytarabine (also known as ARA-C) or natalizimab treatment for MS patients or efaliztimab treatment for psoriasis patients or other treatments for PML patients.
  • agents such as antiviral therapy, cidofovir and interleukin-2, Cytarabine (also known as ARA-C) or natalizimab treatment for MS patients or efaliztimab treatment for psoriasis patients or other treatments for PML patients.
  • the T cells of the invention may be used in combination with chemotherapy, radiation, immunosuppressive agents, such as cyclosporin, azathioprine, methotrexate, mycophenolate, and FK506, antibodies, or other immunoablative agents such as CAM PATH, anti-CD3 antibodies or other antibody therapies, cytoxin, fludaribine, cyclosporin, FK506, rapamycin, mycoplienolic acid, steroids, FR901228, cytokines, and irradiation.
  • immunosuppressive agents such as cyclosporin, azathioprine, methotrexate, mycophenolate, and FK506, antibodies
  • other immunoablative agents such as CAM PATH, anti-CD3 antibodies or other antibody therapies, cytoxin, fludaribine, cyclosporin, FK506, rapamycin, mycoplienolic acid, steroids, FR901228, cytokines, and irradiation.
  • the cell compositions of the present invention are administered to a patient in conjunction with (e.g., before, simultaneously or following) bone marrow transplantation, T cell ablative therapy using either chemotherapy agents such as, fludarabine, external-beam radiation therapy (XRT), cyclophosphamide, or antibodies such as OKT3 or CAMPATH,
  • chemotherapy agents such as, fludarabine, external-beam radiation therapy (XRT), cyclophosphamide, or antibodies such as OKT3 or CAMPATH
  • the cell compositions of the present invention are administered following B-cell ablative therapy such as agents that react with CD20, e.g., Rituxan.
  • subjects may undergo standard treatment with high dose chemotherapy followed by peripheral blood stem cell transplantation.
  • subjects receive an infusion of the expanded immune cells of the present invention.
  • expanded cells are administered before or following surgery.
  • Said modified cells obtained by any one of the methods described here can be used in a particular aspect of the invention for treating patients in need thereof against Host versus Graft (HvG) rejection and Graft versus Host Disease (GvHD); therefore in the scope of the present invention is a method of treating patients in need thereof against Host versus Graft (HvG) rejection and Graft versus Host Disease (GvHD) comprising treating said patient by administering to said patient an effective amount of modified (engineered) cells comprising inactivated TCR alpha and/or TCR beta genes.
  • Multi-chain CARs targeting the CLL1 antigen were designed based on the high affinity receptor for IgE (Fc ⁇ RI) such as depicted in FIG. 2 to FIG. 4 .
  • the Fc ⁇ RI expressed on mast cells and basophiles triggers allergic reactions. It is a tetrameric complex composed of a single a subunit, a single ⁇ subunit and two disulfide-linked ⁇ subunits. The a subunit contains the IgE-binding domain.
  • the ⁇ and ⁇ subunits contain ITAMs that mediate signal transduction.
  • T cells were purified from Buffy coat samples provided by EFS (Etableau Francais du Sang, Paris, France) using Ficoll gradient density medium (Ficoll Paque PLUS/GE Healthcare Life Sciences). The PBMC layer was recovered and T cells were purified using a commercially available T-cell enrichment kit (Stem Cell Technologies). Purified T cells were activated in X-VivoTM-15 medium (Lonza) supplemented with 20 ng/mL Human IL-2 (Miltenyi Biotech), 5% Human Serum (Sera Laboratories), and Dynabeads Human T activator CD3/CD28 at a bead:cell ratio 1:1 (Life Technologies). After activation cells were grown and maintained in X-VivoTM-15 medium (Lonza) supplemented with 20 ng/mL Human IL-2 (Miltenyi Biotec) and 5% Human Serum (Sera Laboratories).
  • an AML-positive cell line such as MOLM13 cell line
  • MOLM13 cell line has been established from the peripheral blood of a 20-year-old man with acute myeloid leukemia AML FAB M5a at relapse in 1995 after initial myelodysplastic syndromes (MDS, refractory anemia with excess of blasts, RAEB).
  • MOLM13 cells (DSMZ ACC 554) were transfected with a nucleic acid sequence encoding a rare-cutting endonuclease specifically targeting a gene expressing an enzyme having deoxycytidine kinase activity (dcK-EC 2.7.1.74), namely the human deoxycytidine kinase gene (NCBI Gene ID: 1633), and with a lentivirus encoding the GFP and the firefly luciferase (amsbio LVP438-PBS).
  • dcK-EC 2.7.1.74 an enzyme having deoxycytidine kinase activity
  • NCBI Gene ID: 1633 human deoxycytidine kinase gene
  • the GFP-positive cells have been selected with Neomycin (ref 10131-027, Gibco, Life Technologies, Saint-Aubin, France). Resistance to clorofarabine, fludarabine or cytarabine of cdk KO MOLM13-Luc cells was tested in the presence of clorofarabine, fludarabine or cytarabine.
  • the live T cells engineered using polycistronic mRNAs expressed the multi-chain CARs on their surface.
  • Multi-chain CARs can be expressed in human T cells after electroporation of polycistronic mRNA.
  • T cells were electroporated with capped and polyadenylated polycistronic mRNA that were produced using the mMESSAGE mMACHINE kit and linearized plasmids as template.
  • the plasmids used as template contained the T7 RNA polymerase promoter followed by a polycistronic DNA sequence encoding the different CAR variants.
  • the electroporation of the polycistronic mRNAs into the human T cells was done using the CytoLVT-S device (Cellectis), according to the following protocol: 5 ⁇ 10 6 T cells preactivated several days (3-5) with anti CD3/CD28 coated beads and IL2 were resuspended in cytoporation buffer T, and electroporated in 0.4 cm cuvettes with 45 ⁇ g of mRNA.
  • human T cells engineered using polycistronic mRNAs encoding the multi-chain CARs were labeled with a fixable viability dye eFluor-780 and a PE-conjugated goat anti mouse IgG F(ab′)2 fragment specific, and analysed by flow cytometry.
  • the human T cells engineered using polycistronic mRNAs encoding the multi-chain CARs were co-cultured with target (Daudi) or AML cell line control cells for 24 hours.
  • the supernatants were then harvested and analysed using the TH1/TH2 cytokine cytometric bead array kit to quantify the cytokines produced by the T cells.
  • the assay aims to show that the human T cells expressing the multi-chain CARs produce IFN ⁇ , IL8 and IL5 in coculture with CLL1 expressing target cells but not in coculture with control cells.
  • T-cells with recombinant lentiviral vectors along the expression of mcCAR was carried out three days after T-cell purification/activation.
  • Lentiviral vectors were produced by Vectalys SA (Toulouse, France) by transfection of genomic and helper plasmids in HEK-293 cells. Transductions were carried out at a multiplicity of infection of 5, using 10 6 cells per transduction.
  • CAR detection at the surface of T-cells was done using a recombinant protein consisting on the fusion of the extracellular domain of the human CLL1 protein together with a murine IgG1 Fc fragment (produced by LakePharma). Binding of this protein to the CAR molecule was detected with a PE-conjugated secondary antibody (Jackson Immunoresearch) targeting the mouse Fc portion of the protein, and analyzed by flow cytometry.
  • Example 3 Degranulation of T Cells Transiently Expressing the Anti-CLL1 mcCARs Following Coculture with Target Cells
  • human T cells engineered using polycistronic mRNAs encoding the multi-chain CARs were co-cultured with target (Daudi) or AML cell line control cells for 6 hours.
  • the CD8+ T cells were then analyzed by flow cytometry to detect the expression of the degranulation marker CD107a at their surface. This experiment aims to check that the human CD8+ T cells expressing the CLL1 multi-chain CARs degranulate in coculture with CLL1 expressing target cells but not in coculture with control cells.
  • T-cells were incubated in 96-well plates (40,000 cells/well), together with an equal amount of cells expressing or not the CLL1 protein.
  • Co-cultures were maintained in a final volume of 100 ⁇ l of X-VivoTM-15 medium (Lonza) for 6 hours at 37° C. with 5% CO 2 .
  • CD107a staining was done during cell stimulation, by the addition of a fluorescent anti-CD107a antibody (APC conjugated, from Miltenyi Biotec) at the beginning of the co-culture, together with 1 ⁇ g/ml of anti-CD49d (BD Pharmingen), 1 ⁇ g/ml of anti-CD28 (Miltenyi Biotec), and 1 ⁇ Monensin solution (eBioscience).
  • the degranulation activity was determined as the % of CD8+/CD107a+ cells, and by determining the mean fluorescence intensity signal (MFI) for CD107a staining among CD8+ cells. Degranulation assays were carried out 8-10 days after T-cell transduction with mcCAR.
  • human T cells engineered using polycistronic mRNAs encoding the multi-chain CARs were co-cultured with target (Daudi) or AML cell line control cells for 4 hours.
  • the target cells were then analysed by flow cytometry to analyse their viability. This assay aims to show that the different cells expressing the CLL1 multi-chain CARs lyse the CLL1 expressing target cells but not the control cells.
  • T-cells were incubated in 96-well plates (100,000 cells/well), together with 10,000 target cells (expressing various levels of CLL1) and 10,000 control (CLL1neg) cells in the same well.
  • Target and control cells were labelled with fluorescent intracellular dyes (CFSE or Cell Trace Violet, from Life Technologies) before co-culturing them with CAR+ T-cells (mcCAR+ T-cells or mcCAR+ T-cells).
  • the co-cultures were incubated for 4 hours at 37° C. with 5% CO 2 . After this incubation period, cells were labelled with a fixable viability dye (eFluor 780, from eBioscience) and analyzed by flow cytometry. Viability of each cellular population (target cells or CLL1neg control cells) was determined and the % of specific cell lysis was calculated. Cytotoxicity assays were carried out 48 h after mRNA transfection.
  • mice Animal housing and experimental procedures were carried out by Oncodesign (Dijon, France; http://www.oncodesign.com/), according to the French and European Regulations and NRC Guide for the Care and Use of Laboratory Animals.
  • Immunodefficient female NOG (NOG) mice NOD.Cg-Prkdcscidll2rgtm1Sug/JicTac mice (NOD stands for non-obese diabetic), 6-8 weeks old, were obtained from Taconic (Ry, Danemark). In one arm of the experiment, mice received clorofarabine or fludarabine.
  • mice were intravenously (iv) injected with MOLM13-Luciferase cells or with clorofarabine resistant MOLM13-Luciferase cells as an AML and an clorofarabine resistant AML mouse model, respectively. Mice were then iv injected (7 days after injection of the tumor cell line) with different doses of mcCAR+ T-cells (from 10 4 to 5 ⁇ 10 6 ), or with T-cells that were not transduced with any CAR lentiviral vector.
  • Bioluminescent signals were determined the day before T-cell injection (D-1) and at D7 and 14 after T-cell injection, in order to follow tumoral progression on the different animals.
  • TALE-nuclease targeting two 17-bp long sequences were designed and produced. Each half target is recognized by repeats of the half TALE-nucleases listed in Table 8.
  • TALE-nuclease construct was subcloned using restriction enzyme digestion in a mammalian expression vector under the control of the T7 promoter.
  • mRNA encoding TALE-nuclease cleaving TRAC genomic sequence were synthesized from plasmid carrying the coding sequence downstream from the T7 promoter.
  • T cells preactivated during 72 hours with antiCD3/CD28 coated beads were transfected with each of the 2 mRNAs encoding both half TRAC_T01 TALE-nucleases.
  • different groups of T cells from the same donor were respectively transduced with a lentiviral vector encoding one of the anti-CLL1 mcCAR previously described (SEQ ID NO: 18 to 37).
  • CD3 NEG cells were purified using anti-CD3 magnetic beads and 5 days post-transduction cells were reactivated with soluble anti-CD28 (5 ⁇ g/ml).
  • the expression of the activation marker CD25 are analyzed by FACS 7 days post transduction.
  • the purified cells transduced with the lentiviral vector encoding CLL1 mcCAR assayed for CD25 expression at their surface in order to assess their activation in comparison with the non-transduced cells.
  • Increased CD25 expression is expected both in CD28 reactivation or no reactivation conditions.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Hematology (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Oncology (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Developmental Biology & Embryology (AREA)
US15/546,619 2015-01-26 2016-01-25 Cll1-specific multi-chain chimeric antigen receptor Abandoned US20180002427A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DKPA201570044 2015-01-26
DKPA201570044 2015-01-26
PCT/EP2016/051470 WO2016120219A1 (en) 2015-01-26 2016-01-25 Cll1-specific multi-chain chimeric antigen receptor

Publications (1)

Publication Number Publication Date
US20180002427A1 true US20180002427A1 (en) 2018-01-04

Family

ID=52396337

Family Applications (6)

Application Number Title Priority Date Filing Date
US15/546,619 Abandoned US20180002427A1 (en) 2015-01-26 2016-01-25 Cll1-specific multi-chain chimeric antigen receptor
US15/546,633 Active 2036-07-04 US11014989B2 (en) 2015-01-26 2016-01-25 Anti-CLL1 specific single-chain chimeric antigen receptors (scCARs) for cancer immunotherapy
US15/546,604 Abandoned US20180000914A1 (en) 2015-01-26 2016-01-25 Anti-hsp70 specific chimeric antigen receptors (cars) for cancer immunotherapy
US15/546,623 Abandoned US20180051089A1 (en) 2015-01-26 2016-01-25 T cell receptor knock out engineered immune cells, endowed with chimeric antigen receptors binding to cd123 for the treatment of relapsed/refractory acute myeloid lymphoma or blastic plasmacytoid dendritic cell neoplasm
US15/546,630 Abandoned US20180002435A1 (en) 2015-01-26 2016-01-25 mAb-DRIVEN CHIMERIC ANTIGEN RECEPTOR SYSTEMS FOR SORTING/DEPLETING ENGINEERED IMMUNE CELLS
US18/481,797 Pending US20240228636A1 (en) 2015-01-26 2023-10-05 mAb-DRIVEN CHIMERIC ANTIGEN RECEPTOR SYSTEMS FOR SORTING/DEPLETING ENGINEERED IMMUNE CELLS

Family Applications After (5)

Application Number Title Priority Date Filing Date
US15/546,633 Active 2036-07-04 US11014989B2 (en) 2015-01-26 2016-01-25 Anti-CLL1 specific single-chain chimeric antigen receptors (scCARs) for cancer immunotherapy
US15/546,604 Abandoned US20180000914A1 (en) 2015-01-26 2016-01-25 Anti-hsp70 specific chimeric antigen receptors (cars) for cancer immunotherapy
US15/546,623 Abandoned US20180051089A1 (en) 2015-01-26 2016-01-25 T cell receptor knock out engineered immune cells, endowed with chimeric antigen receptors binding to cd123 for the treatment of relapsed/refractory acute myeloid lymphoma or blastic plasmacytoid dendritic cell neoplasm
US15/546,630 Abandoned US20180002435A1 (en) 2015-01-26 2016-01-25 mAb-DRIVEN CHIMERIC ANTIGEN RECEPTOR SYSTEMS FOR SORTING/DEPLETING ENGINEERED IMMUNE CELLS
US18/481,797 Pending US20240228636A1 (en) 2015-01-26 2023-10-05 mAb-DRIVEN CHIMERIC ANTIGEN RECEPTOR SYSTEMS FOR SORTING/DEPLETING ENGINEERED IMMUNE CELLS

Country Status (14)

Country Link
US (6) US20180002427A1 (ja)
EP (5) EP3250602A1 (ja)
JP (5) JP2018504143A (ja)
KR (3) KR102661969B1 (ja)
CN (5) CN113968914A (ja)
AU (5) AU2016212162A1 (ja)
BR (3) BR112017015453A2 (ja)
CA (5) CA2973642A1 (ja)
DK (2) DK3250604T3 (ja)
ES (2) ES2842212T3 (ja)
IL (3) IL252937B (ja)
MX (3) MX2017009182A (ja)
RU (3) RU2017129455A (ja)
WO (5) WO2016120218A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019246593A3 (en) * 2018-06-22 2020-01-30 Fred Hutchinson Cancer Research Center Compositions and methods to target cll-1 and cd123 for the treatment of acute myeloid leukemia and related disorders
WO2020254591A1 (en) * 2019-06-19 2020-12-24 Julius-Maximilians-Universität Würzburg Ultramodular igg3-based spacer domain and multi-function site for implementation in chimeric antigen receptor design
US12054531B2 (en) 2020-03-20 2024-08-06 Lyell Immunopharma, Inc. Recombinant cell surface markers
US12144827B2 (en) 2022-02-24 2024-11-19 Lyell Immunopharma, Inc. ROR1 targeting chimeric antigen receptor

Families Citing this family (144)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10967298B2 (en) 2012-03-15 2021-04-06 Flodesign Sonics, Inc. Driver and control for variable impedence load
US10704021B2 (en) 2012-03-15 2020-07-07 Flodesign Sonics, Inc. Acoustic perfusion devices
US9950282B2 (en) 2012-03-15 2018-04-24 Flodesign Sonics, Inc. Electronic configuration and control for acoustic standing wave generation
US9458450B2 (en) 2012-03-15 2016-10-04 Flodesign Sonics, Inc. Acoustophoretic separation technology using multi-dimensional standing waves
US9725710B2 (en) 2014-01-08 2017-08-08 Flodesign Sonics, Inc. Acoustophoresis device with dual acoustophoretic chamber
JP6689202B2 (ja) 2014-03-19 2020-04-28 セレクティスCellectis 癌免疫治療のためのcd123特異的キメラ抗原受容体
CN114149511A (zh) 2015-04-13 2022-03-08 辉瑞公司 靶向b细胞成熟抗原的嵌合抗原受体
US11420136B2 (en) 2016-10-19 2022-08-23 Flodesign Sonics, Inc. Affinity cell extraction by acoustics
US11021699B2 (en) 2015-04-29 2021-06-01 FioDesign Sonics, Inc. Separation using angled acoustic waves
US11377651B2 (en) 2016-10-19 2022-07-05 Flodesign Sonics, Inc. Cell therapy processes utilizing acoustophoresis
US11708572B2 (en) 2015-04-29 2023-07-25 Flodesign Sonics, Inc. Acoustic cell separation techniques and processes
US11459540B2 (en) 2015-07-28 2022-10-04 Flodesign Sonics, Inc. Expanded bed affinity selection
US11474085B2 (en) 2015-07-28 2022-10-18 Flodesign Sonics, Inc. Expanded bed affinity selection
AU2016307050A1 (en) * 2015-08-11 2018-02-15 Cellectis Cells for immunotherapy engineered for targeting CD38 antigen and for CD38 gene inactivation
CN108602872A (zh) * 2015-10-30 2018-09-28 艾丽塔生物治疗剂公司 用于治疗癌症的组合物和方法
BR112018008390A2 (pt) 2015-10-30 2018-11-27 Aleta Biotherapeutics Inc composições e métodos para transdução tumoral
CN105331586B (zh) * 2015-11-20 2020-09-15 上海细胞治疗研究院 一种包含高效杀伤启动机制的肿瘤精准t细胞及其用途
CA3004743A1 (en) * 2015-11-24 2017-06-01 Cellerant Therapeutics, Inc. Humanized anti-cll-1 antibodies
UA126373C2 (uk) 2015-12-04 2022-09-28 Новартіс Аг Композиція і спосіб для імуноонкології
EP3202783A1 (en) * 2016-02-02 2017-08-09 Ecole Polytechnique Fédérale de Lausanne (EPFL) Engineered antigen presenting cells and uses thereof
CA3017036A1 (en) * 2016-03-23 2017-09-28 Helmholtz Zentrum Munchen - Deutsches Forschungszentrum Fur Gesundheit Und Umwelt (Gmbh) Fusion proteins of pd-1 and 4-1bb
US11104738B2 (en) 2016-04-04 2021-08-31 Hemogenyx Pharmaceuticals Llc Monoclonal antibodies to human FLT3/FLK2 receptor protein
US11021536B2 (en) 2016-04-04 2021-06-01 Hemogenyx Pharmaceuticals Llc Method of eliminating hematopoietic stem cells/hematopoietic progenitors (HSC/HP) in a patient using bi-specific antibodies
US11085035B2 (en) 2016-05-03 2021-08-10 Flodesign Sonics, Inc. Therapeutic cell washing, concentration, and separation utilizing acoustophoresis
US11214789B2 (en) 2016-05-03 2022-01-04 Flodesign Sonics, Inc. Concentration and washing of particles with acoustics
CN110191898B (zh) 2016-06-08 2024-05-10 英特瑞克斯顿股份有限公司 Cd33特异性嵌合抗原受体
US11466291B2 (en) 2016-07-06 2022-10-11 Cellectis Sequential gene editing in primary immune cells
MA45997A (fr) * 2016-08-19 2019-06-26 Janssen Biotech Inc Méthodes de traitement de la maladie de crohn avec un anticorps anti-nkg2d
EP3515503A4 (en) 2016-09-23 2020-09-23 The Regents Of The University Of Michigan MANIPULATED LYMPHOCYTES
ES2811500T3 (es) 2016-10-04 2021-03-12 Prec Biosciences Inc Dominios coestimuladores para su uso en células genéticamente modificadas
WO2018073394A1 (en) 2016-10-19 2018-04-26 Cellectis Cell death inducing chimeric antigen receptors
WO2018073393A2 (en) 2016-10-19 2018-04-26 Cellectis Tal-effector nuclease (talen) -modified allogenic cells suitable for therapy
CA3045902A1 (en) 2016-12-21 2018-06-28 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Human monoclonal antibodies specific for flt3 and uses thereof
WO2018115189A1 (en) 2016-12-21 2018-06-28 Cellectis Stably enginereed proteasome inhibitor resistant immune cells for immunotherapy
AU2017384900B2 (en) * 2016-12-28 2020-12-10 GC Cell Corporation Chimeric antigen receptor and natural killer cells expressing same
CN108250301A (zh) * 2016-12-29 2018-07-06 天津天锐生物科技有限公司 一种多靶点嵌合抗原受体
MX2019010196A (es) 2017-02-28 2019-12-19 Vor Biopharma Inc Composiciones y métodos para la inhibición de proteínas específicas del linaje.
EP3601561A2 (en) 2017-03-22 2020-02-05 Novartis AG Compositions and methods for immunooncology
JP7205995B2 (ja) * 2017-03-29 2023-01-17 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト 共刺激性tnf受容体に対する二重特異性抗原結合分子
US11690873B2 (en) * 2017-03-31 2023-07-04 Cellectis Sa Universal chimeric antigen receptor T cells specific for CD22
ES2954311T3 (es) * 2017-04-01 2023-11-21 Avm Biotechnology Llc Reemplazo de un preacondicionamiento citotóxico antes de una inmunoterapia celular
AU2018367896B2 (en) 2017-05-12 2023-06-01 Crispr Therapeutics Ag Materials and methods for engineering cells and uses thereof in immuno-oncology
US11166985B2 (en) 2017-05-12 2021-11-09 Crispr Therapeutics Ag Materials and methods for engineering cells and uses thereof in immuno-oncology
MX2019013923A (es) * 2017-06-02 2020-01-21 Pfizer Receptores de antigenos quimericos que se dirigen a flt3.
US11118168B2 (en) 2017-06-07 2021-09-14 Precigen, Inc. Expression of novel cell tags
EP3641768A4 (en) * 2017-06-21 2021-07-07 iCell Gene Therapeutics LLC CHIMERIC ANTIGEN RECEPTORS (CARS); COMPOSITIONS AND METHOD OF USE THEREOF
WO2019002633A1 (en) 2017-06-30 2019-01-03 Cellectis CELLULAR IMMUNOTHERAPY FOR REPETITIVE ADMINISTRATION
JP7305613B2 (ja) * 2017-07-09 2023-07-10 バイオサイト リミテッド 併用がん療法
JP7252651B2 (ja) * 2017-07-20 2023-04-05 エイチ リー モフィット キャンサー センター アンド リサーチ インスティテュート インコーポレイテッド Cd33発現がんを標的とするための組成物および方法
WO2019016360A1 (en) 2017-07-21 2019-01-24 Cellectis MODIFIED IMMUNE CELLS RESISTANT TO TUMOR MICRO-ENVIRONMENT
EP3658163A4 (en) * 2017-07-25 2021-08-04 Board Of Regents, The University Of Texas System NOVEL CHIMERIC ANTIGEN RECEPTORS AND USES THEREOF
WO2019020733A1 (en) 2017-07-26 2019-01-31 Cellectis METHODS OF IMMUNE CELL SELECTION OF THE ANTIGEN-DEPENDENT CHIMERIC ANTIGENIC RECEPTOR (CAR)
EA202090839A1 (ru) * 2017-09-27 2021-02-04 Юниверсити Оф Саутерн Калифорния Новые платформы для костимуляции, новые конструкции car и другие улучшения для адаптивной клеточной терапии
WO2019072824A1 (en) 2017-10-09 2019-04-18 Cellectis IMPROVED ANTI-CD123 CAR IN UNIVERSAL MODIFIED IMMUNE T LYMPHOCYTES
US11649294B2 (en) 2017-11-14 2023-05-16 GC Cell Corporation Anti-HER2 antibody or antigen-binding fragment thereof, and chimeric antigen receptor comprising same
EP3712178A4 (en) 2017-11-14 2021-08-11 Green Cross Lab Cell Corporation ANTI-HER2 ANTIBODIES OR ANTIGIBODY FRAGMENT THEREOF AND CHIMERAIR ANTIGEN RECEPTOR WITH IT
CN109837303A (zh) * 2017-11-25 2019-06-04 深圳宾德生物技术有限公司 一种敲除pd1的靶向cd317的嵌合抗原受体t细胞及其制备方法和应用
CN109836496A (zh) * 2017-11-25 2019-06-04 深圳宾德生物技术有限公司 一种靶向cd317的单链抗体、嵌合抗原受体t细胞及其制备方法和应用
WO2019106163A1 (en) 2017-12-01 2019-06-06 Cellectis Reprogramming of genetically engineered primary immune cells
AU2018385759B2 (en) 2017-12-14 2021-10-21 Flodesign Sonics, Inc. Acoustic transducer driver and controller
US20200332004A1 (en) 2017-12-29 2020-10-22 Cellectis Method for improving production of car t cells
WO2019129850A1 (en) 2017-12-29 2019-07-04 Cellectis Off-the-shelf engineered cells for therapy
CN109608548A (zh) * 2017-12-29 2019-04-12 郑州大学第附属医院 基于人源cd20抗体的嵌合抗原受体、慢病毒表达载体及其应用
MX2020007338A (es) * 2018-01-09 2020-11-06 H Lee Moffitt Cancer Ct & Res Composiciones y métodos para el direccionamiento a tipos de cáncer que expresan clec12a.
WO2019152742A1 (en) 2018-02-01 2019-08-08 Pfizer Inc. Chimeric antigen receptors targeting cd70
WO2019152705A1 (en) 2018-02-01 2019-08-08 Pfizer Inc. Antibodies specific for cd70 and their uses
WO2019169290A1 (en) 2018-03-02 2019-09-06 Allogene Therapeutics, Inc. Inducible chimeric cytokine receptors
SG11202008796VA (en) * 2018-03-14 2020-10-29 The United States Of America As Represented By The Secretary Anti-cd33 chimeric antigen receptors and their uses
EP3768315A4 (en) * 2018-03-21 2022-11-30 Dana Farber Cancer Institute, Inc. FC VARIANT COMPOSITIONS AND METHODS OF USE THEREOF
CN108530536B (zh) * 2018-03-27 2021-08-13 刘爽 Cart-cd123及其制备与应用
CN108531457A (zh) * 2018-04-10 2018-09-14 杭州荣泽生物科技有限公司 一种Cas9/RNP敲除T细胞PD-1和LAG3基因及制备CAR-T细胞的方法
SG11202010116PA (en) 2018-04-13 2020-11-27 Sangamo Therapeutics France Chimeric antigen receptor specific for interleukin-23 receptor
KR20210008502A (ko) 2018-05-11 2021-01-22 크리스퍼 테라퓨틱스 아게 암을 치료하기 위한 방법 및 조성물
CN112153983B (zh) * 2018-05-23 2024-09-13 杰克逊实验室 抗ngly-1抗体及使用方法
CN112243444A (zh) 2018-06-08 2021-01-19 豪夫迈·罗氏有限公司 具有减少的翻译后修饰的肽接头
EP3806888B1 (en) 2018-06-12 2024-01-31 Obsidian Therapeutics, Inc. Pde5 derived regulatory constructs and methods of use in immunotherapy
WO2020007593A1 (en) 2018-07-02 2020-01-09 Cellectis Chimeric antigen receptors (car)-expressing cells and combination treatment for immunotherapy of patients with relapse refractory adverse genetic risk aml
US20210308171A1 (en) * 2018-08-07 2021-10-07 The Broad Institute, Inc. Methods for combinatorial screening and use of therapeutic targets thereof
GB201813178D0 (en) * 2018-08-13 2018-09-26 Autolus Ltd Cell
MX2021002415A (es) 2018-08-28 2021-09-21 Vor Biopharma Inc Celulas madre hematopoyeticas modificadas geneticamente y usos de las mismas.
CN109503716B (zh) * 2018-10-08 2021-04-27 浙江生研生物科技有限公司 一种双特异性嵌合抗原受体分子及其在肿瘤治疗上的应用
CN113039205B (zh) * 2018-10-26 2024-03-22 科济生物医药(上海)有限公司 靶向cll1的抗体及其应用
SG11202105353PA (en) 2018-12-01 2021-06-29 Allogene Therapeutics Inc Chimeric antigen receptors targeting b-cell maturation antigen and methods of use thereof
BR112021017113A2 (pt) 2019-03-01 2021-11-03 Allogene Therapeutics Inc Receptores de citocinas quiméricos portadores de um ectodomínio de pd-1
JP2022522786A (ja) 2019-03-01 2022-04-20 アロジーン セラピューティクス,インコーポレイテッド 構成的に活性なキメラサイトカイン受容体
MX2021010441A (es) 2019-03-01 2021-09-21 Allogene Therapeutics Inc Receptores antigenicos quimericos y agentes de union dirigidos a dll3.
EP3773918A4 (en) 2019-03-05 2022-01-05 Nkarta, Inc. CD19 DIRECTED CHIMERIC ANTIGEN RECEPTORS AND THEIR USES IN IMMUNOTHERAPY
US20220152103A1 (en) * 2019-03-11 2022-05-19 Leucid Bio Ltd MUC1 PARALLEL CAR (pCAR) THERAPEUTIC AGENTS
BR112021018684A2 (pt) 2019-03-21 2021-11-23 Allogene Therapeutics Inc Métodos para aumentar a eficiência de esgotamento de células tcr¿¿+
EP3947471A4 (en) * 2019-03-27 2023-03-15 The Trustees of The University of Pennsylvania TN-MUC1 CHIMERIC ANTIGEN RECEPTOR (CAR) T-LYMPHOCYTE THERAPY
EP3952886A1 (en) 2019-04-10 2022-02-16 Elevatebio Technologies, Inc Flt3-specific chimeric antigen receptors and methods of using the same
CA3132509A1 (en) 2019-04-26 2020-10-29 Allogene Therapeutics, Inc. Methods of manufacturing allogeneic car t cells
FI3959235T3 (fi) * 2019-04-26 2023-09-27 Allogene Therapeutics Inc Rituksimabiresistenttejä kimeerisiä antigeenireseptoreja ja niiden käyttö
MA55797A (fr) 2019-04-30 2022-03-09 Crispr Therapeutics Ag Thérapie cellulaire allogénique de malignités de lymphocytes b à l'aide de lymphocytes t génétiquement modifiés ciblant cd19
CN112111013A (zh) * 2019-06-22 2020-12-22 南京北恒生物科技有限公司 一种靶向claudin 18.2的通用型嵌合抗原受体T细胞、构建方法及其用途
CN114829399A (zh) * 2019-07-09 2022-07-29 海默珍科医药有限责任公司 使用双特异性抗体消除患者中的造血干细胞/造血祖细胞(hsc/hp)的方法
US20210061881A1 (en) 2019-08-30 2021-03-04 Allogene Therapeutics, Inc. Chimeric cytokine receptors comprising tgf beta binding domains
EP4038190A1 (en) 2019-10-03 2022-08-10 Artisan Development Labs, Inc. Crispr systems with engineered dual guide nucleic acids
EP3808766A1 (en) 2019-10-15 2021-04-21 Sangamo Therapeutics France Chimeric antigen receptor specific for interleukin-23 receptor
MX2022007833A (es) 2019-12-23 2022-09-23 Cellectis Nuevos receptores de antigenos quimericos (car) especificos de mesotelina para inmunoterapia de cancer de tumores solidos.
US20230112444A1 (en) 2020-01-16 2023-04-13 Springworks Therapeutics, Inc. Combination therapies of chimeric antigen receptors targeting b-cell maturation antigen and gamma secretase inhibitors
MX2022010340A (es) 2020-02-24 2022-09-19 Allogene Therapeutics Inc Celulas t con car de bcma con actividades mejoradas.
EP4114449A2 (en) 2020-03-05 2023-01-11 Neotx Therapeutics Ltd. Methods and compositions for treating cancer with immune cells
EP4114471A1 (en) * 2020-03-06 2023-01-11 Purdue Research Foundation Methods, compounds, and compositions for modifying car-t cell activity
WO2021188631A1 (en) * 2020-03-18 2021-09-23 Kindred Biosciences, Inc. Anti-il4 receptor antibodies for veterinary use
US20230128075A1 (en) * 2020-03-27 2023-04-27 Board Of Regents, The University Of Texas System Monoclonal antibodies targeting hsp70 and therapeutic uses thereof
WO2021224395A1 (en) 2020-05-06 2021-11-11 Cellectis S.A. Methods for targeted insertion of exogenous sequences in cellular genomes
KR20210136879A (ko) * 2020-05-08 2021-11-17 (주)에스엠티바이오 암 치료를 위한 키메라 항원 수용체
CN113735973B (zh) * 2020-05-28 2023-05-09 中国科学院微生物研究所 一种抗SIRPα抗体及其应用
WO2022003158A1 (en) 2020-07-03 2022-01-06 Cellectis S.A. Method for determining potency of chimeric antigen receptor expressing immune cells
KR20230040331A (ko) 2020-07-21 2023-03-22 알로젠 테라퓨틱스 인코포레이티드 강화된 신호 전달 및 활성을 갖는 키메라 항원 수용체 및 이의 용도
EP4185616A1 (en) 2020-07-24 2023-05-31 Cellectis S.A. T-cells expressing immune cell engagers in allogenic settings
MX2023001596A (es) * 2020-08-07 2023-04-20 Neogene Therapeutics B V Métodos para enriquecer células t diseñadas genéticamente.
CN112079927B (zh) * 2020-09-18 2021-12-28 西安桑尼赛尔生物医药有限公司 一种cd123结合蛋白、含其的car及其应用
WO2022061837A1 (en) * 2020-09-27 2022-03-31 Jiangsu Cell Tech Medical Research Institute Co., Ltd. Fibronectin extra domain b (edb) -specific car-t for cancer
CN113045658B (zh) * 2020-12-11 2021-12-24 广州百暨基因科技有限公司 抗cll1抗体及其应用
CN113248622B (zh) * 2020-12-11 2022-11-01 广州百暨基因科技有限公司 一种靶向cll1和nkg2d配体的双靶点嵌合抗原受体及其应用
CN113234169B (zh) * 2020-12-11 2022-11-01 广州百暨基因科技有限公司 靶向cll1嵌合抗原受体及其应用
US20220184124A1 (en) 2020-12-14 2022-06-16 Allogene Therapeutics, Inc. Methods and reagents for characterizing car t cells for therapies
AR124414A1 (es) 2020-12-18 2023-03-22 Century Therapeutics Inc Sistema de receptor de antígeno quimérico con especificidad de receptor adaptable
AU2021409801A1 (en) 2020-12-21 2023-06-22 Allogene Therapeutics, Inc. Protease-activating cd45-gate car
TW202241952A (zh) 2020-12-31 2022-11-01 法商英耐特醫藥公司 結合至NKp46及CD123之多功能自然殺手(NK)細胞接合體
CN112694532B (zh) * 2021-01-12 2023-04-18 倍而达药业(苏州)有限公司 抗Siglec-15的抗体或其抗原结合片段及应用
CN112661816B (zh) * 2021-01-13 2022-10-11 江西省人民医院 用于利妥昔单抗血药浓度检测的人工抗原及试剂盒
MX2023008662A (es) 2021-01-28 2023-08-01 Allogene Therapeutics Inc Metodos para transducir celulas inmunitarias.
MX2023008809A (es) 2021-01-29 2023-08-04 Allogene Therapeutics Inc ATENUACIÓN O INACTIVACIÓN DE UNO O MÁS DE TAP2, NLRC5, ß2M, TRAC, RFX5, RFXAP Y RFXANK PARA MITIGAR EL RECONOCIMIENTO DE CÉLULAS T DE PRODUCTOS CELULARES ALOGÉNICOS.
MX2023012760A (es) * 2021-04-30 2023-11-13 Cellectis Sa Nuevos cars anti-muc1 y celulas inmunitarias editadas geneticamente para inmunoterapia contra el cancer de tumores solidos.
WO2022256448A2 (en) 2021-06-01 2022-12-08 Artisan Development Labs, Inc. Compositions and methods for targeting, editing, or modifying genes
WO2022266075A1 (en) 2021-06-14 2022-12-22 Caribou Biosciences, Inc. Methods and materials for treating cancer using car constructs with an intracellular domain comprising a stap domain and a kinase domain or a stap domain and a phosphatase domain
WO2022266203A1 (en) 2021-06-15 2022-12-22 Allogene Therapeutics, Inc. Selective targeting of host cd70+ alloreactive cells to prolong allogeneic car t cell persistence
CN115477704B (zh) * 2021-06-16 2024-02-23 四川大学华西医院 一种基于lox1构建的嵌合抗原受体免疫细胞制备及其应用
CN115477705B (zh) * 2021-06-16 2024-02-23 四川大学华西医院 一种基于颗粒酶b构建的嵌合抗原受体免疫细胞制备及其应用
EP4370676A2 (en) 2021-06-18 2024-05-22 Artisan Development Labs, Inc. Compositions and methods for targeting, editing or modifying human genes
WO2023020471A1 (en) * 2021-08-16 2023-02-23 Utc Therapeutics (Shanghai) Co., Ltd. Cd123-targetting antibodies and uses thereof in cancer therapies
KR20240056726A (ko) 2021-09-01 2024-04-30 스프링웍스 테라퓨틱스, 인크. 니로가세스타트의 합성
WO2023125289A1 (zh) * 2021-12-31 2023-07-06 上海宏成药业有限公司 抗pd-1抗体及其用途
WO2023167882A1 (en) 2022-03-01 2023-09-07 Artisan Development Labs, Inc. Composition and methods for transgene insertion
AU2023244350A1 (en) 2022-03-29 2024-09-05 Allogene Therapeutics Inc. Chimeric switch receptors for the conversion of immunesuppressive signals to costimulatory signals
WO2023201238A1 (en) 2022-04-11 2023-10-19 Vor Biopharma Inc. Binding agents and methods of use thereof
US20240042030A1 (en) 2022-07-29 2024-02-08 Allogene Therapeutics, Inc. Engineered cells with reduced gene expression to mitigate immune cell recognition
WO2024051751A1 (zh) * 2022-09-06 2024-03-14 河北森朗生物科技有限公司 抗cd123的纳米抗体、嵌合抗原受体及其应用
TW202421651A (zh) * 2022-09-20 2024-06-01 美商達納法伯癌症協會 用於靶向降解及治療劑之遞送之受體介導之胞吞作用
US20240216430A1 (en) 2022-11-28 2024-07-04 Allogene Therapeutics, Inc. Claudin 18.2 targeting chimeric antigen receptors and binding agents and uses thereof
WO2024121385A1 (en) 2022-12-09 2024-06-13 Cellectis S.A. Two-dose regimen in immunotherapy

Family Cites Families (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR901228A (fr) 1943-01-16 1945-07-20 Deutsche Edelstahlwerke Ag Système d'aimant à entrefer annulaire
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
GB8607679D0 (en) 1986-03-27 1986-04-30 Winter G P Recombinant dna product
US5225539A (en) 1986-03-27 1993-07-06 Medical Research Council Recombinant altered antibodies and methods of making altered antibodies
GB8611832D0 (en) 1986-05-15 1986-06-25 Holland I B Polypeptide
US4975278A (en) 1988-02-26 1990-12-04 Bristol-Myers Company Antibody-enzyme conjugates in combination with prodrugs for the delivery of cytotoxic agents to tumor cells
US5037743A (en) 1988-08-05 1991-08-06 Zymogenetics, Inc. BAR1 secretion signal
US6534055B1 (en) 1988-11-23 2003-03-18 Genetics Institute, Inc. Methods for selectively stimulating proliferation of T cells
US6905680B2 (en) 1988-11-23 2005-06-14 Genetics Institute, Inc. Methods of treating HIV infected subjects
US5858358A (en) 1992-04-07 1999-01-12 The United States Of America As Represented By The Secretary Of The Navy Methods for selectively stimulating proliferation of T cells
US6352694B1 (en) 1994-06-03 2002-03-05 Genetics Institute, Inc. Methods for inducing a population of T cells to proliferate using agents which recognize TCR/CD3 and ligands which stimulate an accessory molecule on the surface of the T cells
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US20040049014A1 (en) 1988-12-28 2004-03-11 Protein Design Labs, Inc. Humanized immunoglobulins
GB8928874D0 (en) 1989-12-21 1990-02-28 Celltech Ltd Humanised antibodies
DE69233482T2 (de) 1991-05-17 2006-01-12 Merck & Co., Inc. Verfahren zur Verminderung der Immunogenität der variablen Antikörperdomänen
EP0940468A1 (en) 1991-06-14 1999-09-08 Genentech, Inc. Humanized antibody variable domain
US5565332A (en) 1991-09-23 1996-10-15 Medical Research Council Production of chimeric antibodies - a combinatorial approach
CA2103887C (en) 1991-12-13 2005-08-30 Gary M. Studnicka Methods and materials for preparation of modified antibody variable domains and therapeutic uses thereof
GB9203459D0 (en) 1992-02-19 1992-04-08 Scotgen Ltd Antibodies with germ-line variable regions
US5639641A (en) 1992-09-09 1997-06-17 Immunogen Inc. Resurfacing of rodent antibodies
AU6704794A (en) 1993-04-13 1994-11-08 Sloan-Kettering Institute For Cancer Research Protection of human bone marrow from high dose antifolate therapy using mutated human dihydrofolate reductase dna
US7175843B2 (en) 1994-06-03 2007-02-13 Genetics Institute, Llc Methods for selectively stimulating proliferation of T cells
US5731168A (en) 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
US7067318B2 (en) 1995-06-07 2006-06-27 The Regents Of The University Of Michigan Methods for transfecting T cells
US6692964B1 (en) 1995-05-04 2004-02-17 The United States Of America As Represented By The Secretary Of The Navy Methods for transfecting T cells
US6010613A (en) 1995-12-08 2000-01-04 Cyto Pulse Sciences, Inc. Method of treating materials with pulsed electrical fields
US6642043B1 (en) 1996-03-12 2003-11-04 Sloan-Kettering Institute For Cancer Research Double mutants of dihydrofolate reductase and methods of using same
US6867041B2 (en) 2000-02-24 2005-03-15 Xcyte Therapies, Inc. Simultaneous stimulation and concentration of cells
US6797514B2 (en) 2000-02-24 2004-09-28 Xcyte Therapies, Inc. Simultaneous stimulation and concentration of cells
US7572631B2 (en) 2000-02-24 2009-08-11 Invitrogen Corporation Activation and expansion of T cells
JP2004500095A (ja) 2000-02-24 2004-01-08 エクサイト セラピーズ, インコーポレイテッド 細胞の同時の刺激および濃縮
ES2326114T3 (es) 2000-09-13 2009-10-01 Multimmune Gmbh Un peptido de hsp70 estimulador de la actividad de las celulas asesinas naturales (nk) y los usos del mismo.
JP5312721B2 (ja) 2000-11-07 2013-10-09 シティ・オブ・ホープ Cd19特異的再指向免疫細胞
CN1294148C (zh) 2001-04-11 2007-01-10 中国科学院遗传与发育生物学研究所 环状单链三特异抗体
US20090257994A1 (en) 2001-04-30 2009-10-15 City Of Hope Chimeric immunoreceptor useful in treating human cancers
US7514537B2 (en) 2001-04-30 2009-04-07 City Of Hope Chimeric immunoreceptor useful in treating human gliomas
US7446190B2 (en) 2002-05-28 2008-11-04 Sloan-Kettering Institute For Cancer Research Nucleic acids encoding chimeric T cell receptors
EP1578446B1 (en) 2002-11-07 2015-04-08 ImmunoGen, Inc. Anti-cd33 antibodies and method for treatment of acute myeloid leukemia using the same
PT1572744E (pt) * 2002-12-16 2010-09-07 Genentech Inc Variantes de imunoglobulina e utilizações destas
CA2519065C (en) 2003-03-14 2014-06-17 Richard E. Walters Large volume ex vivo electroporation method
NZ543635A (en) * 2003-06-25 2008-05-30 Crucell Holland Bv Human C-type lectin: a suitable target molecule for binding molecules, particularly immunoconjugates, in the diagnosis, prevention and/or treatment of myeloid neoplastic diseases such as AML and CML
WO2005004809A2 (en) 2003-07-01 2005-01-20 Immunomedics, Inc. Multivalent carriers of bi-specific antibodies
JP4934426B2 (ja) 2003-08-18 2012-05-16 メディミューン,エルエルシー 抗体のヒト化
JP2007528723A (ja) 2003-08-22 2007-10-18 メディミューン,インコーポレーテッド 抗体のヒト化
US7435596B2 (en) 2004-11-04 2008-10-14 St. Jude Children's Research Hospital, Inc. Modified cell line and method for expansion of NK cell
US20130266551A1 (en) 2003-11-05 2013-10-10 St. Jude Children's Research Hospital, Inc. Chimeric receptors with 4-1bb stimulatory signaling domain
DE602004020266D1 (de) 2003-12-05 2009-05-07 Multimmune Gmbh Therapeutische und diagnostische anti-hsp 70-antikörper
BRPI0507649A (pt) * 2004-02-16 2007-07-10 Micromet Ag molécula de ligação biespecìfica, seqüência de ácido nucléico, vetor, processo para a produção da molécula de ligação biespecìfica, composição, uso da molécula de ligação biespecìfica na preparação da composição farmacêutica, e kit
WO2006020258A2 (en) 2004-07-17 2006-02-23 Imclone Systems Incorporated Novel tetravalent bispecific antibody
GB0505971D0 (en) 2005-03-23 2005-04-27 Isis Innovation Delivery of molecules to a lipid bilayer
KR20140053410A (ko) 2005-08-19 2014-05-07 아보트 러보러터리즈 이원 가변 도메인 면역글로불린 및 이의 용도
CA2623391A1 (en) * 2005-09-22 2007-03-29 Yeda Research Development Co. Ltd. Immunogenic fragments of t-cell receptor constant domains and peptides derived therefrom
EP2122344B8 (en) 2007-02-20 2019-08-21 Oxford Nanopore Technologies Limited Lipid bilayer sensor system
ES2663323T3 (es) 2007-03-30 2018-04-12 Memorial Sloan-Kettering Cancer Center Expresión constitutiva de ligandos coestimuladores en linfocitos T transferidos de manera adoptiva
US8536310B2 (en) * 2007-10-17 2013-09-17 Arca Biopharma, Inc. Antibodies to CLL-1
EP2072527A1 (en) * 2007-12-21 2009-06-24 Altonabiotec AG Fusion polypeptides comprising a SHBG dimerization component and uses thereof
WO2009091826A2 (en) 2008-01-14 2009-07-23 The Board Of Regents Of The University Of Texas System Compositions and methods related to a human cd19-specific chimeric antigen receptor (h-car)
HRP20211788T1 (hr) 2008-08-26 2022-02-18 City Of Hope Postupak i pripravci za poboljšanje anti-tumorskog efektorskog funkcioniranja t stanica
DE102009045006A1 (de) 2009-09-25 2011-04-14 Technische Universität Dresden Anti-CD33 Antikörper und ihre Anwendung zum Immunotargeting bei der Behandlung von CD33-assoziierten Erkrankungen
US8956828B2 (en) * 2009-11-10 2015-02-17 Sangamo Biosciences, Inc. Targeted disruption of T cell receptor genes using engineered zinc finger protein nucleases
EP2332994A1 (en) 2009-12-09 2011-06-15 Friedrich-Alexander-Universität Erlangen-Nürnberg Trispecific therapeutics against acute myeloid leukaemia
WO2011082400A2 (en) * 2010-01-04 2011-07-07 President And Fellows Of Harvard College Modulators of immunoinhibitory receptor pd-1, and methods of use thereof
WO2012136231A1 (en) 2010-09-08 2012-10-11 Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus Interleukin 15 as selectable marker for gene transfer in lymphocytes
PT3012268T (pt) 2010-09-08 2018-01-31 Chemotherapeutisches Forschungsinstitut Georg Speyer Haus Recetores de antigénio quimérico com uma região de charneira otimizada
WO2012050374A2 (en) 2010-10-13 2012-04-19 Innocell, Inc. Immunotherapy for solid tumors
NZ609474A (en) * 2010-10-27 2015-06-26 Baxter Healthcare Sa Fviii peptides for immune tolerance induction and immunodiagnostics
JP2013544082A (ja) 2010-10-27 2013-12-12 セレクティス 二本鎖破断−誘導変異誘発の効率を増大させる方法
KR20220101745A (ko) 2010-12-09 2022-07-19 더 트러스티스 오브 더 유니버시티 오브 펜실바니아 암을 치료하기 위한 키메릭 항원 수용체 변형 t 세포의 용도
KR20140004174A (ko) 2011-01-18 2014-01-10 더 트러스티스 오브 더 유니버시티 오브 펜실바니아 암 치료를 위한 조성물 및 방법
EA201391159A1 (ru) 2011-02-11 2014-02-28 Мемориал Слоан-Кеттеринг Кэнсер Сентер Hla-рестриктированные пептидоспецифические антигенсвязывающие белки
US8968539B2 (en) 2011-03-08 2015-03-03 Electronic Biosciences, Inc. Methods for voltage-induced protein incorporation into planar lipid bilayers
CN103502438A (zh) * 2011-03-23 2014-01-08 弗雷德哈钦森癌症研究中心 用于细胞免疫治疗的方法和组合物
WO2012134975A1 (en) 2011-03-28 2012-10-04 St. Jude Children's Research Hospital Methods and compositions employing immunogenic fusion proteins
CA2832534C (en) 2011-04-05 2022-01-04 Julien Valton Method for the generation of compact tale-nucleases and uses thereof
IL285335B2 (en) 2011-04-08 2023-12-01 Us Health Chimeric antigen receptors against epidermal growth factor receptor variant III and their use in cancer treatment
US9285592B2 (en) 2011-08-18 2016-03-15 Google Inc. Wearable device with input and output structures
SG11201400527XA (en) 2011-09-16 2014-04-28 Univ Pennsylvania Rna engineered t cells for the treatment of cancer
WO2013051718A1 (ja) * 2011-10-07 2013-04-11 国立大学法人三重大学 キメラ抗原受容体
CN114634572A (zh) * 2011-10-10 2022-06-17 希望之城公司 中间位和中间位结合抗体及其用途
US9868774B2 (en) 2011-10-20 2018-01-16 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-CD22 chimeric antigen receptors
EP2773651B1 (en) 2011-11-03 2020-12-23 The Trustees of the University of Pennsylvania Isolated b7-h4 specific compositions and methods of use thereof
US20140322216A1 (en) 2011-11-08 2014-10-30 The Trustees Of The University Of Pennsylvania Glypican-3-specific antibody and uses thereof
EP3456338B1 (en) * 2011-11-15 2020-07-29 The Walter and Eliza Hall Institute of Medical Research Soluble cd52 for use in the treatment or prevention of multiple sclerosis or rheumatoid arthritis
US10391126B2 (en) * 2011-11-18 2019-08-27 Board Of Regents, The University Of Texas System CAR+ T cells genetically modified to eliminate expression of T-cell receptor and/or HLA
AU2013221672B2 (en) 2012-02-13 2017-11-09 Seattle Children's Hospital D/B/A Seattle Children's Research Institute Bispecific chimeric antigen receptors and therapeutic uses thereof
CN104159917A (zh) 2012-02-22 2014-11-19 宾夕法尼亚大学董事会 使用icos基cars增强抗肿瘤活性和car持久性
US9783591B2 (en) 2012-02-22 2017-10-10 The Trustees Of The University Of Pennsylvania Use of the CD2 signaling domain in second-generation chimeric antigen receptors
WO2013126726A1 (en) 2012-02-22 2013-08-29 The Trustees Of The University Of Pennsylvania Double transgenic t cells comprising a car and a tcr and their methods of use
CA3084919A1 (en) * 2012-02-22 2013-08-29 The Trustees Of The University Of Pennsylvania Compositions and methods for generating a persisting population of t cells useful for the treatment of cancer
SG11201406414WA (en) 2012-04-11 2014-11-27 Us Health Chimeric antigen receptors targeting b-cell maturation antigen
GB201206559D0 (en) 2012-04-13 2012-05-30 Ucl Business Plc Polypeptide
US9163090B2 (en) * 2012-05-07 2015-10-20 Cellerant Therapeutics, Inc. Antibodies specific for CLL-1
US20130309223A1 (en) 2012-05-18 2013-11-21 Seattle Genetics, Inc. CD33 Antibodies And Use Of Same To Treat Cancer
NZ703281A (en) 2012-05-25 2017-01-27 Cellectis Methods for engineering allogeneic and immunosuppressive resistant t cell for immunotherapy
US20150017136A1 (en) 2013-07-15 2015-01-15 Cellectis Methods for engineering allogeneic and highly active t cell for immunotherapy
CN103483452B (zh) * 2012-06-12 2021-08-13 上海细胞治疗集团有限公司 双信号独立的嵌合抗原受体及其用途
MX2015000426A (es) 2012-07-13 2015-07-14 Univ Pennsylvania Incremento de actividad de celulas t car mediante cointroduccion de un anticuerpo biespecifico.
EA201590207A1 (ru) 2012-07-13 2015-05-29 Дзе Трастиз Оф Дзе Юниверсити Оф Пенсильвания Композиции и способы регуляции car-т-клеток
CN104769103B (zh) * 2012-09-04 2018-06-08 塞勒克提斯公司 多链嵌合抗原受体和其用途
AU2013204922B2 (en) 2012-12-20 2015-05-14 Celgene Corporation Chimeric antigen receptors
WO2014130635A1 (en) 2013-02-20 2014-08-28 Novartis Ag Effective targeting of primary human leukemia using anti-cd123 chimeric antigen receptor engineered t cells
WO2014151960A2 (en) 2013-03-14 2014-09-25 Bellicum Pharmaceuticals, Inc. Methods for controlling t cell proliferation
EP3623380A1 (en) 2013-03-15 2020-03-18 Michael C. Milone Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy
US9657105B2 (en) * 2013-03-15 2017-05-23 City Of Hope CD123-specific chimeric antigen receptor redirected T cells and methods of their use
EP2970372B1 (en) 2013-03-15 2020-09-30 Celgene Corporation Modified t lymphocytes
UY35468A (es) 2013-03-16 2014-10-31 Novartis Ag Tratamiento de cáncer utilizando un receptor quimérico de antígeno anti-cd19
CA2912375C (en) 2013-05-13 2023-03-14 Cellectis Methods for engineering highly active t cell for immunotherapy
KR102248157B1 (ko) 2013-05-13 2021-05-03 셀렉티스 Cd19 특이적 키메라 항원 수용체 및 이의 용도
ES2645393T3 (es) * 2013-05-29 2017-12-05 Cellectis Métodos de manipulación de linfocitos T para inmunoterapia usando el sistema de nucleasa Cas guiada por ARN
ES2883131T3 (es) 2013-05-29 2021-12-07 Cellectis Métodos para la modificación de células T para inmunoterapia utilizando el sistema de nucleasa CAS guiado por ARN
ES2897579T3 (es) * 2013-06-10 2022-03-01 Dana Farber Cancer Inst Inc Métodos y composiciones para reducir la inmunosupresión por células tumorales
GB201317929D0 (en) 2013-10-10 2013-11-27 Ucl Business Plc Chimeric antigen receptor
EP3626261A1 (en) 2013-11-21 2020-03-25 UCL Business Ltd Cell
CN105765061A (zh) 2013-11-22 2016-07-13 塞勒克提斯公司 工程化耐受化疗药物的t-细胞用于免疫治疗的方法
JP6942467B2 (ja) * 2013-12-20 2021-10-06 フレッド ハッチンソン キャンサー リサーチ センター タグ化キメラエフェクター分子およびそのレセプター
CA2934436A1 (en) 2013-12-20 2015-06-25 Cellectis Method of engineering multi-input signal sensitive t cell for immunotherapy
CN106029875A (zh) 2014-02-14 2016-10-12 塞勒克提斯公司 为了靶向存在于免疫细胞和病理细胞两者上的抗原而工程化的免疫治疗细胞
WO2015123527A1 (en) 2014-02-14 2015-08-20 Bellicum Pharmaceuticals, Inc. Methods for activating t cells using an inducible chimeric polypeptide
CA2942113C (en) 2014-03-11 2021-04-13 Cellectis Method for generating t-cells compatible for allogenic transplantation
JP2017513818A (ja) 2014-03-15 2017-06-01 ノバルティス アーゲー キメラ抗原受容体を使用する癌の処置
JP6689202B2 (ja) * 2014-03-19 2020-04-28 セレクティスCellectis 癌免疫治療のためのcd123特異的キメラ抗原受容体
JP6698546B2 (ja) * 2014-04-14 2020-05-27 セレクティスCellectis 癌免疫療法のためのbcma(cd269)特異的キメラ抗原受容体
EP3171882A1 (en) * 2014-07-21 2017-05-31 Novartis AG Treatment of cancer using a cll-1 chimeric antigen receptor
KR102612313B1 (ko) 2014-07-21 2023-12-12 노파르티스 아게 인간화 항-bcma 키메라 항원 수용체를 사용한 암의 치료
EP2990416B1 (en) * 2014-08-29 2018-06-20 GEMoaB Monoclonals GmbH Universal chimeric antigen receptor expressing immune cells for targeting of diverse multiple antigens and method of manufacturing the same and use of the same for treatment of cancer, infections and autoimmune disorders
JP7098325B2 (ja) 2014-12-05 2022-07-11 シティ・オブ・ホープ Cs1標的化キメラ抗原レセプター改変t細胞
CN114149511A (zh) 2015-04-13 2022-03-08 辉瑞公司 靶向b细胞成熟抗原的嵌合抗原受体
US9668192B2 (en) 2015-10-12 2017-05-30 Telefonaktiebolaget Lm Ericsson (Publ) Cell boundary crossing in a unidirectional SFN for high speed trains

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019246593A3 (en) * 2018-06-22 2020-01-30 Fred Hutchinson Cancer Research Center Compositions and methods to target cll-1 and cd123 for the treatment of acute myeloid leukemia and related disorders
WO2020254591A1 (en) * 2019-06-19 2020-12-24 Julius-Maximilians-Universität Würzburg Ultramodular igg3-based spacer domain and multi-function site for implementation in chimeric antigen receptor design
US12054531B2 (en) 2020-03-20 2024-08-06 Lyell Immunopharma, Inc. Recombinant cell surface markers
US12144827B2 (en) 2022-02-24 2024-11-19 Lyell Immunopharma, Inc. ROR1 targeting chimeric antigen receptor

Also Published As

Publication number Publication date
EP3250605A1 (en) 2017-12-06
CN107531801B (zh) 2021-11-12
EP3250606A1 (en) 2017-12-06
CA2973529A1 (en) 2016-08-04
CN107531801A (zh) 2018-01-02
IL253012A0 (en) 2017-08-31
AU2016212162A1 (en) 2017-07-13
JP6884709B2 (ja) 2021-06-09
JP2018504143A (ja) 2018-02-15
JP2018504144A (ja) 2018-02-15
RU2732925C2 (ru) 2020-09-24
IL252937B (en) 2021-09-30
JP2018504458A (ja) 2018-02-15
US11014989B2 (en) 2021-05-25
KR20170134331A (ko) 2017-12-06
CA2973525C (en) 2021-12-14
WO2016120219A1 (en) 2016-08-04
CN113968914A (zh) 2022-01-25
CN113968915A (zh) 2022-01-25
RU2017129591A (ru) 2019-03-04
CA2973525A1 (en) 2016-08-04
JP6779909B2 (ja) 2020-11-04
US20180000914A1 (en) 2018-01-04
CN107438618A (zh) 2017-12-05
DK3250604T3 (da) 2021-07-12
RU2017129592A (ru) 2019-02-28
BR112017014547A2 (pt) 2018-01-16
CN107406516A (zh) 2017-11-28
BR112017013981A2 (pt) 2018-01-02
KR102661969B1 (ko) 2024-04-29
BR112017015453A2 (pt) 2018-01-23
MX2017009349A (es) 2017-09-26
EP3250604B1 (en) 2021-04-21
RU2017129592A3 (ja) 2019-07-17
WO2016120220A1 (en) 2016-08-04
KR102329836B1 (ko) 2021-11-19
IL253049A0 (en) 2017-08-31
CA2973532A1 (en) 2016-08-04
EP3250606B1 (en) 2020-11-25
AU2016212158A1 (en) 2017-07-13
EP3250602A1 (en) 2017-12-06
JP2018504459A (ja) 2018-02-15
WO2016120218A1 (en) 2016-08-04
AU2016212160B2 (en) 2021-04-15
RU2017129455A3 (ja) 2019-08-15
EP3250604A1 (en) 2017-12-06
KR20170135822A (ko) 2017-12-08
MX2017009182A (es) 2018-04-20
RU2731543C2 (ru) 2020-09-04
CN107406516B (zh) 2021-11-23
DK3250606T3 (da) 2021-01-04
KR20170135824A (ko) 2017-12-08
CA2973642A1 (en) 2016-08-04
MX2017009181A (es) 2017-11-22
CA2973524A1 (en) 2016-08-04
US20240228636A1 (en) 2024-07-11
AU2016212161A1 (en) 2017-07-13
WO2016120217A1 (en) 2016-08-04
AU2016212159A1 (en) 2017-07-13
AU2016212160A1 (en) 2017-07-13
ES2842212T3 (es) 2021-07-13
EP3250607A1 (en) 2017-12-06
IL253049B (en) 2022-01-01
US20180051089A1 (en) 2018-02-22
US20180009895A1 (en) 2018-01-11
US20180002435A1 (en) 2018-01-04
RU2017129455A (ru) 2019-03-04
WO2016120216A1 (en) 2016-08-04
JP2018504145A (ja) 2018-02-15
RU2017129591A3 (ja) 2019-08-05
AU2016212158B2 (en) 2021-06-03
ES2869972T3 (es) 2021-10-26
IL252937A0 (en) 2017-08-31

Similar Documents

Publication Publication Date Title
US20180002427A1 (en) Cll1-specific multi-chain chimeric antigen receptor
US10544201B2 (en) ROR1 specific multi-chain chimeric antigen receptor
US20180134795A1 (en) Cd123 specific multi-chain chimeric antigen receptor
KR102618231B1 (ko) 변형된 만능성 줄기 세포, 및 제조 및 사용 방법
KR102479606B1 (ko) 상피 성장 인자 수용체 변이체 iii을 표적화하는 키메라 항원 수용체
US20190359680A1 (en) Cs1 specific multi-chain chimeric antigen receptor
CN111629734A (zh) 用于共刺激的新型平台、新型car设计以及过继性细胞疗法的其他增强
JP2019516350A (ja) キメラ抗原及びt細胞受容体、並びに使用方法
CA3094996A1 (en) Guidance and navigation control proteins and method of making and using thereof
JP2022531911A (ja) Bcmaを標的とする操作された免疫細胞及びその使用
EP3877417A1 (en) Bispecific polypeptides for engagement of car expressing immune cells with antigen presenting cells and uses thereof
CN117729928A (zh) 记忆自然杀伤细胞的扩增
CN116490518A (zh) 用于重定向免疫抑制信号传导的嵌合MyD88受体及相关组合物和方法
CN114929341A (zh) 用于治疗髓系恶性肿瘤的嵌合抗原受体
KR20240021826A (ko) 동종이계 car t 세포 지속성을 연장시키기 위한 숙주 cd70+ 동종반응성 세포의 선택적 표적화
US20230346934A1 (en) Chimeric switch receptors for the conversion of immunesuppressive signals to costimulatory signals
AU2015295348B2 (en) ROR1 specific multi-chain chimeric antigen receptor
US20220023346A1 (en) Chimeric antigen receptors with enhanced signaling and activities and uses thereof
KR102726269B1 (ko) 범용 항-cd22 키메라 항원 수용체 조작된 면역 세포
AU2015295348A1 (en) ROR1 specific multi-chain chimeric antigen receptor
KR20200015467A (ko) 범용 항-cd22 키메라 항원 수용체 조작된 면역 세포

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION