WO2013051718A1 - キメラ抗原受容体 - Google Patents
キメラ抗原受容体 Download PDFInfo
- Publication number
- WO2013051718A1 WO2013051718A1 PCT/JP2012/076034 JP2012076034W WO2013051718A1 WO 2013051718 A1 WO2013051718 A1 WO 2013051718A1 JP 2012076034 W JP2012076034 W JP 2012076034W WO 2013051718 A1 WO2013051718 A1 WO 2013051718A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- car
- cea
- cell
- cells
- domain
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/7051—T-cell receptor (TcR)-CD3 complex
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/70517—CD8
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/70521—CD28, CD152
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70578—NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70596—Molecules with a "CD"-designation not provided for elsewhere
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/03—Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/30—Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
Definitions
- the present invention relates to a nucleic acid encoding a chimeric antigen receptor and a cell expressing the chimeric antigen receptor, which are useful in the field of adoptive gene therapy for tumors.
- TCR T cell receptor
- a nucleic acid encoding a chimeric antigen receptor (CAR) having specificity for tumor cell surface antigen and T cell activation ability is introduced into T cells, and the resulting transgenic T.
- CAR chimeric antigen receptor
- a typical CAR structure is composed of a single chain antibody (scFv) that recognizes the surface antigen of tumor cells, a transmembrane domain, and an intracellular domain of TCR complex CD3 ⁇ that activates T cells. .
- the CAR having such a configuration is called a first generation CAR.
- the gene of the single chain antibody part is isolated from, for example, a hybridoma that produces a monoclonal antibody that recognizes the target antigen.
- CAR-expressing T cells directly recognize tumor cell surface antigens regardless of the expression of major histocompatibility antigen class I on tumor cells and simultaneously activate T cells to efficiently kill tumor cells. Is possible.
- a second generation CAR in which the intracellular domain of CD28, which is a T cell costimulatory molecule, is linked has been developed.
- a third-generation CAR in which intracellular domains derived from the tumor necrosis factor (TNF) receptor superfamily CD137 (4-1BB) or CD1 34 (OX40) are linked in tandem has also been developed.
- TNF tumor necrosis factor
- 4-1BB tumor necrosis factor receptor superfamily CD137
- OF40 CD1 34
- Non-Patent Document 2 Accordingly, there has been a need to find new costimulatory molecules that are effective when linked to CAR.
- GITR Glucocorticoid-induced tumor necrosis factor receptor
- GITRL GITR ligand
- An object of the present invention is to provide a nucleic acid encoding CAR that specifically binds to a target antigen and imparts high cytotoxic activity to the target cell to the cell, and a cell that expresses the CAR.
- the inventors of the present invention expresses that cells expressing CAR having the intracellular domain of GITR specifically bind to the target antigen and are higher than the target cell.
- the present invention has been completed by finding that it has a damaging activity.
- a nucleic acid encoding CAR including an extracellular domain that binds to an antigen, a transmembrane domain, and at least one intracellular domain, wherein the CAR includes the intracellular domain of GITR as the intracellular domain.
- the present invention provides a chimeric antigen receptor useful in the field of adoptive immunity gene therapy targeting an antigen such as a tumor antigen, a nucleic acid encoding the chimeric antigen receptor, and a cell expressing the chimeric antigen receptor.
- the chimeric antigen receptor of the present invention has a high expression level in the introduced cells, and the introduced cells show high cytotoxic activity.
- the anti-CEA (carcinoembryonic antigen) monoclonal antibody scFv is “CEA-scFv”
- the hinge domain is “CD8 hinge”
- the transmembrane domain of CD28 is “CD28 TM”
- the intracellular domain of CD28 is “CD28 ICD (IntraCellular Domain)”
- the CD3 ⁇ intracellular domain is represented as “CD3 ⁇ ”, the terminal repeat sequence as “LTR”, the splice donor sequence as “SD”, the splice acceptor sequence as “SA”, and the packaging signal sequence as “ ⁇ ”.
- LTR terminal repeat sequence
- SD the splice donor sequence
- SA the splice acceptor sequence
- packaging signal sequence as “ ⁇ ”.
- the scFv of the antibody that binds to the antigen is “scFv”, the spacer domain is “Spacer domain”, the transmembrane domain of CD28 is “CD28 TM”, the intracellular domain of CD28 is “CD28 ICD”, and the transmembrane domain of GITR is “GITR” TM ”, the GITR intracellular domain is indicated as“ GITR ICD ”, and the CD3 ⁇ intracellular domain is indicated as“ CD3 ⁇ ”.
- each CDR is (1) z, (2) 28z, (3) z28, (4) Gz, (5) zG, (6) 28Gz, (7) G28z, (8) zG28, (9) 28zG and (10) z28G are abbreviated.
- chimeric antigen receptor refers to a fusion protein comprising an extracellular domain that binds to an antigen, a transmembrane domain derived from a polypeptide different from the extracellular domain, and at least one intracellular domain. Indicates. “Chimeric antigen receptor (CAR)” is sometimes called “chimeric receptor”, “T-body”, “chimeric immune receptor (CIR)”.
- An “extracellular domain that binds to an antigen” refers to any oligo or polypeptide that can bind to an antigen
- an “intracellular domain” refers to a signal that results in the activation or inhibition of a biological process in the cell. By any oligo or polypeptide known to function as a transducing domain.
- tumor antigen means a biomolecule having antigenicity that is newly expressed as cells become cancerous. Detection of tumor antigens, such as immunological detection, is useful for distinguishing cancerous cells from their mother cells.
- the tumor antigen in the present invention is a tumor-specific antigen (antigen present only in tumor cells and not found in other normal cells), or a tumor-associated antigen (other organs / tissues or heterologous normal cells) Antigens, and antigens expressed during development and differentiation).
- GITR glucocorticoid-induced tumor necrosis factor receptor
- single chain antibody means a single chain polypeptide derived from an antibody that retains the ability to bind to an antigen.
- an antibody polypeptide formed by recombinant DNA technology and linking the Fv regions of immunoglobulin heavy chain (H chain) and light chain (L chain) fragments via a spacer sequence is exemplified.
- Various methods for producing scFv are known, US Pat. No. 4,694,778, Science, 242 and 423-442 (1988), Nature, 334, 54454 (1989). Science, Vol. 242, pages 1038-1041 (1988).
- domain refers to a region in a polypeptide that is folded (folded) into a specific structure independently of other regions.
- the CAR of the present invention includes an extracellular domain that binds to an antigen in order from the N-terminal side, a transmembrane domain, and at least one intracellular domain, and includes an intracellular domain of GITR as the intracellular domain.
- the CAR of the present invention has a high expression level in cells, the cell expressing the CAR of the present invention has a high cell growth rate and a high production amount of cytokines, and a high cytotoxicity to cells having antigens to which the CAR binds on the surface. Has activity.
- Extracellular domain The “extracellular domain that binds to an antigen” used in the CAR of the present invention is a domain containing an oligo or polypeptide that can bind to a target antigen.
- the binding domain, the ligand binding domain of the receptor is included. This domain confers specificity to cells that express CAR by binding to and interacting with antigens, such as those present on the cell surface.
- Extracellular domains particularly useful in the present invention include antibodies (H and L chains), TCR variable regions (TCR ⁇ , TCR ⁇ , TCR ⁇ , TCR ⁇ ), CD8 ⁇ , CD8 ⁇ , CD11A, CD11B, CD11C, CD18, CD29, CD49A , CD49B, CD49D, CD49E, CD49F, CD61, CD41, or CD51. It may be effective to use the whole of these proteins, but in particular, domains that bind to antigens and ligands, such as antibody Fab fragments, antibody variable regions [H chain V region (VH) and L chain V region ( VL)] or the extracellular domain of the receptor can be used. In particular, scFv can be preferably used.
- the extracellular domain of the CAR of the present invention may bind only to one type of antigen or ligand, or may be an extracellular domain that binds to two or more types of antigens or ligands.
- the present invention includes both a CAR including one extracellular domain and a CAR including two or more extracellular domains.
- the extracellular domain can be selected from an antibody that recognizes a target antigen or a molecule that interacts with the antigen.
- antigens include, for example, viral antigens, bacterial (especially infectious bacterial) antigens, parasitic antigens, cell surface markers on target cells (eg, tumor antigens) and surface molecules of immune-related cells associated with a particular disease state.
- retroviridae human immunodeficiency virus such as retroviridae, eg, HIV-1 and HIV-LP
- picornaviridae eg, poliovirus, eg, poliovirus, hepatitis A virus
- hepatitis C virus CAR Enterovirus, human coxsackie virus, rhinovirus, echovirus), rubella virus, coronavirus, vesicular stomatitis virus, rabies virus, ebola virus, parainfluenza virus, mumps virus, measles virus, respiratory syncytial virus, influenza virus, B Hepatitis B virus, parvovirus, adenoviridae, herpesviridae [Herpesviridae, eg type 1 and type 2 herpes simplex Binds to antigens derived from viruses (HSV), varicella-zoster virus, cytomegalovirus (CMV), herpes virus], Poxviridae (for example, variola virus, vaccinia virus, poxvirus), hepatitis C virus CAR is provided.
- HSV herpesviridae
- Herpesviridae eg type 1 and type 2 herpes simplex Binds to antigens
- Staphylococcus species Streptococcus species, Escherichia coli species, Pseudomonas species and Salmonella species CAR
- infectious bacteria such as Helicobacter pylori, Legionella pneumophilia, Mycobacterium sp.
- infectious bacteria such as Helicobacter pylori, Legionella pneumophilia, Mycobacterium sp.
- M. tuberculosis M. aviv.
- M. kansaii, M. gordonea Staphylococcus aureus
- Neisseria gonorhoea Neisseria meningitidis
- Listeria genocide Listeria genocide.
- Group streptococci B streptococci (Streptococcus agalactiae), Streptococcus pneumoniae (Streptococcus pneumoniae), CAR is provided that binds to antigens from tetanus (Clostridium tetani).
- 5T4 alpha5 ⁇ 1-integrin, 707-AP, AFP, ART-4, B7H4, BAGE, ⁇ -catenin / m, Bcr-abl, MN / C IX antigen, CA125, CAMEL, CAP -1, CASP-8, CD4, CD19, CD20, CD22, CD25, CDC27 / m, CD30, CD33, CD52, CD56, CD80, CDK4 / m, CEA, CT, Cyp-B, DAM, EGFR, ErbB3, ELF2M , EMMPRIN, EpCam, ETV6-AML1, G250, GAGE, GnT-V, Gp100, HAGE, HER-2 / new, HLA-A * 0201-R170I, HPV-E7, HSP70-2M, HST-2, hTERT (or hTRT), iCE, IGF-1R, L-2R, IL-5, KI
- Intracellular domain used in the present invention is a molecule capable of transmitting a signal into a cell when an extracellular domain existing in the same molecule binds (interacts) with an antigen. It is.
- the CAR of the present invention is characterized by including the intracellular domain of GITR as the intracellular domain.
- the intracellular domain of GITR includes its variants that have the same function.
- the term “mutant” means any variant containing one or several to several amino acid substitutions, deletions or additions, provided that the variant retains the original sequence. It retains substantially the same function.
- the intracellular domain of GITR used in the present invention is exemplified by an intracellular domain containing amino acid numbers 193 to 241 (SEQ ID NO: 28) of GITR (NCBI RefSeq: NP_004186.1).
- the CAR of the present invention can use an intracellular domain derived from another polypeptide in addition to the intracellular domain of GITR.
- intracellular domains include cytoplasmic sequences derived from TCR complexes and costimulatory molecules, as well as any variants having the same function of those sequences.
- the CAR of the present invention contains the primary cytoplasmic signaling sequence and / or the secondary cytoplasmic signaling sequence as an intracellular domain.
- the primary cytoplasmic signaling sequence regulates the primary activation of the TCR complex.
- Primary cytoplasmic signaling sequences that stimulate activation may include a signaling motif known as the immunoreceptor tyrosine-based activation motif (ITAM) [Nature, 338, 383-384 ( 1989)].
- ITAM immunoreceptor tyrosine-based activation motif
- primary cytoplasmic signaling sequences that act in a suppressive manner include a signaling motif known as an immunoreceptor tyrosine-based inhibitory motif (ITIM) [Journal of Immunology (J Immunol.), Vol. 162, No. 2, 897-902 (1999)].
- ITAM immunoreceptor tyrosine-based activation motif
- ITIM immunoreceptor tyrosine-based inhibitory motif
- an intracellular domain having ITAM or ITIM can be used.
- Intracellular domains having ITAM that can be used in the present invention include, for example, ITAM derived from CD3 ⁇ , FcR ⁇ , FcR ⁇ , CD3 ⁇ , CD3 ⁇ , CD3 ⁇ , CD5, CD22, CD79a, CD79b, and CD66d.
- amino acid numbers 51 to 164 (SEQ ID NO: 26) of CD3 ⁇ (NCBI RefSeq: NP_932170.1), amino acid numbers 45 to 86 of Fc ⁇ RI ⁇ (NCBI RefSeq: NP_004097.1), Fc ⁇ RI ⁇ (NCBI RefSeq: NP_000130.1) )
- Amino acid numbers 201 to 244 amino acid numbers 139 to 182 of CD3 ⁇ (NCBI RefSeq: NP — 0000643.1), amino acid numbers 128 to 171 of CD3 ⁇ (NCBI RefSeq: NP — 000723.1), and CD3 ⁇ (NCBI RefSeq: NP — 000724.1).
- the amino acid number based on the amino acid sequence information of NCBI RefSeq ID and GenBank described in the present specification is a number to which the precursor of each protein (including the signal peptide sequence and the like) is added as a full length.
- the intracellular domain containing the secondary cytoplasmic signaling sequence that can be used in the present invention includes, for example, sequences derived from CD2, CD4, CD5, CD8 ⁇ , CD8 ⁇ , CD28, CD134, CD137, ICOS, and CD154.
- amino acid numbers 236 to 351 of CD2 (NCBI RefSeq: NP_001758.2), amino acid numbers 421 to 458 of CD4 (NCBI RefSeq: NP_000000607.1), amino acid numbers 402 of CD5 (NCBI RefSeq: NP_055022.2) -495, amino acid number 207-235 of CD8 ⁇ (NCBI RefSeq: NP_001759.3), amino acid number 196-210 of CD8 ⁇ (GenBank: AAA356641), amino acid number 181-220 of CD28 (NCBI RefSeq: NP_006130.1) SEQ ID NO: 25), amino acid numbers 214 to 255 of CD137 (4-1BB, NCBI RefSeq: NP_001552.2), CD134 (OX40, NC) BI RefSeq: NP_003318.1) amino acid numbers 241 to 277, ICOS (NCBI RefSeq: NP_036224.1)
- the present invention includes a CAR including only the intracellular domain of GITR as an intracellular domain, and a CAR including one or a plurality of, for example, two or three intracellular domains in addition to the intracellular domain of GITR.
- a CAR including the intracellular domain of GITR and the intracellular domain of CD3 ⁇ the intracellular domain of GITR, the intracellular domain of CD3 ⁇ and the CAR including the intracellular domain of CD28 are exemplified.
- a CAR in which a plurality of intracellular domains of the same type are linked in tandem is also included in the present invention.
- One embodiment of the present invention is a CAR in which the intracellular domain of GITR is arranged on the C-terminal side of the intracellular domain of CD3 ⁇ . That is, it is a CAR comprising an intracellular domain linked in the order of the intracellular domain of CD3 ⁇ and the intracellular domain of GITR from the N-terminal side. In addition to this CAR, an intracellular domain of CD28 is added.
- a CAR containing an intracellular domain linked in the order of the intracellular domain of CD28, the intracellular domain of CD3 ⁇ , and the intracellular domain of GITR, N-terminal side A CAR comprising an intracellular domain linked in the order of the intracellular domain of CD3 ⁇ , the intracellular domain of GITR, and the intracellular domain of CD28 in this order is also included in the present invention.
- a CAR in which the intracellular domain of GITR is arranged on the C-terminal side is also included in the present invention.
- a CAR containing a plurality of intracellular domains can be linked by inserting an oligopeptide linker or a polypeptide linker between these intracellular domains.
- a linker consisting of 2 to 10 amino acids in length can be used.
- a linker having a glycine-serine continuous sequence can be used.
- the CAR of the present invention includes a transmembrane domain.
- the transmembrane domain may be derived from a natural polypeptide or may be artificially designed.
- a transmembrane domain derived from a natural polypeptide can be obtained from any membrane-bound or transmembrane protein.
- T cell receptor ⁇ , ⁇ chain, CD3 ⁇ chain, CD28, CD3 ⁇ , CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137, ICOS, CD154 The transmembrane domain of GITR can be used.
- transmembrane domains are polypeptides that mainly contain hydrophobic residues such as leucine and valine.
- phenylalanine, tryptophan and valine triplets are preferably found at each end of the synthetic transmembrane domain.
- a short oligopeptide linker or polypeptide linker for example a linker consisting of 2 to 10 amino acid sequences in length, can be placed between the transmembrane domain and the intracellular domain of (b) above.
- a linker sequence having a glycine-serine continuous sequence can be used.
- a transmembrane domain having a sequence of amino acid numbers 153 to 180 (SEQ ID NO: 24) of CD28 (NCBI RefSeq: NP_006130.1) can be used.
- a transmembrane domain having a sequence of amino acid numbers 162 to 183 (SEQ ID NO: 27) of GITR (NCBI RefSeq: NP_004186.1) can be used.
- the CAR of the present invention can arrange a spacer domain between the extracellular domain and the transmembrane domain, or between the intracellular domain and the transmembrane domain.
- the spacer domain means any oligopeptide or polypeptide that serves to link the transmembrane domain and extracellular domain and / or the transmembrane domain and intracellular domain.
- the spacer domain comprises up to 300 amino acids, preferably 10-100 amino acids, most preferably 25-50 amino acids.
- the spacer domain is preferably a sequence that promotes the binding of CAR to an antigen and enhances signal transduction into the cell.
- Amino acids that are expected to promote binding are exemplified by cysteine, charged amino acids or amino acids such as serine or threonine within potential glycosylation sites and can be used as amino acids that constitute the spacer domain.
- the spacer domains are amino acid numbers 118 to 178 (SEQ ID NO: 23) which are hinge regions of CD8 ⁇ (NCBI RefSeq: NP_001759.3), amino acid numbers 135 to 195 of CD8 ⁇ (GenBank: AAA3565641), CD4 (NCBI RefSeq: NP — 000607). .1) amino acid numbers 315 to 396 or CD28 (NCBI RefSeq: NP — 006130.1) amino acid numbers 137 to 152 may be used in whole or in part.
- a part of the constant region of the antibody H chain or L chain (CH1 region or CL region, for example, a peptide having the amino acid sequence set forth in SEQ ID NO: 34) can also be used as the spacer domain. Furthermore, it may be an artificially synthesized sequence.
- the CAR of the present invention can be designed to be a multimer, particularly a dimer.
- CAR is multimerized (dimerized) by inserting cysteine into the spacer domain and / or transmembrane domain.
- the CAR of the present invention can link a signal peptide sequence to the N-terminus.
- the signal peptide sequence is present at the N-terminus of many secreted proteins and membrane proteins and has a length of 15 to 30 amino acids. Since many of the protein molecules exemplified above as intracellular domains have a signal peptide sequence, these signal peptides can be used as the signal peptide of the CAR of the present invention.
- nucleic acid encoding CAR The present invention provides a nucleic acid encoding CAR described in (1) above.
- the nucleic acid encoding CAR can be easily prepared from the identified CAR amino acid sequence by a conventional method. It is possible to obtain a base sequence encoding an amino acid sequence from NCBI RefSeq ID indicating the amino acid sequence of each domain described above or an Access number of GenBank, and perform standard molecular biological and / or chemical procedures. Can be used to produce the nucleic acids of the present invention. For example, a nucleic acid can be synthesized based on these base sequences, and a nucleic acid of the present invention can be prepared by combining DNA fragments obtained from a cDNA library using the polymerase chain reaction (PCR). Can do.
- PCR polymerase chain reaction
- the nucleic acid of the present invention can be linked to another nucleic acid so that it can be expressed under the control of an appropriate promoter.
- an appropriate promoter any of those that constitutively promote expression and those that are induced by drugs or the like (for example, tetracycline or doxorubicin) can be used.
- a promoter or other regulatory element cooperating with the transcription start site for example, a nucleic acid containing an enhancer sequence or terminator sequence may be linked.
- a gene that can serve as a marker for confirming the expression of the nucleic acid may be incorporated. .
- the present invention provides a composition comprising the nucleic acid of the present invention as an active ingredient together with a pharmaceutically acceptable excipient.
- suitable pharmaceutically acceptable excipients include, for example, phosphate buffered saline (eg, 0.01 M phosphate, 0.138 M NaCl, 0.0027 M KCl). PH 7.4), aqueous solutions containing mineral salts such as hydrochloride, hydrobromide, phosphate, sulfate, physiological saline, solutions such as glycol or ethanol, and acetate, propionate, malon Salts of organic acids such as acid salts and benzoates.
- mineral salts such as hydrochloride, hydrobromide, phosphate, sulfate, physiological saline, solutions such as glycol or ethanol, and acetate, propionate, malon Salts of organic acids such as acid salts and benzoates.
- Adjuvants such as wetting or emulsifying agents and pH buffering agents can also be used.
- pharmaceutically acceptable excipients those described in Remington's Pharmaceutical Sciences (Mack Pub. Co., NJ 1991) (part of which is incorporated herein by reference) are used as appropriate. it can.
- the composition can be in a known form suitable for parenteral administration, eg, injection or infusion.
- formulation adjuvants such as suspending agents, preservatives, stabilizers and / or dispersants, preservatives can be used to extend the shelf life during storage.
- the composition may be in dry form for reconstitution with a suitable sterile liquid prior to use.
- DNA can be coated on particles such as microscopic gold particles.
- the nucleic acid of the present invention is a substance that promotes the transfer of the nucleic acid to the cell in addition to the above-mentioned excipients, for example, a nucleic acid such as a liposome or cationic lipid You may combine with the reagent for introduction.
- a vector carrying the nucleic acid of the present invention is also useful.
- a composition in a form suitable for administration to a living body, which contains the nucleic acid of the present invention held in an appropriate vector is suitable for in vivo gene therapy.
- composition containing the nucleic acid of the present invention as an active ingredient depends on the antigen to which the CAR encoded by the nucleic acid binds.
- cancer blood cancer (leukemia), solid tumor, etc.] inflammatory disease / self Administered to treat immune diseases (asthma, eczema), infectious diseases caused by hepatitis, viruses such as influenza and HIV, bacteria, and fungi, such as tuberculosis, MRSA, VRE, and deep mycosis can do.
- a composition comprising the nucleic acid of the present invention as an active ingredient is not limited, but can be administered parenterally, for example, by injection or infusion, intradermal, intramuscular, subcutaneous, intraperitoneal, intranasal, intraarterial, intravenous. Intratumoral, imported lymphatic vessels, etc.
- Method for producing CAR-expressing cell comprises the step of introducing the nucleic acid encoding CAR described in (2) into a cell. .
- This step is performed ex vivo.
- it can be produced by transforming cells in vitro using a viral vector or non-viral vector containing the nucleic acid of the present invention.
- mammals such as cells derived from humans or cells derived from non-human mammals such as monkeys, mice, rats, pigs, cows, and dogs can be used.
- non-human mammals such as monkeys, mice, rats, pigs, cows, and dogs
- Arbitrary cells can be used.
- cells collected, isolated, purified and derived from blood peripheral blood, umbilical cord blood, etc.
- body fluids such as bone marrow, tissues or organs can be used.
- PBMC Peripheral blood mononuclear cells
- immune cells dendritic cells, B cells, hematopoietic stem cells, macrophages, monocytes, NK cells or blood cells (neutrophils, basophils)]
- cord blood mononuclear cells Fibroblasts, preadipocytes, hepatocytes, skin keratinocytes, mesenchymal stem cells, adipose stem cells, various cancer cell lines or neural stem cells
- Fibroblasts preadipocytes
- hepatocytes hepatocytes
- skin keratinocytes mesenchymal stem cells
- adipose stem cells various cancer cell lines or neural stem cells
- T cells T cell progenitor cells (hematopoietic stem cells, lymphocyte progenitor cells, etc.) or cell populations containing these.
- T cells include CD8 positive T cells, CD4 positive T cells, regulatory T cells, cytotoxic T cells, or tumor infiltrating lymphocytes.
- Cell populations containing T cells and T cell progenitor cells include PBMC.
- the cells may be collected from a living body, expanded and cultured, or established as a cell line. When it is desired to transplant a cell expressing the produced CAR or a cell differentiated from the cell into a living body, it is preferable to introduce a nucleic acid into the cell itself or a cell collected from the same kind of living body.
- the nucleic acid encoding the CAR of the present invention can be inserted into a vector, and this vector can be introduced into cells.
- retrovirus vectors including oncoretrovirus vectors, lentivirus vectors, pseudotype vectors
- adenovirus vectors including oncoretrovirus vectors, lentivirus vectors, pseudotype vectors
- AAV adeno-associated virus
- simian virus vectors vaccinia virus vectors or Sendai virus vectors
- Epstein-Bar Viral vectors such as viral (EBV) vectors and HSV vectors
- ESV Epstein-Bar Viral vectors
- those lacking replication ability are preferable so that they cannot self-replicate in infected cells.
- liposomes and WO 96/10038 pamphlet, WO 97/18185 pamphlet, WO 97/25329 pamphlet, WO 97/30170 pamphlet and WO 97/31934 pamphlet (whichever In addition, non-viral vectors can also be used in the present invention in combination with condensing agents such as cationic lipids described in the specification by reference).
- the nucleic acid of the present invention can be introduced into cells by calcium phosphate transfection, DEAE-dextran, electroporation, or particle bombardment.
- retroviral particles when a retroviral vector is used, an appropriate packaging cell can be selected based on the LTR sequence and the packaging signal sequence possessed by the vector, and retroviral particles can be prepared and used. It can.
- PG13 ATCC CRL-10686
- PA317 ATCC CRL-9078
- GP + E-86 and GP + envAm-12 US Pat. No. 5,278,056
- Psi-Crip [American Academy of Sciences, Vol. 85, No. 6460-6464 (1988)] is exemplified.
- Retroviral particles can also be produced using 293 cells or 293T cells with high transfection efficiency. Retrovirus vectors produced based on many types of retroviruses and packaging cells that can be used for packaging the vectors are widely available from various companies.
- a functional substance that improves the introduction efficiency can also be used [for example, WO 95/26200 pamphlet, WO 00/01836 pamphlet (both of which are incorporated herein by reference) As part of the book)].
- substances that improve the introduction efficiency include substances having an activity of binding to a viral vector, such as fibronectin or fibronectin fragments.
- a fibronectin fragment having a heparin binding site for example, a fragment commercially available as RetroNectin (registered trademark, CH-296, manufactured by Takara Bio Inc.) can be used.
- RetroNectin registered trademark, CH-296, manufactured by Takara Bio Inc.
- polybrene, fibroblast growth factor, type V collagen, polylysine, or DEAE-dextran which is a synthetic polycation having an effect of improving the infection efficiency of retrovirus cells, can be used.
- the functional substance is immobilized on a suitable solid phase, for example, a container (plate, petri dish, flask, bag or the like) used for cell culture or a carrier (microbeads or the like).
- a suitable solid phase for example, a container (plate, petri dish, flask, bag or the like) used for cell culture or a carrier (microbeads or the like).
- a container plate, petri dish, flask, bag or the like
- a carrier microbeads or the like
- the cell expressing the CAR of the present invention is a cell into which the nucleic acid encoding the CAR of (2) has been introduced and expressed by the production method of (3).
- the cell of the present invention is activated by transmitting a signal into the cell by binding to a specific antigen via CAR.
- the activation of cells that express CAR varies depending on the type of host cell and the intracellular domain of CAR. For example, release of cytokines, improvement of cell proliferation rate, changes in cell surface molecules, etc. can be confirmed as indicators. . For example, the release of cytotoxic cytokines (tumor necrosis factor, lymphotoxin, etc.) from activated cells results in the destruction of target cells that express the antigen.
- cytotoxic cytokines tumor necrosis factor, lymphotoxin, etc.
- other immune cells such as B cells, dendritic cells, NK cells, macrophages and the like are stimulated by cytokine release and changes in cell surface molecules.
- Cells expressing CAR can be used as a therapeutic agent for diseases.
- the therapeutic agent contains a cell expressing CAR as an active ingredient, and may further contain an appropriate excipient.
- the excipient include the above-described pharmaceutically acceptable excipients, various cell culture media, isotonic saline and the like described for the composition containing the nucleic acid of the present invention as an active ingredient.
- the disease to which a cell expressing CAR is administered is not particularly limited as long as it is a disease sensitive to the cell.
- cancer blood cancer (leukemia), solid tumor etc.
- Antigens possessed by cells that are desired to be reduced or eliminated in the above diseases, that is, cells expressing the CAR of the present invention that bind to tumor antigens, viral antigens, bacterial antigens, etc. are administered for the treatment of these diseases .
- the cell of the present invention can also be used for donor lymphocyte infusion for the purpose of bone marrow transplantation, prevention of infection after irradiation, and remission of relapsed leukemia.
- a therapeutic agent containing CAR-expressing cells as an active ingredient is not limited, but is administered parenterally, for example, by injection or infusion, intradermal, intramuscular, subcutaneous, intraperitoneal, intranasal, intraarterial, intravenous It can be administered into the body, into a tumor, or into an imported lymphatic vessel.
- Example 1 Preparation of Anti-CEA-CAR Expression Vector First, PCR was performed using pMSCVneo (Clontech) as a template with the 3MSCV5 primer described in SEQ ID NO: 1 and the 3MSCV3 primer described in SEQ ID NO: 2 to amplify the MSCV3 ′ LTR site. The obtained amplified fragment was cleaved with restriction enzymes XhoI and EcoRI, and the pM vector [pM vector described in Gene Therapy Vol. 7, pages 797-804 (2000)] on the XhoI-EcoRI site. Cloning to prepare pMS-MC.
- pMS3-MC is a 5 ′ LTR derived from MMLV in order from the 5 ′ end, SD derived from MMLV, ⁇ derived from MMLV, SA derived from human EF1 ⁇ gene, U3 region is derived from MSCV, and the remaining region is 3 ′ LTR derived from MMLV. including.
- an artificially synthesized gene having the nucleotide sequence shown in SEQ ID NO: 3 (indicated as anti-CEA-28z-CAR in FIG. 1A) and an artificially synthesized gene having the nucleotide sequence shown in SEQ ID NO: 4 (FIG. In 1B, anti-CEA-z28-CAR) was prepared.
- These artificially synthesized genes include the anti-CEA monoclonal antibody scFv (amino acid sequence is described in SEQ ID NO: 22) that binds to the cancer antigen CEA (CD8 ⁇ chain hinge domain).
- CD28 transmembrane domain having the amino acid sequence set forth in SEQ ID NO: 24, a CD28 intracellular domain having the amino acid sequence set forth in SEQ ID NO: 25, and a CD3 ⁇ intracellular domain having the amino acid sequence set forth in SEQ ID NO: 26 Encodes a chimeric protein.
- the scFv of the anti-CEA monoclonal antibody is “CEA-scFv”
- the hinge domain is “CD8 hinge”
- the transmembrane domain is “CD28 TM”
- intracellular domain of CD28 is “CD28 ICD (IntraCellular Domain)”, CD3 ⁇ .
- the intracellular domain is represented as “CD3 ⁇ ”, the terminal repeat sequence as “LTR”, the splice donor sequence as “SD”, the splice acceptor sequence as “SA”, and the packaging signal sequence as “ ⁇ ”.
- a nucleic acid fragment containing these artificially synthesized genes was cloned into a pMS3-MC vector digested with BglII-BamHI, and pMS3 expressing a CAR in which the CD28 intracellular domain is located N-terminal to the CD3 ⁇ intracellular domain
- a CEA-28z-CAR vector was prepared.
- a pMS3-CEA-z28-CAR vector expressing a CAR in which the CD3 ⁇ intracellular domain is located N-terminal to the CD28 intracellular domain was prepared.
- Example 2 Preparation of CAR expression vector carrying GITR gene An artificially synthesized gene shown in SEQ ID NO: 5 was prepared. This artificially synthesized gene encodes a GITR transmembrane domain having the amino acid sequence set forth in SEQ ID NO: 27 and a GITR intracellular domain having the amino acid sequence set forth in SEQ ID NO: 28. Using this artificially synthesized gene as a template, PCR was performed using the 28TM-GF primer shown in SEQ ID NO: 6 and the Gz-R primer shown in SEQ ID NO: 7, and the amplified DNA fragment A was obtained as z PCR was performed using the GF primer and the G-MC-R primer shown in SEQ ID NO: 9 to obtain the amplified DNA fragment B.
- the 28SD-GF primer shown in SEQ ID NO: 10 and the Gz shown in SEQ ID NO: 7 Amplification DNA fragment C was obtained by PCR using -R primer, and amplified DNA fragment D was obtained by performing PCR using hinge-GF primer shown in SEQ ID NO: 11 and G-28SD-R primer shown in SEQ ID NO: 12.
- PCR was performed using the 28TM-R primer shown in SEQ ID NO: 14 and the z-F primer shown in SEQ ID NO: 15 using the pMS3-CEA-28z-CAR vector prepared in Example 1 as a template.
- the amplified DNA fragment A was cloned into the amplification product thus obtained using In-Fusion Advantage PCR Cloning Kit (Clontech) to prepare a pMS3-CEA-Gz-CAR vector.
- PCR was performed using the pMS3-CEA-z28-CAR vector prepared in Example 1 as a template and the z-R primer shown in SEQ ID NO: 16 and the END-MC-F primer shown in SEQ ID NO: 17. .
- the amplified DNA fragment B was cloned into the amplification product thus obtained to prepare a pMS3-CEA-zG-CAR vector.
- the amino acid sequence of CEA-zG-CAR expressed by this vector is shown in SEQ ID NO: 29.
- PCR was performed using the pSD3-CEA-28z-CAR vector as a template and the 28SD-R primer shown in SEQ ID NO: 18 and the z-F primer shown in SEQ ID NO: 15.
- the amplified DNA fragment C was cloned into the amplification product thus obtained to prepare a pMS3-CEA-28Gz-CAR vector.
- PCR was performed using the pMS3-CEA-28z-CAR vector as a template and the hinge-R primer shown in SEQ ID NO: 19 and the 28SD-F primer shown in SEQ ID NO: 20.
- the amplified DNA fragment D was cloned into the amplification product thus obtained to prepare a pMS3-CEA-G28z-CAR vector.
- PCR was performed using the pMS3-CEA-z28-CAR vector as a template and the z-R primer shown in SEQ ID NO: 16 and the 28SD-F2 primer shown in SEQ ID NO: 21.
- the amplified DNA fragment E was cloned into the amplification product thus obtained to prepare a pMS3-CEA-zG28-CAR vector.
- the amino acid sequence of CEA-zG28-CAR expressed by this vector is shown in SEQ ID NO: 30.
- PCR was performed using the pMS3-CEA-28z-CAR vector as a template and the z-R primer shown in SEQ ID NO: 16 and the END-MC-F primer shown in SEQ ID NO: 17.
- the amplified DNA fragment B was cloned into the amplification product thus obtained to prepare a pMS3-CEA-28zG-CAR vector.
- the structure of CAR expressed by each prepared vector corresponds to structures (2) to (9) shown in FIG.
- the pMS3-CEA-28z-CAR vector is (2) 28z
- the pMS3-CEA-z28-CAR vector is (3) z28
- the pMS3-CEA-Gz-CAR vector is (4) Gz
- the CAR vector is (5) zG
- the pMS3-CEA-28Gz-CAR vector is (6) 28Gz
- the pMS3-CEA-G28z-CAR vector is (7) G28z
- the pMS3-CEA-zG28-CAR vector is (8) zG28
- the pMS3-CEA-28zG-CAR vector (9) expresses a CAR having the structure of 28zG.
- Example 3 Preparation of Retrovirus Solution Escherichia coli JM109 was transformed with the plasmid vectors prepared in Examples 1 and 2 to obtain transformants. Plasmid DNAs retained by these transformants were purified using QIAGEN Plasmid Midi Kit (manufactured by Qiagen) and subjected to the following operations as transfection DNA. Each of the prepared DNAs for transfection and the pGP vector and pEeco vector contained in Retrovirus Packaging Kit Eco (manufactured by Takara Bio Inc.) were each transfected into 293T cells. This operation was performed according to the product protocol of the kit.
- Retrovirus Packaging Kit Eco manufactured by Takara Bio Inc.
- a supernatant containing ecotropic virus was obtained from each of the transduced cells obtained, and filtered through a 0.45 ⁇ m filter (Milex HV, manufactured by Millipore). Using this supernatant, ecotropic virus was infected to PG13 cells (ATCC CRL-10686) by a method using polybrene. The culture supernatant of the obtained cells was collected and filtered through a 0.45 ⁇ m filter to obtain an anti-CEA-CAR expression retrovirus solution.
- Example 4 Infection of anti-CEA-CAR retrovirus to human PBMC 1
- retronectin registered trademark, Takara Bio
- PBMC peripheral blood mononuclear cells isolated from human peripheral blood collected with informed consent.
- anti-CEA-CAR-expressing PBMCs were prepared respectively by a standard method using the same method.
- Three groups of PBMCs were prepared for each retrovirus solution, and infection was carried out using retrovirus solutions diluted in three stages of 2-fold, 4-fold and 8-fold.
- Genomic DNA was extracted from cells 5 days after the second virus infection using FastPure DNA Kit (Takara Bio Inc.), Provide Copy Number Detection Prime Set, Human (Takara Bio Inc.) and Cycle PCR Core Kit (Takara Bio Inc.). was used to measure the number of retrovirus copies integrated into the genome.
- CEA protein labeled with biotin-labeling kit-NH 2 was added to cells 3 days after the second virus infection, and then streptavidin-PE (phycoerythrin: manufactured by Becton Dickinson) ) And FITC-labeled anti-Human CD8 antibody (Becton Dickinson).
- streptavidin-PE phycoerythrin: manufactured by Becton Dickinson
- FITC-labeled anti-Human CD8 antibody Becton Dickinson
- the average fluorescence intensity reflects the expression level of anti-CEA-CAR in anti-CEA-CAR positive cells. As a result, it was confirmed that the cell surface CAR was positive in any cell. In particular, (5) CEA-zG-infected cells had higher anti-CEA-CAR positive rates and average fluorescence intensity than (4) CEA-Gz-infected cells. For cells infected with (2) CEA-28z, (3) CEA-z28, and (5) CEA-zG, the anti-CEA-CAR positive rate (vertical axis) and the number of retroviral copies integrated into the genome are shown in FIG. Fig.
- FIG. 4 shows the relationship between the horizontal axis and the average fluorescence intensity of PE derived from cells positive for biotin-labeled CEA protein (vertical axis) and the number of retrovirus copies incorporated into the genome (horizontal axis). Indicates.
- PBMC introduced with anti-CEA-zG-CAR [(5) CEA-zG] is compared with other anti-CEA-CAR-introduced PBMC having no GITR intracellular domain. It was found that a high anti-CEA-CAR positive rate was obtained and that the expression level of anti-CEA-CAR was also high.
- Example 5 Infection of anti-CEA-CAR retrovirus to human PBMC 2 Among the anti-CEA-CAR expression retrovirus solution prepared in Example 3, (2) CEA-28z was diluted 4-fold, 6-fold or 8-fold into human PBMC collected with informed consent. (5 ) CEA-zG diluted into stock solution, 2-fold, 4-fold dilution, (9) CEA-28zG or (8) CEA-zG28 diluted 2-fold, 4-fold, 8-fold, and RetroNectin (registered trademark, manufactured by Takara Bio Inc.) Anti-CEA-CAR-expressing PBMCs were each prepared by infection twice using the standard method used.
- FIG. 5 shows the positive rate of anti-CEA-CAR
- FIG. 6 shows the PE average fluorescence intensity of the positive cells.
- the cells infected with (5) CEA-zG, (9) CEA-28zG and (8) zG28 are compared to (2) cells infected with CEA-28z, It was found that the proportion of cells expressing anti-CEA-CAR was high and the expression level of anti-CEA-CAR was also high.
- CEA-positive cell line MKN-45 and CEA-negative cell line MKN-1 both available from RIKEN BioResource Center
- Calsein-AM manufactured by Dojindo
- Cytotoxic activity (%) 100 ⁇ (measured value of each well ⁇ measured value of low control) / (measured value of high control ⁇ measured value of low control)
- CEA positive cell line MKN-45 cytotoxic activity by PBMC introduced with anti-CEA-CAR was observed in CEA positive cell line MKN-45.
- CEA-zG-introduced PBMC (5) CEA-zG-introduced PBMC, (9) CEA-28zG-introduced PBMC, and (8) CEA-zG28-introduced PBMC have strong cytotoxic activity, and CAR having the intracellular domain of GITR treats cancer. Have been shown to be useful.
- Example 6 Reconstruction of CEA-zG28 and preparation of retrovirus solution Since a frameshift was found in the coding region of the CD28 intracellular domain of CEA-zG28 used in Example 5, plasmid DNA with this frameshift repaired was used. It produced and refine
- Example 7 Infection of anti-CEA-CAR retroviral vector to human PBMC 3
- Human PBMC collected with informed consent were diluted with (8) CEA-zG28_r and (9) CEA-28zG prepared in Example 6 as stock solutions, diluted 2-fold, 4-fold, and 8-fold.
- the number of virus copies integrated in the genome after infection with human PBMC, the number of virus copies integrated in the genome, the proportion of cells positive for anti-CEA-CAR in CD8-positive cells, and the average fluorescence intensity of PE were measured.
- FIG. 8 shows the positive rate of anti-CEA-CAR with respect to the copy number
- FIG. 9 shows the PE average fluorescence intensity with respect to the copy number.
- (8) cells infected with CEA-zG28_r were confirmed to express anti-CEA-CAR.
- each anti-CEA-CAR expressing cell having a relatively close retrovirus copy number 6 days after the second virus infection [(9) CEA-28zG: 2.22 copies, (8) CEA-zG28_r: 2.12 copies)
- the cells were collected, and the cytotoxic activity against CEA positive cell line MKN-45 and CEA negative cell line MKN-1 was measured in the same manner as in Example 5. The result is shown in FIG. As shown in FIG. 10, in the CEA positive cell line MKN-45, the same cytotoxic activity was observed in any PBMC into which any anti-CEA-CAR was introduced.
- Example 8 Infection of anti-CEA-CAR retroviral vector to human PBMC 4 (5) CEA-zG and (9) CEA-28zG prepared in Example 3 were diluted in stock solution, 2-fold, 4-fold dilution, 8-fold dilution, and (2) CEA-28z was diluted in stock solution, 2-fold, 4-fold. Diluted solutions diluted 8 times and 16 times were prepared. Human PBMCs collected with informed consent were infected twice by a standard method using these retroviral vector dilutions and RetroNectin (registered trademark) to prepare anti-CEA-CAR-expressing PBMCs, respectively. .
- FIG. 11 shows the anti-CEA-CAR positive rate with respect to the copy number
- FIG. 12 shows the PE average fluorescence intensity with respect to the copy number.
- the ratio of cells expressing anti-CEA-CAR to the copy number is the same, and the average fluorescence intensity of PE relative to the copy number, ie, the expression level is (5) CEA-zG It was the highest.
- cells were collected 6 days after the second virus infection, and intracellular cytokines were stained on a 96-well plate as follows.
- a suspension obtained by suspending the anti-CEA-CAR-introduced PBMC in a medium containing the intracellular transport inhibitor Brefeldin A (manufactured by Sigma) to 1.0 ⁇ 10 6 cells / mL was added to each well of the plate. 100 ⁇ L was added. Further, 100 ⁇ L of a 1.0 ⁇ 10 6 cells / mL suspension of CEA positive cell line MKN-45 was added and co-cultured for 5 hours.
- FIG. 13 shows the relationship of the IFN ⁇ -producing cell rate (vertical axis) to the retrovirus copy number (horizontal axis)
- FIG. 14 shows the relationship of the PE average fluorescence intensity (vertical axis) to the retrovirus copy number (horizontal axis). Indicates.
- the IFN ⁇ production rate is lower in (9) CEA-28zG than in (2) CEA-28z, but as shown in FIG. 14, (9) the amount of IFN ⁇ produced by CEA-28zG is (2) It was confirmed to be equivalent to CEA-28z. That is, the amount of IFN ⁇ produced in IFN ⁇ -producing cells was higher in (9) CEA-28zG-introduced cells.
- FIG. 15 shows the relationship of the TNF ⁇ -producing cell rate (vertical axis) to the retrovirus copy number (horizontal axis)
- FIG. 16 shows the APC average fluorescence intensity (vertical axis) against the retrovirus copy number (horizontal axis). (Axis) relationship.
- the TNF ⁇ production rate is lower than (9) CEA-28zG than (2) CEA-28z
- the amount of TNF ⁇ produced is (9) CEA-28zG Exceeded. That is, similar to IFN ⁇ , the amount of IFN ⁇ produced in TNF ⁇ -producing cells was high in (9) CEA-28zG-introduced cells. From the above, it was shown that cells with enhanced cytokine production ability can be produced by further mounting the intracellular domain of GITR on CAR having the intracellular domain of CD28.
- Example 9 Production of Anti-EGFR-CAR Expression Retroviral Vector An artificially synthesized gene having the base sequence shown in SEQ ID NO: 31 was produced.
- This artificially synthesized gene is EGFR-z, which is anti-EGFR-CAR, that is, a human IgG leader sequence having the amino acid sequence set forth in SEQ ID NO: 32, a cancer antigen EGFR (Epidmal Growth Factor having the amino acid sequence set forth in SEQ ID NO: 33) ScFv of anti-EGFR monoclonal antibody that binds to (Receptor), human IgG-LC (light chain constant region) domain having the amino acid sequence set forth in SEQ ID NO: 34, CD28 transmembrane domain having the amino acid sequence set forth in SEQ ID NO: 24, sequence It encodes one molecule of a chimeric protein consisting of the CD3 ⁇ intracellular domain having the amino acid sequence set forth in No.
- a nucleic acid fragment containing this artificially synthesized gene was cloned into a pMS3-MC vector digested with NotI-XhoI, and had only a CD3 ⁇ intracellular domain as an intracellular domain.
- pMS3-EGFR-LC expressing EGFR-z -Z-CAR was prepared.
- the CAR structure corresponds to (1) in FIG.
- Example 10 Production of Anti-EGFR-CAR Expression Vector Equipped with GITR Gene Based on pMS3-EGFR-LC-z-CAR produced in Example 9, it has the amino acid sequence shown in SEQ ID NO: 35 (2) EGFR- PMS3-EGFR-LC-28z-CAR expressing 28z was generated. Similarly, (5) pMS3-EGFR-LC-zG-CAR expressing EGFR-zG having the amino acid sequence set forth in SEQ ID NO: 36, and (9) EGFR-28zG having the amino acid sequence set forth in SEQ ID NO: 37.
- Example 11 Preparation of Retrovirus Solution A virus solution was prepared from the plasmid vectors prepared in Examples 9 and 10 in the same manner as in Example 3. (1) EGFR-z, (2) EGFR-28z, (5) EGFR-zG, (9) EGFR-28zG, (10) EGFR-z28G, (7) EGFR- It was named G28z.
- Example 12 Infection of Anti-EGFR-CAR Retroviral Vector to Human PBMC
- Each virus solution prepared in Example 11 was added to human PBMC collected with informed consent, and the stock solution, 2 times, 4 times, 8 times After dilution, infection was carried out twice by a standard method using RetroNectin (registered trademark) to produce anti-EGFR-CAR-expressing PBMC.
- RetroNectin registered trademark
- Recombinant Human EGFR manufactured by Sino Biological
- a biotin-labeled anti-His-tag antibody manufactured by Miltenyi Biotech
- FIG. 17 shows the positive cell ratio of anti-EGFR-CAR with respect to the retrovirus copy number
- FIG. 18 shows the average PE fluorescence intensity with respect to the retrovirus copy number. As shown in FIGS. 17 and 18, the expression of all anti-EGFR-CARs was confirmed.
- Example 8 cells were collected 6 days after the second virus infection, and intracellular cytokines were stained in the same manner as in Example 8 except that the EGFR positive cell line Hela was used. Furthermore, in addition to IFN ⁇ and TNF ⁇ , staining of IL-2 with FITC-labeled anti-Human IL-2 (Becton Dickinson) was performed. Using a flow cytometer, the proportion of each cytokine-producing cell and the average fluorescence intensity of the fluorescent dye were measured for the stained cells. Average fluorescence intensity reflects the amount of IL-2, IFN ⁇ and TNF ⁇ intracellular cytokines in anti-CEA-CAR positive cells.
- FIG. 19 shows the relationship of each cytokine-producing cell rate (vertical axis) to the retrovirus copy number (horizontal axis), and FIG. 20 shows the average fluorescence intensity (respective cytokine production amount) with respect to the retrovirus copy number (horizontal axis).
- the (vertical axis) relationship is shown. As shown in FIGS. 19 and 20, it was confirmed that CAR loaded with the intracellular domain of GITR tends to have a high cytokine production amount relative to the CAR expression amount.
- a CAR that specifically binds to a target antigen and imparts high cytotoxic activity to the target cell to the cell, a nucleic acid encoding the CAR, and a cell that expresses the CAR are provided.
- These CARs, nucleic acids, and cells are useful in the field of adoptive immunity gene therapy targeting antigens such as tumor antigens.
- SEQ ID NO: 1 3MSCV5 primer SEQ ID NO: 2: 3MSCV3 primer SEQ ID NO: 3: Anti CEA-28z-CAR fragment sequence SEQ ID NO: 4: Anti CEA-z28-CAR fragment sequence SEQ ID NO: 5: GITR transmembrane region and cytoplasmic domain coding sequence SEQ ID NO: 6: 28TM-GF primer SEQ ID NO: 7: GzR primer SEQ ID NO: 8: zGF primer SEQ ID NO: 9: G-MC-R primer SEQ ID NO: 10: 28SD-GF primer SEQ ID NO: 11: hinge-GF primer SEQ ID NO: 12: G-28SD-R primer SEQ ID NO: 13: G-28SD-R2 primer SEQ ID NO: 14: 28TM-R primer SEQ ID NO: 15: zF primer SEQ ID NO: 16: zR primer SEQ ID NO: 17: END-MC-F primer SEQ ID NO: 18: 28SD-R primer SEQ ID NO: 19: hinge-R primer
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Immunology (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Cell Biology (AREA)
- Gastroenterology & Hepatology (AREA)
- Toxicology (AREA)
- Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
[1] 抗原に結合する細胞外ドメイン、膜貫通ドメイン及び少なくとも1つの細胞内ドメインを含むCARをコードする核酸であって、細胞内ドメインとしてGITRの細胞内ドメインを含むことを特徴とするCARをコードする核酸、
[2] 抗原が腫瘍抗原である[1]記載のCARをコードする核酸、
[3] 抗原に結合する細胞外ドメインが抗原に結合する抗体の単鎖抗体である[1]記載のCARをコードする核酸、
[4] 細胞内ドメインとして更にCD3ζ細胞内ドメインを含む[1]記載のCARをコードする核酸、
[5] GITRの細胞内ドメインがCD3ζ細胞内ドメインよりC末端側に配置される[4]記載のCARをコードする核酸、
[6] 抗原に結合する細胞外ドメイン、膜貫通ドメイン及び少なくとも1つの細胞内ドメインを含むCARであって、細胞内ドメインとしてGITRの細胞内ドメインを含むことを特徴とするCAR、
[7] 抗原が腫瘍抗原である[6]記載のCAR、
[8] 抗原に結合する細胞外ドメインが抗原に結合する抗体の単鎖抗体である[6]記載のCAR、
[9] 細胞内ドメインとして更にCD3ζ細胞内ドメインを含む[6]記載のCAR、
[10] GITRの細胞内ドメインがCD3ζ細胞内ドメインよりC末端側に配置される[9]記載のCAR、
[11] [1]~[5]のいずれかに記載の核酸を細胞に導入する工程を含むCAR発現細胞の製造方法、
[12] 細胞がT細胞又はT細胞を含有する細胞集団である[11]記載のCAR発現細胞の製造方法、
[13] [1]~[5]のいずれかに記載の核酸が導入されたCAR発現細胞、
[14] 細胞がT細胞又はT細胞を含有する細胞集団である[13]記載のCAR発現細胞、に関する。
本発明のCARは、N末端側から順に抗原に結合する細胞外ドメイン、膜貫通ドメイン及び少なくとも1つの細胞内ドメインを含み、細胞内ドメインとしてGITRの細胞内ドメインを含むことを特徴とする。本発明のCARは細胞での発現量が高く、本発明のCARを発現する細胞は細胞の増殖率、サイトカインの産生量が高く、CARが結合する抗原を表面に有する細胞に対して高い細胞傷害活性を有する。
本発明のCARに使用される「抗原に結合する細胞外ドメイン」は、標的とする抗原に結合することができるオリゴ又はポリペプチドを含むドメインであり、例えば、抗体の抗原結合ドメイン、受容体のリガンド結合ドメインが含まれる。このドメインは、抗原、例えば細胞表面に存在する抗原と結合し、相互作用することによりCARを発現する細胞に特異性を付与する。本発明において特に有用な細胞外ドメインとしては、抗体(H鎖及びL鎖)、TCRの可変領域(TCRα、TCRβ、TCRγ、TCRδ)、CD8α、CD8β、CD11A、CD11B、CD11C、CD18、CD29、CD49A、CD49B、CD49D、CD49E、CD49F、CD61、CD41、又はCD51に由来するものが例示される。これらのタンパク質全体を使用するのが有効なこともあるが、特に抗原やリガンドに結合するドメイン、例えば、抗体Fabフラグメント、抗体可変領域[H鎖のV領域(VH)及びL鎖のV領域(VL)]又は受容体の細胞外ドメインを使用することができる。特にscFvが好適に使用できる。
本発明に使用される細胞内ドメインは、同一分子内に存在する細胞外ドメインが抗原と結合(相互作用)した際に、細胞内にシグナルを伝達することが可能な分子である。
本発明のCARは、膜貫通ドメインを含む。膜貫通ドメインは天然のポリペプチドに由来するものでもよく、人為的に設計したものでもよい。天然のポリペプチド由来の膜貫通ドメインは、任意の膜結合又は膜貫通タンパク質から取得することができる。例えば、T細胞受容体のα、β鎖、CD3ζ鎖、CD28、CD3ε、CD45、CD4、CD5、CD8、CD9、CD16、CD22、CD33、CD37、CD64、CD80、CD86、CD134、CD137、ICOS、CD154、GITRの膜貫通ドメインを使用することができる。また、人為的に設計された膜貫通ドメインは、ロイシン及びバリンなどの疎水性残基を主に含むポリペプチドである。また、フェニルアラニン、トリプトファン及びバリンのトリプレットが、合成膜貫通ドメインの各末端に見出されることが好ましい。場合により、短いオリゴペプチドリンカー又はポリペプチドリンカー、例えば長さが2~10個のアミノ酸配列からなるリンカーを、膜貫通ドメインと前記(b)の細胞内ドメインとの間に配置することができる。特にグリシン-セリン連続配列を有するリンカー配列を使用することができる。
本発明は、前記(1)に記載するCARをコードする核酸を提供する。CARをコードする核酸は、特定されたCARのアミノ酸配列から常法により容易に作製することができる。前記に記載した各ドメインのアミノ酸配列を示すNCBI RefSeq IDやGenBankのAccession番号からアミノ酸配列をコードする塩基配列を取得することが可能であり、標準的な分子生物学的及び/又は化学的手順を用いて本発明の核酸を作製できる。例えば、これらの塩基配列をもとに、核酸を合成することができ、また、cDNAライブラリーよりポリメラーゼ連鎖反応(PCR)を使用して得られるDNA断片を組み合わせて本発明の核酸を作製することができる。
本発明のCARを発現する細胞の製造方法は、前記(2)に記載するCARをコードする核酸を細胞に導入する工程を包含することを特徴とする。当該工程は生体外(ex vivo)で実施される。例えば、本発明の核酸を含むウイルスベクター又は非ウイルスベクターを利用して、細胞を生体外で形質転換することにより製造することができる。
本発明のCARを発現する細胞は、前記(3)の製造方法により、前記(2)のCARをコードする核酸が導入・発現した細胞である。
また、本明細書に記載の操作のうち、基本的な操作については2001年、コールド スプリング ハーバー ラボラトリー発行、T.マニアティス(T.Maniatis)ら編集、モレキュラー クローニング:ア ラボラトリー マニュアル第3版(Molecular Cloning:A Laboratory Manual 3rd ed.)(出典明示により本明細書の一部とする)に記載の方法によった。
まず、pMSCVneo(Clontech社製)を鋳型に配列番号1記載の3MSCV5プライマー及び配列番号2記載の3MSCV3プライマーでPCRを行い、MSCV3’LTR部位を増幅した。得られた増幅断片を制限酵素XhoIとEcoRIで切断し、pMベクター[ジーン セラピー(Gene Therapy) 第7巻、第797-804頁(2000)に記載されているpMベクター]のXhoI-EcoRIサイトにクローニングし、pMS-MCを作製した。更に、pMEI-5ベクター(タカラバイオ社製)を制限酵素MluIとXhoIにて切断し、pMS-MCのMluI-XhoIサイトへ挿入し、pMS3-MCを作製した。pMS3-MCは、5’末端から順にMMLV由来の5’LTR、MMLV由来のSD、MMLV由来のψ、ヒトEF1α遺伝子由来のSA、U3領域はMSCV由来で残りの領域はMMLV由来の3’LTRを含む。
配列番号5に示す人工合成遺伝子を作製した。この人工合成遺伝子は配列番号27に記載するアミノ酸配列を有するGITR膜貫通ドメイン及び配列番号28に記載するアミノ酸配列を有するGITR細胞内ドメインをコードする。この人工合成遺伝子を鋳型とし、配列番号6に示す28TM-G-Fプライマーと配列番号7に示すG-z-Rプライマーを用いたPCRを行って増幅DNA断片Aを、配列番号8に示すz-G-Fプライマーと配列番号9に示すG-MC-Rプライマーを用いたPCRを行って増幅DNA断片Bを、配列番号10に示す28SD-G-Fプライマーと配列番号7に示すG-z-Rプライマーを用いたPCRを行って増幅DNA断片Cを、配列番号11に示すhinge-G-Fプライマーと配列番号12に示すG-28SD-Rプライマーを用いたPCRを行って増幅DNA断片Dを、配列番号8に示すz-G-Fプライマーと配列番号13に示すG-28SD-R2プライマーを用いたPCRを行って増幅DNA断片Eをそれぞれ得た。
以下同様に、実施例1で作製したpMS3-CEA-z28-CARベクターを鋳型とし、配列番号16に示すz-Rプライマーと配列番号17に示すEND-MC-Fプライマーを用いたPCRを行った。こうして得られた増幅産物に増幅DNA断片Bをクローニングし、pMS3-CEA-zG-CARベクターを作製した。このベクターが発現するCEA-zG-CARのアミノ酸配列を配列番号29に示す。
pMS3-CEA-28z-CARベクターを鋳型とし、配列番号18に示す28SD-Rプライマーと配列番号15に示すz-Fプライマーを用いたPCRを行った。こうして得られた増幅産物に増幅DNA断片Cをクローニングし、pMS3-CEA-28Gz-CARベクターを作製した。
pMS3-CEA-28z-CARベクターを鋳型とし、配列番号19に示すhinge-Rプライマーと配列番号20に示す28SD-Fプライマーを用いたPCRを行った。こうして得られた増幅産物に増幅DNA断片Dをクローニングし、pMS3-CEA-G28z-CARベクターを作製した。
pMS3-CEA-z28-CARベクターを鋳型とし、配列番号16に示すz-Rプライマーと配列番号21に示す28SD-F2プライマーを用いたPCRを行った。こうして得られた増幅産物に増幅DNA断片Eをクローニングし、pMS3-CEA-zG28-CARベクターを作製した。このベクターが発現するCEA-zG28-CARのアミノ酸配列を配列番号30に示す。
pMS3-CEA-28z-CARベクターを鋳型とし、配列番号16に示すz-Rプライマーと配列番号17に示すEND-MC-Fプライマーを用いたPCRを行った。こうして得られた増幅産物に増幅DNA断片Bをクローニングし、pMS3-CEA-28zG-CARベクターを作製した。
作製した各ベクターが発現するCARの構造は、図2に示される構造(2)~(9)に対応する。すなわち、pMS3-CEA-28z-CARベクターは(2)28z、pMS3-CEA-z28-CARベクターは(3)z28、pMS3-CEA-Gz-CARベクターは(4)Gz、pMS3-CEA-zG-CARベクターは(5)zG、pMS3-CEA-28Gz-CARベクターは(6)28Gz、pMS3-CEA-G28z-CARベクターは(7)G28z、pMS3-CEA-zG28-CARベクターは(8)zG28、pMS3-CEA-28zG-CARベクターは(9)28zGの構造を有するCARを発現する。
実施例1及び2で作製したプラスミドベクターにより大腸菌JM109をそれぞれ形質転換し、形質転換体を得た。これら形質転換体の保持するプラスミドDNAをQIAGEN Plasmid Midi Kit(キアゲン社製)を用いてそれぞれ精製し、トランスフェクション用DNAとして以下の操作に供した。
調製したトランスフェクション用DNAのそれぞれとRetorovirus Packaging Kit Eco(タカラバイオ社製)に含有されるpGPベクター、pEecoベクターを293T細胞にそれぞれトランスフェクトした。この操作は前記キットの製品プロトコールに従って行った。得られた形質導入細胞のそれぞれよりエコトロピックウイルスを含有する上清液を獲得し、0.45μmフィルター(Milex HV、ミリポア社製)にてろ過した。この上清を用いて、ポリブレンを使用する方法によりPG13細胞(ATCC CRL-10686)にエコトロピックウイルスを感染させた。得られた細胞の培養上清を回収し、0.45μmフィルターによりろ過し、抗CEA-CAR発現用レトロウイルス溶液とした。各ウイルスは発現するCARの構造からそれぞれ(2)CEA-28z、(3)CEA-z28、(4)CEA-Gz、(5)CEA-zG、(6)CEA-28Gz、(7)CEA-G28z、(8)CEA-zG28、(9)CEA-28zGと命名した。
インフォームドコンセントを得て採取されたヒト末梢血より分離した末梢血単核球(PBMC)に、実施例3で作製した各抗CEA-CAR発現用レトロウイルス溶液を、レトロネクチン(登録商標、タカラバイオ社製)を用いた標準的な方法で2回感染させ、抗CEA-CAR発現PBMCをそれぞれ作製した。各レトロウイルス溶液について3群のPBMCを準備し、2倍、4倍、8倍の3段階に希釈したレトロウイルス溶液を用いて感染を実施した。2回目のウイルス感染から5日後の細胞よりFastPure DNA Kit(タカラバイオ社製)を用いてゲノムDNAを抽出し、Provirus Copy Number Detection Primer Set,Human(タカラバイオ社製)とCycleavePCR Core Kit(タカラバイオ社製)を用いて、ゲノムに組み込まれたレトロウイルスコピー数の測定を行った。
インフォームドコンセントを得て採取されたヒトPBMCに、実施例3で作製した抗CEA-CAR発現用レトロウイルス溶液のうち、(2)CEA-28zを4倍、6倍、8倍希釈、(5)CEA-zGを原液、2倍、4倍希釈、(9)CEA-28zG又は(8)CEA-zG28を2倍、4倍、8倍希釈し、レトロネクチン(登録商標、タカラバイオ社製)を用いた標準的な方法で2回感染を行い、抗CEA-CAR発現PBMCをそれぞれ作製した。2回目のウイルス感染6日後に細胞を回収し、実施例4と同様にしてゲノムに組み込まれたウイルスコピー数の測定を行った。比較的レトロウイルスコピー数の近い各抗CEA-CAR発現細胞[(2)CEA-28z:0.27コピー、(5)CEA-zG:1.3コピー、(9)CEA-28zG:0.81コピー、(8)CEA-zG28:0.65コピー)を選び、実施例4と同様に染色した細胞について、CD8陽性細胞中の抗CEA-CARが陽性である細胞の割合及びPEの平均蛍光強度を測定した。図5に抗CEA-CARの陽性率を示し、図6に当該陽性細胞のPE平均蛍光強度を示す。図5及び図6に示すように、(5)CEA-zG、(9)CEA-28zG及び(8)zG28を感染させた細胞は、(2)CEA-28zを感染させた細胞と比べて、抗CEA-CARを発現する細胞の割合が高く、また、抗CEA-CARの発現量も高いことが分かった。
実施例5で使用したCEA-zG28のCD28細胞内ドメインのコード領域にフレームシフトが見つかったため、このフレームシフトを修復したプラスミドDNAを作製し、QIAGEN Plasmid Midi Kit(キアゲン社製)を用いて精製した。この精製プラスミドDNAをトランスフェクション用DNAとして実施例3と同様の方法でウイルス溶液を調製した。得られたレトロウイルス溶液を(8)CEA-zG28_rと命名した。
インフォームドコンセントを得て採取されたヒトPBMCに、実施例6で作製した(8)CEA-zG28_r及び(9)CEA-28zGを原液、2倍、4倍希釈、8倍希釈し、実施例4と同様にしてヒトPBMCに感染させた後、ゲノムに組み込まれたウイルスコピー数の測定と、CD8陽性細胞中の抗CEA-CARが陽性である細胞の割合及びPEの平均蛍光強度を測定した。図8にコピー数に対する抗CEA-CARの陽性率を示し、図9にコピー数に対するPE平均蛍光強度を示す。図8及び図9に示すように、(8)CEA-zG28_rを感染させた細胞は、抗CEA-CARを発現することを確認した。
実施例3で作製した(5)CEA-zG及び(9)CEA-28zGを原液、2倍、4倍希釈、8倍希釈した希釈液、(2)CEA-28zを原液、2倍、4倍、8倍、16倍希釈した希釈液をそれぞれ調製した。インフォームドコンセントを得て採取されたヒトPBMCについて、これらのレトロウイルスベクター希釈液とレトロネクチン(登録商標)を用いた標準的な方法で2回感染を行い、抗CEA-CAR発現PBMCをそれぞれ作製した。2回目のウイルス感染5日後に細胞を回収し、実施例4記載の方法によりゲノムに組み込まれたウイルスコピー数を測定するとともに、CD8陽性細胞中の抗CEA-CARが陽性である細胞の割合及びPEの平均蛍光強度を測定した。図11にコピー数に対する抗CEA-CARの陽性率を示し、図12にコピー数に対するPE平均蛍光強度を示す。図11及び図12に示すように、コピー数に対する抗CEA-CARを発現する細胞の割合はいずれも同等であり、コピー数に対するPEの平均蛍光強度、すなわち発現量は(5)CEA-zGが最も高かった。
以上より、CD28の細胞内ドメインを有するCARにさらにGITRの細胞内ドメインを搭載させることにより、サイトカイン産生能が増強された細胞を製造することが可能となることが示された。
配列番号31に示す塩基配列の人工合成遺伝子を作製した。この人工合成遺伝子は抗EGFR-CARであるEGFR-z、すなわち、配列番号32に記載するアミノ酸配列を有するヒトIgGリーダー配列、配列番号33に記載するアミノ酸配列を有するがん抗原EGFR(Epidermal Growth Factor Receptor)と結合する抗EGFRモノクローナル抗体のscFv、配列番号34に記載するアミノ酸配列を有するヒトIgG-LC(軽鎖定常領域)ドメイン、配列番号24に記載するアミノ酸配列を有するCD28膜貫通ドメイン、配列番号26に記載するアミノ酸配列を有するCD3ζ細胞内ドメインからなる1分子のキメラタンパク質をコードする。この人工合成遺伝子を含む核酸断片を、NotI-XhoIにて消化したpMS3-MCベクターにクローニングし、細胞内ドメインとしてCD3ζ細胞内ドメインのみを有する(1)EGFR-zを発現するpMS3-EGFR-LC-z-CARを作製した。なお、該CARの構造は、図2中の(1)に対応する。
実施例9で作製したpMS3-EGFR-LC-z-CARを基に、配列番号35に記載するアミノ酸配列を有する(2)EGFR-28zを発現するpMS3-EGFR-LC-28z-CARを作製した。以下同様に、配列番号36に記載するアミノ酸配列を有する(5)EGFR-zGを発現するpMS3-EGFR-LC-zG-CAR、配列番号37に記載するアミノ酸配列を有する(9)EGFR-28zGを発現するpMS3-EGFR-LC-28zG-CAR、配列番号38に記載するアミノ酸配列を有する(10)EGFR-z28Gを発現するpMS3-EGFR-LC-z28G-CAR、配列番号39に記載するアミノ酸配列を有する(7)EGFR-G28zを発現するpMS3-EGFR-LC-G28z-CARを作製した。なお、これらのCARの構造は、各々、図2中の(2)、(5)、(9)、(7)および(10)に対応する。
実施例9及び10で作製したプラスミドベクターから、実施例3と同様の方法でウイルス溶液を調製した。各ウイルスは発現するCARの構造からそれぞれ(1)EGFR-z、(2)EGFR-28z、(5)EGFR-zG、(9)EGFR-28zG、(10)EGFR-z28G、(7)EGFR-G28zと命名した。
インフォームドコンセントを得て採取されたヒトPBMCに、実施例11で作製した各ウイルス溶液を、原液、2倍、4倍、8倍希釈し、レトロネクチン(登録商標)を用いた標準的な方法で2回感染を行い、抗EGFR-CAR発現PBMCをそれぞれ作製した。
2回目のウイルス感染5日後の細胞に、C末端がHis-tag修飾されたRecombinant Human EGFR(Sino Biological社製)を添加した後、ビオチン標識抗His-tag抗体(ミルテニーバイオテク社製)を添加した。その後、ストレプトアビジン-PE(フィコエリスリン:ベクトンディッキンソン社製)及びFITC標識抗Human CD8 抗体(ベクトンディッキンソン社製)により染色した。フローサイトメーターを使用し、染色後の細胞について、FITC陽性細胞中のPE陽性である細胞の割合、すなわちCD8陽性細胞中のEGFRに結合するCARが陽性である細胞の割合を測定した。また、蛍光色素PEの平均蛍光強度を測定した。さらに、2回目のウイルス感染5日後に細胞を回収し、実施例4と同様にしてゲノムに組み込まれたウイルスコピー数を測定した。図17にレトロウイルスのコピー数に対する抗EGFR-CARの陽性細胞率を示し、図18にレトロウイルスのコピー数に対するPE平均蛍光強度を示す。図17及び図18に示すように、全ての抗EGFR-CARの発現が確認された。
SEQ ID NO:2: 3MSCV3 primer
SEQ ID NO:3: Anti CEA-28z-CAR fragment sequence
SEQ ID NO:4: Anti CEA-z28-CAR fragment sequence
SEQ ID NO:5: GITR transmembrane region and cytoplasmic domain coding sequence
SEQ ID NO:6: 28TM-G-F primer
SEQ ID NO:7: G-z-R primer
SEQ ID NO:8: z-G-F primer
SEQ ID NO:9: G-MC-R primer
SEQ ID NO:10: 28SD-G-F primer
SEQ ID NO:11: hinge-G-F primer
SEQ ID NO:12: G-28SD-R primer
SEQ ID NO:13: G-28SD-R2 primer
SEQ ID NO:14: 28TM-R primer
SEQ ID NO:15: z-F primer
SEQ ID NO:16: z-R primer
SEQ ID NO:17: END-MC-F primer
SEQ ID NO:18: 28SD-R primer
SEQ ID NO:19: hinge-R primer
SEQ ID NO:20: 28SD-F primer
SEQ ID NO:21: 28SD-F2 primer
SEQ ID NO:22: Anti CEA scFv
SEQ ID NO:23: Human CD8 alpha chain hinge domain
SEQ ID NO:24: Human CD28 transmembrane domain
SEQ ID NO:25: Human CD28 cytoplasmic domain
SEQ ID NO:26: Human CD3 zeta chain cytoplasmic domain
SEQ ID NO:27: Human GITR transmembrane domain
SEQ ID NO:28: Human GITR cytoplasmic domain
SEQ ID NO:29: Anti CEA-zG-CAR sequence
SEQ ID NO:30: Anti CEA-zG28-CAR sequence
SEQ ID NO:31: Anti EGFR-LC-z-CAR coding sequence
SEQ ID NO:32: Human IgG leader sequence
SEQ ID NO:33: Anti EGFR monoclonal antibody scFv sequence
SEQ ID NO:34: Human IgG CL sequence
SEQ ID NO:35: Anti EGFR-28z-CAR sequence
SEQ ID NO:36: Anti EGFR-zG-CAR sequence
SEQ ID NO:37: Anti EGFR-28zG-CAR sequence
SEQ ID NO:38: Anti EGFR-z28G-CAR sequence
SEQ ID NO:39: Anti EGFR-G28z-CAR sequence
Claims (14)
- 抗原に結合する細胞外ドメイン、膜貫通ドメイン及び少なくとも1つの細胞内ドメインを含むキメラ抗原受容体をコードする核酸であって、細胞内ドメインとしてグルココルチコイド誘導腫瘍壊死因子受容体(GITR)の細胞内ドメインを含むことを特徴とするキメラ抗原受容体をコードする核酸。
- 抗原が腫瘍抗原である請求項1記載のキメラ抗原受容体をコードする核酸。
- 抗原に結合する細胞外ドメインが抗原に結合する抗体の単鎖抗体である請求項1記載のキメラ抗原受容体をコードする核酸。
- 細胞内ドメインとして更にCD3ζ細胞内ドメインを含む請求項1記載のキメラ抗原受容体をコードする核酸。
- GITRの細胞内ドメインがCD3ζ細胞内ドメインよりC末端側に配置される請求項4記載のキメラ抗原受容体をコードする核酸。
- 抗原に結合する細胞外ドメイン、膜貫通ドメイン及び少なくとも1つの細胞内ドメインを含むキメラ抗原受容体であって、細胞内ドメインとしてGITRの細胞内ドメインを含むことを特徴とするキメラ抗原受容体。
- 抗原が腫瘍抗原である請求項6記載のキメラ抗原受容体。
- 抗原に結合する細胞外ドメインが抗原に結合する抗体の単鎖抗体である請求項6記載のキメラ抗原受容体。
- 細胞内ドメインとして更にCD3ζ細胞内ドメインを含む請求項6記載のキメラ抗原受容体。
- GITRの細胞内ドメインがCD3ζ細胞内ドメインよりC末端側に配置される請求項9記載のキメラ抗原受容体。
- 請求項1~5のいずれか1項記載の核酸を細胞に導入する工程を含むキメラ抗原受容体発現細胞の製造方法。
- 細胞がT細胞又はT細胞を含有する細胞集団である請求項11記載のキメラ抗原受容体発現細胞の製造方法。
- 請求項1~5のいずれか1項記載の核酸が導入されたキメラ抗原受容体発現細胞。
- 細胞がT細胞又はT細胞を含有する細胞集団である請求項13記載のキメラ抗原受容体発現細胞。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013537578A JP6053688B2 (ja) | 2011-10-07 | 2012-10-05 | キメラ抗原受容体 |
EP12838701.6A EP2765193B1 (en) | 2011-10-07 | 2012-10-05 | Chimeric antigen receptor |
US14/349,763 US9175308B2 (en) | 2011-10-07 | 2012-10-05 | Chimeric antigen receptor |
KR1020147010498A KR101956751B1 (ko) | 2011-10-07 | 2012-10-05 | 키메라 항원 수용체 |
CN201280060330.9A CN104126009B (zh) | 2011-10-07 | 2012-10-05 | 嵌合抗原受体 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011222510 | 2011-10-07 | ||
JP2011-222510 | 2011-10-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013051718A1 true WO2013051718A1 (ja) | 2013-04-11 |
Family
ID=48043871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/076034 WO2013051718A1 (ja) | 2011-10-07 | 2012-10-05 | キメラ抗原受容体 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9175308B2 (ja) |
EP (1) | EP2765193B1 (ja) |
JP (1) | JP6053688B2 (ja) |
KR (1) | KR101956751B1 (ja) |
CN (1) | CN104126009B (ja) |
WO (1) | WO2013051718A1 (ja) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016008405A1 (zh) * | 2014-07-17 | 2016-01-21 | 科济生物医药(上海)有限公司 | 靶向cld18a2的免疫效应细胞及其制备方法和应用 |
JP2017532950A (ja) * | 2014-07-15 | 2017-11-09 | ジュノー セラピューティクス インコーポレイテッド | 養子細胞療法用の操作された細胞 |
JP2017534261A (ja) * | 2014-09-17 | 2017-11-24 | ノバルティス アーゲー | 養子免疫療法のためのキメラ受容体での細胞毒性細胞のターゲティング |
JP2018510639A (ja) * | 2015-03-23 | 2018-04-19 | ユーシーエル ビジネス ピーエルシー | キメラ抗原受容体 |
CN108025024A (zh) * | 2015-07-28 | 2018-05-11 | 宾夕法尼亚大学董事会 | 表达嵌合抗原受体的修饰单核细胞/巨噬细胞及其用途 |
WO2018225732A1 (ja) | 2017-06-05 | 2018-12-13 | 国立大学法人三重大学 | Mage-a4由来ペプチドを認識する抗原結合性タンパク質 |
US10227409B2 (en) | 2013-05-03 | 2019-03-12 | Ohio State Innovation Foundation | CS1-specific chimeric antigen receptor engineered immune effector cells |
US10316102B2 (en) | 2014-10-09 | 2019-06-11 | Yamaguchi University | Car expression vector and car-expressing T cells |
JPWO2018052142A1 (ja) * | 2016-09-16 | 2019-06-24 | キッセイ薬品工業株式会社 | 遺伝子改変細胞及びその作製方法 |
WO2019152781A1 (en) | 2018-02-02 | 2019-08-08 | The Trustees Of The University Of Pennsylvania | Modified monocytes/macrophages/dendritic cells expressing chimeric antigen receptors and uses in diseases and disorders associated with protein aggregates |
JP2019530441A (ja) * | 2016-09-02 | 2019-10-24 | コーネル・ユニバーシティーCornell University | Icam−1に特異的なiドメインキメラ抗原受容体 |
WO2020017479A1 (ja) | 2018-07-17 | 2020-01-23 | ノイルイミューン・バイオテック株式会社 | 抗gpc3一本鎖抗体を含むcar |
US10786533B2 (en) | 2015-07-15 | 2020-09-29 | Juno Therapeutics, Inc. | Engineered cells for adoptive cell therapy |
US20210052646A1 (en) * | 2017-12-27 | 2021-02-25 | Takeda Pharmaceutical Company Limited | Nucleic-acid containing lipid nano-particle and use thereof |
JP2021508253A (ja) * | 2017-12-06 | 2021-03-04 | 阿思科力(蘇州)生物科技有限公司Asclepius (Suzhou) Technology Company Group Co.,Ltd. | Carをコードするヌクレオチド配列、このcarを発現するrobo1 car−nk細胞、その調製及び使用 |
US10973914B2 (en) | 2015-02-20 | 2021-04-13 | Ohio State Innovation Foundation | Bivalent antibody directed against NKG2D and tumor associated antigens |
JP2021535756A (ja) * | 2018-08-24 | 2021-12-23 | シェンチェン プレジーン バイオファルマ カンパニー リミテッド | 単一ドメイン抗体に基づくbcmaキメラ抗原受容体及びその使用 |
US11312939B2 (en) | 2020-06-04 | 2022-04-26 | Carisma Therapeutics Inc. | Constructs for chimeric antigen receptors |
Families Citing this family (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3722316A1 (en) | 2014-07-21 | 2020-10-14 | Novartis AG | Treatment of cancer using a cd33 chimeric antigen receptor |
BR122020002722B1 (pt) * | 2014-11-05 | 2022-06-07 | Juno Therapeutics Inc | Métodos de transdução de células |
JP2018504143A (ja) | 2015-01-26 | 2018-02-15 | セレクティスCellectis | がん免疫治療のための抗hsp70特異的キメラ抗原受容体(car) |
JP6886404B2 (ja) | 2015-01-30 | 2021-06-16 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニアThe Regents Of The University Of California | 初代造血細胞におけるタンパク質送達 |
US20170151281A1 (en) | 2015-02-19 | 2017-06-01 | Batu Biologics, Inc. | Chimeric antigen receptor dendritic cell (car-dc) for treatment of cancer |
US20180298098A1 (en) * | 2015-02-26 | 2018-10-18 | Var2 Pharmaceutical Aps | Immunotherapeutic targeting of placental-like chondroitin sulfate using chimeric antigen receptors (cars) and immunotherapeutic targeting of cancer using cars with split-protein binding systems |
US9777064B2 (en) | 2015-03-17 | 2017-10-03 | Chimera Bioengineering, Inc. | Smart CAR devices, DE CAR polypeptides, side CARs and uses thereof |
CA2981979A1 (en) | 2015-04-06 | 2016-10-13 | Jianhua Yu | Egfr-directed car therapy for glioblastoma |
WO2016179319A1 (en) * | 2015-05-04 | 2016-11-10 | Cellerant Therapeutics, Inc. | Chimeric antigen receptors with ctla4 signal transduction domains |
WO2016180468A1 (en) | 2015-05-11 | 2016-11-17 | Biontech Cell & Gene Therapies Gmbh | Claudin-18.2-specific immunoreceptors and t cell epitopes |
US10434153B1 (en) | 2015-05-20 | 2019-10-08 | Kim Leslie O'Neill | Use of car and bite technology coupled with an scFv from an antibody against human thymidine kinase 1 to specifically target tumors |
CN107921127B (zh) * | 2015-05-22 | 2022-04-08 | 纪念斯隆-凯特琳癌症中心 | 对于prame肽具有特异性的t细胞受体样抗体 |
EP3307876B1 (en) | 2015-06-10 | 2023-09-13 | ImmunityBio, Inc. | Modified nk-92 cells for treating cancer |
US11352439B2 (en) * | 2015-08-13 | 2022-06-07 | Kim Leslie O'Neill | Macrophage CAR (MOTO-CAR) in immunotherapy |
CN105924526B (zh) * | 2015-09-11 | 2019-08-06 | 中国人民解放军总医院 | 嵌合抗原受体及其基因和重组表达载体、carher1-nkt细胞及其制备方法和应用 |
CN105924530B (zh) * | 2015-10-13 | 2019-08-06 | 中国人民解放军总医院 | 嵌合抗原受体及其基因和重组表达载体、car20-nkt细胞及其制备方法和应用 |
CN105924527B (zh) * | 2015-10-13 | 2019-08-06 | 中国人民解放军总医院 | 嵌合抗原受体及其基因和重组表达载体、car30-nkt细胞及其制备方法和应用 |
CN105924528B (zh) * | 2015-10-13 | 2019-08-06 | 中国人民解放军总医院 | 嵌合抗原受体及其基因和重组表达载体、carmsln-nkt细胞及其制备方法和应用 |
CN105924529B (zh) * | 2015-10-13 | 2019-08-06 | 中国人民解放军总医院 | 嵌合抗原受体及其基因和重组表达载体、car138-nkt细胞及其制备方法和应用 |
US11052111B2 (en) | 2015-12-08 | 2021-07-06 | Chimera Bioengineering, Inc. | Smart CAR devices and DE CAR polypeptides for treating disease and methods for enhancing immune responses |
EP3184548A1 (en) * | 2015-12-23 | 2017-06-28 | Miltenyi Biotec GmbH | Chimeric antigen receptor with cytokine receptor activating or blocking domain |
CN105647871A (zh) * | 2016-01-27 | 2016-06-08 | 苏州佰通生物科技有限公司 | 一种可异体移植的嵌合抗原受体t细胞及制备方法 |
CN107298715B (zh) * | 2016-04-15 | 2021-05-04 | 阿思科力(苏州)生物科技有限公司 | Slit2D2-嵌合抗原受体及其应用 |
US10253772B2 (en) | 2016-05-12 | 2019-04-09 | Stackpole International Engineered Products, Ltd. | Pump with control system including a control system for directing delivery of pressurized lubricant |
US10222369B2 (en) | 2016-05-17 | 2019-03-05 | Chimera Bioengineering, Inc. | Methods for making novel antigen binding domains |
MY200162A (en) | 2016-06-10 | 2023-12-09 | Regeneron Pharma | Anti-gitr antibodies and uses thereof |
WO2018045034A1 (en) * | 2016-08-30 | 2018-03-08 | Promab Biotechnologies, Inc. | Chimeric antigen receptors having gitr intracellular domain as co-stimulatory domain |
CN110121352B (zh) | 2016-09-01 | 2020-12-11 | 嵌合体生物工程公司 | Gold优化的car t-细胞 |
WO2018058432A1 (zh) * | 2016-09-28 | 2018-04-05 | 李华顺 | 一种多基因重组嵌合抗原受体分子及其应用 |
JP2019532640A (ja) | 2016-09-29 | 2019-11-14 | ナントクエスト インコーポレイテッド | 免疫原性が低下したhlaクラスi欠損nk−92細胞 |
WO2018073394A1 (en) * | 2016-10-19 | 2018-04-26 | Cellectis | Cell death inducing chimeric antigen receptors |
CN110168078B (zh) | 2017-01-06 | 2024-05-14 | 免疫生物公司 | 具有降低的cd96/tigit表达的遗传修饰的nk-92细胞 |
WO2018148224A1 (en) | 2017-02-07 | 2018-08-16 | Seattle Children's Hospital (dba Seattle Children's Research Institute) | Phospholipid ether (ple) car t cell tumor targeting (ctct) agents |
CA3053006C (en) | 2017-02-08 | 2023-09-05 | Dana-Farber Cancer Institute, Inc. | Regulating chimeric antigen receptors |
JP7178355B2 (ja) | 2017-02-28 | 2022-11-25 | エンドサイト・インコーポレイテッド | Car t細胞療法のための組成物および方法 |
EP3609921A2 (en) * | 2017-04-13 | 2020-02-19 | Agenus Inc. | Anti-cd137 antibodies and methods of use thereof |
AU2018256436A1 (en) | 2017-04-19 | 2019-11-07 | Board Of Regents, The University Of Texas System | Immune cells expressing engineered antigen receptors |
US10415017B2 (en) | 2017-05-17 | 2019-09-17 | Thunder Biotech, Inc. | Transgenic macrophages, chimeric antigen receptors, and associated methods |
AU2018336791A1 (en) | 2017-09-19 | 2020-03-12 | Massachusetts Institute Of Technology | Compositions for chimeric antigen receptor T cell therapy and uses thereof |
WO2019084284A1 (en) | 2017-10-27 | 2019-05-02 | Coneksis, Inc. | NK CELLS FOR USE IN THE TREATMENT OF CANCER IN DOGS |
JP7448903B2 (ja) * | 2017-11-03 | 2024-03-13 | レンティジェン・テクノロジー・インコーポレイテッド | 抗ror1免疫療法によってがんを処置するための組成物および方法 |
CN109836497A (zh) * | 2017-11-25 | 2019-06-04 | 深圳宾德生物技术有限公司 | 一种靶向egfr的单链抗体、嵌合抗原受体t细胞及其制备方法和应用 |
US20210221880A1 (en) * | 2017-11-29 | 2021-07-22 | Guangzhou Cas Lamvac Biotech Co., Ltd | Chimeric antigen receptor and application thereof |
EP3740217A4 (en) | 2018-01-22 | 2021-11-10 | Endocyte, Inc. | METHOD OF USE FOR CAR-T CELLS |
CN111670246A (zh) | 2018-01-31 | 2020-09-15 | 南克维斯特公司 | 5%人白蛋白在洗涤和收获培养基中的用途 |
WO2019160815A1 (en) | 2018-02-13 | 2019-08-22 | Chimera Bioengineering, Inc. | Coordinating gene expression using rna destabilizing elements |
CN112004829A (zh) | 2018-03-12 | 2020-11-27 | 南克维斯特公司 | Cd33car修饰的高亲和力nk细胞(t-hank)用于降低髓系衍生的抑制细胞的抑制活性(或降低对nk细胞活性的负面影响)的用途 |
EP3797156A1 (en) | 2018-05-22 | 2021-03-31 | Nantkwest, Inc. | Basal media for growing nk-92 cells |
EP3797157A4 (en) | 2018-05-22 | 2022-03-16 | ImmunityBio, Inc. | FC EPSILON CABIN |
EP3797155B1 (en) | 2018-05-22 | 2022-06-15 | ImmunityBio, Inc. | Optimization of nk-92 cell growth using poloxamer |
EP3806888B1 (en) | 2018-06-12 | 2024-01-31 | Obsidian Therapeutics, Inc. | Pde5 derived regulatory constructs and methods of use in immunotherapy |
CN108795877B (zh) * | 2018-07-05 | 2021-07-09 | 浙江科途医学科技有限公司 | 一种嵌合抗原受体成纤维细胞及其建立方法和应用 |
WO2020014245A1 (en) | 2018-07-10 | 2020-01-16 | Nantkwest, Inc. | Cryopreservation |
CA3105601C (en) | 2018-07-10 | 2024-01-16 | Nantkwest, Inc. | Generating cik nkt cells from cord blood |
WO2020027832A1 (en) | 2018-08-01 | 2020-02-06 | Nantkwest, Inc. | Chemokine responsive activated natural killer cells with secondary homing activation for verified targets |
US20210293787A1 (en) | 2018-08-01 | 2021-09-23 | Nantkwest, Inc. | Combined invasion and cytotoxicity assay using chemokine secreting target cells |
WO2020028656A1 (en) | 2018-08-01 | 2020-02-06 | Nantkwest, Inc. | A quadricistronic system comprising a homing receptor or a cytokine, and chimeric antigen receptor for genetic modification of immunotherapies |
US20210171910A1 (en) * | 2018-08-27 | 2021-06-10 | Figene, Llc | Chimeric antigen receptor fibroblast cells for treatment of cancer |
AU2019346335B2 (en) | 2018-09-28 | 2024-07-25 | Massachusetts Institute Of Technology | Collagen-localized immunomodulatory molecules and methods thereof |
EP3876977A1 (en) | 2018-11-06 | 2021-09-15 | The Regents Of The University Of California | Chimeric antigen receptors for phagocytosis |
US12109238B2 (en) * | 2018-11-06 | 2024-10-08 | Immunitybio, Inc. | Chimeric antigen receptor-modified NK-92 cells |
KR102520488B1 (ko) | 2018-11-06 | 2023-04-10 | 난트퀘스트, 인크. | 키메라 항원 수용체-변형된 nk-92 세포(chimeric antigen receptor-modified nk-92 cells) |
EP3886873A1 (en) | 2018-11-26 | 2021-10-06 | ImmunityBio, Inc. | Il-2 dependent nk-92 cells with stable fc receptor expression |
CN109734813B (zh) * | 2019-01-28 | 2022-06-17 | 广东昭泰体内生物医药科技有限公司 | 一种嵌合抗原受体及其应用 |
WO2020185632A1 (en) | 2019-03-08 | 2020-09-17 | Obsidian Therapeutics, Inc. | Human carbonic anhydrase 2 compositions and methods for tunable regulation |
US11026973B2 (en) | 2019-04-30 | 2021-06-08 | Myeloid Therapeutics, Inc. | Engineered phagocytic receptor compositions and methods of use thereof |
WO2020252404A1 (en) | 2019-06-12 | 2020-12-17 | Obsidian Therapeutics, Inc. | Ca2 compositions and methods for tunable regulation |
JP2022538974A (ja) | 2019-06-26 | 2022-09-07 | マサチューセッツ インスチテュート オブ テクノロジー | 免疫調節融合タンパク質-金属水酸化物錯体およびその方法 |
WO2021034653A1 (en) | 2019-08-18 | 2021-02-25 | Chimera Bioengineering, Inc. | Combination therapy with gold controlled transgenes |
BR112022003970A2 (pt) | 2019-09-03 | 2022-06-21 | Myeloid Therapeutics Inc | Métodos e composições para integração genômica |
WO2021061648A1 (en) | 2019-09-23 | 2021-04-01 | Massachusetts Institute Of Technology | Methods and compositions for stimulation of endogenous t cell responses |
US10980836B1 (en) | 2019-12-11 | 2021-04-20 | Myeloid Therapeutics, Inc. | Therapeutic cell compositions and methods of manufacturing and use thereof |
CN113087805A (zh) * | 2019-12-31 | 2021-07-09 | 华东师范大学 | 一种共表达免疫调节分子的嵌合抗原受体t细胞的制备及其应用 |
US11230699B2 (en) | 2020-01-28 | 2022-01-25 | Immunitybio, Inc. | Chimeric antigen receptor-modified NK-92 cells targeting EGFR super-family receptors |
WO2021178975A1 (en) * | 2020-03-06 | 2021-09-10 | Albert Einstein College Of Medicine | A method to generate chimeric antigen receptor (car) t-cells (car-t cells) from pathogen-specific cytotoxic lymphocytes to enable the subsequent in vivo modulation of their functional activity |
KR20220151172A (ko) | 2020-03-06 | 2022-11-14 | 리제너론 파마슈티칼스 인코포레이티드 | 항-gitr 항체 및 이의 용도 |
KR20220167276A (ko) | 2020-03-10 | 2022-12-20 | 매사추세츠 인스티튜트 오브 테크놀로지 | NPM1c-양성 암의 면역치료를 위한 조성물 및 방법 |
CA3173527A1 (en) | 2020-03-10 | 2021-09-16 | Massachusetts Institute Of Technology | Methods for generating engineered memory-like nk cells and compositions thereof |
US20210338833A1 (en) | 2020-05-01 | 2021-11-04 | Massachusetts Institute Of Technology | Chimeric antigen receptor-targeting ligands and uses thereof |
WO2021221783A1 (en) | 2020-05-01 | 2021-11-04 | Massachusetts Institute Of Technology | Methods for identifying chimeric antigen receptor-targeting ligands and uses thereof |
AU2021337534A1 (en) * | 2020-09-01 | 2023-03-16 | The Trustees Of The University Of Pennsylvania | Improved generation of lentiviral vectors for T cell transduction using cocal envelope |
WO2022098905A2 (en) | 2020-11-04 | 2022-05-12 | Myeloid Therapeutics, Inc. | Engineered chimeric fusion protein compositions and methods of use thereof |
AR124414A1 (es) | 2020-12-18 | 2023-03-22 | Century Therapeutics Inc | Sistema de receptor de antígeno quimérico con especificidad de receptor adaptable |
EP4277644A1 (en) | 2021-01-15 | 2023-11-22 | Outpace Bio, Inc. | Small molecule-regulated gene expression system |
CA3209126A1 (en) | 2021-01-29 | 2022-08-04 | Outpace Bio, Inc. | Small molecule-regulated cell signaling expression system |
WO2022169913A2 (en) | 2021-02-02 | 2022-08-11 | Outpace Bio, Inc. | Synthetic degrader system for targeted protein degradation |
GB2623191A (en) | 2021-03-17 | 2024-04-10 | Myeloid Therapeutics Inc | Engineered chimeric fusion protein compositions and methods of use thereof |
WO2023044343A1 (en) | 2021-09-14 | 2023-03-23 | Renagade Therapeutics Management Inc. | Acyclic lipids and methods of use thereof |
WO2023081715A1 (en) | 2021-11-03 | 2023-05-11 | Viracta Therapeutics, Inc. | Combination of car t-cell therapy with btk inhibitors and methods of use thereof |
EP4452928A1 (en) | 2021-12-23 | 2024-10-30 | Renagade Therapeutics Management Inc. | Constrained lipids and methods of use thereof |
WO2023150649A2 (en) | 2022-02-02 | 2023-08-10 | Outpace Bio, Inc. | Synthetic degrader system for targeted protein degradation |
AU2023251104A1 (en) | 2022-04-07 | 2024-10-17 | Renagade Therapeutics Management Inc. | Cyclic lipids and lipid nanoparticles (lnp) for the delivery of nucleic acids or peptides for use in vaccinating against infectious agents |
CN116082507B (zh) * | 2022-05-31 | 2023-10-03 | 山东恺悌生物制品有限公司 | 人源化bcma抗体和bcma-car-t细胞 |
CN116589595B (zh) * | 2023-05-10 | 2024-07-19 | 山东大学 | 靶向mrsa嵌合抗原受体、药物递送体、car-巨噬细胞及应用 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4694778A (en) | 1984-05-04 | 1987-09-22 | Anicon, Inc. | Chemical vapor deposition wafer boat |
US5278056A (en) | 1988-02-05 | 1994-01-11 | The Trustees Of Columbia University In The City Of New York | Retroviral packaging cell lines and process of using same |
WO1995026200A1 (en) | 1994-03-25 | 1995-10-05 | Indiana University Foundation | Enhanced virus-mediated dna transfer |
WO1996010038A1 (en) | 1994-09-28 | 1996-04-04 | Apollon, Inc. | Multifunctional molecular complexes for gene transfer to cells |
WO1997018185A1 (fr) | 1995-11-14 | 1997-05-22 | Rhone-Poulenc Rorer S.A. | Lipopolymamines comme agents de transfection et leurs applications pharmaceutiques |
WO1997025329A1 (fr) | 1996-01-10 | 1997-07-17 | Rhone-Poulenc Rorer S.A. | DERIVES DE 5H,10H-IMIDAZO[1,2-a]INDOLO[3,2-e]PYRAZINE-4-ONE, LEUR PREPARATION ET LES MEDICAMENTS LES CONTENANT |
WO1997030170A1 (de) | 1996-02-15 | 1997-08-21 | Boehringer Ingelheim International Gmbh | Zusammensetzung für die transfektion höherer eukaryotischer zellen |
WO1997031934A2 (de) | 1996-02-29 | 1997-09-04 | Chemicon Laboratories Gmbh | Neue metabolisierbare lipopolyamine, deren darstellung und anwendung |
WO2000001836A1 (fr) | 1998-07-01 | 2000-01-13 | Takara Shuzo Co., Ltd. | Procedes de transfert de genes |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6103521A (en) | 1995-02-06 | 2000-08-15 | Cell Genesys, Inc. | Multispecific chimeric receptors |
US6689607B2 (en) * | 1997-10-21 | 2004-02-10 | Human Genome Sciences, Inc. | Human tumor, necrosis factor receptor-like proteins TR11, TR11SV1 and TR11SV2 |
HUP0300369A2 (hu) | 2000-04-11 | 2003-06-28 | Genentech, Inc. | Többértékű antitestek és alkalmazásuk |
EP2389443B1 (en) | 2009-01-23 | 2018-11-14 | Roger Williams Hospital | Retroviral vectors encoding multiple highly homologous non-viral polypeptides and the use of same |
-
2012
- 2012-10-05 WO PCT/JP2012/076034 patent/WO2013051718A1/ja active Application Filing
- 2012-10-05 JP JP2013537578A patent/JP6053688B2/ja active Active
- 2012-10-05 CN CN201280060330.9A patent/CN104126009B/zh active Active
- 2012-10-05 US US14/349,763 patent/US9175308B2/en active Active
- 2012-10-05 EP EP12838701.6A patent/EP2765193B1/en active Active
- 2012-10-05 KR KR1020147010498A patent/KR101956751B1/ko active IP Right Grant
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4694778A (en) | 1984-05-04 | 1987-09-22 | Anicon, Inc. | Chemical vapor deposition wafer boat |
US5278056A (en) | 1988-02-05 | 1994-01-11 | The Trustees Of Columbia University In The City Of New York | Retroviral packaging cell lines and process of using same |
WO1995026200A1 (en) | 1994-03-25 | 1995-10-05 | Indiana University Foundation | Enhanced virus-mediated dna transfer |
WO1996010038A1 (en) | 1994-09-28 | 1996-04-04 | Apollon, Inc. | Multifunctional molecular complexes for gene transfer to cells |
WO1997018185A1 (fr) | 1995-11-14 | 1997-05-22 | Rhone-Poulenc Rorer S.A. | Lipopolymamines comme agents de transfection et leurs applications pharmaceutiques |
WO1997025329A1 (fr) | 1996-01-10 | 1997-07-17 | Rhone-Poulenc Rorer S.A. | DERIVES DE 5H,10H-IMIDAZO[1,2-a]INDOLO[3,2-e]PYRAZINE-4-ONE, LEUR PREPARATION ET LES MEDICAMENTS LES CONTENANT |
WO1997030170A1 (de) | 1996-02-15 | 1997-08-21 | Boehringer Ingelheim International Gmbh | Zusammensetzung für die transfektion höherer eukaryotischer zellen |
WO1997031934A2 (de) | 1996-02-29 | 1997-09-04 | Chemicon Laboratories Gmbh | Neue metabolisierbare lipopolyamine, deren darstellung und anwendung |
WO2000001836A1 (fr) | 1998-07-01 | 2000-01-13 | Takara Shuzo Co., Ltd. | Procedes de transfert de genes |
Non-Patent Citations (20)
Title |
---|
"Molecular Cloning: A Laboratory Manual", 2001, COLD SPRING HARBOR LABORATORY |
"Remington's Pharmaceutical Sciences", 1991, MACK PUB. CO. |
CURR. BIOL., vol. 9, no. 4, 1999, pages 215 - 218 |
CURRENT OPINION IN IMMUNOLOGY, vol. 21, 2009, pages 215 - 223 |
ESPARZA,E.M. ET AL.: "Glucocorticoid-induced TNF receptor functions as a costimulatory receptor that promotes survival in early phases of T cell activation", JOURNAL OF IMMUNOLOGY, vol. 174, no. 12, 2005, pages 7869 - 7874, XP055147859 * |
GENE THERAPY, vol. 7, 2000, pages 797 - 804 |
IMMUNITY, vol. 16, 2002, pages 311 - 323 |
IMMUNOL. REV., vol. 182, 2001, pages 18 - 32 |
J IMMUNOL., vol. 162, no. 2, 1999, pages 897 - 902 |
J. IMMUNOLOGY, vol. 172, 2004, pages 104 - 113 |
KANAMARU,F. ET AL.: "Costimulation via glucocorticoid-induced TNF receptor in both conventional and CD25+ regulatory CD4+ T cells", JOURNAL OF IMMUNOLOGY, vol. 172, no. 12, 2004, pages 7306 - 7314, XP009076431 * |
KOHM,A.P. ET AL.: "CD28 regulates glucocorticoid-induced TNF receptor family-related gene expression on CD4(+) T cells via IL-2-dependent mechanisms", CELLULAR IMMUNOLOGY, vol. 235, no. 1, 2005, pages 56 - 64, XP027189847 * |
NATURE, vol. 334, 1989, pages 54454 |
NATURE, vol. 338, 1989, pages 383 - 384 |
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 85, 1988, pages 6460 - 6464 |
SADELAIN,M. ET AL.: "The promise and potential pitfalls of chimeric antigen receptors", CURRENT OPINION IN IMMUNOLOGY, vol. 21, no. 2, 2009, pages 215 - 223, XP002727867 * |
SCIENCE, vol. 242, 1988, pages 1038 - 1041 |
SCIENCE, vol. 242, 1988, pages 423 - 442 |
See also references of EP2765193A4 |
TOMONORI TSUKAHARA: "Adoptive immune-gene therapy for refractory B-cell malignancy with chimeric antigen receptor-expressing T-cells", JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, vol. 237, no. 3, 2011, pages 223 - 226, XP008173064 * |
Cited By (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11845794B2 (en) | 2013-05-03 | 2023-12-19 | Ohio State Innovation Foundation | CS1-specific chimeric antigen receptor engineered immune effector cells |
US10358494B2 (en) * | 2013-05-03 | 2019-07-23 | Ohio State Innovation Foundation | CS1-specific chimeric antigen receptor engineered immune effector cells |
US10227409B2 (en) | 2013-05-03 | 2019-03-12 | Ohio State Innovation Foundation | CS1-specific chimeric antigen receptor engineered immune effector cells |
JP7113618B2 (ja) | 2014-07-15 | 2022-08-05 | ジュノー セラピューティクス インコーポレイテッド | 養子細胞療法用の操作された細胞 |
US10738278B2 (en) | 2014-07-15 | 2020-08-11 | Juno Therapeutics, Inc. | Engineered cells for adoptive cell therapy |
JP7224318B2 (ja) | 2014-07-15 | 2023-02-17 | ジュノー セラピューティクス インコーポレイテッド | 養子細胞療法用の操作された細胞 |
JP2020195393A (ja) * | 2014-07-15 | 2020-12-10 | ジュノー セラピューティクス インコーポレイテッド | 養子細胞療法用の操作された細胞 |
JP2017532950A (ja) * | 2014-07-15 | 2017-11-09 | ジュノー セラピューティクス インコーポレイテッド | 養子細胞療法用の操作された細胞 |
US12098199B2 (en) | 2014-07-17 | 2024-09-24 | Crage Medical Co., Limited | Immunologic effector cell of targeted CLD18A2, and preparation method and use thereof |
WO2016008405A1 (zh) * | 2014-07-17 | 2016-01-21 | 科济生物医药(上海)有限公司 | 靶向cld18a2的免疫效应细胞及其制备方法和应用 |
CN112979828A (zh) * | 2014-07-17 | 2021-06-18 | 恺兴生命科技(上海)有限公司 | 靶向cld18a2的t淋巴细胞及其制备方法和应用 |
US11198729B2 (en) | 2014-07-17 | 2021-12-14 | Cafa Therapeutics Limited | Immunologic effector cell of targeted CLD18A2, and preparation method and use thereof |
US10377822B2 (en) | 2014-07-17 | 2019-08-13 | Carsgen Therapeutics Ltd. | Immunologic effector cell of targeted CLD18A2, and preparation method and use thereof |
US11981731B2 (en) | 2014-09-17 | 2024-05-14 | The Trustees Of The University Of Pennsylvania | Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy |
US10577417B2 (en) | 2014-09-17 | 2020-03-03 | Novartis Ag | Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy |
JP2017534261A (ja) * | 2014-09-17 | 2017-11-24 | ノバルティス アーゲー | 養子免疫療法のためのキメラ受容体での細胞毒性細胞のターゲティング |
EP3597742A1 (en) | 2014-10-09 | 2020-01-22 | Yamaguchi University | Car expression vector and car-expressing t cells |
US10316102B2 (en) | 2014-10-09 | 2019-06-11 | Yamaguchi University | Car expression vector and car-expressing T cells |
US10906984B2 (en) | 2014-10-09 | 2021-02-02 | Yamaguchi University | CAR expression vector and CAR-expressing T cells |
US10973914B2 (en) | 2015-02-20 | 2021-04-13 | Ohio State Innovation Foundation | Bivalent antibody directed against NKG2D and tumor associated antigens |
JP2020048588A (ja) * | 2015-03-23 | 2020-04-02 | ユーシーエル ビジネス リミテッド | キメラ抗原受容体 |
JP2018510639A (ja) * | 2015-03-23 | 2018-04-19 | ユーシーエル ビジネス ピーエルシー | キメラ抗原受容体 |
US10786533B2 (en) | 2015-07-15 | 2020-09-29 | Juno Therapeutics, Inc. | Engineered cells for adoptive cell therapy |
US11407805B2 (en) | 2015-07-28 | 2022-08-09 | The Trustees Of The University Of Pennsylvania | Modified monocytes/macrophage expressing chimeric antigen receptors and uses thereof |
CN108025024A (zh) * | 2015-07-28 | 2018-05-11 | 宾夕法尼亚大学董事会 | 表达嵌合抗原受体的修饰单核细胞/巨噬细胞及其用途 |
JP2018521667A (ja) * | 2015-07-28 | 2018-08-09 | ザ トラスティーズ オブ ザ ユニバーシティ オブ ペンシルバニア | キメラ抗原受容体を発現する改変された単球/マクロファージおよびその使用 |
CN108025024B (zh) * | 2015-07-28 | 2022-11-29 | 宾夕法尼亚大学董事会 | 表达嵌合抗原受体的修饰单核细胞/巨噬细胞及其用途 |
US11498954B2 (en) | 2015-07-28 | 2022-11-15 | The Trustees Of The University Of Pennsylvania | Modified monocytes/macrophage expressing chimeric antigen receptors and uses thereof |
US11319358B2 (en) | 2015-07-28 | 2022-05-03 | The Trustees Of The University Of Pennsylvania | Modified monocytes/macrophage expressing chimeric antigen receptors and uses thereof |
US11359002B2 (en) | 2015-07-28 | 2022-06-14 | The Trustees Of The University Of Pennsylvania | Modified monocytes/macrophage expressing chimeric antigen receptors and uses thereof |
US11332511B2 (en) | 2015-07-28 | 2022-05-17 | The Trustees Of The University Of Pennsylvania | Modified monocytes/macrophage expressing chimeric antigen receptors and uses thereof |
JP2022028831A (ja) * | 2015-07-28 | 2022-02-16 | ザ トラスティーズ オブ ザ ユニバーシティ オブ ペンシルバニア | キメラ抗原受容体を発現する改変された単球/マクロファージおよびその使用 |
US11325963B2 (en) | 2015-07-28 | 2022-05-10 | The Trustees Of The University Of Pennsylvania | Modified monocytes/macrophage expressing chimeric antigen receptors and uses thereof |
JP7032304B2 (ja) | 2015-07-28 | 2022-03-08 | ザ トラスティーズ オブ ザ ユニバーシティ オブ ペンシルバニア | キメラ抗原受容体を発現する改変された単球/マクロファージおよびその使用 |
US11306133B2 (en) | 2015-07-28 | 2022-04-19 | The Trustees Of The University Of Pennsylvania | Modified monocytes/macrophage expressing chimeric antigen receptors and uses thereof |
US11306134B2 (en) | 2015-07-28 | 2022-04-19 | The Trustees Of The University Of Pennsylvania | Modified monocytes/macrophage expressing chimeric antigen receptors and uses thereof |
US20210309721A1 (en) * | 2016-09-02 | 2021-10-07 | Cornell University | I domain chimeric antigen receptor specific to icam-1 |
JP6996772B2 (ja) | 2016-09-02 | 2022-02-21 | コーネル・ユニバーシティー | Icam-1に特異的なiドメインキメラ抗原受容体 |
JP2019530441A (ja) * | 2016-09-02 | 2019-10-24 | コーネル・ユニバーシティーCornell University | Icam−1に特異的なiドメインキメラ抗原受容体 |
JPWO2018052142A1 (ja) * | 2016-09-16 | 2019-06-24 | キッセイ薬品工業株式会社 | 遺伝子改変細胞及びその作製方法 |
US10683355B2 (en) | 2016-09-16 | 2020-06-16 | Kissei Pharmaceutical Co., Ltd. | Genetically-modified cells and method for producing same |
US11497768B2 (en) | 2017-06-05 | 2022-11-15 | Mie University | Antigen-binding protein that recognizes MAGE-A4-derived peptide |
JPWO2018225732A1 (ja) * | 2017-06-05 | 2020-05-21 | 国立大学法人三重大学 | Mage−a4由来ペプチドを認識する抗原結合性タンパク質 |
WO2018225732A1 (ja) | 2017-06-05 | 2018-12-13 | 国立大学法人三重大学 | Mage-a4由来ペプチドを認識する抗原結合性タンパク質 |
JP7202512B2 (ja) | 2017-06-05 | 2023-01-12 | 国立大学法人三重大学 | Mage-a4由来ペプチドを認識する抗原結合性タンパク質 |
JP7104949B2 (ja) | 2017-12-06 | 2022-07-22 | 阿思科力(蘇州)生物科技有限公司 | Carをコードするヌクレオチド配列、このcarを発現するrobo1 car-nk細胞、その調製及び使用 |
US11738051B2 (en) | 2017-12-06 | 2023-08-29 | Asclepius (Suzhou) Technology Company Group Co., Ltd. | Nucleotide sequences for encoding CAR, ROBO1 CAR-NK cells of expressing the CAR, and preparation and application thereof |
JP2021508253A (ja) * | 2017-12-06 | 2021-03-04 | 阿思科力(蘇州)生物科技有限公司Asclepius (Suzhou) Technology Company Group Co.,Ltd. | Carをコードするヌクレオチド配列、このcarを発現するrobo1 car−nk細胞、その調製及び使用 |
US20210052646A1 (en) * | 2017-12-27 | 2021-02-25 | Takeda Pharmaceutical Company Limited | Nucleic-acid containing lipid nano-particle and use thereof |
WO2019152781A1 (en) | 2018-02-02 | 2019-08-08 | The Trustees Of The University Of Pennsylvania | Modified monocytes/macrophages/dendritic cells expressing chimeric antigen receptors and uses in diseases and disorders associated with protein aggregates |
WO2020017479A1 (ja) | 2018-07-17 | 2020-01-23 | ノイルイミューン・バイオテック株式会社 | 抗gpc3一本鎖抗体を含むcar |
JP7237287B2 (ja) | 2018-08-24 | 2023-03-13 | シェンチェン プレジーン バイオファルマ カンパニー リミテッド | 単一ドメイン抗体に基づくbcmaキメラ抗原受容体及びその使用 |
JP2021535756A (ja) * | 2018-08-24 | 2021-12-23 | シェンチェン プレジーン バイオファルマ カンパニー リミテッド | 単一ドメイン抗体に基づくbcmaキメラ抗原受容体及びその使用 |
US11312939B2 (en) | 2020-06-04 | 2022-04-26 | Carisma Therapeutics Inc. | Constructs for chimeric antigen receptors |
US11739297B2 (en) | 2020-06-04 | 2023-08-29 | Carisma Therapeutics Inc. | Method of increasing tumor killing activity of macrophages or monocytes comprising chimeric antigen receptor |
Also Published As
Publication number | Publication date |
---|---|
KR101956751B1 (ko) | 2019-03-11 |
EP2765193A4 (en) | 2015-06-17 |
US9175308B2 (en) | 2015-11-03 |
JP6053688B2 (ja) | 2016-12-27 |
JPWO2013051718A1 (ja) | 2015-03-30 |
EP2765193B1 (en) | 2017-08-09 |
CN104126009A (zh) | 2014-10-29 |
EP2765193A1 (en) | 2014-08-13 |
US20140242701A1 (en) | 2014-08-28 |
CN104126009B (zh) | 2019-05-10 |
KR20140073531A (ko) | 2014-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6053688B2 (ja) | キメラ抗原受容体 | |
US10865231B2 (en) | Therapeutic agents | |
US10556969B2 (en) | Chimeric antigen receptors with an optimized hinge region | |
US10822392B2 (en) | Nucleic acids comprising polynucleotides encoding chimeric antigen receptors | |
US10865243B2 (en) | Chimeric antigen receptor and its use | |
EP3529361A1 (en) | Secretable variant immunomodulatory proteins and engineered cell therapy | |
CA3150884C (en) | Immune synapse-stabilizing chimeric antigen receptor (car) t cell | |
WO2023217796A1 (en) | Compositions comprising il-15, il-15 receptor alpha and the intracellular signaling domain of cd2 for immune cell therapy | |
US20240316099A1 (en) | Cytotoxic and costimulatory chimeric antigen receptors | |
WO2022064397A1 (en) | Methods and compositions of car-expressing natural killer cells with bispecific antigen-binding molecules as cancer therapeutic agents | |
JP2023511443A (ja) | 普遍的免疫受容体を発現する操作された細胞の活性の量的制御 | |
WO2024223870A1 (en) | Retroviral vector particle pseudotyped with envelope proteins of canine distemper virus | |
JP2022001021A (ja) | Cd26特異的キメラ抗原受容体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12838701 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013537578 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2012838701 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14349763 Country of ref document: US Ref document number: 2012838701 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20147010498 Country of ref document: KR Kind code of ref document: A |